1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/kernel.h> 40 #include <sys/sysctl.h> 41 #include <sys/malloc.h> 42 #include <sys/proc.h> 43 #include <sys/filedesc.h> 44 #include <sys/tty.h> 45 #include <sys/signalvar.h> 46 #include <vm/vm.h> 47 #include <sys/lock.h> 48 #include <vm/pmap.h> 49 #include <vm/vm_map.h> 50 #include <sys/user.h> 51 #include <vm/vm_zone.h> 52 53 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 54 MALLOC_DEFINE(M_SESSION, "session", "session header"); 55 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 56 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 57 58 int ps_showallprocs = 1; 59 SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW, 60 &ps_showallprocs, 0, ""); 61 62 static void pgdelete __P((struct pgrp *)); 63 64 static void orphanpg __P((struct pgrp *pg)); 65 66 /* 67 * Other process lists 68 */ 69 struct pidhashhead *pidhashtbl; 70 u_long pidhash; 71 struct pgrphashhead *pgrphashtbl; 72 u_long pgrphash; 73 struct proclist allproc; 74 struct proclist zombproc; 75 struct lock allproc_lock; 76 struct lock proctree_lock; 77 vm_zone_t proc_zone; 78 vm_zone_t ithread_zone; 79 80 /* 81 * Initialize global process hashing structures. 82 */ 83 void 84 procinit() 85 { 86 87 lockinit(&allproc_lock, PZERO, "allproc", 0, 0); 88 lockinit(&proctree_lock, PZERO, "proctree", 0, 0); 89 LIST_INIT(&allproc); 90 LIST_INIT(&zombproc); 91 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 92 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 93 proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5); 94 uihashinit(); 95 /* 96 * This should really be a compile time warning, but I do 97 * not know of any way to do that... 98 */ 99 if (sizeof(struct kinfo_proc) != KINFO_PROC_SIZE) 100 printf("WARNING: size of kinfo_proc (%ld) should be %d!!!\n", 101 (long)sizeof(struct kinfo_proc), KINFO_PROC_SIZE); 102 } 103 104 /* 105 * Is p an inferior of the current process? 106 */ 107 int 108 inferior(p) 109 register struct proc *p; 110 { 111 int rval = 1; 112 113 PROCTREE_LOCK(PT_SHARED); 114 for (; p != curproc; p = p->p_pptr) 115 if (p->p_pid == 0) { 116 rval = 0; 117 break; 118 } 119 PROCTREE_LOCK(PT_RELEASE); 120 return (rval); 121 } 122 123 /* 124 * Locate a process by number 125 */ 126 struct proc * 127 pfind(pid) 128 register pid_t pid; 129 { 130 register struct proc *p; 131 132 ALLPROC_LOCK(AP_SHARED); 133 LIST_FOREACH(p, PIDHASH(pid), p_hash) 134 if (p->p_pid == pid) 135 break; 136 ALLPROC_LOCK(AP_RELEASE); 137 return (p); 138 } 139 140 /* 141 * Locate a process group by number 142 */ 143 struct pgrp * 144 pgfind(pgid) 145 register pid_t pgid; 146 { 147 register struct pgrp *pgrp; 148 149 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) 150 if (pgrp->pg_id == pgid) 151 return (pgrp); 152 return (NULL); 153 } 154 155 /* 156 * Move p to a new or existing process group (and session) 157 */ 158 int 159 enterpgrp(p, pgid, mksess) 160 register struct proc *p; 161 pid_t pgid; 162 int mksess; 163 { 164 register struct pgrp *pgrp = pgfind(pgid); 165 166 KASSERT(pgrp == NULL || !mksess, 167 ("enterpgrp: setsid into non-empty pgrp")); 168 KASSERT(!SESS_LEADER(p), 169 ("enterpgrp: session leader attempted setpgrp")); 170 171 if (pgrp == NULL) { 172 pid_t savepid = p->p_pid; 173 struct proc *np; 174 /* 175 * new process group 176 */ 177 KASSERT(p->p_pid == pgid, 178 ("enterpgrp: new pgrp and pid != pgid")); 179 MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP, 180 M_WAITOK); 181 if ((np = pfind(savepid)) == NULL || np != p) 182 return (ESRCH); 183 if (mksess) { 184 register struct session *sess; 185 186 /* 187 * new session 188 */ 189 MALLOC(sess, struct session *, sizeof(struct session), 190 M_SESSION, M_WAITOK); 191 sess->s_leader = p; 192 sess->s_sid = p->p_pid; 193 sess->s_count = 1; 194 sess->s_ttyvp = NULL; 195 sess->s_ttyp = NULL; 