1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 145 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 146 #ifdef COMPAT_FREEBSD32 147 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 148 #endif 149 150 /* 151 * Initialize global process hashing structures. 152 */ 153 void 154 procinit() 155 { 156 157 sx_init(&allproc_lock, "allproc"); 158 sx_init(&proctree_lock, "proctree"); 159 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 160 LIST_INIT(&allproc); 161 LIST_INIT(&zombproc); 162 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 163 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 164 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 165 proc_ctor, proc_dtor, proc_init, proc_fini, 166 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 167 uihashinit(); 168 } 169 170 /* 171 * Prepare a proc for use. 172 */ 173 static int 174 proc_ctor(void *mem, int size, void *arg, int flags) 175 { 176 struct proc *p; 177 178 p = (struct proc *)mem; 179 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 180 EVENTHANDLER_INVOKE(process_ctor, p); 181 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 182 return (0); 183 } 184 185 /* 186 * Reclaim a proc after use. 187 */ 188 static void 189 proc_dtor(void *mem, int size, void *arg) 190 { 191 struct proc *p; 192 struct thread *td; 193 194 /* INVARIANTS checks go here */ 195 p = (struct proc *)mem; 196 td = FIRST_THREAD_IN_PROC(p); 197 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 198 if (td != NULL) { 199 #ifdef INVARIANTS 200 KASSERT((p->p_numthreads == 1), 201 ("bad number of threads in exiting process")); 202 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 203 #endif 204 /* Free all OSD associated to this thread. */ 205 osd_thread_exit(td); 206 } 207 EVENTHANDLER_INVOKE(process_dtor, p); 208 if (p->p_ksi != NULL) 209 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 210 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 211 } 212 213 /* 214 * Initialize type-stable parts of a proc (when newly created). 215 */ 216 static int 217 proc_init(void *mem, int size, int flags) 218 { 219 struct proc *p; 220 221 p = (struct proc *)mem; 222 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 223 p->p_sched = (struct p_sched *)&p[1]; 224 bzero(&p->p_mtx, sizeof(struct mtx)); 225 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 226 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 227 cv_init(&p->p_pwait, "ppwait"); 228 cv_init(&p->p_dbgwait, "dbgwait"); 229 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 230 EVENTHANDLER_INVOKE(process_init, p); 231 p->p_stats = pstats_alloc(); 232 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 233 return (0); 234 } 235 236 /* 237 * UMA should ensure that this function is never called. 238 * Freeing a proc structure would violate type stability. 239 */ 240 static void 241 proc_fini(void *mem, int size) 242 { 243 #ifdef notnow 244 struct proc *p; 245 246 p = (struct proc *)mem; 247 EVENTHANDLER_INVOKE(process_fini, p); 248 pstats_free(p->p_stats); 249 thread_free(FIRST_THREAD_IN_PROC(p)); 250 mtx_destroy(&p->p_mtx); 251 if (p->p_ksi != NULL) 252 ksiginfo_free(p->p_ksi); 253 #else 254 panic("proc reclaimed"); 255 #endif 256 } 257 258 /* 259 * Is p an inferior of the current process? 260 */ 261 int 262 inferior(p) 263 register struct proc *p; 264 { 265 266 sx_assert(&proctree_lock, SX_LOCKED); 267 for (; p != curproc; p = p->p_pptr) 268 if (p->p_pid == 0) 269 return (0); 270 return (1); 271 } 272 273 struct proc * 274 pfind_locked(pid_t pid) 275 { 276 struct proc *p; 277 278 sx_assert(&allproc_lock, SX_LOCKED); 279 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 280 if (p->p_pid == pid) { 281 PROC_LOCK(p); 282 if (p->p_state == PRS_NEW) { 283 PROC_UNLOCK(p); 284 p = NULL; 285 } 286 break; 287 } 288 } 289 return (p); 290 } 291 292 /* 293 * Locate a process by number; return only "live" processes -- i.e., neither 294 * zombies nor newly born but incompletely initialized processes. By not 295 * returning processes in the PRS_NEW state, we allow callers to avoid 296 * testing for that condition to avoid dereferencing p_ucred, et al. 297 */ 298 struct proc * 299 pfind(pid_t pid) 300 { 301 struct proc *p; 302 303 sx_slock(&allproc_lock); 304 p = pfind_locked(pid); 305 sx_sunlock(&allproc_lock); 306 return (p); 307 } 308 309 static struct proc * 310 pfind_tid_locked(pid_t tid) 311 { 312 struct proc *p; 313 struct thread *td; 314 315 sx_assert(&allproc_lock, SX_LOCKED); 316 FOREACH_PROC_IN_SYSTEM(p) { 317 PROC_LOCK(p); 318 if (p->p_state == PRS_NEW) { 319 PROC_UNLOCK(p); 320 continue; 321 } 322 FOREACH_THREAD_IN_PROC(p, td) { 323 if (td->td_tid == tid) 324 goto found; 325 } 326 PROC_UNLOCK(p); 327 } 328 found: 329 return (p); 330 } 331 332 /* 333 * Locate a process group by number. 334 * The caller must hold proctree_lock. 335 */ 336 struct pgrp * 337 pgfind(pgid) 338 register pid_t pgid; 339 { 340 register struct pgrp *pgrp; 341 342 sx_assert(&proctree_lock, SX_LOCKED); 343 344 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 345 if (pgrp->pg_id == pgid) { 346 PGRP_LOCK(pgrp); 347 return (pgrp); 348 } 349 } 350 return (NULL); 351 } 352 353 /* 354 * Locate process and do additional manipulations, depending on flags. 355 */ 356 int 357 pget(pid_t pid, int flags, struct proc **pp) 358 { 359 struct proc *p; 360 int error; 361 362 sx_slock(&allproc_lock); 363 if (pid <= PID_MAX) { 364 p = pfind_locked(pid); 365 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 366 p = zpfind_locked(pid); 367 } else if ((flags & PGET_NOTID) == 0) { 368 p = pfind_tid_locked(pid); 369 } else { 370 p = NULL; 371 } 372 sx_sunlock(&allproc_lock); 373 if (p == NULL) 374 return (ESRCH); 375 if ((flags & PGET_CANSEE) != 0) { 376 error = p_cansee(curthread, p); 377 if (error != 0) 378 goto errout; 379 } 380 if ((flags & PGET_CANDEBUG) != 0) { 381 error = p_candebug(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 386 error = EPERM; 387 goto errout; 388 } 389 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 390 error = ESRCH; 391 goto errout; 392 } 393 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 394 /* 395 * XXXRW: Not clear ESRCH is the right error during proc 396 * execve(). 397 */ 398 error = ESRCH; 399 goto errout; 400 } 401 if ((flags & PGET_HOLD) != 0) { 402 _PHOLD(p); 403 PROC_UNLOCK(p); 404 } 405 *pp = p; 406 return (0); 407 errout: 408 PROC_UNLOCK(p); 409 return (error); 410 } 411 412 /* 413 * Create a new process group. 414 * pgid must be equal to the pid of p. 415 * Begin a new session if required. 416 */ 417 int 418 enterpgrp(p, pgid, pgrp, sess) 419 register struct proc *p; 420 pid_t pgid; 421 struct pgrp *pgrp; 422 struct session *sess; 423 { 424 425 sx_assert(&proctree_lock, SX_XLOCKED); 426 427 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 428 KASSERT(p->p_pid == pgid, 429 ("enterpgrp: new pgrp and pid != pgid")); 430 KASSERT(pgfind(pgid) == NULL, 431 ("enterpgrp: pgrp with pgid exists")); 432 KASSERT(!SESS_LEADER(p), 433 ("enterpgrp: session leader attempted setpgrp")); 434 435 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 436 437 if (sess != NULL) { 438 /* 439 * new session 440 */ 441 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 442 PROC_LOCK(p); 443 p->p_flag &= ~P_CONTROLT; 444 PROC_UNLOCK(p); 445 PGRP_LOCK(pgrp); 446 sess->s_leader = p; 447 sess->s_sid = p->p_pid; 448 refcount_init(&sess->s_count, 1); 449 sess->s_ttyvp = NULL; 450 sess->s_ttydp = NULL; 451 sess->s_ttyp = NULL; 452 bcopy(p->p_session->s_login, sess->s_login, 453 sizeof(sess->s_login)); 454 pgrp->pg_session = sess; 455 KASSERT(p == curproc, 456 ("enterpgrp: mksession and p != curproc")); 457 } else { 458 pgrp->pg_session = p->p_session; 459 sess_hold(pgrp->pg_session); 460 PGRP_LOCK(pgrp); 461 } 462 pgrp->pg_id = pgid; 463 LIST_INIT(&pgrp->pg_members); 464 465 /* 466 * As we have an exclusive lock of proctree_lock, 467 * this should not deadlock. 468 */ 469 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 470 pgrp->pg_jobc = 0; 471 SLIST_INIT(&pgrp->pg_sigiolst); 472 PGRP_UNLOCK(pgrp); 473 474 doenterpgrp(p, pgrp); 475 476 return (0); 477 } 478 479 /* 480 * Move p to an existing process group 481 */ 482 int 483 enterthispgrp(p, pgrp) 484 register struct proc *p; 485 struct pgrp *pgrp; 486 { 487 488 sx_assert(&proctree_lock, SX_XLOCKED); 489 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 490 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 491 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 492 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 493 KASSERT(pgrp->pg_session == p->p_session, 494 ("%s: pgrp's session %p, p->p_session %p.