1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 #include "opt_ddb.h" 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 #include "opt_stack.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/bitstring.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/fcntl.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/dtrace_bsd.h> 69 #include <sys/sysctl.h> 70 #include <sys/filedesc.h> 71 #include <sys/tty.h> 72 #include <sys/signalvar.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/user.h> 76 #include <sys/vnode.h> 77 #include <sys/wait.h> 78 #ifdef KTRACE 79 #include <sys/ktrace.h> 80 #endif 81 82 #ifdef DDB 83 #include <ddb/ddb.h> 84 #endif 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_extern.h> 89 #include <vm/pmap.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_page.h> 93 #include <vm/uma.h> 94 95 #include <fs/devfs/devfs.h> 96 97 #ifdef COMPAT_FREEBSD32 98 #include <compat/freebsd32/freebsd32.h> 99 #include <compat/freebsd32/freebsd32_util.h> 100 #endif 101 102 SDT_PROVIDER_DEFINE(proc); 103 104 MALLOC_DEFINE(M_SESSION, "session", "session header"); 105 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 106 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 107 108 static void doenterpgrp(struct proc *, struct pgrp *); 109 static void orphanpg(struct pgrp *pg); 110 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 111 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 112 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 113 int preferthread); 114 static void pgdelete(struct pgrp *); 115 static int pgrp_init(void *mem, int size, int flags); 116 static int proc_ctor(void *mem, int size, void *arg, int flags); 117 static void proc_dtor(void *mem, int size, void *arg); 118 static int proc_init(void *mem, int size, int flags); 119 static void proc_fini(void *mem, int size); 120 static void pargs_free(struct pargs *pa); 121 122 /* 123 * Other process lists 124 */ 125 struct pidhashhead *pidhashtbl = NULL; 126 struct sx *pidhashtbl_lock; 127 u_long pidhash; 128 u_long pidhashlock; 129 struct pgrphashhead *pgrphashtbl; 130 u_long pgrphash; 131 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); 132 struct sx __exclusive_cache_line allproc_lock; 133 struct sx __exclusive_cache_line proctree_lock; 134 struct mtx __exclusive_cache_line ppeers_lock; 135 struct mtx __exclusive_cache_line procid_lock; 136 uma_zone_t proc_zone; 137 uma_zone_t pgrp_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_hash = offsetof(struct proc, p_hash); 148 const int proc_off_p_threads = offsetof(struct proc, p_threads); 149 const int thread_off_td_tid = offsetof(struct thread, td_tid); 150 const int thread_off_td_name = offsetof(struct thread, td_name); 151 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 152 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 153 const int thread_off_td_plist = offsetof(struct thread, td_plist); 154 155 EVENTHANDLER_LIST_DEFINE(process_ctor); 156 EVENTHANDLER_LIST_DEFINE(process_dtor); 157 EVENTHANDLER_LIST_DEFINE(process_init); 158 EVENTHANDLER_LIST_DEFINE(process_fini); 159 EVENTHANDLER_LIST_DEFINE(process_exit); 160 EVENTHANDLER_LIST_DEFINE(process_fork); 161 EVENTHANDLER_LIST_DEFINE(process_exec); 162 163 int kstack_pages = KSTACK_PAGES; 164 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 165 &kstack_pages, 0, 166 "Kernel stack size in pages"); 167 static int vmmap_skip_res_cnt = 0; 168 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 169 &vmmap_skip_res_cnt, 0, 170 "Skip calculation of the pages resident count in kern.proc.vmmap"); 171 172 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 173 #ifdef COMPAT_FREEBSD32 174 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 175 #endif 176 177 /* 178 * Initialize global process hashing structures. 179 */ 180 void 181 procinit(void) 182 { 183 u_long i; 184 185 sx_init(&allproc_lock, "allproc"); 186 sx_init(&proctree_lock, "proctree"); 187 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 188 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 189 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 190 pidhashlock = (pidhash + 1) / 64; 191 if (pidhashlock > 0) 192 pidhashlock--; 193 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 194 M_PROC, M_WAITOK | M_ZERO); 195 for (i = 0; i < pidhashlock + 1; i++) 196 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 197 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 198 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 199 proc_ctor, proc_dtor, proc_init, proc_fini, 200 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 201 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, 202 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 203 uihashinit(); 204 } 205 206 /* 207 * Prepare a proc for use. 208 */ 209 static int 210 proc_ctor(void *mem, int size, void *arg, int flags) 211 { 212 struct proc *p; 213 struct thread *td; 214 215 p = (struct proc *)mem; 216 #ifdef KDTRACE_HOOKS 217 kdtrace_proc_ctor(p); 218 #endif 219 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 220 td = FIRST_THREAD_IN_PROC(p); 221 if (td != NULL) { 222 /* Make sure all thread constructors are executed */ 223 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 224 } 225 return (0); 226 } 227 228 /* 229 * Reclaim a proc after use. 230 */ 231 static void 232 proc_dtor(void *mem, int size, void *arg) 233 { 234 struct proc *p; 235 struct thread *td; 236 237 /* INVARIANTS checks go here */ 238 p = (struct proc *)mem; 239 td = FIRST_THREAD_IN_PROC(p); 240 if (td != NULL) { 241 #ifdef INVARIANTS 242 KASSERT((p->p_numthreads == 1), 243 ("bad number of threads in exiting process")); 244 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 245 #endif 246 /* Free all OSD associated to this thread. */ 247 osd_thread_exit(td); 248 ast_kclear(td); 249 250 /* Make sure all thread destructors are executed */ 251 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 252 } 253 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 254 #ifdef KDTRACE_HOOKS 255 kdtrace_proc_dtor(p); 256 #endif 257 if (p->p_ksi != NULL) 258 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 259 } 260 261 /* 262 * Initialize type-stable parts of a proc (when newly created). 263 */ 264 static int 265 proc_init(void *mem, int size, int flags) 266 { 267 struct proc *p; 268 269 p = (struct proc *)mem; 270 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 271 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 272 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 273 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 274 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 275 cv_init(&p->p_pwait, "ppwait"); 276 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 277 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 278 p->p_stats = pstats_alloc(); 279 p->p_pgrp = NULL; 280 return (0); 281 } 282 283 /* 284 * UMA should ensure that this function is never called. 285 * Freeing a proc structure would violate type stability. 286 */ 287 static void 288 proc_fini(void *mem, int size) 289 { 290 #ifdef notnow 291 struct proc *p; 292 293 p = (struct proc *)mem; 294 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 295 pstats_free(p->p_stats); 296 thread_free(FIRST_THREAD_IN_PROC(p)); 297 mtx_destroy(&p->p_mtx); 298 if (p->p_ksi != NULL) 299 ksiginfo_free(p->p_ksi); 300 #else 301 panic("proc reclaimed"); 302 #endif 303 } 304 305 static int 306 pgrp_init(void *mem, int size, int flags) 307 { 308 struct pgrp *pg; 309 310 pg = mem; 311 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 312 sx_init(&pg->pg_killsx, "killpg racer"); 313 return (0); 314 } 315 316 /* 317 * PID space management. 318 * 319 * These bitmaps are used by fork_findpid. 320 */ 321 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 322 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 323 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 324 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 325 326 static bitstr_t *proc_id_array[] = { 327 proc_id_pidmap, 328 proc_id_grpidmap, 329 proc_id_sessidmap, 330 proc_id_reapmap, 331 }; 332 333 void 334 proc_id_set(int type, pid_t id) 335 { 336 337 KASSERT(type >= 0 && type < nitems(proc_id_array), 338 ("invalid type %d\n", type)); 339 mtx_lock(&procid_lock); 340 KASSERT(bit_test(proc_id_array[type], id) == 0, 341 ("bit %d already set in %d\n", id, type)); 342 bit_set(proc_id_array[type], id); 343 mtx_unlock(&procid_lock); 344 } 345 346 void 347 proc_id_set_cond(int type, pid_t id) 348 { 349 350 KASSERT(type >= 0 && type < nitems(proc_id_array), 351 ("invalid type %d\n", type)); 352 if (bit_test(proc_id_array[type], id)) 353 return; 354 mtx_lock(&procid_lock); 355 bit_set(proc_id_array[type], id); 356 mtx_unlock(&procid_lock); 357 } 358 359 void 360 proc_id_clear(int type, pid_t id) 361 { 362 363 KASSERT(type >= 0 && type < nitems(proc_id_array), 364 ("invalid type %d\n", type)); 365 mtx_lock(&procid_lock); 366 KASSERT(bit_test(proc_id_array[type], id) != 0, 367 ("bit %d not set in %d\n", id, type)); 368 bit_clear(proc_id_array[type], id); 369 mtx_unlock(&procid_lock); 370 } 371 372 /* 373 * Is p an inferior of the current process? 374 */ 375 int 376 inferior(struct proc *p) 377 { 378 379 sx_assert(&proctree_lock, SX_LOCKED); 380 PROC_LOCK_ASSERT(p, MA_OWNED); 381 for (; p != curproc; p = proc_realparent(p)) { 382 if (p->p_pid == 0) 383 return (0); 384 } 385 return (1); 386 } 387 388 /* 389 * Shared lock all the pid hash lists. 390 */ 391 void 392 pidhash_slockall(void) 393 { 394 u_long i; 395 396 for (i = 0; i < pidhashlock + 1; i++) 397 sx_slock(&pidhashtbl_lock[i]); 398 } 399 400 /* 401 * Shared unlock all the pid hash lists. 402 */ 403 void 404 pidhash_sunlockall(void) 405 { 406 u_long i; 407 408 for (i = 0; i < pidhashlock + 1; i++) 409 sx_sunlock(&pidhashtbl_lock[i]); 410 } 411 412 /* 413 * Similar to pfind_any(), this function finds zombies. 414 */ 415 struct proc * 416 pfind_any_locked(pid_t pid) 417 { 418 struct proc *p; 419 420 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 421 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 422 if (p->p_pid == pid) { 423 PROC_LOCK(p); 424 if (p->p_state == PRS_NEW) { 425 PROC_UNLOCK(p); 426 p = NULL; 427 } 428 break; 429 } 430 } 431 return (p); 432 } 433 434 /* 435 * Locate a process by number. 436 * 437 * By not returning processes in the PRS_NEW state, we allow callers to avoid 438 * testing for that condition to avoid dereferencing p_ucred, et al. 439 */ 440 static __always_inline struct proc * 441 _pfind(pid_t pid, bool zombie) 442 { 443 struct proc *p; 444 445 p = curproc; 446 if (p->p_pid == pid) { 447 PROC_LOCK(p); 448 return (p); 449 } 450 sx_slock(PIDHASHLOCK(pid)); 451 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 452 if (p->p_pid == pid) { 453 PROC_LOCK(p); 454 if (p->p_state == PRS_NEW || 455 (!zombie && p->p_state == PRS_ZOMBIE)) { 456 PROC_UNLOCK(p); 457 p = NULL; 458 } 459 break; 460 } 461 } 462 sx_sunlock(PIDHASHLOCK(pid)); 463 return (p); 464 } 465 466 struct proc * 467 pfind(pid_t pid) 468 { 469 470 return (_pfind(pid, false)); 471 } 472 473 /* 474 * Same as pfind but allow zombies. 475 */ 476 struct proc * 477 pfind_any(pid_t pid) 478 { 479 480 return (_pfind(pid, true)); 481 } 482 483 /* 484 * Locate a process group by number. 485 * The caller must hold proctree_lock. 486 */ 487 struct pgrp * 488 pgfind(pid_t pgid) 489 { 490 struct pgrp *pgrp; 491 492 sx_assert(&proctree_lock, SX_LOCKED); 493 494 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 495 if (pgrp->pg_id == pgid) { 496 PGRP_LOCK(pgrp); 497 return (pgrp); 498 } 499 } 500 return (NULL); 501 } 502 503 /* 504 * Locate process and do additional manipulations, depending on flags. 