196 bcopy(p->p_session->s_login, sess->s_login, 197 sizeof(sess->s_login)); 198 p->p_flag &= ~P_CONTROLT; 199 pgrp->pg_session = sess; 200 KASSERT(p == curproc, 201 ("enterpgrp: mksession and p != curproc")); 202 } else { 203 pgrp->pg_session = p->p_session; 204 pgrp->pg_session->s_count++; 205 } 206 pgrp->pg_id = pgid; 207 LIST_INIT(&pgrp->pg_members); 208 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 209 pgrp->pg_jobc = 0; 210 SLIST_INIT(&pgrp->pg_sigiolst); 211 } else if (pgrp == p->p_pgrp) 212 return (0); 213 214 /* 215 * Adjust eligibility of affected pgrps to participate in job control. 216 * Increment eligibility counts before decrementing, otherwise we 217 * could reach 0 spuriously during the first call. 218 */ 219 fixjobc(p, pgrp, 1); 220 fixjobc(p, p->p_pgrp, 0); 221 222 LIST_REMOVE(p, p_pglist); 223 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 224 pgdelete(p->p_pgrp); 225 p->p_pgrp = pgrp; 226 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 227 return (0); 228 } 229 230 /* 231 * remove process from process group 232 */ 233 int 234 leavepgrp(p) 235 register struct proc *p; 236 { 237 238 LIST_REMOVE(p, p_pglist); 239 if (LIST_EMPTY(&p->p_pgrp->pg_members)) 240 pgdelete(p->p_pgrp); 241 p->p_pgrp = 0; 242 return (0); 243 } 244 245 /* 246 * delete a process group 247 */ 248 static void 249 pgdelete(pgrp) 250 register struct pgrp *pgrp; 251 { 252 253 /* 254 * Reset any sigio structures pointing to us as a result of 255 * F_SETOWN with our pgid. 256 */ 257 funsetownlst(&pgrp->pg_sigiolst); 258 259 if (pgrp->pg_session->s_ttyp != NULL && 260 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 261 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 262 LIST_REMOVE(pgrp, pg_hash); 263 if (--pgrp->pg_session->s_count == 0) 264 FREE(pgrp->pg_session, M_SESSION); 265 FREE(pgrp, M_PGRP); 266 } 267 268 /* 269 * Adjust pgrp jobc counters when specified process changes process group. 270 * We count the number of processes in each process group that "qualify" 271 * the group for terminal job control (those with a parent in a different 272 * process group of the same session). If that count reaches zero, the 273 * process group becomes orphaned. Check both the specified process' 274 * process group and that of its children. 275 * entering == 0 => p is leaving specified group. 276 * entering == 1 => p is entering specified group. 277 */ 278 void 279 fixjobc(p, pgrp, entering) 280 register struct proc *p; 281 register struct pgrp *pgrp; 282 int entering; 283 { 284 register struct pgrp *hispgrp; 285 register struct session *mysession = pgrp->pg_session; 286 287 /* 288 * Check p's parent to see whether p qualifies its own process 289 * group; if so, adjust count for p's process group. 290 */ 291 PROCTREE_LOCK(PT_SHARED); 292 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 293 hispgrp->pg_session == mysession) { 294 if (entering) 295 pgrp->pg_jobc++; 296 else if (--pgrp->pg_jobc == 0) 297 orphanpg(pgrp); 298 } 299 300 /* 301 * Check this process' children to see whether they qualify 302 * their process groups; if so, adjust counts for children's 303 * process groups. 304 */ 305 LIST_FOREACH(p, &p->p_children, p_sibling) 306 if ((hispgrp = p->p_pgrp) != pgrp && 307 hispgrp->pg_session == mysession && 308 p->p_stat != SZOMB) { 309 if (entering) 310 hispgrp->pg_jobc++; 311 else if (--hispgrp->pg_jobc == 0) 312 orphanpg(hispgrp); 313 } 314 PROCTREE_LOCK(PT_RELEASE); 315 } 316 317 /* 318 * A process group has become orphaned; 319 * if there are any stopped processes in the group, 320 * hang-up all process in that group. 