\n", 495 __func__, 496 pgrp->pg_session, 497 p->p_session)); 498 KASSERT(pgrp != p->p_pgrp, 499 ("%s: p belongs to pgrp.", __func__)); 500 501 doenterpgrp(p, pgrp); 502 503 return (0); 504 } 505 506 /* 507 * Move p to a process group 508 */ 509 static void 510 doenterpgrp(p, pgrp) 511 struct proc *p; 512 struct pgrp *pgrp; 513 { 514 struct pgrp *savepgrp; 515 516 sx_assert(&proctree_lock, SX_XLOCKED); 517 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 518 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 519 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 520 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 521 522 savepgrp = p->p_pgrp; 523 524 /* 525 * Adjust eligibility of affected pgrps to participate in job control. 526 * Increment eligibility counts before decrementing, otherwise we 527 * could reach 0 spuriously during the first call. 528 */ 529 fixjobc(p, pgrp, 1); 530 fixjobc(p, p->p_pgrp, 0); 531 532 PGRP_LOCK(pgrp); 533 PGRP_LOCK(savepgrp); 534 PROC_LOCK(p); 535 LIST_REMOVE(p, p_pglist); 536 p->p_pgrp = pgrp; 537 PROC_UNLOCK(p); 538 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 539 PGRP_UNLOCK(savepgrp); 540 PGRP_UNLOCK(pgrp); 541 if (LIST_EMPTY(&savepgrp->pg_members)) 542 pgdelete(savepgrp); 543 } 544 545 /* 546 * remove process from process group 547 */ 548 int 549 leavepgrp(p) 550 register struct proc *p; 551 { 552 struct pgrp *savepgrp; 553 554 sx_assert(&proctree_lock, SX_XLOCKED); 555 savepgrp = p->p_pgrp; 556 PGRP_LOCK(savepgrp); 557 PROC_LOCK(p); 558 LIST_REMOVE(p, p_pglist); 559 p->p_pgrp = NULL; 560 PROC_UNLOCK(p); 561 PGRP_UNLOCK(savepgrp); 562 if (LIST_EMPTY(&savepgrp->pg_members)) 563 pgdelete(savepgrp); 564 return (0); 565 } 566 567 /* 568 * delete a process group 569 */ 570 static void 571 pgdelete(pgrp) 572 register struct pgrp *pgrp; 573 { 574 struct session *savesess; 575 struct tty *tp; 576 577 sx_assert(&proctree_lock, SX_XLOCKED); 578 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 579 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 580 581 /* 582 * Reset any sigio structures pointing to us as a result of 583 * F_SETOWN with our pgid. 584 */ 585 funsetownlst(&pgrp->pg_sigiolst); 586 587 PGRP_LOCK(pgrp); 588 tp = pgrp->pg_session->s_ttyp; 589 LIST_REMOVE(pgrp, pg_hash); 590 savesess = pgrp->pg_session; 591 PGRP_UNLOCK(pgrp); 592 593 /* Remove the reference to the pgrp before deallocating it. */ 594 if (tp != NULL) { 595 tty_lock(tp); 596 tty_rel_pgrp(tp, pgrp); 597 } 598 599 mtx_destroy(&pgrp->pg_mtx); 600 free(pgrp, M_PGRP); 601 sess_release(savesess); 602 } 603 604 static void 605 pgadjustjobc(pgrp, entering) 606 struct pgrp *pgrp; 607 int entering; 608 { 609 610 PGRP_LOCK(pgrp); 611 if (entering) 612 pgrp->pg_jobc++; 613 else { 614 --pgrp->pg_jobc; 615 if (pgrp->pg_jobc == 0) 616 orphanpg(pgrp); 617 } 618 PGRP_UNLOCK(pgrp); 619 } 620 621 /* 622 * Adjust pgrp jobc counters when specified process changes process group. 623 * We count the number of processes in each process group that "qualify" 624 * the group for terminal job control (those with a parent in a different 625 * process group of the same session). If that count reaches zero, the 626 * process group becomes orphaned. Check both the specified process' 627 * process group and that of its children. 628 * entering == 0 => p is leaving specified group. 629 * entering == 1 => p is entering specified group. 630 */ 631 void 632 fixjobc(p, pgrp, entering) 633 register struct proc *p; 634 register struct pgrp *pgrp; 635 int entering; 636 { 637 register struct pgrp *hispgrp; 638 register struct session *mysession; 639 640 sx_assert(&proctree_lock, SX_LOCKED); 641 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 642 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 643 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 644 645 /* 646 * Check p's parent to see whether p qualifies its own process 647 * group; if so, adjust count for p's process group. 648 */ 649 mysession = pgrp->pg_session; 650 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 651 hispgrp->pg_session == mysession) 652 pgadjustjobc(pgrp, entering); 653 654 /* 655 * Check this process' children to see whether they qualify 656 * their process groups; if so, adjust counts for children's 657 * process groups. 658 */ 659 LIST_FOREACH(p, &p->p_children, p_sibling) { 660 hispgrp = p->p_pgrp; 661 if (hispgrp == pgrp || 662 hispgrp->pg_session != mysession) 663 continue; 664 PROC_LOCK(p); 665 if (p->p_state == PRS_ZOMBIE) { 666 PROC_UNLOCK(p); 667 continue; 668 } 669 PROC_UNLOCK(p); 670 pgadjustjobc(hispgrp, entering); 671 } 672 } 673 674 /* 675 * A process group has become orphaned; 676 * if there are any stopped processes in the group, 677 * hang-up all process in that group. 678 */ 679 static void 680 orphanpg(pg) 681 struct pgrp *pg; 682 { 683 register struct proc *p; 684 685 PGRP_LOCK_ASSERT(pg, MA_OWNED); 686 687 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 688 PROC_LOCK(p); 689 if (P_SHOULDSTOP(p)) { 690 PROC_UNLOCK(p); 691 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 692 PROC_LOCK(p); 693 kern_psignal(p, SIGHUP); 694 kern_psignal(p, SIGCONT); 695 PROC_UNLOCK(p); 696 } 697 return; 698 } 699 PROC_UNLOCK(p); 700 } 701 } 702 703 void 704 sess_hold(struct session *s) 705 { 706 707 refcount_acquire(&s->s_count); 708 } 709 710 void 711 sess_release(struct session *s) 712 { 713 714 if (refcount_release(&s->s_count)) { 715 if (s->s_ttyp != NULL) { 716 tty_lock(s->s_ttyp); 717 tty_rel_sess(s->s_ttyp, s); 718 } 719 mtx_destroy(&s->s_mtx); 720 free(s, M_SESSION); 721 } 722 } 723 724 #ifdef DDB 725 726 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 727 { 728 register struct pgrp *pgrp; 729 register struct proc *p; 730 register int i; 731 732 for (i = 0; i <= pgrphash; i++) { 733 if (!LIST_EMPTY(&pgrphashtbl[i])) { 734 printf("\tindx %d\n", i); 735 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 736 printf( 737 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 738 (void *)pgrp, (long)pgrp->pg_id, 739 (void *)pgrp->pg_session, 740 pgrp->pg_session->s_count, 741 (void *)LIST_FIRST(&pgrp->pg_members)); 742 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 743 printf("\t\tpid %ld addr %p pgrp %p\n", 744 (long)p->p_pid, (void *)p, 745 (void *)p->p_pgrp); 746 } 747 } 748 } 749 } 750 } 751 #endif /* DDB */ 752 753 /* 754 * Calculate the kinfo_proc members which contain process-wide 755 * informations. 756 * Must be called with the target process locked. 757 */ 758 static void 759 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 760 { 761 struct thread *td; 762 763 PROC_LOCK_ASSERT(p, MA_OWNED); 764 765 kp->ki_estcpu = 0; 766 kp->ki_pctcpu = 0; 767 FOREACH_THREAD_IN_PROC(p, td) { 768 thread_lock(td); 769 kp->ki_pctcpu += sched_pctcpu(td); 770 kp->ki_estcpu += td->td_estcpu; 771 thread_unlock(td); 772 } 773 } 774 775 /* 776 * Clear kinfo_proc and fill in any information that is common 777 * to all threads in the process. 778 * Must be called with the target process locked. 779 */ 780 static void 781 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 782 { 783 struct thread *td0; 784 struct tty *tp; 785 struct session *sp; 786 struct ucred *cred; 787 struct sigacts *ps; 788 789 PROC_LOCK_ASSERT(p, MA_OWNED); 790 bzero(kp, sizeof(*kp)); 791 792 kp->ki_structsize = sizeof(*kp); 793 kp->ki_paddr = p; 794 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 795 kp->ki_args = p->p_args; 796 kp->ki_textvp = p->p_textvp; 797 #ifdef KTRACE 798 kp->ki_tracep = p->p_tracevp; 799 kp->ki_traceflag = p->p_traceflag; 800 #endif 801 kp->ki_fd = p->p_fd; 802 kp->ki_vmspace = p->p_vmspace; 803 kp->ki_flag = p->p_flag; 804 kp->ki_flag2 = p->p_flag2; 805 cred = p->p_ucred; 806 if (cred) { 807 kp->ki_uid = cred->cr_uid; 808 kp->ki_ruid = cred->cr_ruid; 809 kp->ki_svuid = cred->cr_svuid; 810 kp->ki_cr_flags = 0; 811 if (cred->cr_flags & CRED_FLAG_CAPMODE) 812 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 813 /* XXX bde doesn't like KI_NGROUPS */ 814 if (cred->cr_ngroups > KI_NGROUPS) { 815 kp->ki_ngroups = KI_NGROUPS; 816 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 817 } else 818 kp->ki_ngroups = cred->cr_ngroups; 819 bcopy(cred->cr_groups, kp->ki_groups, 820 kp->ki_ngroups * sizeof(gid_t)); 821 kp->ki_rgid = cred->cr_rgid; 822 kp->ki_svgid = cred->cr_svgid; 823 /* If jailed(cred), emulate the old P_JAILED flag. */ 824 if (jailed(cred)) { 825 kp->ki_flag |= P_JAILED; 826 /* If inside the jail, use 0 as a jail ID. */ 827 if (cred->cr_prison != curthread->td_ucred->cr_prison) 828 kp->ki_jid = cred->cr_prison->pr_id; 829 } 830 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 