505 */ 506 int 507 pget(pid_t pid, int flags, struct proc **pp) 508 { 509 struct proc *p; 510 struct thread *td1; 511 int error; 512 513 p = curproc; 514 if (p->p_pid == pid) { 515 PROC_LOCK(p); 516 } else { 517 p = NULL; 518 if (pid <= PID_MAX) { 519 if ((flags & PGET_NOTWEXIT) == 0) 520 p = pfind_any(pid); 521 else 522 p = pfind(pid); 523 } else if ((flags & PGET_NOTID) == 0) { 524 td1 = tdfind(pid, -1); 525 if (td1 != NULL) 526 p = td1->td_proc; 527 } 528 if (p == NULL) 529 return (ESRCH); 530 if ((flags & PGET_CANSEE) != 0) { 531 error = p_cansee(curthread, p); 532 if (error != 0) 533 goto errout; 534 } 535 } 536 if ((flags & PGET_CANDEBUG) != 0) { 537 error = p_candebug(curthread, p); 538 if (error != 0) 539 goto errout; 540 } 541 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 542 error = EPERM; 543 goto errout; 544 } 545 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 546 error = ESRCH; 547 goto errout; 548 } 549 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 550 /* 551 * XXXRW: Not clear ESRCH is the right error during proc 552 * execve(). 553 */ 554 error = ESRCH; 555 goto errout; 556 } 557 if ((flags & PGET_HOLD) != 0) { 558 _PHOLD(p); 559 PROC_UNLOCK(p); 560 } 561 *pp = p; 562 return (0); 563 errout: 564 PROC_UNLOCK(p); 565 return (error); 566 } 567 568 /* 569 * Create a new process group. 570 * pgid must be equal to the pid of p. 571 * Begin a new session if required. 572 */ 573 int 574 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 575 { 576 struct pgrp *old_pgrp; 577 578 sx_assert(&proctree_lock, SX_XLOCKED); 579 580 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 581 KASSERT(p->p_pid == pgid, 582 ("enterpgrp: new pgrp and pid != pgid")); 583 KASSERT(pgfind(pgid) == NULL, 584 ("enterpgrp: pgrp with pgid exists")); 585 KASSERT(!SESS_LEADER(p), 586 ("enterpgrp: session leader attempted setpgrp")); 587 588 old_pgrp = p->p_pgrp; 589 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 590 sx_xunlock(&proctree_lock); 591 sx_xlock(&old_pgrp->pg_killsx); 592 sx_xunlock(&old_pgrp->pg_killsx); 593 return (ERESTART); 594 } 595 MPASS(old_pgrp == p->p_pgrp); 596 597 if (sess != NULL) { 598 /* 599 * new session 600 */ 601 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 602 PROC_LOCK(p); 603 p->p_flag &= ~P_CONTROLT; 604 PROC_UNLOCK(p); 605 PGRP_LOCK(pgrp); 606 sess->s_leader = p; 607 sess->s_sid = p->p_pid; 608 proc_id_set(PROC_ID_SESSION, p->p_pid); 609 refcount_init(&sess->s_count, 1); 610 sess->s_ttyvp = NULL; 611 sess->s_ttydp = NULL; 612 sess->s_ttyp = NULL; 613 bcopy(p->p_session->s_login, sess->s_login, 614 sizeof(sess->s_login)); 615 pgrp->pg_session = sess; 616 KASSERT(p == curproc, 617 ("enterpgrp: mksession and p != curproc")); 618 } else { 619 pgrp->pg_session = p->p_session; 620 sess_hold(pgrp->pg_session); 621 PGRP_LOCK(pgrp); 622 } 623 pgrp->pg_id = pgid; 624 proc_id_set(PROC_ID_GROUP, p->p_pid); 625 LIST_INIT(&pgrp->pg_members); 626 pgrp->pg_flags = 0; 627 628 /* 629 * As we have an exclusive lock of proctree_lock, 630 * this should not deadlock. 631 */ 632 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 633 SLIST_INIT(&pgrp->pg_sigiolst); 634 PGRP_UNLOCK(pgrp); 635 636 doenterpgrp(p, pgrp); 637 638 sx_xunlock(&old_pgrp->pg_killsx); 639 return (0); 640 } 641 642 /* 643 * Move p to an existing process group 644 */ 645 int 646 enterthispgrp(struct proc *p, struct pgrp *pgrp) 647 { 648 struct pgrp *old_pgrp; 649 650 sx_assert(&proctree_lock, SX_XLOCKED); 651 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 652 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 653 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 654 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 655 KASSERT(pgrp->pg_session == p->p_session, 656 ("%s: pgrp's session %p, p->p_session %p proc %p\n", 657 __func__, pgrp->pg_session, p->p_session, p)); 658 KASSERT(pgrp != p->p_pgrp, 659 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); 660 661 old_pgrp = p->p_pgrp; 662 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 663 sx_xunlock(&proctree_lock); 664 sx_xlock(&old_pgrp->pg_killsx); 665 sx_xunlock(&old_pgrp->pg_killsx); 666 return (ERESTART); 667 } 668 MPASS(old_pgrp == p->p_pgrp); 669 if (!sx_try_xlock(&pgrp->pg_killsx)) { 670 sx_xunlock(&old_pgrp->pg_killsx); 671 sx_xunlock(&proctree_lock); 672 sx_xlock(&pgrp->pg_killsx); 673 sx_xunlock(&pgrp->pg_killsx); 674 return (ERESTART); 675 } 676 677 doenterpgrp(p, pgrp); 678 679 sx_xunlock(&pgrp->pg_killsx); 680 sx_xunlock(&old_pgrp->pg_killsx); 681 return (0); 682 } 683 684 /* 685 * If true, any child of q which belongs to group pgrp, qualifies the 686 * process group pgrp as not orphaned. 687 */ 688 static bool 689 isjobproc(struct proc *q, struct pgrp *pgrp) 690 { 691 sx_assert(&proctree_lock, SX_LOCKED); 692 693 return (q->p_pgrp != pgrp && 694 q->p_pgrp->pg_session == pgrp->pg_session); 695 } 696 697 static struct proc * 698 jobc_reaper(struct proc *p) 699 { 700 struct proc *pp; 701 702 sx_assert(&proctree_lock, SA_LOCKED); 703 704 for (pp = p;;) { 705 pp = pp->p_reaper; 706 if (pp->p_reaper == pp || 707 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 708 return (pp); 709 } 710 } 711 712 static struct proc * 713 jobc_parent(struct proc *p, struct proc *p_exiting) 714 { 715 struct proc *pp; 716 717 sx_assert(&proctree_lock, SA_LOCKED); 718 719 pp = proc_realparent(p); 720 if (pp->p_pptr == NULL || pp == p_exiting || 721 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 722 return (pp); 723 return (jobc_reaper(pp)); 724 } 725 726 static int 727 pgrp_calc_jobc(struct pgrp *pgrp) 728 { 729 struct proc *q; 730 int cnt; 731 732 #ifdef INVARIANTS 733 if (!mtx_owned(&pgrp->pg_mtx)) 734 sx_assert(&proctree_lock, SA_LOCKED); 735 #endif 736 737 cnt = 0; 738 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 739 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 740 q->p_pptr == NULL) 741 continue; 742 if (isjobproc(jobc_parent(q, NULL), pgrp)) 743 cnt++; 744 } 745 return (cnt); 746 } 747 748 /* 749 * Move p to a process group 750 */ 751 static void 752 doenterpgrp(struct proc *p, struct pgrp *pgrp) 753 { 754 struct pgrp *savepgrp; 755 struct proc *pp; 756 757 sx_assert(&proctree_lock, SX_XLOCKED); 758 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 759 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 760 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 761 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 762 763 savepgrp = p->p_pgrp; 764 pp = jobc_parent(p, NULL); 765 766 PGRP_LOCK(pgrp); 767 PGRP_LOCK(savepgrp); 768 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) 769 orphanpg(savepgrp); 770 PROC_LOCK(p); 771 LIST_REMOVE(p, p_pglist); 772 p->p_pgrp = pgrp; 773 PROC_UNLOCK(p); 774 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 775 if (isjobproc(pp, pgrp)) 776 pgrp->pg_flags &= ~PGRP_ORPHANED; 777 PGRP_UNLOCK(savepgrp); 778 PGRP_UNLOCK(pgrp); 779 if (LIST_EMPTY(&savepgrp->pg_members)) 780 pgdelete(savepgrp); 781 } 782 783 /* 784 * remove process from process group 785 */ 786 int 787 leavepgrp(struct proc *p) 788 { 789 struct pgrp *savepgrp; 790 791 sx_assert(&proctree_lock, SX_XLOCKED); 792 savepgrp = p->p_pgrp; 793 PGRP_LOCK(savepgrp); 794 PROC_LOCK(p); 795 LIST_REMOVE(p, p_pglist); 796 p->p_pgrp = NULL; 797 PROC_UNLOCK(p); 798 PGRP_UNLOCK(savepgrp); 799 if (LIST_EMPTY(&savepgrp->pg_members)) 800 pgdelete(savepgrp); 801 return (0); 802 } 803 804 /* 805 * delete a process group 806 */ 807 static void 808 pgdelete(struct pgrp *pgrp) 809 { 810 struct session *savesess; 811 struct tty *tp; 812 813 sx_assert(&proctree_lock, SX_XLOCKED); 814 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 815 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 816 817 /* 818 * Reset any sigio structures pointing to us as a result of 819 * F_SETOWN with our pgid. The proctree lock ensures that 820 * new sigio structures will not be added after this point. 821 */ 822 funsetownlst(&pgrp->pg_sigiolst); 823 824 PGRP_LOCK(pgrp); 825 tp = pgrp->pg_session->s_ttyp; 826 LIST_REMOVE(pgrp, pg_hash); 827 savesess = pgrp->pg_session; 828 PGRP_UNLOCK(pgrp); 829 830 /* Remove the reference to the pgrp before deallocating it. */ 831 if (tp != NULL) { 832 tty_lock(tp); 833 tty_rel_pgrp(tp, pgrp); 834 } 835 836 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 837 uma_zfree(pgrp_zone, pgrp); 838 sess_release(savesess); 839 } 840 841 842 static void 843 fixjobc_kill(struct proc *p) 844 { 845 struct proc *q; 846 struct pgrp *pgrp; 847 848 sx_assert(&proctree_lock, SX_LOCKED); 849 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 850 pgrp = p->p_pgrp; 851 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 852 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 853 854 /* 855 * p no longer affects process group orphanage for children. 856 * It is marked by the flag because p is only physically 857 * removed from its process group on wait(2). 858 */ 859 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 860 p->p_treeflag |= P_TREE_GRPEXITED; 861 862 /* 863 * Check if exiting p orphans its own group. 864 */ 865 pgrp = p->p_pgrp; 866 if (isjobproc(jobc_parent(p, NULL), pgrp)) { 867 PGRP_LOCK(pgrp); 868 if (pgrp_calc_jobc(pgrp) == 0) 869 orphanpg(pgrp); 870 PGRP_UNLOCK(pgrp); 871 } 872 873 /* 874 * Check this process' children to see whether they qualify 875 * their process groups after reparenting to reaper. 876 */ 877 LIST_FOREACH(q, &p->p_children, p_sibling) { 878 pgrp = q->p_pgrp; 879 PGRP_LOCK(pgrp); 880 if (pgrp_calc_jobc(pgrp) == 0) { 881 /* 882 * We want to handle exactly the children that 883 * has p as realparent. Then, when calculating 884 * jobc_parent for children, we should ignore 885 * P_TREE_GRPEXITED flag already set on p. 886 */ 887 if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) 888 orphanpg(pgrp); 889 } else 890 pgrp->pg_flags &= ~PGRP_ORPHANED; 891 PGRP_UNLOCK(pgrp); 892 } 893 LIST_FOREACH(q, &p->p_orphans, p_orphan) { 894 pgrp = q->p_pgrp; 895 PGRP_LOCK(pgrp); 896 if (pgrp_calc_jobc(pgrp) == 0) { 897 if (isjobproc(p, pgrp)) 898 orphanpg(pgrp); 899 } else 900 pgrp->pg_flags &= ~PGRP_ORPHANED; 901 PGRP_UNLOCK(pgrp); 902 } 903 } 904 905 void 906 killjobc(void) 907 { 908 struct session *sp; 909 struct tty *tp; 910 struct proc *p; 911 struct vnode *ttyvp; 912 913 p = curproc; 914 MPASS(p->p_flag & P_WEXIT); 915 sx_assert(&proctree_lock, SX_LOCKED); 916 917 if (SESS_LEADER(p)) { 918 sp = p->p_session; 919 920 /* 921 * s_ttyp is not zero'd; we use this to indicate that 922 * the session once had a controlling terminal. (for 923 * logging and informational purposes) 924 */ 925 SESS_LOCK(sp); 926 ttyvp = sp->s_ttyvp; 927 tp = sp->s_ttyp; 928 sp->s_ttyvp = NULL; 929 sp->s_ttydp = NULL; 930 sp->s_leader = NULL; 931 SESS_UNLOCK(sp); 932 933 /* 934 * Signal foreground pgrp and revoke access to 935 * controlling terminal if it has not been revoked 936 * already. 937 * 938 * Because the TTY may have been revoked in the mean 939 * time and could already have a new session associated 940 * with it, make sure we don't send a SIGHUP to a 941 * foreground process group that does not belong to this 942 * session. 943 */ 944 945 if (tp != NULL) { 946 tty_lock(tp); 947 if (tp->t_session == sp) 948 tty_signal_pgrp(tp, SIGHUP); 949 tty_unlock(tp); 950 } 951 952 if (ttyvp != NULL) { 953 sx_xunlock(&proctree_lock); 954 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 955 VOP_REVOKE(ttyvp, REVOKEALL); 956 VOP_UNLOCK(ttyvp); 957 } 958 devfs_ctty_unref(ttyvp); 959 sx_xlock(&proctree_lock); 960 } 961 } 962 fixjobc_kill(p); 963 } 964 965 /* 966 * A process group has become orphaned, mark it as such for signal 967 * delivery code. If there are any stopped processes in the group, 968 * hang-up all process in that group. 969 */ 970 static void 971 orphanpg(struct pgrp *pg) 972 { 973 struct proc *p; 974 975 PGRP_LOCK_ASSERT(pg, MA_OWNED); 976 977 pg->pg_flags |= PGRP_ORPHANED; 978 979 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 980 PROC_LOCK(p); 981 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 982 PROC_UNLOCK(p); 983 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 984 PROC_LOCK(p); 985 kern_psignal(p, SIGHUP); 986 kern_psignal(p, SIGCONT); 987 PROC_UNLOCK(p); 988 } 989 return; 990 } 991 PROC_UNLOCK(p); 992 } 993 } 994 995 void 996 sess_hold(struct session *s) 997 { 998 999 refcount_acquire(&s->s_count); 1000 } 1001 1002 void 1003 sess_release(struct session *s) 1004 { 1005 1006 if (refcount_release(&s->s_count)) { 1007 if (s->s_ttyp != NULL) { 1008 tty_lock(s->s_ttyp); 1009 tty_rel_sess(s->s_ttyp, s); 1010 } 1011 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1012 mtx_destroy(&s->s_mtx); 1013 free(s, M_SESSION); 1014 } 1015 } 1016 1017 #ifdef DDB 1018 1019 static void 1020 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1021 { 1022 db_printf( 1023 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1024 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1025 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1026 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1027 } 1028 1029 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) 1030 { 1031 struct pgrp *pgrp; 1032 struct proc *p; 1033 int i; 1034 1035 for (i = 0; i <= pgrphash; i++) { 1036 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1037 db_printf("indx %d\n", i); 1038 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1039 db_printf( 1040 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1041 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1042 pgrp->pg_session->s_count, 1043 LIST_FIRST(&pgrp->pg_members)); 1044 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1045 db_print_pgrp_one(pgrp, p); 1046 } 1047 } 1048 } 1049 } 1050 #endif /* DDB */ 1051 1052 /* 1053 * Calculate the kinfo_proc members which contain process-wide 1054 * informations. 1055 * Must be called with the target process locked. 1056 */ 1057 static void 1058 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1059 { 1060 struct thread *td; 1061 1062 PROC_LOCK_ASSERT(p, MA_OWNED); 1063 1064 kp->ki_estcpu = 0; 1065 kp->ki_pctcpu = 0; 1066 FOREACH_THREAD_IN_PROC(p, td) { 1067 thread_lock(td); 1068 kp->ki_pctcpu += sched_pctcpu(td); 1069 kp->ki_estcpu += sched_estcpu(td); 1070 thread_unlock(td); 1071 } 1072 } 1073 1074 /* 1075 * Fill in any information that is common to all threads in the process. 1076 * Must be called with the target process locked. 1077 */ 1078 static void 1079 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1080 { 1081 struct thread *td0; 1082 struct ucred *cred; 1083 struct sigacts *ps; 1084 struct timeval boottime; 1085 1086 PROC_LOCK_ASSERT(p, MA_OWNED); 1087 1088 kp->ki_structsize = sizeof(*kp); 1089 kp->ki_paddr = p; 1090 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1091 kp->ki_args = p->p_args; 1092 kp->ki_textvp = p->p_textvp; 1093 #ifdef KTRACE 1094 kp->ki_tracep = ktr_get_tracevp(p, false); 1095 kp->ki_traceflag = p->p_traceflag; 1096 #endif 1097 kp->ki_fd = p->p_fd; 1098 kp->ki_pd = p->p_pd; 1099 kp->ki_vmspace = p->p_vmspace; 1100 kp->ki_flag = p->p_flag; 1101 kp->ki_flag2 = p->p_flag2; 1102 cred = p->p_ucred; 1103 if (cred) { 1104 kp->ki_uid = cred->cr_uid; 1105 kp->ki_ruid = cred->cr_ruid; 1106 kp->ki_svuid = cred->cr_svuid; 1107 kp->ki_cr_flags = 0; 1108 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1109 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1110 /* XXX bde doesn't like KI_NGROUPS */ 1111 if (cred->cr_ngroups > KI_NGROUPS) { 1112 kp->ki_ngroups = KI_NGROUPS; 1113 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1114 } else 1115 kp->ki_ngroups = cred->cr_ngroups; 1116 bcopy(cred->cr_groups, kp->ki_groups, 1117 kp->ki_ngroups * sizeof(gid_t)); 1118 kp->ki_rgid = cred->cr_rgid; 1119 kp->ki_svgid = cred->cr_svgid; 1120 /* If jailed(cred), emulate the old P_JAILED flag. */ 1121 if (jailed(cred)) { 1122 kp->ki_flag |= P_JAILED; 1123 /* If inside the jail, use 0 as a jail ID. */ 1124 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1125 kp->ki_jid = cred->cr_prison->pr_id; 1126 } 1127 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1128 sizeof(kp->ki_loginclass)); 1129 } 1130 ps = p->p_sigacts; 1131 if (ps) { 1132 mtx_lock(&ps->ps_mtx); 1133 kp->ki_sigignore = ps->ps_sigignore; 1134 kp->ki_sigcatch = ps->ps_sigcatch; 1135 mtx_unlock(&ps->ps_mtx); 1136 } 1137 if (p->p_state != PRS_NEW && 1138 p->p_state != PRS_ZOMBIE && 1139 p->p_vmspace != NULL) { 1140 struct vmspace *vm = p->p_vmspace; 1141 1142 kp->ki_size = vm->vm_map.size; 1143 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1144 FOREACH_THREAD_IN_PROC(p, td0) { 1145 if (!TD_IS_SWAPPED(td0)) 1146 kp->ki_rssize += td0->td_kstack_pages; 1147 } 1148 kp->ki_swrss = vm->vm_swrss; 1149 kp->ki_tsize = vm->vm_tsize; 1150 kp->ki_dsize = vm->vm_dsize; 1151 kp->ki_ssize = vm->vm_ssize; 1152 } else if (p->p_state == PRS_ZOMBIE) 1153 kp->ki_stat = SZOMB; 1154 if (kp->ki_flag & P_INMEM) 1155 kp->ki_sflag = PS_INMEM; 1156 else 1157 kp->ki_sflag = 0; 1158 /* Calculate legacy swtime as seconds since 'swtick'. */ 1159 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1160 kp->ki_pid = p->p_pid; 1161 kp->ki_nice = p->p_nice; 1162 kp->ki_fibnum = p->p_fibnum; 1163 kp->ki_start = p->p_stats->p_start; 1164 getboottime(&boottime); 1165 timevaladd(&kp->ki_start, &boottime); 1166 PROC_STATLOCK(p); 1167 rufetch(p, &kp->ki_rusage); 1168 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1169 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1170 PROC_STATUNLOCK(p); 1171 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1172 /* Some callers want child times in a single value. */ 1173 kp->ki_childtime = kp->ki_childstime; 1174 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1175 1176 FOREACH_THREAD_IN_PROC(p, td0) 1177 kp->ki_cow += td0->td_cow; 1178 1179 if (p->p_comm[0] != '\0') 1180 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1181 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1182 p->p_sysent->sv_name[0] != '\0') 1183 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1184 kp->ki_siglist = p->p_siglist; 1185 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1186 kp->ki_acflag = p->p_acflag; 1187 kp->ki_lock = p->p_lock; 1188 if (p->p_pptr) { 1189 kp->ki_ppid = p->p_oppid; 1190 if (p->p_flag & P_TRACED) 1191 kp->ki_tracer = p->p_pptr->p_pid; 1192 } 1193 } 1194 1195 /* 1196 * Fill job-related process information. 1197 */ 1198 static void 1199 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) 1200 { 1201 struct tty *tp; 1202 struct session *sp; 1203 struct pgrp *pgrp; 1204 1205 sx_assert(&proctree_lock, SA_LOCKED); 1206 PROC_LOCK_ASSERT(p, MA_OWNED); 1207 1208 pgrp = p->p_pgrp; 1209 if (pgrp == NULL) 1210 return; 1211 1212 kp->ki_pgid = pgrp->pg_id; 1213 kp->ki_jobc = pgrp_calc_jobc(pgrp); 1214 1215 sp = pgrp->pg_session; 1216 tp = NULL; 1217 1218 if (sp != NULL) { 1219 kp->ki_sid = sp->s_sid; 1220 SESS_LOCK(sp); 1221 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); 1222 if (sp->s_ttyvp) 1223 kp->ki_kiflag |= KI_CTTY; 1224 if (SESS_LEADER(p)) 1225 kp->ki_kiflag |= KI_SLEADER; 1226 tp = sp->s_ttyp; 1227 SESS_UNLOCK(sp); 1228 } 1229 1230 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1231 kp->ki_tdev = tty_udev(tp); 1232 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1233 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1234 if (tp->t_session) 1235 kp->ki_tsid = tp->t_session->s_sid; 1236 } else { 1237 kp->ki_tdev = NODEV; 1238 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1239 } 1240 } 1241 1242 /* 1243 * Fill in information that is thread specific. Must be called with 1244 * target process locked. If 'preferthread' is set, overwrite certain 1245 * process-related fields that are maintained for both threads and 1246 * processes. 1247 */ 1248 static void 1249 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1250 { 1251 struct proc *p; 1252 1253 p = td->td_proc; 1254 kp->ki_tdaddr = td; 1255 PROC_LOCK_ASSERT(p, MA_OWNED); 1256 1257 if (preferthread) 1258 PROC_STATLOCK(p); 1259 thread_lock(td); 1260 if (td->td_wmesg != NULL) 1261 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1262 else 1263 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1264 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1265 sizeof(kp->ki_tdname)) { 1266 strlcpy(kp->ki_moretdname, 1267 td->td_name + sizeof(kp->ki_tdname) - 1, 1268 sizeof(kp->ki_moretdname)); 1269 } else { 1270 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1271 } 1272 if (TD_ON_LOCK(td)) { 1273 kp->ki_kiflag |= KI_LOCKBLOCK; 1274 strlcpy(kp->ki_lockname, td->td_lockname, 1275 sizeof(kp->ki_lockname)); 1276 } else { 1277 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1278 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1279 } 1280 1281 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1282 if (TD_ON_RUNQ(td) || 1283 TD_CAN_RUN(td) || 1284 TD_IS_RUNNING(td)) { 1285 kp->ki_stat = SRUN; 1286 } else if (P_SHOULDSTOP(p)) { 1287 kp->ki_stat = SSTOP; 1288 } else if (TD_IS_SLEEPING(td)) { 1289 kp->ki_stat = SSLEEP; 1290 } else if (TD_ON_LOCK(td)) { 1291 kp->ki_stat = SLOCK; 1292 } else { 1293 kp->ki_stat = SWAIT; 1294 } 1295 } else if (p->p_state == PRS_ZOMBIE) { 1296 kp->ki_stat = SZOMB; 1297 } else { 1298 kp->ki_stat = SIDL; 1299 } 1300 1301 /* Things in the thread */ 1302 kp->ki_wchan = td->td_wchan; 1303 kp->ki_pri.pri_level = td->td_priority; 1304 kp->ki_pri.pri_native = td->td_base_pri; 1305 1306 /* 1307 * Note: legacy fields; clamp at the old NOCPU value and/or 1308 * the maximum u_char CPU value. 1309 */ 1310 if (td->td_lastcpu == NOCPU) 1311 kp->ki_lastcpu_old = NOCPU_OLD; 1312 else if (td->td_lastcpu > MAXCPU_OLD) 1313 kp->ki_lastcpu_old = MAXCPU_OLD; 1314 else 1315 kp->ki_lastcpu_old = td->td_lastcpu; 1316 1317 if (td->td_oncpu == NOCPU) 1318 kp->ki_oncpu_old = NOCPU_OLD; 1319 else if (td->td_oncpu > MAXCPU_OLD) 1320 kp->ki_oncpu_old = MAXCPU_OLD; 1321 else 1322 kp->ki_oncpu_old = td->td_oncpu; 1323 1324 kp->ki_lastcpu = td->td_lastcpu; 1325 kp->ki_oncpu = td->td_oncpu; 1326 kp->ki_tdflags = td->td_flags; 1327 kp->ki_tid = td->td_tid; 1328 kp->ki_numthreads = p->p_numthreads; 1329 kp->ki_pcb = td->td_pcb; 1330 kp->ki_kstack = (void *)td->td_kstack; 1331 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1332 kp->ki_pri.pri_class = td->td_pri_class; 1333 kp->ki_pri.pri_user = td->td_user_pri; 1334 1335 if (preferthread) { 1336 rufetchtd(td, &kp->ki_rusage); 1337 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1338 kp->ki_pctcpu = sched_pctcpu(td); 1339 kp->ki_estcpu = sched_estcpu(td); 1340 kp->ki_cow = td->td_cow; 1341 } 1342 1343 /* We can't get this anymore but ps etc never used it anyway. */ 1344 kp->ki_rqindex = 0; 1345 1346 if (preferthread) 1347 kp->ki_siglist = td->td_siglist; 1348 kp->ki_sigmask = td->td_sigmask; 1349 thread_unlock(td); 1350 if (preferthread) 1351 PROC_STATUNLOCK(p); 1352 } 1353 1354 /* 1355 * Fill in a kinfo_proc structure for the specified process. 1356 * Must be called with the target process locked. 1357 */ 1358 void 1359 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1360 { 1361 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1362 1363 bzero(kp, sizeof(*kp)); 1364 1365 fill_kinfo_proc_pgrp(p,kp); 1366 fill_kinfo_proc_only(p, kp); 1367 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1368 fill_kinfo_aggregate(p, kp); 1369 } 1370 1371 struct pstats * 1372 pstats_alloc(void) 1373 { 1374 1375 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1376 } 1377 1378 /* 1379 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1380 */ 1381 void 1382 pstats_fork(struct pstats *src, struct pstats *dst) 1383 { 1384 1385 bzero(&dst->pstat_startzero, 1386 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1387 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1388 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1389 } 1390 1391 void 1392 pstats_free(struct pstats *ps) 1393 { 1394 1395 free(ps, M_SUBPROC); 1396 } 1397 1398 #ifdef COMPAT_FREEBSD32 1399 1400 /* 1401 * This function is typically used to copy out the kernel address, so 1402 * it can be replaced by assignment of zero. 1403 */ 1404 static inline uint32_t 1405 ptr32_trim(const void *ptr) 1406 { 1407 uintptr_t uptr; 1408 1409 uptr = (uintptr_t)ptr; 1410 return ((uptr > UINT_MAX) ? 