831 sizeof(kp->ki_loginclass)); 832 } 833 ps = p->p_sigacts; 834 if (ps) { 835 mtx_lock(&ps->ps_mtx); 836 kp->ki_sigignore = ps->ps_sigignore; 837 kp->ki_sigcatch = ps->ps_sigcatch; 838 mtx_unlock(&ps->ps_mtx); 839 } 840 if (p->p_state != PRS_NEW && 841 p->p_state != PRS_ZOMBIE && 842 p->p_vmspace != NULL) { 843 struct vmspace *vm = p->p_vmspace; 844 845 kp->ki_size = vm->vm_map.size; 846 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 847 FOREACH_THREAD_IN_PROC(p, td0) { 848 if (!TD_IS_SWAPPED(td0)) 849 kp->ki_rssize += td0->td_kstack_pages; 850 } 851 kp->ki_swrss = vm->vm_swrss; 852 kp->ki_tsize = vm->vm_tsize; 853 kp->ki_dsize = vm->vm_dsize; 854 kp->ki_ssize = vm->vm_ssize; 855 } else if (p->p_state == PRS_ZOMBIE) 856 kp->ki_stat = SZOMB; 857 if (kp->ki_flag & P_INMEM) 858 kp->ki_sflag = PS_INMEM; 859 else 860 kp->ki_sflag = 0; 861 /* Calculate legacy swtime as seconds since 'swtick'. */ 862 kp->ki_swtime = (ticks - p->p_swtick) / hz; 863 kp->ki_pid = p->p_pid; 864 kp->ki_nice = p->p_nice; 865 kp->ki_fibnum = p->p_fibnum; 866 kp->ki_start = p->p_stats->p_start; 867 timevaladd(&kp->ki_start, &boottime); 868 PROC_SLOCK(p); 869 rufetch(p, &kp->ki_rusage); 870 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 871 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 872 PROC_SUNLOCK(p); 873 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 874 /* Some callers want child times in a single value. */ 875 kp->ki_childtime = kp->ki_childstime; 876 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 877 878 FOREACH_THREAD_IN_PROC(p, td0) 879 kp->ki_cow += td0->td_cow; 880 881 tp = NULL; 882 if (p->p_pgrp) { 883 kp->ki_pgid = p->p_pgrp->pg_id; 884 kp->ki_jobc = p->p_pgrp->pg_jobc; 885 sp = p->p_pgrp->pg_session; 886 887 if (sp != NULL) { 888 kp->ki_sid = sp->s_sid; 889 SESS_LOCK(sp); 890 strlcpy(kp->ki_login, sp->s_login, 891 sizeof(kp->ki_login)); 892 if (sp->s_ttyvp) 893 kp->ki_kiflag |= KI_CTTY; 894 if (SESS_LEADER(p)) 895 kp->ki_kiflag |= KI_SLEADER; 896 /* XXX proctree_lock */ 897 tp = sp->s_ttyp; 898 SESS_UNLOCK(sp); 899 } 900 } 901 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 902 kp->ki_tdev = tty_udev(tp); 903 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 904 if (tp->t_session) 905 kp->ki_tsid = tp->t_session->s_sid; 906 } else 907 kp->ki_tdev = NODEV; 908 if (p->p_comm[0] != '\0') 909 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 910 if (p->p_sysent && p->p_sysent->sv_name != NULL && 911 p->p_sysent->sv_name[0] != '\0') 912 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 913 kp->ki_siglist = p->p_siglist; 914 kp->ki_xstat = p->p_xstat; 915 kp->ki_acflag = p->p_acflag; 916 kp->ki_lock = p->p_lock; 917 if (p->p_pptr) 918 kp->ki_ppid = p->p_pptr->p_pid; 919 } 920 921 /* 922 * Fill in information that is thread specific. Must be called with 923 * target process locked. If 'preferthread' is set, overwrite certain 924 * process-related fields that are maintained for both threads and 925 * processes. 926 */ 927 static void 928 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 929 { 930 struct proc *p; 931 932 p = td->td_proc; 933 kp->ki_tdaddr = td; 934 PROC_LOCK_ASSERT(p, MA_OWNED); 935 936 if (preferthread) 937 PROC_SLOCK(p); 938 thread_lock(td); 939 if (td->td_wmesg != NULL) 940 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 941 else 942 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 943 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 944 if (TD_ON_LOCK(td)) { 945 kp->ki_kiflag |= KI_LOCKBLOCK; 946 strlcpy(kp->ki_lockname, td->td_lockname, 947 sizeof(kp->ki_lockname)); 948 } else { 949 kp->ki_kiflag &= ~KI_LOCKBLOCK; 950 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 951 } 952 953 if (p->p_state == PRS_NORMAL) { /* approximate. */ 954 if (TD_ON_RUNQ(td) || 955 TD_CAN_RUN(td) || 956 TD_IS_RUNNING(td)) { 957 kp->ki_stat = SRUN; 958 } else if (P_SHOULDSTOP(p)) { 959 kp->ki_stat = SSTOP; 960 } else if (TD_IS_SLEEPING(td)) { 961 kp->ki_stat = SSLEEP; 962 } else if (TD_ON_LOCK(td)) { 963 kp->ki_stat = SLOCK; 964 } else { 965 kp->ki_stat = SWAIT; 966 } 967 } else if (p->p_state == PRS_ZOMBIE) { 968 kp->ki_stat = SZOMB; 969 } else { 970 kp->ki_stat = SIDL; 971 } 972 973 /* Things in the thread */ 974 kp->ki_wchan = td->td_wchan; 975 kp->ki_pri.pri_level = td->td_priority; 976 kp->ki_pri.pri_native = td->td_base_pri; 977 kp->ki_lastcpu = td->td_lastcpu; 978 kp->ki_oncpu = td->td_oncpu; 979 kp->ki_tdflags = td->td_flags; 980 kp->ki_tid = td->td_tid; 981 kp->ki_numthreads = p->p_numthreads; 982 kp->ki_pcb = td->td_pcb; 983 kp->ki_kstack = (void *)td->td_kstack; 984 kp->ki_slptime = (ticks - td->td_slptick) / hz; 985 kp->ki_pri.pri_class = td->td_pri_class; 986 kp->ki_pri.pri_user = td->td_user_pri; 987 988 if (preferthread) { 989 rufetchtd(td, &kp->ki_rusage); 990 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 991 kp->ki_pctcpu = sched_pctcpu(td); 992 kp->ki_estcpu = td->td_estcpu; 993 kp->ki_cow = td->td_cow; 994 } 995 996 /* We can't get this anymore but ps etc never used it anyway. */ 997 kp->ki_rqindex = 0; 998 999 if (preferthread) 1000 kp->ki_siglist = td->td_siglist; 1001 kp->ki_sigmask = td->td_sigmask; 1002 thread_unlock(td); 1003 if (preferthread) 1004 PROC_SUNLOCK(p); 1005 } 1006 1007 /* 1008 * Fill in a kinfo_proc structure for the specified process. 1009 * Must be called with the target process locked. 1010 */ 1011 void 1012 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1013 { 1014 1015 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1016 1017 fill_kinfo_proc_only(p, kp); 1018 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1019 fill_kinfo_aggregate(p, kp); 1020 } 1021 1022 struct pstats * 1023 pstats_alloc(void) 1024 { 1025 1026 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1027 } 1028 1029 /* 1030 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1031 */ 1032 void 1033 pstats_fork(struct pstats *src, struct pstats *dst) 1034 { 1035 1036 bzero(&dst->pstat_startzero, 1037 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1038 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1039 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1040 } 1041 1042 void 1043 pstats_free(struct pstats *ps) 1044 { 1045 1046 free(ps, M_SUBPROC); 1047 } 1048 1049 static struct proc * 1050 zpfind_locked(pid_t pid) 1051 { 1052 struct proc *p; 1053 1054 sx_assert(&allproc_lock, SX_LOCKED); 1055 LIST_FOREACH(p, &zombproc, p_list) { 1056 if (p->p_pid == pid) { 1057 PROC_LOCK(p); 1058 break; 1059 } 1060 } 1061 return (p); 1062 } 1063 1064 /* 1065 * Locate a zombie process by number 1066 */ 1067 struct proc * 1068 zpfind(pid_t pid) 1069 { 1070 struct proc *p; 1071 1072 sx_slock(&allproc_lock); 1073 p = zpfind_locked(pid); 1074 sx_sunlock(&allproc_lock); 1075 return (p); 1076 } 1077 1078 #ifdef COMPAT_FREEBSD32 1079 1080 /* 1081 * This function is typically used to copy out the kernel address, so 1082 * it can be replaced by assignment of zero. 1083 */ 1084 static inline uint32_t 1085 ptr32_trim(void *ptr) 1086 { 1087 uintptr_t uptr; 1088 1089 uptr = (uintptr_t)ptr; 1090 return ((uptr > UINT_MAX) ? 0 : uptr); 1091 } 1092 1093 #define PTRTRIM_CP(src,dst,fld) \ 1094 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1095 1096 static void 1097 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1098 { 1099 int i; 1100 1101 bzero(ki32, sizeof(struct kinfo_proc32)); 1102 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1103 CP(*ki, *ki32, ki_layout); 1104 PTRTRIM_CP(*ki, *ki32, ki_args); 1105 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1106 PTRTRIM_CP(*ki, *ki32, ki_addr); 1107 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1108 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1109 PTRTRIM_CP(*ki, *ki32, ki_fd); 1110 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1111 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1112 CP(*ki, *ki32, ki_pid); 1113 CP(*ki, *ki32, ki_ppid); 1114 CP(*ki, *ki32, ki_pgid); 1115 CP(*ki, *ki32, ki_tpgid); 1116 CP(*ki, *ki32, ki_sid); 1117 CP(*ki, *ki32, ki_tsid); 1118 CP(*ki, *ki32, ki_jobc); 1119 CP(*ki, *ki32, ki_tdev); 1120 CP(*ki, *ki32, ki_siglist); 1121 CP(*ki, *ki32, ki_sigmask); 1122 CP(*ki, *ki32, ki_sigignore); 1123 CP(*ki, *ki32, ki_sigcatch); 1124 CP(*ki, *ki32, ki_uid); 1125 CP(*ki, *ki32, ki_ruid); 1126 CP(*ki, *ki32, ki_svuid); 1127 CP(*ki, *ki32, ki_rgid); 1128 CP(*ki, *ki32, ki_svgid); 1129 CP(*ki, *ki32, ki_ngroups); 1130 for (i = 0; i < KI_NGROUPS; i++) 1131 CP(*ki, *ki32, ki_groups[i]); 1132 CP(*ki, *ki32, ki_size); 1133 CP(*ki, *ki32, ki_rssize); 1134 CP(*ki, *ki32, ki_swrss); 1135 CP(*ki, *ki32, ki_tsize); 