0 : uptr); 1411 } 1412 1413 #define PTRTRIM_CP(src,dst,fld) \ 1414 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1415 1416 static void 1417 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1418 { 1419 int i; 1420 1421 bzero(ki32, sizeof(struct kinfo_proc32)); 1422 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1423 CP(*ki, *ki32, ki_layout); 1424 PTRTRIM_CP(*ki, *ki32, ki_args); 1425 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1426 PTRTRIM_CP(*ki, *ki32, ki_addr); 1427 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1428 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1429 PTRTRIM_CP(*ki, *ki32, ki_fd); 1430 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1431 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1432 CP(*ki, *ki32, ki_pid); 1433 CP(*ki, *ki32, ki_ppid); 1434 CP(*ki, *ki32, ki_pgid); 1435 CP(*ki, *ki32, ki_tpgid); 1436 CP(*ki, *ki32, ki_sid); 1437 CP(*ki, *ki32, ki_tsid); 1438 CP(*ki, *ki32, ki_jobc); 1439 CP(*ki, *ki32, ki_tdev); 1440 CP(*ki, *ki32, ki_tdev_freebsd11); 1441 CP(*ki, *ki32, ki_siglist); 1442 CP(*ki, *ki32, ki_sigmask); 1443 CP(*ki, *ki32, ki_sigignore); 1444 CP(*ki, *ki32, ki_sigcatch); 1445 CP(*ki, *ki32, ki_uid); 1446 CP(*ki, *ki32, ki_ruid); 1447 CP(*ki, *ki32, ki_svuid); 1448 CP(*ki, *ki32, ki_rgid); 1449 CP(*ki, *ki32, ki_svgid); 1450 CP(*ki, *ki32, ki_ngroups); 1451 for (i = 0; i < KI_NGROUPS; i++) 1452 CP(*ki, *ki32, ki_groups[i]); 1453 CP(*ki, *ki32, ki_size); 1454 CP(*ki, *ki32, ki_rssize); 1455 CP(*ki, *ki32, ki_swrss); 1456 CP(*ki, *ki32, ki_tsize); 1457 CP(*ki, *ki32, ki_dsize); 1458 CP(*ki, *ki32, ki_ssize); 1459 CP(*ki, *ki32, ki_xstat); 1460 CP(*ki, *ki32, ki_acflag); 1461 CP(*ki, *ki32, ki_pctcpu); 1462 CP(*ki, *ki32, ki_estcpu); 1463 CP(*ki, *ki32, ki_slptime); 1464 CP(*ki, *ki32, ki_swtime); 1465 CP(*ki, *ki32, ki_cow); 1466 CP(*ki, *ki32, ki_runtime); 1467 TV_CP(*ki, *ki32, ki_start); 1468 TV_CP(*ki, *ki32, ki_childtime); 1469 CP(*ki, *ki32, ki_flag); 1470 CP(*ki, *ki32, ki_kiflag); 1471 CP(*ki, *ki32, ki_traceflag); 1472 CP(*ki, *ki32, ki_stat); 1473 CP(*ki, *ki32, ki_nice); 1474 CP(*ki, *ki32, ki_lock); 1475 CP(*ki, *ki32, ki_rqindex); 1476 CP(*ki, *ki32, ki_oncpu); 1477 CP(*ki, *ki32, ki_lastcpu); 1478 1479 /* XXX TODO: wrap cpu value as appropriate */ 1480 CP(*ki, *ki32, ki_oncpu_old); 1481 CP(*ki, *ki32, ki_lastcpu_old); 1482 1483 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1484 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1485 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1486 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1487 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1488 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1489 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1490 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1491 CP(*ki, *ki32, ki_tracer); 1492 CP(*ki, *ki32, ki_flag2); 1493 CP(*ki, *ki32, ki_fibnum); 1494 CP(*ki, *ki32, ki_cr_flags); 1495 CP(*ki, *ki32, ki_jid); 1496 CP(*ki, *ki32, ki_numthreads); 1497 CP(*ki, *ki32, ki_tid); 1498 CP(*ki, *ki32, ki_pri); 1499 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1500 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1501 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1502 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1503 PTRTRIM_CP(*ki, *ki32, ki_udata); 1504 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1505 CP(*ki, *ki32, ki_sflag); 1506 CP(*ki, *ki32, ki_tdflags); 1507 } 1508 #endif 1509 1510 static ssize_t 1511 kern_proc_out_size(struct proc *p, int flags) 1512 { 1513 ssize_t size = 0; 1514 1515 PROC_LOCK_ASSERT(p, MA_OWNED); 1516 1517 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1518 #ifdef COMPAT_FREEBSD32 1519 if ((flags & KERN_PROC_MASK32) != 0) { 1520 size += sizeof(struct kinfo_proc32); 1521 } else 1522 #endif 1523 size += sizeof(struct kinfo_proc); 1524 } else { 1525 #ifdef COMPAT_FREEBSD32 1526 if ((flags & KERN_PROC_MASK32) != 0) 1527 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1528 else 1529 #endif 1530 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1531 } 1532 PROC_UNLOCK(p); 1533 return (size); 1534 } 1535 1536 int 1537 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1538 { 1539 struct thread *td; 1540 struct kinfo_proc ki; 1541 #ifdef COMPAT_FREEBSD32 1542 struct kinfo_proc32 ki32; 1543 #endif 1544 int error; 1545 1546 PROC_LOCK_ASSERT(p, MA_OWNED); 1547 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1548 1549 error = 0; 1550 fill_kinfo_proc(p, &ki); 1551 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1552 #ifdef COMPAT_FREEBSD32 1553 if ((flags & KERN_PROC_MASK32) != 0) { 1554 freebsd32_kinfo_proc_out(&ki, &ki32); 1555 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1556 error = ENOMEM; 1557 } else 1558 #endif 1559 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1560 error = ENOMEM; 1561 } else { 1562 FOREACH_THREAD_IN_PROC(p, td) { 1563 fill_kinfo_thread(td, &ki, 1); 1564 #ifdef COMPAT_FREEBSD32 1565 if ((flags & KERN_PROC_MASK32) != 0) { 1566 freebsd32_kinfo_proc_out(&ki, &ki32); 1567 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1568 error = ENOMEM; 1569 } else 1570 #endif 1571 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1572 error = ENOMEM; 1573 if (error != 0) 1574 break; 1575 } 1576 } 1577 PROC_UNLOCK(p); 1578 return (error); 1579 } 1580 1581 static int 1582 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1583 { 1584 struct sbuf sb; 1585 struct kinfo_proc ki; 1586 int error, error2; 1587 1588 if (req->oldptr == NULL) 1589 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1590 1591 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1592 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1593 error = kern_proc_out(p, &sb, flags); 1594 error2 = sbuf_finish(&sb); 1595 sbuf_delete(&sb); 1596 if (error != 0) 1597 return (error); 1598 else if (error2 != 0) 1599 return (error2); 1600 return (0); 1601 } 1602 1603 int 1604 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1605 { 1606 struct proc *p; 1607 int error, i, j; 1608 1609 for (i = 0; i < pidhashlock + 1; i++) { 1610 sx_slock(&proctree_lock); 1611 sx_slock(&pidhashtbl_lock[i]); 1612 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1613 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1614 if (p->p_state == PRS_NEW) 1615 continue; 1616 error = cb(p, cbarg); 1617 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1618 if (error != 0) { 1619 sx_sunlock(&pidhashtbl_lock[i]); 1620 sx_sunlock(&proctree_lock); 1621 return (error); 1622 } 1623 } 1624 } 1625 sx_sunlock(&pidhashtbl_lock[i]); 1626 sx_sunlock(&proctree_lock); 1627 } 1628 return (0); 1629 } 1630 1631 struct kern_proc_out_args { 1632 struct sysctl_req *req; 1633 int flags; 1634 int oid_number; 1635 int *name; 1636 }; 1637 1638 static int 1639 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1640 { 1641 struct kern_proc_out_args *arg = origarg; 1642 int *name = arg->name; 1643 int oid_number = arg->oid_number; 1644 int flags = arg->flags; 1645 struct sysctl_req *req = arg->req; 1646 int error = 0; 1647 1648 PROC_LOCK(p); 1649 1650 KASSERT(p->p_ucred != NULL, 1651 ("process credential is NULL for non-NEW proc")); 1652 /* 1653 * Show a user only appropriate processes. 1654 */ 1655 if (p_cansee(curthread, p)) 1656 goto skip; 1657 /* 1658 * TODO - make more efficient (see notes below). 1659 * do by session. 1660 */ 1661 switch (oid_number) { 1662 case KERN_PROC_GID: 1663 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1664 goto skip; 1665 break; 1666 1667 case KERN_PROC_PGRP: 1668 /* could do this by traversing pgrp */ 1669 if (p->p_pgrp == NULL || 1670 p->p_pgrp->pg_id != (pid_t)name[0]) 1671 goto skip; 1672 break; 1673 1674 case KERN_PROC_RGID: 1675 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1676 goto skip; 1677 break; 1678 1679 case KERN_PROC_SESSION: 1680 if (p->p_session == NULL || 1681 p->p_session->s_sid != (pid_t)name[0]) 1682 goto skip; 1683 break; 1684 1685 case KERN_PROC_TTY: 1686 if ((p->p_flag & P_CONTROLT) == 0 || 1687 p->p_session == NULL) 1688 goto skip; 1689 /* XXX proctree_lock */ 1690 SESS_LOCK(p->p_session); 1691 if (p->p_session->s_ttyp == NULL || 1692 tty_udev(p->p_session->s_ttyp) != 1693 (dev_t)name[0]) { 1694 SESS_UNLOCK(p->p_session); 1695 goto skip; 1696 } 1697 SESS_UNLOCK(p->p_session); 1698 break; 1699 1700 case KERN_PROC_UID: 1701 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1702 goto skip; 1703 break; 1704 1705 case KERN_PROC_RUID: 1706 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1707 goto skip; 1708 break; 1709 1710 case KERN_PROC_PROC: 1711 break; 1712 1713 default: 1714 break; 1715 } 1716 error = sysctl_out_proc(p, req, flags); 1717 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1718 return (error); 1719 skip: 1720 PROC_UNLOCK(p); 1721 return (0); 1722 } 1723 1724 static int 1725 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1726 { 1727 struct kern_proc_out_args iterarg; 1728 int *name = (int *)arg1; 1729 u_int namelen = arg2; 1730 struct proc *p; 1731 int flags, oid_number; 1732 int error = 0; 1733 1734 oid_number = oidp->oid_number; 1735 if (oid_number != KERN_PROC_ALL && 1736 (oid_number & KERN_PROC_INC_THREAD) == 0) 1737 flags = KERN_PROC_NOTHREADS; 1738 else { 1739 flags = 0; 1740 oid_number &= ~KERN_PROC_INC_THREAD; 1741 } 1742 #ifdef COMPAT_FREEBSD32 1743 if (req->flags & SCTL_MASK32) 1744 flags |= KERN_PROC_MASK32; 1745 #endif 1746 if (oid_number == KERN_PROC_PID) { 1747 if (namelen != 1) 1748 return (EINVAL); 1749 error = sysctl_wire_old_buffer(req, 0); 1750 if (error) 1751 return (error); 1752 sx_slock(&proctree_lock); 1753 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1754 if (error == 0) 1755 error = sysctl_out_proc(p, req, flags); 1756 sx_sunlock(&proctree_lock); 1757 return (error); 1758 } 1759 1760 switch (oid_number) { 1761 case KERN_PROC_ALL: 1762 if (namelen != 0) 1763 return (EINVAL); 1764 break; 1765 case KERN_PROC_PROC: 1766 if (namelen != 0 && namelen != 1) 1767 return (EINVAL); 1768 break; 1769 default: 1770 if (namelen != 1) 1771 return (EINVAL); 1772 break; 1773 } 1774 1775 if (req->oldptr == NULL) { 1776 /* overestimate by 5 procs */ 1777 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1778 if (error) 1779 return (error); 1780 } else { 1781 error = sysctl_wire_old_buffer(req, 0); 1782 if (error != 0) 1783 return (error); 1784 } 1785 iterarg.flags = flags; 1786 iterarg.oid_number = oid_number; 1787 iterarg.req = req; 1788 iterarg.name = name; 1789 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1790 return (error); 1791 } 1792 1793 struct pargs * 1794 pargs_alloc(int len) 1795 { 1796 struct pargs *pa; 1797 1798 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1799 M_WAITOK); 1800 refcount_init(&pa->ar_ref, 1); 1801 pa->ar_length = len; 1802 return (pa); 1803 } 1804 1805 static void 1806 pargs_free(struct pargs *pa) 1807 { 1808 1809 free(pa, M_PARGS); 1810 } 1811 1812 void 1813 pargs_hold(struct pargs *pa) 1814 { 1815 1816 if (pa == NULL) 1817 return; 1818 refcount_acquire(&pa->ar_ref); 1819 } 1820 1821 void 1822 pargs_drop(struct pargs *pa) 1823 { 1824 1825 if (pa == NULL) 1826 return; 1827 if (refcount_release(&pa->ar_ref)) 1828 pargs_free(pa); 1829 } 1830 1831 static int 1832 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1833 size_t len) 1834 { 1835 ssize_t n; 1836 1837 /* 1838 * This may return a short read if the string is shorter than the chunk 1839 * and is aligned at the end of the page, and the following page is not 1840 * mapped. 