1136 CP(*ki, *ki32, ki_dsize); 1137 CP(*ki, *ki32, ki_ssize); 1138 CP(*ki, *ki32, ki_xstat); 1139 CP(*ki, *ki32, ki_acflag); 1140 CP(*ki, *ki32, ki_pctcpu); 1141 CP(*ki, *ki32, ki_estcpu); 1142 CP(*ki, *ki32, ki_slptime); 1143 CP(*ki, *ki32, ki_swtime); 1144 CP(*ki, *ki32, ki_cow); 1145 CP(*ki, *ki32, ki_runtime); 1146 TV_CP(*ki, *ki32, ki_start); 1147 TV_CP(*ki, *ki32, ki_childtime); 1148 CP(*ki, *ki32, ki_flag); 1149 CP(*ki, *ki32, ki_kiflag); 1150 CP(*ki, *ki32, ki_traceflag); 1151 CP(*ki, *ki32, ki_stat); 1152 CP(*ki, *ki32, ki_nice); 1153 CP(*ki, *ki32, ki_lock); 1154 CP(*ki, *ki32, ki_rqindex); 1155 CP(*ki, *ki32, ki_oncpu); 1156 CP(*ki, *ki32, ki_lastcpu); 1157 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1158 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1159 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1160 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1161 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1162 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1163 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1164 CP(*ki, *ki32, ki_flag2); 1165 CP(*ki, *ki32, ki_fibnum); 1166 CP(*ki, *ki32, ki_cr_flags); 1167 CP(*ki, *ki32, ki_jid); 1168 CP(*ki, *ki32, ki_numthreads); 1169 CP(*ki, *ki32, ki_tid); 1170 CP(*ki, *ki32, ki_pri); 1171 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1172 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1173 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1174 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1175 PTRTRIM_CP(*ki, *ki32, ki_udata); 1176 CP(*ki, *ki32, ki_sflag); 1177 CP(*ki, *ki32, ki_tdflags); 1178 } 1179 #endif 1180 1181 int 1182 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1183 { 1184 struct thread *td; 1185 struct kinfo_proc ki; 1186 #ifdef COMPAT_FREEBSD32 1187 struct kinfo_proc32 ki32; 1188 #endif 1189 int error; 1190 1191 PROC_LOCK_ASSERT(p, MA_OWNED); 1192 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1193 1194 error = 0; 1195 fill_kinfo_proc(p, &ki); 1196 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1197 #ifdef COMPAT_FREEBSD32 1198 if ((flags & KERN_PROC_MASK32) != 0) { 1199 freebsd32_kinfo_proc_out(&ki, &ki32); 1200 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1201 } else 1202 #endif 1203 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1204 } else { 1205 FOREACH_THREAD_IN_PROC(p, td) { 1206 fill_kinfo_thread(td, &ki, 1); 1207 #ifdef COMPAT_FREEBSD32 1208 if ((flags & KERN_PROC_MASK32) != 0) { 1209 freebsd32_kinfo_proc_out(&ki, &ki32); 1210 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1211 } else 1212 #endif 1213 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1214 if (error) 1215 break; 1216 } 1217 } 1218 PROC_UNLOCK(p); 1219 return (error); 1220 } 1221 1222 static int 1223 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1224 int doingzomb) 1225 { 1226 struct sbuf sb; 1227 struct kinfo_proc ki; 1228 struct proc *np; 1229 int error, error2; 1230 pid_t pid; 1231 1232 pid = p->p_pid; 1233 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1234 error = kern_proc_out(p, &sb, flags); 1235 error2 = sbuf_finish(&sb); 1236 sbuf_delete(&sb); 1237 if (error != 0) 1238 return (error); 1239 else if (error2 != 0) 1240 return (error2); 1241 if (doingzomb) 1242 np = zpfind(pid); 1243 else { 1244 if (pid == 0) 1245 return (0); 1246 np = pfind(pid); 1247 } 1248 if (np == NULL) 1249 return (ESRCH); 1250 if (np != p) { 1251 PROC_UNLOCK(np); 1252 return (ESRCH); 1253 } 1254 PROC_UNLOCK(np); 1255 return (0); 1256 } 1257 1258 static int 1259 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1260 { 1261 int *name = (int *)arg1; 1262 u_int namelen = arg2; 1263 struct proc *p; 1264 int flags, doingzomb, oid_number; 1265 int error = 0; 1266 1267 oid_number = oidp->oid_number; 1268 if (oid_number != KERN_PROC_ALL && 1269 (oid_number & KERN_PROC_INC_THREAD) == 0) 1270 flags = KERN_PROC_NOTHREADS; 1271 else { 1272 flags = 0; 1273 oid_number &= ~KERN_PROC_INC_THREAD; 1274 } 1275 #ifdef COMPAT_FREEBSD32 1276 if (req->flags & SCTL_MASK32) 1277 flags |= KERN_PROC_MASK32; 1278 #endif 1279 if (oid_number == KERN_PROC_PID) { 1280 if (namelen != 1) 1281 return (EINVAL); 1282 error = sysctl_wire_old_buffer(req, 0); 1283 if (error) 1284 return (error); 1285 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1286 if (error != 0) 1287 return (error); 1288 error = sysctl_out_proc(p, req, flags, 0); 1289 return (error); 1290 } 1291 1292 switch (oid_number) { 1293 case KERN_PROC_ALL: 1294 if (namelen != 0) 1295 return (EINVAL); 1296 break; 1297 case KERN_PROC_PROC: 1298 if (namelen != 0 && namelen != 1) 1299 return (EINVAL); 1300 break; 1301 default: 1302 if (namelen != 1) 1303 return (EINVAL); 1304 break; 1305 } 1306 1307 if (!req->oldptr) { 1308 /* overestimate by 5 procs */ 1309 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1310 if (error) 1311 return (error); 1312 } 1313 error = sysctl_wire_old_buffer(req, 0); 1314 if (error != 0) 1315 return (error); 1316 sx_slock(&allproc_lock); 1317 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1318 if (!doingzomb) 1319 p = LIST_FIRST(&allproc); 1320 else 1321 p = LIST_FIRST(&zombproc); 1322 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1323 /* 1324 * Skip embryonic processes. 1325 */ 1326 PROC_LOCK(p); 1327 if (p->p_state == PRS_NEW) { 1328 PROC_UNLOCK(p); 1329 continue; 1330 } 1331 KASSERT(p->p_ucred != NULL, 1332 ("process credential is NULL for non-NEW proc")); 1333 /* 1334 * Show a user only appropriate processes. 1335 */ 1336 if (p_cansee(curthread, p)) { 1337 PROC_UNLOCK(p); 1338 continue; 1339 } 1340 /* 1341 * TODO - make more efficient (see notes below). 1342 * do by session. 1343 */ 1344 switch (oid_number) { 1345 1346 case KERN_PROC_GID: 1347 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1348 PROC_UNLOCK(p); 1349 continue; 1350 } 1351 break; 1352 1353 case KERN_PROC_PGRP: 1354 /* could do this by traversing pgrp */ 1355 if (p->p_pgrp == NULL || 1356 p->p_pgrp->pg_id != (pid_t)name[0]) { 1357 PROC_UNLOCK(p); 1358 continue; 1359 } 1360 break; 1361 1362 case KERN_PROC_RGID: 1363 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1364 PROC_UNLOCK(p); 1365 continue; 1366 } 1367 break; 1368 1369 case KERN_PROC_SESSION: 1370 if (p->p_session == NULL || 1371 p->p_session->s_sid != (pid_t)name[0]) { 1372 PROC_UNLOCK(p); 1373 continue; 1374 } 1375 break; 1376 1377 case KERN_PROC_TTY: 1378 if ((p->p_flag & P_CONTROLT) == 0 || 1379 p->p_session == NULL) { 1380 PROC_UNLOCK(p); 1381 continue; 1382 } 1383 /* XXX proctree_lock */ 1384 SESS_LOCK(p->p_session); 1385 if (p->p_session->s_ttyp == NULL || 1386 tty_udev(p->p_session->s_ttyp) != 1387 (dev_t)name[0]) { 1388 SESS_UNLOCK(p->p_session); 1389 PROC_UNLOCK(p); 1390 continue; 1391 } 1392 SESS_UNLOCK(p->p_session); 1393 break; 1394 1395 case KERN_PROC_UID: 1396 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1397 PROC_UNLOCK(p); 1398 continue; 1399 } 1400 break; 1401 1402 case KERN_PROC_RUID: 1403 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1404 PROC_UNLOCK(p); 1405 continue; 1406 } 1407 break; 1408 1409 case KERN_PROC_PROC: 1410 break; 1411 1412 default: 1413 break; 1414 1415 } 1416 1417 error = sysctl_out_proc(p, req, flags, doingzomb); 1418 if (error) { 1419 sx_sunlock(&allproc_lock); 1420 return (error); 1421 } 1422 } 1423 } 1424 sx_sunlock(&allproc_lock); 1425 return (0); 1426 } 1427 1428 struct pargs * 1429 pargs_alloc(int len) 1430 { 1431 struct pargs *pa; 1432 1433 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1434 M_WAITOK); 1435 refcount_init(&pa->ar_ref, 1); 1436 pa->ar_length = len; 1437 return (pa); 1438 } 1439 1440 static void 1441 pargs_free(struct pargs *pa) 1442 { 1443 1444 free(pa, M_PARGS); 1445 } 1446 1447 void 1448 pargs_hold(struct pargs *pa) 1449 { 1450 1451 if (pa == NULL) 1452 return; 1453 refcount_acquire(&pa->ar_ref); 1454 } 1455 1456 void 1457 pargs_drop(struct pargs *pa) 1458 { 1459 1460 if (pa == NULL) 1461 return; 1462 if (refcount_release(&pa->ar_ref)) 1463 pargs_free(pa); 1464 } 1465 1466 static int 1467 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1468 size_t len) 1469 { 1470 struct iovec iov; 1471 struct uio uio; 1472 1473 iov.iov_base = (caddr_t)buf; 1474 iov.iov_len = len; 1475 uio.uio_iov = &iov; 1476 uio.uio_iovcnt = 1; 1477 uio.uio_offset = offset; 1478 uio.uio_resid = (ssize_t)len; 1479 uio.uio_segflg = UIO_SYSSPACE; 1480 uio.uio_rw = UIO_READ; 1481 uio.uio_td = td; 1482 1483 return (proc_rwmem(p, &uio)); 1484 } 1485 1486 static int 1487 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1488 size_t len) 1489 { 1490 size_t i; 1491 int error; 1492 1493 