1841 */ 1842 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1843 if (n <= 0) 1844 return (ENOMEM); 1845 return (0); 1846 } 1847 1848 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1849 1850 enum proc_vector_type { 1851 PROC_ARG, 1852 PROC_ENV, 1853 PROC_AUX, 1854 }; 1855 1856 #ifdef COMPAT_FREEBSD32 1857 static int 1858 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1859 size_t *vsizep, enum proc_vector_type type) 1860 { 1861 struct freebsd32_ps_strings pss; 1862 Elf32_Auxinfo aux; 1863 vm_offset_t vptr, ptr; 1864 uint32_t *proc_vector32; 1865 char **proc_vector; 1866 size_t vsize, size; 1867 int i, error; 1868 1869 error = 0; 1870 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1871 sizeof(pss)) 1872 return (ENOMEM); 1873 switch (type) { 1874 case PROC_ARG: 1875 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1876 vsize = pss.ps_nargvstr; 1877 if (vsize > ARG_MAX) 1878 return (ENOEXEC); 1879 size = vsize * sizeof(int32_t); 1880 break; 1881 case PROC_ENV: 1882 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1883 vsize = pss.ps_nenvstr; 1884 if (vsize > ARG_MAX) 1885 return (ENOEXEC); 1886 size = vsize * sizeof(int32_t); 1887 break; 1888 case PROC_AUX: 1889 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1890 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1891 if (vptr % 4 != 0) 1892 return (ENOEXEC); 1893 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1894 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1895 sizeof(aux)) 1896 return (ENOMEM); 1897 if (aux.a_type == AT_NULL) 1898 break; 1899 ptr += sizeof(aux); 1900 } 1901 if (aux.a_type != AT_NULL) 1902 return (ENOEXEC); 1903 vsize = i + 1; 1904 size = vsize * sizeof(aux); 1905 break; 1906 default: 1907 KASSERT(0, ("Wrong proc vector type: %d", type)); 1908 return (EINVAL); 1909 } 1910 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1911 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1912 error = ENOMEM; 1913 goto done; 1914 } 1915 if (type == PROC_AUX) { 1916 *proc_vectorp = (char **)proc_vector32; 1917 *vsizep = vsize; 1918 return (0); 1919 } 1920 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1921 for (i = 0; i < (int)vsize; i++) 1922 proc_vector[i] = PTRIN(proc_vector32[i]); 1923 *proc_vectorp = proc_vector; 1924 *vsizep = vsize; 1925 done: 1926 free(proc_vector32, M_TEMP); 1927 return (error); 1928 } 1929 #endif 1930 1931 static int 1932 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1933 size_t *vsizep, enum proc_vector_type type) 1934 { 1935 struct ps_strings pss; 1936 Elf_Auxinfo aux; 1937 vm_offset_t vptr, ptr; 1938 char **proc_vector; 1939 size_t vsize, size; 1940 int i; 1941 1942 #ifdef COMPAT_FREEBSD32 1943 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1944 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1945 #endif 1946 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1947 sizeof(pss)) 1948 return (ENOMEM); 1949 switch (type) { 1950 case PROC_ARG: 1951 vptr = (vm_offset_t)pss.ps_argvstr; 1952 vsize = pss.ps_nargvstr; 1953 if (vsize > ARG_MAX) 1954 return (ENOEXEC); 1955 size = vsize * sizeof(char *); 1956 break; 1957 case PROC_ENV: 1958 vptr = (vm_offset_t)pss.ps_envstr; 1959 vsize = pss.ps_nenvstr; 1960 if (vsize > ARG_MAX) 1961 return (ENOEXEC); 1962 size = vsize * sizeof(char *); 1963 break; 1964 case PROC_AUX: 1965 /* 1966 * The aux array is just above env array on the stack. Check 1967 * that the address is naturally aligned. 1968 */ 1969 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1970 * sizeof(char *); 1971 #if __ELF_WORD_SIZE == 64 1972 if (vptr % sizeof(uint64_t) != 0) 1973 #else 1974 if (vptr % sizeof(uint32_t) != 0) 1975 #endif 1976 return (ENOEXEC); 1977 /* 1978 * We count the array size reading the aux vectors from the 1979 * stack until AT_NULL vector is returned. So (to keep the code 1980 * simple) we read the process stack twice: the first time here 1981 * to find the size and the second time when copying the vectors 1982 * to the allocated proc_vector. 1983 */ 1984 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1985 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1986 sizeof(aux)) 1987 return (ENOMEM); 1988 if (aux.a_type == AT_NULL) 1989 break; 1990 ptr += sizeof(aux); 1991 } 1992 /* 1993 * If the PROC_AUXV_MAX entries are iterated over, and we have 1994 * not reached AT_NULL, it is most likely we are reading wrong 1995 * data: either the process doesn't have auxv array or data has 1996 * been modified. Return the error in this case. 1997 */ 1998 if (aux.a_type != AT_NULL) 1999 return (ENOEXEC); 2000 vsize = i + 1; 2001 size = vsize * sizeof(aux); 2002 break; 2003 default: 2004 KASSERT(0, ("Wrong proc vector type: %d", type)); 2005 return (EINVAL); /* In case we are built without INVARIANTS. */ 2006 } 2007 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2008 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2009 free(proc_vector, M_TEMP); 2010 return (ENOMEM); 2011 } 2012 *proc_vectorp = proc_vector; 2013 *vsizep = vsize; 2014 2015 return (0); 2016 } 2017 2018 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2019 2020 static int 2021 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2022 enum proc_vector_type type) 2023 { 2024 size_t done, len, nchr, vsize; 2025 int error, i; 2026 char **proc_vector, *sptr; 2027 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2028 2029 PROC_ASSERT_HELD(p); 2030 2031 /* 2032 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2033 */ 2034 nchr = 2 * (PATH_MAX + ARG_MAX); 2035 2036 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2037 if (error != 0) 2038 return (error); 2039 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2040 /* 2041 * The program may have scribbled into its argv array, e.g. to 2042 * remove some arguments. If that has happened, break out 2043 * before trying to read from NULL. 2044 */ 2045 if (proc_vector[i] == NULL) 2046 break; 2047 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2048 error = proc_read_string(td, p, sptr, pss_string, 2049 sizeof(pss_string)); 2050 if (error != 0) 2051 goto done; 2052 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2053 if (done + len >= nchr) 2054 len = nchr - done - 1; 2055 sbuf_bcat(sb, pss_string, len); 2056 if (len != GET_PS_STRINGS_CHUNK_SZ) 2057 break; 2058 done += GET_PS_STRINGS_CHUNK_SZ; 2059 } 2060 sbuf_bcat(sb, "", 1); 2061 done += len + 1; 2062 } 2063 done: 2064 free(proc_vector, M_TEMP); 2065 return (error); 2066 } 2067 2068 int 2069 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2070 { 2071 2072 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2073 } 2074 2075 int 2076 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2077 { 2078 2079 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2080 } 2081 2082 int 2083 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2084 { 2085 size_t vsize, size; 2086 char **auxv; 2087 int error; 2088 2089 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2090 if (error == 0) { 2091 #ifdef COMPAT_FREEBSD32 2092 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2093 size = vsize * sizeof(Elf32_Auxinfo); 2094 else 2095 #endif 2096 size = vsize * sizeof(Elf_Auxinfo); 2097 if (sbuf_bcat(sb, auxv, size) != 0) 2098 error = ENOMEM; 2099 free(auxv, M_TEMP); 2100 } 2101 return (error); 2102 } 2103 2104 /* 2105 * This sysctl allows a process to retrieve the argument list or process 2106 * title for another process without groping around in the address space 2107 * of the other process. It also allow a process to set its own "process 2108 * title to a string of its own choice. 2109 */ 2110 static int 2111 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2112 { 2113 int *name = (int *)arg1; 2114 u_int namelen = arg2; 2115 struct pargs *newpa, *pa; 2116 struct proc *p; 2117 struct sbuf sb; 2118 int flags, error = 0, error2; 2119 pid_t pid; 2120 2121 if (namelen != 1) 2122 return (EINVAL); 2123 2124 p = curproc; 2125 pid = (pid_t)name[0]; 2126 if (pid == -1) { 2127 pid = p->p_pid; 2128 } 2129 2130 /* 2131 * If the query is for this process and it is single-threaded, there 2132 * is nobody to modify pargs, thus we can just read. 2133 */ 2134 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2135 (pa = p->p_args) != NULL) 2136 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2137 2138 flags = PGET_CANSEE; 2139 if (req->newptr != NULL) 2140 flags |= PGET_ISCURRENT; 2141 error = pget(pid, flags, &p); 2142 if (error) 2143 return (error); 2144 2145 pa = p->p_args; 2146 if (pa != NULL) { 2147 pargs_hold(pa); 2148 PROC_UNLOCK(p); 2149 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2150 pargs_drop(pa); 2151 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2152 _PHOLD(p); 2153 PROC_UNLOCK(p); 2154 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2155 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2156 error = proc_getargv(curthread, p, &sb); 2157 error2 = sbuf_finish(&sb); 2158 PRELE(p); 2159 sbuf_delete(&sb); 2160 if (error == 0 && error2 != 0) 2161 error = error2; 2162 } else { 2163 PROC_UNLOCK(p); 2164 } 2165 if (error != 0 || req->newptr == NULL) 2166 return (error); 2167 2168 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2169 return (ENOMEM); 2170 2171 if (req->newlen == 0) { 2172 /* 2173 * Clear the argument pointer, so that we'll fetch arguments 2174 * with proc_getargv() until further notice. 2175 */ 2176 newpa = NULL; 2177 } else { 2178 newpa = pargs_alloc(req->newlen); 2179 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2180 if (error != 0) { 2181 pargs_free(newpa); 2182 return (error); 2183 } 2184 } 2185 PROC_LOCK(p); 2186 pa = p->p_args; 2187 p->p_args = newpa; 2188 PROC_UNLOCK(p); 2189 pargs_drop(pa); 2190 return (0); 2191 } 2192 2193 /* 2194 * This sysctl allows a process to retrieve environment of another process. 2195 */ 2196 static int 2197 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2198 { 2199 int *name = (int *)arg1; 2200 u_int namelen = arg2; 2201 struct proc *p; 2202 struct sbuf sb; 2203 int error, error2; 2204 2205 if (namelen != 1) 2206 return (EINVAL); 2207 2208 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2209 if (error != 0) 2210 return (error); 2211 if ((p->p_flag & P_SYSTEM) != 0) { 2212 PRELE(p); 2213 return (0); 2214 } 2215 2216 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2217 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2218 error = proc_getenvv(curthread, p, &sb); 2219 error2 = sbuf_finish(&sb); 2220 PRELE(p); 2221 sbuf_delete(&sb); 2222 return (error != 0 ? error : error2); 2223 } 2224 2225 /* 2226 * This sysctl allows a process to retrieve ELF auxiliary vector of 2227 * another process. 2228 */ 2229 static int 2230 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2231 { 2232 int *name = (int *)arg1; 2233 u_int namelen = arg2; 2234 struct proc *p; 2235 struct sbuf sb; 2236 int error, error2; 2237 2238 if (namelen != 1) 2239 return (EINVAL); 2240 2241 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2242 if (error != 0) 2243 return (error); 2244 if ((p->p_flag & P_SYSTEM) != 0) { 2245 PRELE(p); 2246 return (0); 2247 } 2248 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2249 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2250 error = proc_getauxv(curthread, p, &sb); 2251 error2 = sbuf_finish(&sb); 2252 PRELE(p); 2253 sbuf_delete(&sb); 2254 return (error != 0 ? error : error2); 2255 } 2256 2257 /* 2258 * Look up the canonical executable path running in the specified process. 2259 * It tries to return the same hardlink name as was used for execve(2). 2260 * This allows the programs that modify their behavior based on their progname, 2261 * to operate correctly. 2262 * 2263 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() 2264 * calling conventions. 2265 * binname is a pointer to temporary string buffer of length MAXPATHLEN, 2266 * allocated and freed by caller. 2267 * freebuf should be freed by caller, from the M_TEMP malloc type. 2268 */ 2269 int 2270 proc_get_binpath(struct proc *p, char *binname, char **retbuf, 2271 char **freebuf) 2272 { 2273 struct nameidata nd; 2274 struct vnode *vp, *dvp; 2275 size_t freepath_size; 2276 int error; 2277 bool do_fullpath; 2278 2279 PROC_LOCK_ASSERT(p, MA_OWNED); 2280 2281 vp = p->p_textvp; 2282 if (vp == NULL) { 2283 PROC_UNLOCK(p); 2284 *retbuf = ""; 2285 *freebuf = NULL; 2286 return (0); 2287 } 2288 vref(vp); 2289 dvp = p->p_textdvp; 2290 if (dvp != NULL) 2291 vref(dvp); 2292 if (p->p_binname != NULL) 2293 strlcpy(binname, p->p_binname, MAXPATHLEN); 2294 PROC_UNLOCK(p); 2295 2296 do_fullpath = true; 2297 *freebuf = NULL; 2298 if (dvp != NULL && binname[0] != '\0') { 2299 freepath_size = MAXPATHLEN; 2300 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), 2301 retbuf, freebuf, &freepath_size) == 0) { 2302 /* 2303 * Recheck the looked up path. The binary 2304 * might have been renamed or replaced, in 2305 * which case we should not report old name. 2306 */ 2307 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); 2308 error = namei(&nd); 2309 if (error == 0) { 2310 if (nd.ni_vp == vp) 2311 do_fullpath = false; 2312 vrele(nd.ni_vp); 2313 NDFREE_PNBUF(&nd); 2314 } 2315 } 2316 } 2317 if (do_fullpath) { 2318 free(*freebuf, M_TEMP); 2319 *freebuf = NULL; 2320 error = vn_fullpath(vp, retbuf, freebuf); 2321 } 2322 vrele(vp); 2323 if (dvp != NULL) 2324 vrele(dvp); 2325 return (error); 2326 } 2327 2328 /* 2329 * This sysctl allows a process to retrieve the path of the executable for 2330 * itself or another process. 2331 */ 2332 static int 2333 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2334 { 2335 pid_t *pidp = (pid_t *)arg1; 2336 unsigned int arglen = arg2; 2337 struct proc *p; 2338 char *retbuf, *freebuf, *binname; 2339 int error; 2340 2341 if (arglen != 1) 2342 return (EINVAL); 2343 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2344 binname[0] = '\0'; 2345 if (*pidp == -1) { /* -1 means this process */ 2346 error = 0; 2347 p = req->td->td_proc; 2348 PROC_LOCK(p); 2349 } else { 2350 error = pget(*pidp, PGET_CANSEE, &p); 2351 } 2352 2353 if (error == 0) 2354 error = proc_get_binpath(p, binname, &retbuf, &freebuf); 2355 free(binname, M_TEMP); 2356 if (error != 0) 2357 return (error); 2358 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2359 free(freebuf, M_TEMP); 2360 return (error); 2361 } 2362 2363 static int 2364 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2365 { 2366 struct proc *p; 2367 char *sv_name; 2368 int *name; 2369 int namelen; 2370 int error; 2371 2372 namelen = arg2; 2373 if (namelen != 1) 2374 return (EINVAL); 2375 2376 name = (int *)arg1; 2377 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2378 if (error != 0) 2379 return (error); 2380 sv_name = p->p_sysent->sv_name; 2381 PROC_UNLOCK(p); 2382 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2383 } 2384 2385 #ifdef KINFO_OVMENTRY_SIZE 2386 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2387 #endif 2388 2389 #ifdef COMPAT_FREEBSD7 2390 static int 2391 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2392 { 2393 vm_map_entry_t entry, tmp_entry; 2394 unsigned int last_timestamp, namelen; 2395 char *fullpath, *freepath; 2396 struct kinfo_ovmentry *kve; 2397 struct vattr va; 2398 struct ucred *cred; 2399 int error, *name; 2400 struct vnode *vp; 2401 struct proc *p; 2402 vm_map_t map; 2403 struct vmspace *vm; 2404 2405 namelen = arg2; 2406 if (namelen != 1) 2407 return (EINVAL); 2408 2409 name = (int *)arg1; 2410 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2411 if (error != 0) 2412 return (error); 2413 vm = vmspace_acquire_ref(p); 2414 if (vm == NULL) { 2415 PRELE(p); 2416 return (ESRCH); 2417 } 2418 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2419 2420 map = &vm->vm_map; 2421 vm_map_lock_read(map); 2422 VM_MAP_ENTRY_FOREACH(entry, map) { 2423 vm_object_t obj, tobj, lobj; 2424 vm_offset_t addr; 2425 2426 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2427 continue; 2428 2429 bzero(kve, sizeof(*kve)); 2430 kve->kve_structsize = sizeof(*kve); 2431 2432 kve->kve_private_resident = 0; 2433 obj = entry->object.vm_object; 2434 if (obj != NULL) { 2435 VM_OBJECT_RLOCK(obj); 2436 if (obj->shadow_count == 1) 2437 kve->kve_private_resident = 2438 obj->resident_page_count; 2439 } 2440 kve->kve_resident = 0; 2441 addr = entry->start; 2442 while (addr < entry->end) { 2443 if (pmap_extract(map->pmap, addr)) 2444 kve->kve_resident++; 2445 addr += PAGE_SIZE; 2446 } 2447 2448 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2449 if (tobj != obj) { 2450 VM_OBJECT_RLOCK(tobj); 2451 kve->kve_offset += tobj->backing_object_offset; 2452 } 2453 if (lobj != obj) 2454 VM_OBJECT_RUNLOCK(lobj); 2455 lobj = tobj; 2456 } 2457 2458 kve->kve_start = (void*)entry->start; 2459 kve->kve_end = (void*)entry->end; 2460 kve->kve_offset += (off_t)entry->offset; 2461 2462 if (entry->protection & VM_PROT_READ) 2463 kve->kve_protection |= KVME_PROT_READ; 2464 if (entry->protection & VM_PROT_WRITE) 2465 kve->kve_protection |= KVME_PROT_WRITE; 2466 if (entry->protection & VM_PROT_EXECUTE) 2467 kve->kve_protection |= KVME_PROT_EXEC; 2468 2469 if (entry->eflags & MAP_ENTRY_COW) 2470 kve->kve_flags |= KVME_FLAG_COW; 2471 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2472 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2473 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2474 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2475 2476 last_timestamp = map->timestamp; 2477 vm_map_unlock_read(map); 2478 2479 kve->kve_fileid = 0; 2480 kve->kve_fsid = 0; 2481 freepath = NULL; 2482 fullpath = ""; 2483 if (lobj) { 2484 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2485 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2486 kve->kve_type = KVME_TYPE_UNKNOWN; 2487 if (vp != NULL) 2488 vref(vp); 2489 if (lobj != obj) 2490 VM_OBJECT_RUNLOCK(lobj); 2491 2492 kve->kve_ref_count = obj->ref_count; 2493 kve->kve_shadow_count = obj->shadow_count; 2494 VM_OBJECT_RUNLOCK(obj); 2495 if (vp != NULL) { 2496 vn_fullpath(vp, &fullpath, &freepath); 2497 cred = curthread->td_ucred; 2498 vn_lock(vp, LK_SHARED | LK_RETRY); 2499 if (VOP_GETATTR(vp, &va, cred) == 0) { 2500 kve->kve_fileid = va.va_fileid; 2501 /* truncate */ 2502 kve->kve_fsid = va.va_fsid; 2503 } 2504 vput(vp); 2505 } 2506 } else { 2507 kve->kve_type = KVME_TYPE_NONE; 2508 kve->kve_ref_count = 0; 2509 kve->kve_shadow_count = 0; 2510 } 2511 2512 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2513 if (freepath != NULL) 2514 free(freepath, M_TEMP); 2515 2516 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2517 vm_map_lock_read(map); 2518 if (error) 2519 break; 2520 if (last_timestamp != map->timestamp) { 2521 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2522 entry = tmp_entry; 2523 } 2524 } 2525 vm_map_unlock_read(map); 2526 vmspace_free(vm); 2527 PRELE(p); 2528 free(kve, M_TEMP); 2529 return (error); 2530 } 2531 #endif /* COMPAT_FREEBSD7 */ 2532 2533 #ifdef KINFO_VMENTRY_SIZE 2534 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2535 #endif 2536 2537 void 2538 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2539 int *resident_count, bool *super) 2540 { 2541 vm_object_t obj, tobj; 2542 vm_page_t m, m_adv; 2543 vm_offset_t addr; 2544 vm_paddr_t pa; 2545 vm_pindex_t pi, pi_adv, pindex; 2546 2547 *super = false; 2548 *resident_count = 0; 2549 if (vmmap_skip_res_cnt) 2550 return; 2551 2552 pa = 0; 2553 obj = entry->object.vm_object; 2554 addr = entry->start; 2555 m_adv = NULL; 2556 pi = OFF_TO_IDX(entry->offset); 2557 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2558 if (m_adv != NULL) { 2559 m = m_adv; 2560 } else { 2561 pi_adv = atop(entry->end - addr); 2562 pindex = pi; 2563 for (tobj = obj;; tobj = tobj->backing_object) { 2564 m = vm_page_find_least(tobj, pindex); 2565 if (m != NULL) { 2566 if (m->pindex == pindex) 2567 break; 2568 if (pi_adv > m->pindex - pindex) { 2569 pi_adv = m->pindex - pindex; 2570 m_adv = m; 2571 } 2572 } 2573 if (tobj->backing_object == NULL) 2574 goto next; 2575 pindex += OFF_TO_IDX(tobj-> 2576 backing_object_offset); 2577 } 2578 } 2579 m_adv = NULL; 2580 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2581 (addr & (pagesizes[1] - 1)) == 0 && 2582 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2583 *super = true; 2584 pi_adv = atop(pagesizes[1]); 2585 } else { 2586 /* 2587 * We do not test the found page on validity. 2588 * Either the page is busy and being paged in, 2589 * or it was invalidated. The first case 2590 * should be counted as resident, the second 2591 * is not so clear; we do account both. 2592 */ 2593 pi_adv = 1; 2594 } 2595 *resident_count += pi_adv; 2596 next:; 2597 } 2598 } 2599 2600 /* 2601 * Must be called with the process locked and will return unlocked. 2602 */ 2603 int 2604 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2605 { 2606 vm_map_entry_t entry, tmp_entry; 2607 struct vattr va; 2608 vm_map_t map; 2609 vm_object_t lobj, nobj, obj, tobj; 2610 char *fullpath, *freepath; 2611 struct kinfo_vmentry *kve; 2612 struct ucred *cred; 2613 struct vnode *vp; 2614 struct vmspace *vm; 2615 vm_offset_t addr; 2616 unsigned int last_timestamp; 2617 int error; 2618 bool guard, super; 2619 2620 PROC_LOCK_ASSERT(p, MA_OWNED); 2621 2622 _PHOLD(p); 2623 PROC_UNLOCK(p); 2624 vm = vmspace_acquire_ref(p); 2625 if (vm == NULL) { 2626 PRELE(p); 2627 return (ESRCH); 2628 } 2629 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2630 2631 error = 0; 2632 map = &vm->vm_map; 2633 vm_map_lock_read(map); 2634 VM_MAP_ENTRY_FOREACH(entry, map) { 2635 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2636 continue; 2637 2638 addr = entry->end; 2639 bzero(kve, sizeof(*kve)); 2640 obj = entry->object.vm_object; 2641 if (obj != NULL) { 2642 if ((obj->flags & OBJ_ANON) != 0) 2643 kve->kve_obj = (uintptr_t)obj; 2644 2645 for (tobj = obj; tobj != NULL; 2646 tobj = tobj->backing_object) { 2647 VM_OBJECT_RLOCK(tobj); 2648 kve->kve_offset += tobj->backing_object_offset; 2649 lobj = tobj; 2650 } 2651 if (obj->backing_object == NULL) 2652 kve->kve_private_resident = 2653 obj->resident_page_count; 2654 kern_proc_vmmap_resident(map, entry, 2655 &kve->kve_resident, &super); 2656 if (super) 2657 kve->kve_flags |= KVME_FLAG_SUPER; 2658 for (tobj = obj; tobj != NULL; tobj = nobj) { 2659 nobj = tobj->backing_object; 2660 if (tobj != obj && tobj != lobj) 2661 VM_OBJECT_RUNLOCK(tobj); 2662 } 2663 } else { 2664 lobj = NULL; 2665 } 2666 2667 kve->kve_start = entry->start; 2668 kve->kve_end = entry->end; 2669 kve->kve_offset += entry->offset; 2670 2671 if (entry->protection & VM_PROT_READ) 2672 kve->kve_protection |= KVME_PROT_READ; 2673 if (entry->protection & VM_PROT_WRITE) 2674 kve->kve_protection |= KVME_PROT_WRITE; 2675 if (entry->protection & VM_PROT_EXECUTE) 2676 kve->kve_protection |= KVME_PROT_EXEC; 2677 2678 if (entry->eflags & MAP_ENTRY_COW) 2679 kve->kve_flags |= KVME_FLAG_COW; 2680 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2681 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2682 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2683 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2684 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2685 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2686 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2687 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2688 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2689 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2690 2691 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; 2692 2693 last_timestamp = map->timestamp; 2694 vm_map_unlock_read(map); 2695 2696 freepath = NULL; 2697 fullpath = ""; 2698 if (lobj != NULL) { 2699 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2700 if (vp != NULL) 2701 vref(vp); 2702 if (lobj != obj) 2703 VM_OBJECT_RUNLOCK(lobj); 2704 2705 kve->kve_ref_count = obj->ref_count; 2706 kve->kve_shadow_count = obj->shadow_count; 2707 VM_OBJECT_RUNLOCK(obj); 2708 if (vp != NULL) { 2709 vn_fullpath(vp, &fullpath, &freepath); 2710 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2711 cred = curthread->td_ucred; 2712 vn_lock(vp, LK_SHARED | LK_RETRY); 2713 if (VOP_GETATTR(vp, &va, cred) == 0) { 2714 kve->kve_vn_fileid = va.va_fileid; 2715 kve->kve_vn_fsid = va.va_fsid; 2716 kve->kve_vn_fsid_freebsd11 = 2717 kve->kve_vn_fsid; /* truncate */ 2718 kve->kve_vn_mode = 2719 MAKEIMODE(va.va_type, va.va_mode); 2720 kve->kve_vn_size = va.va_size; 2721 kve->kve_vn_rdev = va.va_rdev; 2722 kve->kve_vn_rdev_freebsd11 = 2723 kve->kve_vn_rdev; /* truncate */ 2724 kve->kve_status = KF_ATTR_VALID; 2725 } 2726 vput(vp); 2727 } 2728 } else { 2729 kve->kve_type = guard ? KVME_TYPE_GUARD : 2730 KVME_TYPE_NONE; 2731 kve->kve_ref_count = 0; 2732 kve->kve_shadow_count = 0; 2733 } 2734 2735 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2736 if (freepath != NULL) 2737 free(freepath, M_TEMP); 2738 2739 /* Pack record size down */ 2740 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2741 kve->kve_structsize = 2742 offsetof(struct kinfo_vmentry, kve_path) + 2743 strlen(kve->kve_path) + 1; 2744 