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1494 /* 1495 * Reading the chunk may validly return EFAULT if the string is shorter 1496 * than the chunk and is aligned at the end of the page, assuming the 1497 * next page is not mapped. So if EFAULT is returned do a fallback to 1498 * one byte read loop. 1499 */ 1500 if (error == EFAULT) { 1501 for (i = 0; i < len; i++, buf++, sptr++) { 1502 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1503 if (error != 0) 1504 return (error); 1505 if (*buf == '\0') 1506 break; 1507 } 1508 error = 0; 1509 } 1510 return (error); 1511 } 1512 1513 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1514 1515 enum proc_vector_type { 1516 PROC_ARG, 1517 PROC_ENV, 1518 PROC_AUX, 1519 }; 1520 1521 #ifdef COMPAT_FREEBSD32 1522 static int 1523 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1524 size_t *vsizep, enum proc_vector_type type) 1525 { 1526 struct freebsd32_ps_strings pss; 1527 Elf32_Auxinfo aux; 1528 vm_offset_t vptr, ptr; 1529 uint32_t *proc_vector32; 1530 char **proc_vector; 1531 size_t vsize, size; 1532 int i, error; 1533 1534 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1535 &pss, sizeof(pss)); 1536 if (error != 0) 1537 return (error); 1538 switch (type) { 1539 case PROC_ARG: 1540 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1541 vsize = pss.ps_nargvstr; 1542 if (vsize > ARG_MAX) 1543 return (ENOEXEC); 1544 size = vsize * sizeof(int32_t); 1545 break; 1546 case PROC_ENV: 1547 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1548 vsize = pss.ps_nenvstr; 1549 if (vsize > ARG_MAX) 1550 return (ENOEXEC); 1551 size = vsize * sizeof(int32_t); 1552 break; 1553 case PROC_AUX: 1554 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1555 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1556 if (vptr % 4 != 0) 1557 return (ENOEXEC); 1558 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1559 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1560 if (error != 0) 1561 return (error); 1562 if (aux.a_type == AT_NULL) 1563 break; 1564 ptr += sizeof(aux); 1565 } 1566 if (aux.a_type != AT_NULL) 1567 return (ENOEXEC); 1568 vsize = i + 1; 1569 size = vsize * sizeof(aux); 1570 break; 1571 default: 1572 KASSERT(0, ("Wrong proc vector type: %d", type)); 1573 return (EINVAL); 1574 } 1575 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1576 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1577 if (error != 0) 1578 goto done; 1579 if (type == PROC_AUX) { 1580 *proc_vectorp = (char **)proc_vector32; 1581 *vsizep = vsize; 1582 return (0); 1583 } 1584 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1585 for (i = 0; i < (int)vsize; i++) 1586 proc_vector[i] = PTRIN(proc_vector32[i]); 1587 *proc_vectorp = proc_vector; 1588 *vsizep = vsize; 1589 done: 1590 free(proc_vector32, M_TEMP); 1591 return (error); 1592 } 1593 #endif 1594 1595 static int 1596 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1597 size_t *vsizep, enum proc_vector_type type) 1598 { 1599 struct ps_strings pss; 1600 Elf_Auxinfo aux; 1601 vm_offset_t vptr, ptr; 1602 char **proc_vector; 1603 size_t vsize, size; 1604 int error, i; 1605 1606 #ifdef COMPAT_FREEBSD32 1607 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1608 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1609 #endif 1610 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1611 &pss, sizeof(pss)); 1612 if (error != 0) 1613 return (error); 1614 switch (type) { 1615 case PROC_ARG: 1616 vptr = (vm_offset_t)pss.ps_argvstr; 1617 vsize = pss.ps_nargvstr; 1618 if (vsize > ARG_MAX) 1619 return (ENOEXEC); 1620 size = vsize * sizeof(char *); 1621 break; 1622 case PROC_ENV: 1623 vptr = (vm_offset_t)pss.ps_envstr; 1624 vsize = pss.ps_nenvstr; 1625 if (vsize > ARG_MAX) 1626 return (ENOEXEC); 1627 size = vsize * sizeof(char *); 1628 break; 1629 case PROC_AUX: 1630 /* 1631 * The aux array is just above env array on the stack. Check 1632 * that the address is naturally aligned. 1633 */ 1634 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1635 * sizeof(char *); 1636 #if __ELF_WORD_SIZE == 64 1637 if (vptr % sizeof(uint64_t) != 0) 1638 #else 1639 if (vptr % sizeof(uint32_t) != 0) 1640 #endif 1641 return (ENOEXEC); 1642 /* 1643 * We count the array size reading the aux vectors from the 1644 * stack until AT_NULL vector is returned. So (to keep the code 1645 * simple) we read the process stack twice: the first time here 1646 * to find the size and the second time when copying the vectors 1647 * to the allocated proc_vector. 1648 */ 1649 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1650 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1651 if (error != 0) 1652 return (error); 1653 if (aux.a_type == AT_NULL) 1654 break; 1655 ptr += sizeof(aux); 1656 } 1657 /* 1658 * If the PROC_AUXV_MAX entries are iterated over, and we have 1659 * not reached AT_NULL, it is most likely we are reading wrong 1660 * data: either the process doesn't have auxv array or data has 1661 * been modified. Return the error in this case. 1662 */ 1663 if (aux.a_type != AT_NULL) 1664 return (ENOEXEC); 1665 vsize = i + 1; 1666 size = vsize * sizeof(aux); 1667 break; 1668 default: 1669 KASSERT(0, ("Wrong proc vector type: %d", type)); 1670 return (EINVAL); /* In case we are built without INVARIANTS. */ 1671 } 1672 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1673 if (proc_vector == NULL) 1674 return (ENOMEM); 1675 error = proc_read_mem(td, p, vptr, proc_vector, size); 1676 if (error != 0) { 1677 free(proc_vector, M_TEMP); 1678 return (error); 1679 } 1680 *proc_vectorp = proc_vector; 1681 *vsizep = vsize; 1682 1683 return (0); 1684 } 1685 1686 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1687 1688 static int 1689 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1690 enum proc_vector_type type) 1691 { 1692 size_t done, len, nchr, vsize; 1693 int error, i; 1694 char **proc_vector, *sptr; 1695 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1696 1697 PROC_ASSERT_HELD(p); 1698 1699 /* 1700 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1701 */ 1702 nchr = 2 * (PATH_MAX + ARG_MAX); 1703 1704 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1705 if (error != 0) 1706 return (error); 1707 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1708 /* 1709 * The program may have scribbled into its argv array, e.g. to 1710 * remove some arguments. If that has happened, break out 1711 * before trying to read from NULL. 1712 */ 1713 if (proc_vector[i] == NULL) 1714 break; 1715 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1716 error = proc_read_string(td, p, sptr, pss_string, 1717 sizeof(pss_string)); 1718 if (error != 0) 1719 goto done; 1720 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1721 if (done + len >= nchr) 1722 len = nchr - done - 1; 1723 sbuf_bcat(sb, pss_string, len); 1724 if (len != GET_PS_STRINGS_CHUNK_SZ) 1725 break; 1726 done += GET_PS_STRINGS_CHUNK_SZ; 1727 } 1728 sbuf_bcat(sb, "", 1); 1729 done += len + 1; 1730 } 1731 done: 1732 free(proc_vector, M_TEMP); 1733 return (error); 1734 } 1735 1736 int 1737 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1738 { 1739 1740 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1741 } 1742 1743 int 1744 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1745 { 1746 1747 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1748 } 1749 1750 int 1751 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1752 { 1753 size_t vsize, size; 1754 char **auxv; 1755 int error; 1756 1757 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1758 if (error == 0) { 1759 #ifdef COMPAT_FREEBSD32 1760 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1761 size = vsize * sizeof(Elf32_Auxinfo); 1762 else 1763 #endif 1764 size = vsize * sizeof(Elf_Auxinfo); 1765 error = sbuf_bcat(sb, auxv, size); 1766 free(auxv, M_TEMP); 1767 } 1768 return (error); 1769 } 1770 1771 /* 1772 * This sysctl allows a process to retrieve the argument list or process 1773 * title for another process without groping around in the address space 1774 * of the other process. It also allow a process to set its own "process 1775 * title to a string of its own choice. 1776 */ 1777 static int 1778 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1779 { 1780 int *name = (int *)arg1; 1781 u_int namelen = arg2; 1782 struct pargs *newpa, *pa; 1783 struct proc *p; 1784 struct sbuf sb; 1785 int flags, error = 0, error2; 1786 1787 if (namelen != 1) 1788 return (EINVAL); 1789 1790 flags = PGET_CANSEE; 1791 if (req->newptr != NULL) 1792 flags |= PGET_ISCURRENT; 1793 error = pget((pid_t)name[0], flags, &p); 1794 if (error) 1795 return (error); 1796 1797 pa = p->p_args; 1798 if (pa != NULL) { 1799 pargs_hold(pa); 1800 PROC_UNLOCK(p); 1801 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1802 pargs_drop(pa); 1803 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1804 _PHOLD(p); 1805 PROC_UNLOCK(p); 1806 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1807 error = proc_getargv(curthread, p, &sb); 1808 error2 = sbuf_finish(&sb); 1809 PRELE(p); 1810 sbuf_delete(&sb); 1811 if (error == 0 && error2 != 0) 1812 error = error2; 1813 } else { 1814 PROC_UNLOCK(p); 1815 } 1816 if (error != 0 || req->newptr == NULL) 1817 return (error); 1818 1819 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1820 return (ENOMEM); 1821 newpa = pargs_alloc(req->newlen); 1822 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1823 if (error != 0) { 1824 pargs_free(newpa); 1825 return (error); 1826 } 1827 PROC_LOCK(p); 1828 pa = p->p_args; 1829 p->p_args = newpa; 1830 PROC_UNLOCK(p); 1831 pargs_drop(pa); 1832 return (0); 1833 } 1834 1835 /* 1836 * This sysctl allows a process to retrieve environment of another process. 1837 */ 1838 static int 1839 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1840 { 1841 int *name = (int *)arg1; 1842 u_int namelen = arg2; 1843 struct proc *p; 1844 struct sbuf sb; 1845 int error, error2; 1846 1847 if (namelen != 1) 1848 return (EINVAL); 1849 1850 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1851 if (error != 0) 1852 return (error); 1853 if ((p->p_flag & P_SYSTEM) != 0) { 1854 PRELE(p); 1855 return (0); 1856 } 1857 1858 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1859 error = proc_getenvv(curthread, p, &sb); 1860 error2 = sbuf_finish(&sb); 1861 PRELE(p); 1862 sbuf_delete(&sb); 1863 return (error != 0 ? error : error2); 1864 } 1865 1866 /* 1867 * This sysctl allows a process to retrieve ELF auxiliary vector of 1868 * another process. 1869 */ 1870 static int 1871 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1872 { 1873 int *name = (int *)arg1; 1874 u_int namelen = arg2; 1875 struct proc *p; 1876 struct sbuf sb; 1877 int error, error2; 1878 1879 if (namelen != 1) 1880 return (EINVAL); 1881 1882 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1883 if (error != 0) 1884 return (error); 1885 if ((p->p_flag & P_SYSTEM) != 0) { 1886 PRELE(p); 1887 return (0); 1888 } 1889 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1890 error = proc_getauxv(curthread, p, &sb); 1891 error2 = sbuf_finish(&sb); 1892 PRELE(p); 1893 sbuf_delete(&sb); 1894 return (error != 0 ? error : error2); 1895 } 1896 1897 /* 1898 * This sysctl allows a process to retrieve the path of the executable for 1899 * itself or another process. 1900 */ 1901 static int 1902 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1903 { 1904 pid_t *pidp = (pid_t *)arg1; 1905 unsigned int arglen = arg2; 1906 struct proc *p; 1907 struct vnode *vp; 1908 char *retbuf, *freebuf; 1909 int error; 1910 1911 if (arglen != 1) 1912 return (EINVAL); 1913 if (*pidp == -1) { /* -1 means this process */ 1914 p = req->td->td_proc; 1915 } else { 1916 error = pget(*pidp, PGET_CANSEE, &p); 1917 if (error != 0) 1918 return (error); 1919 } 1920 1921 vp = p->p_textvp; 1922 if (vp == NULL) { 1923 if (*pidp != -1) 1924 PROC_UNLOCK(p); 1925 return (0); 1926 } 1927 vref(vp); 1928 if (*pidp != -1) 1929 PROC_UNLOCK(p); 1930 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1931 vrele(vp); 1932 if (error) 1933 return (error); 1934 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1935 free(freebuf, M_TEMP); 1936 return (error); 1937 } 1938 1939 static int 1940 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1941 { 1942 struct proc *p; 1943 char *sv_name; 1944 int *name; 1945 int namelen; 1946 int error; 1947 1948 namelen = arg2; 1949 if (namelen != 1) 1950 return (EINVAL); 1951 1952 name = (int *)arg1; 1953 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1954 if (error != 0) 1955 return (error); 1956 sv_name = p->p_sysent->sv_name; 1957 PROC_UNLOCK(p); 1958 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1959 } 1960 1961 #ifdef KINFO_OVMENTRY_SIZE 1962 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1963 #endif 1964 1965 #ifdef COMPAT_FREEBSD7 1966 static int 1967 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1968 { 1969 vm_map_entry_t entry, tmp_entry; 1970 unsigned int last_timestamp; 1971 char *fullpath, *freepath; 1972 struct kinfo_ovmentry *kve; 1973 struct vattr va; 1974 struct ucred *cred; 1975 int error, *name; 1976 struct vnode *vp; 1977 struct proc *p; 1978 vm_map_t map; 1979 struct vmspace *vm; 1980 1981 name = (int *)arg1; 1982 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1983 if (error != 0) 1984 return (error); 1985 vm = vmspace_acquire_ref(p); 1986 if (vm == NULL) { 1987 PRELE(p); 1988 return (ESRCH); 1989 } 1990 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1991 1992 map = &vm->vm_map; 1993 vm_map_lock_read(map); 1994 for (entry = map->header.next; entry != &map->header; 1995 entry = entry->next) { 1996 vm_object_t obj, tobj, lobj; 1997 vm_offset_t addr; 1998 1999 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2000 continue; 2001 2002 bzero(kve, sizeof(*kve)); 2003 kve->kve_structsize = sizeof(*kve); 2004 2005 kve->kve_private_resident = 0; 2006 obj = entry->object.vm_object; 2007 if (obj != NULL) { 2008 VM_OBJECT_RLOCK(obj); 2009 if (obj->shadow_count == 1) 2010 kve->kve_private_resident = 2011 obj->resident_page_count; 2012 } 2013 kve->kve_resident = 0; 2014 addr = entry->start; 2015 while (addr < entry->end) { 2016 if (pmap_extract(map->pmap, addr)) 2017 kve->kve_resident++; 2018 addr += PAGE_SIZE; 2019 } 2020 2021 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2022 if (tobj != obj) 2023 VM_OBJECT_RLOCK(tobj); 2024 if (lobj != obj) 2025 VM_OBJECT_RUNLOCK(lobj); 2026 lobj = tobj; 2027 } 2028 2029 kve->kve_start = (void*)entry->start; 2030 kve->kve_end = (void*)entry->end; 2031 kve->kve_offset = (off_t)entry->offset; 2032 2033 if (entry->protection & VM_PROT_READ) 2034 kve->kve_protection |= KVME_PROT_READ; 2035 if (entry->protection & VM_PROT_WRITE) 2036 kve->kve_protection |= KVME_PROT_WRITE; 2037 if (entry->protection & VM_PROT_EXECUTE) 2038 kve->kve_protection |= KVME_PROT_EXEC; 2039 2040 if (entry->eflags & MAP_ENTRY_COW) 2041 kve->kve_flags |= KVME_FLAG_COW; 2042 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2043 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2044 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2045 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2046 2047 last_timestamp = map->timestamp; 2048 vm_map_unlock_read(map); 2049 2050 kve->kve_fileid = 0; 2051 kve->kve_fsid = 0; 2052 freepath = NULL; 2053 fullpath = ""; 2054 if (lobj) { 2055 vp = NULL; 2056 switch (lobj->type) { 2057 case OBJT_DEFAULT: 2058 kve->kve_type = KVME_TYPE_DEFAULT; 2059 break; 2060 case OBJT_VNODE: 2061 kve->kve_type = KVME_TYPE_VNODE; 2062 vp = lobj->handle; 2063 vref(vp); 2064 break; 2065 case OBJT_SWAP: 2066 kve->kve_type = KVME_TYPE_SWAP; 2067 break; 2068 case OBJT_DEVICE: 2069 kve->kve_type = KVME_TYPE_DEVICE; 2070 break; 2071 case OBJT_PHYS: 2072 kve->kve_type = KVME_TYPE_PHYS; 2073 break; 2074 case OBJT_DEAD: 2075 kve->kve_type = KVME_TYPE_DEAD; 2076 break; 2077 case OBJT_SG: 2078 kve->kve_type = KVME_TYPE_SG; 2079 break; 2080 default: 2081 kve->kve_type = KVME_TYPE_UNKNOWN; 2082 break; 2083 } 2084 if (lobj != obj) 2085 VM_OBJECT_RUNLOCK(lobj); 2086 2087 kve->kve_ref_count = obj->ref_count; 2088 kve->kve_shadow_count = obj->shadow_count; 2089 VM_OBJECT_RUNLOCK(obj); 2090 if (vp != NULL) { 2091 vn_fullpath(curthread, vp, &fullpath, 2092 &freepath); 2093 cred = curthread->td_ucred; 2094 vn_lock(vp, LK_SHARED | LK_RETRY); 2095 if (VOP_GETATTR(vp, &va, cred) == 0) { 2096 kve->kve_fileid = va.va_fileid; 2097 kve->kve_fsid = va.va_fsid; 2098 } 2099 vput(vp); 2100 } 2101 } else { 2102 kve->kve_type = KVME_TYPE_NONE; 2103 kve->kve_ref_count = 0; 2104 kve->kve_shadow_count = 0; 2105 } 2106 2107 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2108 if (freepath != NULL) 2109 free(freepath, M_TEMP); 2110 2111 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2112 vm_map_lock_read(map); 2113 if (error) 2114 break; 2115 if (last_timestamp != map->timestamp) { 2116 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2117 entry = tmp_entry; 2118 } 2119 } 2120 vm_map_unlock_read(map); 2121 vmspace_free(vm); 2122 PRELE(p); 2123 free(kve, M_TEMP); 2124 return (error); 2125 } 2126 #endif /* COMPAT_FREEBSD7 */ 2127 2128 #ifdef KINFO_VMENTRY_SIZE 2129 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2130 #endif 2131 2132 /* 2133 * Must be called with the process locked and will return unlocked. 