else 2745 kve->kve_structsize = sizeof(*kve); 2746 kve->kve_structsize = roundup(kve->kve_structsize, 2747 sizeof(uint64_t)); 2748 2749 /* Halt filling and truncate rather than exceeding maxlen */ 2750 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2751 error = 0; 2752 vm_map_lock_read(map); 2753 break; 2754 } else if (maxlen != -1) 2755 maxlen -= kve->kve_structsize; 2756 2757 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2758 error = ENOMEM; 2759 vm_map_lock_read(map); 2760 if (error != 0) 2761 break; 2762 if (last_timestamp != map->timestamp) { 2763 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2764 entry = tmp_entry; 2765 } 2766 } 2767 vm_map_unlock_read(map); 2768 vmspace_free(vm); 2769 PRELE(p); 2770 free(kve, M_TEMP); 2771 return (error); 2772 } 2773 2774 static int 2775 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2776 { 2777 struct proc *p; 2778 struct sbuf sb; 2779 u_int namelen; 2780 int error, error2, *name; 2781 2782 namelen = arg2; 2783 if (namelen != 1) 2784 return (EINVAL); 2785 2786 name = (int *)arg1; 2787 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2788 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2789 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2790 if (error != 0) { 2791 sbuf_delete(&sb); 2792 return (error); 2793 } 2794 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2795 error2 = sbuf_finish(&sb); 2796 sbuf_delete(&sb); 2797 return (error != 0 ? error : error2); 2798 } 2799 2800 #if defined(STACK) || defined(DDB) 2801 static int 2802 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2803 { 2804 struct kinfo_kstack *kkstp; 2805 int error, i, *name, numthreads; 2806 lwpid_t *lwpidarray; 2807 struct thread *td; 2808 struct stack *st; 2809 struct sbuf sb; 2810 struct proc *p; 2811 u_int namelen; 2812 2813 namelen = arg2; 2814 if (namelen != 1) 2815 return (EINVAL); 2816 2817 name = (int *)arg1; 2818 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2819 if (error != 0) 2820 return (error); 2821 2822 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2823 st = stack_create(M_WAITOK); 2824 2825 lwpidarray = NULL; 2826 PROC_LOCK(p); 2827 do { 2828 if (lwpidarray != NULL) { 2829 free(lwpidarray, M_TEMP); 2830 lwpidarray = NULL; 2831 } 2832 numthreads = p->p_numthreads; 2833 PROC_UNLOCK(p); 2834 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2835 M_WAITOK | M_ZERO); 2836 PROC_LOCK(p); 2837 } while (numthreads < p->p_numthreads); 2838 2839 /* 2840 * XXXRW: During the below loop, execve(2) and countless other sorts 2841 * of changes could have taken place. Should we check to see if the 2842 * vmspace has been replaced, or the like, in order to prevent 2843 * giving a snapshot that spans, say, execve(2), with some threads 2844 * before and some after? Among other things, the credentials could 2845 * have changed, in which case the right to extract debug info might 2846 * no longer be assured. 2847 */ 2848 i = 0; 2849 FOREACH_THREAD_IN_PROC(p, td) { 2850 KASSERT(i < numthreads, 2851 ("sysctl_kern_proc_kstack: numthreads")); 2852 lwpidarray[i] = td->td_tid; 2853 i++; 2854 } 2855 PROC_UNLOCK(p); 2856 numthreads = i; 2857 for (i = 0; i < numthreads; i++) { 2858 td = tdfind(lwpidarray[i], p->p_pid); 2859 if (td == NULL) { 2860 continue; 2861 } 2862 bzero(kkstp, sizeof(*kkstp)); 2863 (void)sbuf_new(&sb, kkstp->kkst_trace, 2864 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2865 thread_lock(td); 2866 kkstp->kkst_tid = td->td_tid; 2867 if (TD_IS_SWAPPED(td)) 2868 kkstp->kkst_state = KKST_STATE_SWAPPED; 2869 else if (stack_save_td(st, td) == 0) 2870 kkstp->kkst_state = KKST_STATE_STACKOK; 2871 else 2872 kkstp->kkst_state = KKST_STATE_RUNNING; 2873 thread_unlock(td); 2874 PROC_UNLOCK(p); 2875 stack_sbuf_print(&sb, st); 2876 sbuf_finish(&sb); 2877 sbuf_delete(&sb); 2878 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2879 if (error) 2880 break; 2881 } 2882 PRELE(p); 2883 if (lwpidarray != NULL) 2884 free(lwpidarray, M_TEMP); 2885 stack_destroy(st); 2886 free(kkstp, M_TEMP); 2887 return (error); 2888 } 2889 #endif 2890 2891 /* 2892 * This sysctl allows a process to retrieve the full list of groups from 2893 * itself or another process. 2894 */ 2895 static int 2896 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2897 { 2898 pid_t *pidp = (pid_t *)arg1; 2899 unsigned int arglen = arg2; 2900 struct proc *p; 2901 struct ucred *cred; 2902 int error; 2903 2904 if (arglen != 1) 2905 return (EINVAL); 2906 if (*pidp == -1) { /* -1 means this process */ 2907 p = req->td->td_proc; 2908 PROC_LOCK(p); 2909 } else { 2910 error = pget(*pidp, PGET_CANSEE, &p); 2911 if (error != 0) 2912 return (error); 2913 } 2914 2915 cred = crhold(p->p_ucred); 2916 PROC_UNLOCK(p); 2917 2918 error = SYSCTL_OUT(req, cred->cr_groups, 2919 cred->cr_ngroups * sizeof(gid_t)); 2920 crfree(cred); 2921 return (error); 2922 } 2923 2924 /* 2925 * This sysctl allows a process to retrieve or/and set the resource limit for 2926 * another process. 2927 */ 2928 static int 2929 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2930 { 2931 int *name = (int *)arg1; 2932 u_int namelen = arg2; 2933 struct rlimit rlim; 2934 struct proc *p; 2935 u_int which; 2936 int flags, error; 2937 2938 if (namelen != 2) 2939 return (EINVAL); 2940 2941 which = (u_int)name[1]; 2942 if (which >= RLIM_NLIMITS) 2943 return (EINVAL); 2944 2945 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2946 return (EINVAL); 2947 2948 flags = PGET_HOLD | PGET_NOTWEXIT; 2949 if (req->newptr != NULL) 2950 flags |= PGET_CANDEBUG; 2951 else 2952 flags |= PGET_CANSEE; 2953 error = pget((pid_t)name[0], flags, &p); 2954 if (error != 0) 2955 return (error); 2956 2957 /* 2958 * Retrieve limit. 2959 */ 2960 if (req->oldptr != NULL) { 2961 PROC_LOCK(p); 2962 lim_rlimit_proc(p, which, &rlim); 2963 PROC_UNLOCK(p); 2964 } 2965 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2966 if (error != 0) 2967 goto errout; 2968 2969 /* 2970 * Set limit. 2971 */ 2972 if (req->newptr != NULL) { 2973 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2974 if (error == 0) 2975 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2976 } 2977 2978 errout: 2979 PRELE(p); 2980 return (error); 2981 } 2982 2983 /* 2984 * This sysctl allows a process to retrieve ps_strings structure location of 2985 * another process. 2986 */ 2987 static int 2988 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2989 { 2990 int *name = (int *)arg1; 2991 u_int namelen = arg2; 2992 struct proc *p; 2993 vm_offset_t ps_strings; 2994 int error; 2995 #ifdef COMPAT_FREEBSD32 2996 uint32_t ps_strings32; 2997 #endif 2998 2999 if (namelen != 1) 3000 return (EINVAL); 3001 3002 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3003 if (error != 0) 3004 return (error); 3005 #ifdef COMPAT_FREEBSD32 3006 if ((req->flags & SCTL_MASK32) != 0) { 3007 /* 3008 * We return 0 if the 32 bit emulation request is for a 64 bit 3009 * process. 3010 */ 3011 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 3012 PTROUT(PROC_PS_STRINGS(p)) : 0; 3013 PROC_UNLOCK(p); 3014 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 3015 return (error); 3016 } 3017 #endif 3018 ps_strings = PROC_PS_STRINGS(p); 3019 PROC_UNLOCK(p); 3020 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 3021 return (error); 3022 } 3023 3024 /* 3025 * This sysctl allows a process to retrieve umask of another process. 3026 */ 3027 static int 3028 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 3029 { 3030 int *name = (int *)arg1; 3031 u_int namelen = arg2; 3032 struct proc *p; 3033 int error; 3034 u_short cmask; 3035 pid_t pid; 3036 3037 if (namelen != 1) 3038 return (EINVAL); 3039 3040 pid = (pid_t)name[0]; 3041 p = curproc; 3042 if (pid == p->p_pid || pid == 0) { 3043 cmask = p->p_pd->pd_cmask; 3044 goto out; 3045 } 3046 3047 error = pget(pid, PGET_WANTREAD, &p); 3048 if (error != 0) 3049 return (error); 3050 3051 cmask = p->p_pd->pd_cmask; 3052 PRELE(p); 3053 out: 3054 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3055 return (error); 3056 } 3057 3058 /* 3059 * This sysctl allows a process to set and retrieve binary osreldate of 3060 * another process. 3061 */ 3062 static int 3063 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3064 { 3065 int *name = (int *)arg1; 3066 u_int namelen = arg2; 3067 struct proc *p; 3068 int flags, error, osrel; 3069 3070 if (namelen != 1) 3071 return (EINVAL); 3072 3073 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3074 return (EINVAL); 3075 3076 flags = PGET_HOLD | PGET_NOTWEXIT; 3077 if (req->newptr != NULL) 3078 flags |= PGET_CANDEBUG; 3079 else 3080 flags |= PGET_CANSEE; 3081 error = pget((pid_t)name[0], flags, &p); 3082 if (error != 0) 3083 return (error); 3084 3085 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3086 if (error != 0) 3087 goto errout; 3088 3089 if (req->newptr != NULL) { 3090 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3091 if (error != 0) 3092 goto errout; 3093 if (osrel < 0) { 3094 error = EINVAL; 3095 goto errout; 3096 } 3097 p->p_osrel = osrel; 3098 } 3099 errout: 3100 PRELE(p); 3101 return (error); 3102 } 3103 3104 static int 3105 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3106 { 3107 int *name = (int *)arg1; 3108 u_int namelen = arg2; 3109 struct proc *p; 3110 struct kinfo_sigtramp kst; 3111 const struct sysentvec *sv; 3112 int error; 3113 #ifdef COMPAT_FREEBSD32 3114 struct kinfo_sigtramp32 kst32; 3115 #endif 3116 3117 if (namelen != 1) 3118 return (EINVAL); 3119 3120 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3121 if (error != 0) 3122 return (error); 3123 sv = p->p_sysent; 3124 #ifdef COMPAT_FREEBSD32 3125 if ((req->flags & SCTL_MASK32) != 0) { 3126 bzero(&kst32, sizeof(kst32)); 3127 if (SV_PROC_FLAG(p, SV_ILP32)) { 3128 if (PROC_HAS_SHP(p)) { 3129 kst32.ksigtramp_start = PROC_SIGCODE(p); 3130 kst32.ksigtramp_end = kst32.ksigtramp_start + 3131 ((sv->sv_flags & SV_DSO_SIG) == 0 ? 3132 *sv->sv_szsigcode : 3133 (uintptr_t)sv->sv_szsigcode); 3134 } else { 3135 kst32.ksigtramp_start = PROC_PS_STRINGS(p) - 3136 *sv->sv_szsigcode; 3137 kst32.ksigtramp_end = PROC_PS_STRINGS(p); 3138 } 3139 } 3140 PROC_UNLOCK(p); 3141 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3142 return (error); 3143 } 3144 #endif 3145 bzero(&kst, sizeof(kst)); 3146 if (PROC_HAS_SHP(p)) { 3147 kst.ksigtramp_start = (char *)PROC_SIGCODE(p); 3148 kst.ksigtramp_end = (char *)kst.ksigtramp_start + 3149 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : 3150 (uintptr_t)sv->sv_szsigcode); 3151 } else { 3152 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - 3153 *sv->sv_szsigcode; 3154 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); 3155 } 3156 PROC_UNLOCK(p); 3157 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3158 return (error); 3159 } 3160 3161 static int 3162 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3163 { 3164 int *name = (int *)arg1; 3165 u_int namelen = arg2; 3166 pid_t pid; 3167 struct proc *p; 3168 struct thread *td1; 3169 uintptr_t addr; 3170 #ifdef COMPAT_FREEBSD32 3171 uint32_t addr32; 3172 #endif 3173 int error; 3174 3175 if (namelen != 1 || req->newptr != NULL) 3176 return (EINVAL); 3177 3178 pid = (pid_t)name[0]; 3179 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3180 if (error != 0) 3181 return (error); 3182 3183 PROC_LOCK(p); 3184 #ifdef COMPAT_FREEBSD32 3185 if (SV_CURPROC_FLAG(SV_ILP32)) { 3186 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3187 error = EINVAL; 3188 goto errlocked; 3189 } 3190 } 3191 #endif 3192 if (pid <= PID_MAX) { 3193 td1 = FIRST_THREAD_IN_PROC(p); 3194 } else { 3195 FOREACH_THREAD_IN_PROC(p, td1) { 3196 if (td1->td_tid == pid) 3197 break; 3198 } 3199 } 3200 if (td1 == NULL) { 3201 error = ESRCH; 3202 goto errlocked; 3203 } 3204 /* 3205 * The access to the private thread flags. It is fine as far 3206 * as no out-of-thin-air values are read from td_pflags, and 3207 * usermode read of the td_sigblock_ptr is racy inherently, 3208 * since target process might have already changed it 3209 * meantime. 