2134 */ 2135 int 2136 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2137 { 2138 vm_map_entry_t entry, tmp_entry; 2139 unsigned int last_timestamp; 2140 char *fullpath, *freepath; 2141 struct kinfo_vmentry *kve; 2142 struct vattr va; 2143 struct ucred *cred; 2144 int error; 2145 struct vnode *vp; 2146 struct vmspace *vm; 2147 vm_map_t map; 2148 2149 PROC_LOCK_ASSERT(p, MA_OWNED); 2150 2151 _PHOLD(p); 2152 PROC_UNLOCK(p); 2153 vm = vmspace_acquire_ref(p); 2154 if (vm == NULL) { 2155 PRELE(p); 2156 return (ESRCH); 2157 } 2158 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2159 2160 error = 0; 2161 map = &vm->vm_map; 2162 vm_map_lock_read(map); 2163 for (entry = map->header.next; entry != &map->header; 2164 entry = entry->next) { 2165 vm_object_t obj, tobj, lobj; 2166 vm_offset_t addr; 2167 vm_paddr_t locked_pa; 2168 int mincoreinfo; 2169 2170 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2171 continue; 2172 2173 bzero(kve, sizeof(*kve)); 2174 2175 kve->kve_private_resident = 0; 2176 obj = entry->object.vm_object; 2177 if (obj != NULL) { 2178 VM_OBJECT_RLOCK(obj); 2179 if (obj->shadow_count == 1) 2180 kve->kve_private_resident = 2181 obj->resident_page_count; 2182 } 2183 kve->kve_resident = 0; 2184 addr = entry->start; 2185 while (addr < entry->end) { 2186 locked_pa = 0; 2187 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2188 if (locked_pa != 0) 2189 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2190 if (mincoreinfo & MINCORE_INCORE) 2191 kve->kve_resident++; 2192 if (mincoreinfo & MINCORE_SUPER) 2193 kve->kve_flags |= KVME_FLAG_SUPER; 2194 addr += PAGE_SIZE; 2195 } 2196 2197 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2198 if (tobj != obj) 2199 VM_OBJECT_RLOCK(tobj); 2200 if (lobj != obj) 2201 VM_OBJECT_RUNLOCK(lobj); 2202 lobj = tobj; 2203 } 2204 2205 kve->kve_start = entry->start; 2206 kve->kve_end = entry->end; 2207 kve->kve_offset = entry->offset; 2208 2209 if (entry->protection & VM_PROT_READ) 2210 kve->kve_protection |= KVME_PROT_READ; 2211 if (entry->protection & VM_PROT_WRITE) 2212 kve->kve_protection |= KVME_PROT_WRITE; 2213 if (entry->protection & VM_PROT_EXECUTE) 2214 kve->kve_protection |= KVME_PROT_EXEC; 2215 2216 if (entry->eflags & MAP_ENTRY_COW) 2217 kve->kve_flags |= KVME_FLAG_COW; 2218 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2219 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2220 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2221 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2222 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2223 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2224 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2225 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2226 2227 last_timestamp = map->timestamp; 2228 vm_map_unlock_read(map); 2229 2230 freepath = NULL; 2231 fullpath = ""; 2232 if (lobj) { 2233 vp = NULL; 2234 switch (lobj->type) { 2235 case OBJT_DEFAULT: 2236 kve->kve_type = KVME_TYPE_DEFAULT; 2237 break; 2238 case OBJT_VNODE: 2239 kve->kve_type = KVME_TYPE_VNODE; 2240 vp = lobj->handle; 2241 vref(vp); 2242 break; 2243 case OBJT_SWAP: 2244 kve->kve_type = KVME_TYPE_SWAP; 2245 break; 2246 case OBJT_DEVICE: 2247 kve->kve_type = KVME_TYPE_DEVICE; 2248 break; 2249 case OBJT_PHYS: 2250 kve->kve_type = KVME_TYPE_PHYS; 2251 break; 2252 case OBJT_DEAD: 2253 kve->kve_type = KVME_TYPE_DEAD; 2254 break; 2255 case OBJT_SG: 2256 kve->kve_type = KVME_TYPE_SG; 2257 break; 2258 default: 2259 kve->kve_type = KVME_TYPE_UNKNOWN; 2260 break; 2261 } 2262 if (lobj != obj) 2263 VM_OBJECT_RUNLOCK(lobj); 2264 2265 kve->kve_ref_count = obj->ref_count; 2266 kve->kve_shadow_count = obj->shadow_count; 2267 VM_OBJECT_RUNLOCK(obj); 2268 if (vp != NULL) { 2269 vn_fullpath(curthread, vp, &fullpath, 2270 &freepath); 2271 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2272 cred = curthread->td_ucred; 2273 vn_lock(vp, LK_SHARED | LK_RETRY); 2274 if (VOP_GETATTR(vp, &va, cred) == 0) { 2275 kve->kve_vn_fileid = va.va_fileid; 2276 kve->kve_vn_fsid = va.va_fsid; 2277 kve->kve_vn_mode = 2278 MAKEIMODE(va.va_type, va.va_mode); 2279 kve->kve_vn_size = va.va_size; 2280 kve->kve_vn_rdev = va.va_rdev; 2281 kve->kve_status = KF_ATTR_VALID; 2282 } 2283 vput(vp); 2284 } 2285 } else { 2286 kve->kve_type = KVME_TYPE_NONE; 2287 kve->kve_ref_count = 0; 2288 kve->kve_shadow_count = 0; 2289 } 2290 2291 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2292 if (freepath != NULL) 2293 free(freepath, M_TEMP); 2294 2295 /* Pack record size down */ 2296 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2297 strlen(kve->kve_path) + 1; 2298 kve->kve_structsize = roundup(kve->kve_structsize, 2299 sizeof(uint64_t)); 2300 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2301 vm_map_lock_read(map); 2302 if (error) 2303 break; 2304 if (last_timestamp != map->timestamp) { 2305 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2306 entry = tmp_entry; 2307 } 2308 } 2309 vm_map_unlock_read(map); 2310 vmspace_free(vm); 2311 PRELE(p); 2312 free(kve, M_TEMP); 2313 return (error); 2314 } 2315 2316 static int 2317 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2318 { 2319 struct proc *p; 2320 struct sbuf sb; 2321 int error, error2, *name; 2322 2323 name = (int *)arg1; 2324 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2325 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2326 if (error != 0) { 2327 sbuf_delete(&sb); 2328 return (error); 2329 } 2330 error = kern_proc_vmmap_out(p, &sb); 2331 error2 = sbuf_finish(&sb); 2332 sbuf_delete(&sb); 2333 return (error != 0 ? error : error2); 2334 } 2335 2336 #if defined(STACK) || defined(DDB) 2337 static int 2338 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2339 { 2340 struct kinfo_kstack *kkstp; 2341 int error, i, *name, numthreads; 2342 lwpid_t *lwpidarray; 2343 struct thread *td; 2344 struct stack *st; 2345 struct sbuf sb; 2346 struct proc *p; 2347 2348 name = (int *)arg1; 2349 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2350 if (error != 0) 2351 return (error); 2352 2353 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2354 st = stack_create(); 2355 2356 lwpidarray = NULL; 2357 numthreads = 0; 2358 PROC_LOCK(p); 2359 repeat: 2360 if (numthreads < p->p_numthreads) { 2361 if (lwpidarray != NULL) { 2362 free(lwpidarray, M_TEMP); 2363 lwpidarray = NULL; 2364 } 2365 numthreads = p->p_numthreads; 2366 PROC_UNLOCK(p); 2367 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2368 M_WAITOK | M_ZERO); 2369 PROC_LOCK(p); 2370 goto repeat; 2371 } 2372 i = 0; 2373 2374 /* 2375 * XXXRW: During the below loop, execve(2) and countless other sorts 2376 * of changes could have taken place. Should we check to see if the 2377 * vmspace has been replaced, or the like, in order to prevent 2378 * giving a snapshot that spans, say, execve(2), with some threads 2379 * before and some after? Among other things, the credentials could 2380 * have changed, in which case the right to extract debug info might 2381 * no longer be assured. 2382 */ 2383 FOREACH_THREAD_IN_PROC(p, td) { 2384 KASSERT(i < numthreads, 2385 ("sysctl_kern_proc_kstack: numthreads")); 2386 lwpidarray[i] = td->td_tid; 2387 i++; 2388 } 2389 numthreads = i; 2390 for (i = 0; i < numthreads; i++) { 2391 td = thread_find(p, lwpidarray[i]); 2392 if (td == NULL) { 2393 continue; 2394 } 2395 bzero(kkstp, sizeof(*kkstp)); 2396 (void)sbuf_new(&sb, kkstp->kkst_trace, 2397 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2398 thread_lock(td); 2399 kkstp->kkst_tid = td->td_tid; 2400 if (TD_IS_SWAPPED(td)) 2401 kkstp->kkst_state = KKST_STATE_SWAPPED; 2402 else if (TD_IS_RUNNING(td)) 2403 kkstp->kkst_state = KKST_STATE_RUNNING; 2404 else { 2405 kkstp->kkst_state = KKST_STATE_STACKOK; 2406 stack_save_td(st, td); 2407 } 2408 thread_unlock(td); 2409 PROC_UNLOCK(p); 2410 stack_sbuf_print(&sb, st); 2411 sbuf_finish(&sb); 2412 sbuf_delete(&sb); 2413 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2414 PROC_LOCK(p); 2415 if (error) 2416 break; 2417 } 2418 _PRELE(p); 2419 PROC_UNLOCK(p); 2420 if (lwpidarray != NULL) 2421 free(lwpidarray, M_TEMP); 2422 stack_destroy(st); 2423 free(kkstp, M_TEMP); 2424 return (error); 2425 } 2426 #endif 2427 2428 /* 2429 * This sysctl allows a process to retrieve the full list of groups from 2430 * itself or another process. 2431 */ 2432 static int 2433 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2434 { 2435 pid_t *pidp = (pid_t *)arg1; 2436 unsigned int arglen = arg2; 2437 struct proc *p; 2438 struct ucred *cred; 2439 int error; 2440 2441 if (arglen != 1) 2442 return (EINVAL); 2443 if (*pidp == -1) { /* -1 means this process */ 2444 p = req->td->td_proc; 2445 } else { 2446 error = pget(*pidp, PGET_CANSEE, &p); 2447 if (error != 0) 2448 return (error); 2449 } 2450 2451 cred = crhold(p->p_ucred); 2452 if (*pidp != -1) 2453 PROC_UNLOCK(p); 2454 2455 error = SYSCTL_OUT(req, cred->cr_groups, 2456 cred->cr_ngroups * sizeof(gid_t)); 2457 crfree(cred); 2458 return (error); 2459 } 2460 2461 /* 2462 * This sysctl allows a process to retrieve or/and set the resource limit for 2463 * another process. 2464 */ 2465 static int 2466 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2467 { 2468 int *name = (int *)arg1; 2469 u_int namelen = arg2; 2470 struct rlimit rlim; 2471 struct proc *p; 2472 u_int which; 2473 int flags, error; 2474 2475 if (namelen != 2) 2476 return (EINVAL); 2477 2478 which = (u_int)name[1]; 2479 if (which >= RLIM_NLIMITS) 2480 return (EINVAL); 2481 2482 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2483 return (EINVAL); 2484 2485 flags = PGET_HOLD | PGET_NOTWEXIT; 2486 if (req->newptr != NULL) 2487 flags |= PGET_CANDEBUG; 2488 else 2489 flags |= PGET_CANSEE; 2490 error = pget((pid_t)name[0], flags, &p); 2491 if (error != 0) 2492 return (error); 2493 2494 /* 2495 * Retrieve limit. 2496 */ 2497 if (req->oldptr != NULL) { 2498 PROC_LOCK(p); 2499 lim_rlimit(p, which, &rlim); 2500 PROC_UNLOCK(p); 2501 } 2502 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2503 if (error != 0) 2504 goto errout; 2505 2506 /* 2507 * Set limit. 2508 */ 2509 if (req->newptr != NULL) { 2510 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2511 if (error == 0) 2512 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2513 } 2514 2515 errout: 2516 PRELE(p); 2517 return (error); 2518 } 2519 2520 /* 2521 * This sysctl allows a process to retrieve ps_strings structure location of 2522 * another process. 2523 */ 2524 static int 2525 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2526 { 2527 int *name = (int *)arg1; 2528 u_int namelen = arg2; 2529 struct proc *p; 2530 vm_offset_t ps_strings; 2531 int error; 2532 #ifdef COMPAT_FREEBSD32 2533 uint32_t ps_strings32; 2534 #endif 2535 2536 if (namelen != 1) 2537 return (EINVAL); 2538 2539 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2540 if (error != 0) 2541 return (error); 2542 #ifdef COMPAT_FREEBSD32 2543 if ((req->flags & SCTL_MASK32) != 0) { 2544 /* 2545 * We return 0 if the 32 bit emulation request is for a 64 bit 2546 * process. 2547 */ 2548 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2549 PTROUT(p->p_sysent->sv_psstrings) : 0; 2550 PROC_UNLOCK(p); 2551 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2552 return (error); 2553 } 2554 #endif 2555 ps_strings = p->p_sysent->sv_psstrings; 2556 PROC_UNLOCK(p); 2557 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2558 return (error); 2559 } 2560 2561 /* 2562 * This sysctl allows a process to retrieve umask of another process. 2563 */ 2564 static int 2565 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2566 { 2567 int *name = (int *)arg1; 2568 u_int namelen = arg2; 2569 struct proc *p; 2570 int error; 2571 u_short fd_cmask; 2572 2573 if (namelen != 1) 2574 return (EINVAL); 2575 2576 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2577 if (error != 0) 2578 return (error); 2579 2580 FILEDESC_SLOCK(p->p_fd); 2581 fd_cmask = p->p_fd->fd_cmask; 2582 FILEDESC_SUNLOCK(p->p_fd); 2583 PRELE(p); 2584 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2585 return (error); 2586 } 2587 2588 /* 2589 * This sysctl allows a process to set and retrieve binary osreldate of 2590 * another process. 2591 */ 2592 static int 2593 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2594 { 2595 int *name = (int *)arg1; 2596 u_int namelen = arg2; 2597 struct proc *p; 2598 int flags, error, osrel; 2599 2600 if (namelen != 1) 2601 return (EINVAL); 2602 2603 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2604 return (EINVAL); 2605 2606 flags = PGET_HOLD | PGET_NOTWEXIT; 2607 if (req->newptr != NULL) 2608 flags |= PGET_CANDEBUG; 2609 else 2610 flags |= PGET_CANSEE; 2611 error = pget((pid_t)name[0], flags, &p); 2612 if (error != 0) 2613 return (error); 2614 2615 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2616 if (error != 0) 2617 goto errout; 2618 2619 if (req->newptr != NULL) { 2620 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2621 if (error != 0) 2622 goto errout; 2623 if (osrel < 0) { 2624 error = EINVAL; 2625 goto errout; 2626 } 2627 p->p_osrel = osrel; 2628 } 2629 errout: 2630 PRELE(p); 2631 return (error); 2632 } 2633 2634 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2635 2636 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2637 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2638 "Return entire process table"); 2639 2640 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2641 sysctl_kern_proc, "Process table"); 2642 2643 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2644 sysctl_kern_proc, "Process table"); 2645 2646 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2647 sysctl_kern_proc, "Process table"); 2648 2649 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2650 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2651 2652 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2653 sysctl_kern_proc, "Process table"); 2654 2655 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2656 sysctl_kern_proc, "Process table"); 2657 2658 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2659 sysctl_kern_proc, "Process table"); 2660 2661 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2662 sysctl_kern_proc, "Process table"); 2663 2664 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2665 sysctl_kern_proc, "Return process table, no threads"); 2666 2667 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2668 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2669 sysctl_kern_proc_args, "Process argument list"); 2670 2671 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2672 sysctl_kern_proc_env, "Process environment"); 2673 2674 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2675 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2676 2677 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2678 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2679 2680 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2681 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2682 "Process syscall vector name (ABI type)"); 2683 2684 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2685 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2686 2687 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2688 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2689 2690 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2691 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2692 2693 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2694 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2695 2696 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2697 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2698 2699 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2700 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2701 2702 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2703 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2704 2705 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2706 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2707 2708 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2709 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2710 "Return process table, no threads"); 2711 2712 #ifdef COMPAT_FREEBSD7 2713 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2714 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2715 #endif 2716 2717 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2718 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2719 2720 #if defined(STACK) || defined(DDB) 2721 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2722 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2723 #endif 2724 2725 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2726 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2727 2728 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2729 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2730 "Process resource limits"); 2731 2732 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2733 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2734 "Process ps_strings location"); 2735 2736 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2737 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2738 2739 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2740 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2741 "Process binary osreldate"); 2742