3210 */ 3211 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3212 addr = (uintptr_t)td1->td_sigblock_ptr; 3213 else 3214 error = ENOTTY; 3215 3216 errlocked: 3217 _PRELE(p); 3218 PROC_UNLOCK(p); 3219 if (error != 0) 3220 return (error); 3221 3222 #ifdef COMPAT_FREEBSD32 3223 if (SV_CURPROC_FLAG(SV_ILP32)) { 3224 addr32 = addr; 3225 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3226 } else 3227 #endif 3228 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3229 return (error); 3230 } 3231 3232 static int 3233 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) 3234 { 3235 struct kinfo_vm_layout kvm; 3236 struct proc *p; 3237 struct vmspace *vmspace; 3238 int error, *name; 3239 3240 name = (int *)arg1; 3241 if ((u_int)arg2 != 1) 3242 return (EINVAL); 3243 3244 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3245 if (error != 0) 3246 return (error); 3247 #ifdef COMPAT_FREEBSD32 3248 if (SV_CURPROC_FLAG(SV_ILP32)) { 3249 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3250 PROC_UNLOCK(p); 3251 return (EINVAL); 3252 } 3253 } 3254 #endif 3255 vmspace = vmspace_acquire_ref(p); 3256 PROC_UNLOCK(p); 3257 3258 memset(&kvm, 0, sizeof(kvm)); 3259 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); 3260 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); 3261 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; 3262 kvm.kvm_text_size = vmspace->vm_tsize; 3263 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; 3264 kvm.kvm_data_size = vmspace->vm_dsize; 3265 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; 3266 kvm.kvm_stack_size = vmspace->vm_ssize; 3267 kvm.kvm_shp_addr = vmspace->vm_shp_base; 3268 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; 3269 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) 3270 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; 3271 if ((vmspace->vm_map.flags & MAP_ASLR) != 0) 3272 kvm.kvm_map_flags |= KMAP_FLAG_ASLR; 3273 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) 3274 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; 3275 if ((vmspace->vm_map.flags & MAP_WXORX) != 0) 3276 kvm.kvm_map_flags |= KMAP_FLAG_WXORX; 3277 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) 3278 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; 3279 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && 3280 PROC_HAS_SHP(p)) 3281 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; 3282 3283 #ifdef COMPAT_FREEBSD32 3284 if (SV_CURPROC_FLAG(SV_ILP32)) { 3285 struct kinfo_vm_layout32 kvm32; 3286 3287 memset(&kvm32, 0, sizeof(kvm32)); 3288 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; 3289 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; 3290 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; 3291 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; 3292 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; 3293 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; 3294 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; 3295 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; 3296 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; 3297 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; 3298 kvm32.kvm_map_flags = kvm.kvm_map_flags; 3299 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); 3300 goto out; 3301 } 3302 #endif 3303 3304 error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); 3305 #ifdef COMPAT_FREEBSD32 3306 out: 3307 #endif 3308 vmspace_free(vmspace); 3309 return (error); 3310 } 3311 3312 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3313 "Process table"); 3314 3315 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3316 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3317 "Return entire process table"); 3318 3319 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3320 sysctl_kern_proc, "Process table"); 3321 3322 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3323 sysctl_kern_proc, "Process table"); 3324 3325 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3326 sysctl_kern_proc, "Process table"); 3327 3328 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3329 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3330 3331 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3332 sysctl_kern_proc, "Process table"); 3333 3334 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3335 sysctl_kern_proc, "Process table"); 3336 3337 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3338 sysctl_kern_proc, "Process table"); 3339 3340 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3341 sysctl_kern_proc, "Process table"); 3342 3343 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3344 sysctl_kern_proc, "Return process table, no threads"); 3345 3346 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3347 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3348 sysctl_kern_proc_args, "Process argument list"); 3349 3350 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3351 sysctl_kern_proc_env, "Process environment"); 3352 3353 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3354 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3355 3356 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3357 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3358 3359 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3360 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3361 "Process syscall vector name (ABI type)"); 3362 3363 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3364 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3365 3366 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3367 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3368 3369 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3370 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3371 3372 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3373 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3374 3375 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3376 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3377 3378 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3379 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3380 3381 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3382 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3383 3384 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3385 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3386 3387 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3388 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3389 "Return process table, including threads"); 3390 3391 #ifdef COMPAT_FREEBSD7 3392 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3393 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3394 #endif 3395 3396 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3397 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3398 3399 #if defined(STACK) || defined(DDB) 3400 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3401 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3402 #endif 3403 3404 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3405 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3406 3407 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3408 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3409 "Process resource limits"); 3410 3411 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3412 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3413 "Process ps_strings location"); 3414 3415 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3416 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3417 3418 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3419 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3420 "Process binary osreldate"); 3421 3422 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3423 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3424 "Process signal trampoline location"); 3425 3426 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3427 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3428 "Thread sigfastblock address"); 3429 3430 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | 3431 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, 3432 "Process virtual address space layout info"); 3433 3434 static struct sx stop_all_proc_blocker; 3435 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); 3436 3437 bool 3438 stop_all_proc_block(void) 3439 { 3440 return (sx_xlock_sig(&stop_all_proc_blocker) == 0); 3441 } 3442 3443 void 3444 stop_all_proc_unblock(void) 3445 { 3446 sx_xunlock(&stop_all_proc_blocker); 3447 } 3448 3449 int allproc_gen; 3450 3451 /* 3452 * stop_all_proc() purpose is to stop all process which have usermode, 3453 * except current process for obvious reasons. This makes it somewhat 3454 * unreliable when invoked from multithreaded process. The service 3455 * must not be user-callable anyway. 3456 */ 3457 void 3458 stop_all_proc(void) 3459 { 3460 struct proc *cp, *p; 3461 int r, gen; 3462 bool restart, seen_stopped, seen_exiting, stopped_some; 3463 3464 if (!stop_all_proc_block()) 3465 return; 3466 3467 cp = curproc; 3468 allproc_loop: 3469 sx_xlock(&allproc_lock); 3470 gen = allproc_gen; 3471 seen_exiting = seen_stopped = stopped_some = restart = false; 3472 LIST_REMOVE(cp, p_list); 3473 LIST_INSERT_HEAD(&allproc, cp, p_list); 3474 for (;;) { 3475 p = LIST_NEXT(cp, p_list); 3476 if (p == NULL) 3477 break; 3478 LIST_REMOVE(cp, p_list); 3479 LIST_INSERT_AFTER(p, cp, p_list); 3480 PROC_LOCK(p); 3481 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3482 PROC_UNLOCK(p); 3483 continue; 3484 } 3485 if ((p->p_flag2 & P2_WEXIT) != 0) { 3486 seen_exiting = true; 3487 PROC_UNLOCK(p); 3488 continue; 3489 } 3490 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3491 /* 3492 * Stopped processes are tolerated when there 3493 * are no other processes which might continue 3494 * them. P_STOPPED_SINGLE but not 3495 * P_TOTAL_STOP process still has at least one 3496 * thread running. 3497 */ 3498 seen_stopped = true; 3499 PROC_UNLOCK(p); 3500 continue; 3501 } 3502 sx_xunlock(&allproc_lock); 3503 _PHOLD(p); 3504 r = thread_single(p, SINGLE_ALLPROC); 3505 if (r != 0) 3506 restart = true; 3507 else 3508 stopped_some = true; 3509 _PRELE(p); 3510 PROC_UNLOCK(p); 3511 sx_xlock(&allproc_lock); 3512 } 3513 /* Catch forked children we did not see in iteration. */ 3514 if (gen != allproc_gen) 3515 restart = true; 3516 sx_xunlock(&allproc_lock); 3517 if (restart || stopped_some || seen_exiting || seen_stopped) { 3518 kern_yield(PRI_USER); 3519 goto allproc_loop; 3520 } 3521 } 3522 3523 void 3524 resume_all_proc(void) 3525 { 3526 struct proc *cp, *p; 3527 3528 cp = curproc; 3529 sx_xlock(&allproc_lock); 3530 again: 3531 LIST_REMOVE(cp, p_list); 3532 LIST_INSERT_HEAD(&allproc, cp, p_list); 3533 for (;;) { 3534 p = LIST_NEXT(cp, p_list); 3535 if (p == NULL) 3536 break; 3537 LIST_REMOVE(cp, p_list); 3538 LIST_INSERT_AFTER(p, cp, p_list); 3539 PROC_LOCK(p); 3540 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3541 sx_xunlock(&allproc_lock); 3542 _PHOLD(p); 3543 thread_single_end(p, SINGLE_ALLPROC); 3544 _PRELE(p); 3545 PROC_UNLOCK(p); 3546 sx_xlock(&allproc_lock); 3547 } else { 3548 PROC_UNLOCK(p); 3549 } 3550 } 3551 /* Did the loop above missed any stopped process ? */ 3552 FOREACH_PROC_IN_SYSTEM(p) { 3553 /* No need for proc lock. */ 3554 if ((p->p_flag & P_TOTAL_STOP) != 0) 3555 goto again; 3556 } 3557 sx_xunlock(&allproc_lock); 3558 3559 stop_all_proc_unblock(); 3560 } 3561 3562 /* #define TOTAL_STOP_DEBUG 1 */ 3563 #ifdef TOTAL_STOP_DEBUG 3564 volatile static int ap_resume; 3565 #include <sys/mount.h> 3566 3567 static int 3568 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3569 { 3570 int error, val; 3571 3572 val = 0; 3573 ap_resume = 0; 3574 error = sysctl_handle_int(oidp, &val, 0, req); 3575 if (error != 0 || req->newptr == NULL) 3576 return (error); 3577 if (val != 0) { 3578 stop_all_proc(); 3579 syncer_suspend(); 3580 while (ap_resume == 0) 3581 ; 3582 syncer_resume(); 3583 resume_all_proc(); 3584 } 3585 return (0); 3586 } 3587 3588 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3589 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3590 sysctl_debug_stop_all_proc, "I", 3591 ""); 3592 #endif 3593