321 */ 322 static void 323 orphanpg(pg) 324 struct pgrp *pg; 325 { 326 register struct proc *p; 327 328 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 329 if (p->p_stat == SSTOP) { 330 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 331 psignal(p, SIGHUP); 332 psignal(p, SIGCONT); 333 } 334 return; 335 } 336 } 337 } 338 339 #include "opt_ddb.h" 340 #ifdef DDB 341 #include <ddb/ddb.h> 342 343 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 344 { 345 register struct pgrp *pgrp; 346 register struct proc *p; 347 register int i; 348 349 for (i = 0; i <= pgrphash; i++) { 350 if (!LIST_EMPTY(&pgrphashtbl[i])) { 351 printf("\tindx %d\n", i); 352 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 353 printf( 354 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 355 (void *)pgrp, (long)pgrp->pg_id, 356 (void *)pgrp->pg_session, 357 pgrp->pg_session->s_count, 358 (void *)LIST_FIRST(&pgrp->pg_members)); 359 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 360 printf("\t\tpid %ld addr %p pgrp %p\n", 361 (long)p->p_pid, (void *)p, 362 (void *)p->p_pgrp); 363 } 364 } 365 } 366 } 367 } 368 #endif /* DDB */ 369 370 /* 371 * Fill in an kinfo_proc structure for the specified process. 372 */ 373 void 374 fill_kinfo_proc(p, kp) 375 struct proc *p; 376 struct kinfo_proc *kp; 377 { 378 struct tty *tp; 379 struct session *sp; 380 381 bzero(kp, sizeof(*kp)); 382 383 kp->ki_structsize = sizeof(*kp); 384 kp->ki_paddr = p; 385 PROC_LOCK(p); 386 kp->ki_addr = p->p_addr; 387 kp->ki_args = p->p_args; 388 kp->ki_tracep = p->p_tracep; 389 kp->ki_textvp = p->p_textvp; 390 kp->ki_fd = p->p_fd; 391 kp->ki_vmspace = p->p_vmspace; 392 if (p->p_cred) { 393 kp->ki_uid = p->p_cred->pc_ucred->cr_uid; 394 kp->ki_ruid = p->p_cred->p_ruid; 395 kp->ki_svuid = p->p_cred->p_svuid; 396 kp->ki_ngroups = p->p_cred->pc_ucred->cr_ngroups; 397 bcopy(p->p_cred->pc_ucred->cr_groups, kp->ki_groups, 398 NGROUPS * sizeof(gid_t)); 399 kp->ki_rgid = p->p_cred->p_rgid; 400 kp->ki_svgid = p->p_cred->p_svgid; 401 } 402 if (p->p_procsig) { 403 kp->ki_sigignore = p->p_procsig->ps_sigignore; 404 kp->ki_sigcatch = p->p_procsig->ps_sigcatch; 405 } 406 mtx_lock_spin(&sched_lock); 407 if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) { 408 struct vmspace *vm = p->p_vmspace; 409 410 kp->ki_size = vm->vm_map.size; 411 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 412 kp->ki_swrss = vm->vm_swrss; 413 kp->ki_tsize = vm->vm_tsize; 414 kp->ki_dsize = vm->vm_dsize; 415 kp->ki_ssize = vm->vm_ssize; 416 } 417 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 418 kp->ki_start = p->p_stats->p_start; 419 kp->ki_rusage = p->p_stats->p_ru; 420 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 421 p->p_stats->p_cru.ru_stime.tv_sec; 422 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 423 p->p_stats->p_cru.ru_stime.tv_usec; 424 } 425 if (p->p_wmesg) { 426 strncpy(kp->ki_wmesg, p->p_wmesg, WMESGLEN); 427 kp->ki_wmesg[WMESGLEN] = 0; 428 } 429 if (p->p_stat == SMTX) { 430 kp->ki_kiflag |= KI_MTXBLOCK; 431 strncpy(kp->ki_mtxname, p->p_mtxname, MTXNAMELEN); 432 kp->ki_mtxname[MTXNAMELEN] = 0; 433 } 434 kp->ki_stat = p->p_stat; 435 kp->ki_sflag = p->p_sflag; 436 kp->ki_pctcpu = p->p_pctcpu; 437 kp->ki_estcpu = p->p_estcpu; 438 kp->ki_slptime = p->p_slptime; 439 kp->ki_swtime = p->p_swtime; 440 kp->ki_wchan = p->p_wchan; 441 kp->ki_traceflag = p->p_traceflag; 442 kp->ki_pri = p->p_pri; 443 kp->ki_nice = p->p_nice; 444 kp->ki_runtime = p->p_runtime; 445 kp->ki_pid = p->p_pid; 446 kp->ki_rqindex = p->p_rqindex; 447 kp->ki_oncpu = p->p_oncpu; 448 kp->ki_lastcpu = p->p_lastcpu; 449 mtx_unlock_spin(&sched_lock); 450 sp = NULL; 451 if (p->p_pgrp) { 452 kp->ki_pgid = p->p_pgrp->pg_id; 453 kp->ki_jobc = p->p_pgrp->pg_jobc; 454 sp = p->p_pgrp->pg_session; 455 456 if (sp != NULL) { 457 kp->ki_sid = sp->s_sid; 458 bcopy(sp->s_login, kp->ki_login, sizeof(kp->ki_login)); 459 if (sp->s_ttyvp) 460 kp->ki_kiflag = KI_CTTY; 461 if (SESS_LEADER(p)) 462 kp->ki_kiflag |= KI_SLEADER; 463 } 464 } 465 if ((p->p_flag & P_CONTROLT) && sp && ((tp = sp->s_ttyp) != NULL)) { 466 kp->ki_tdev = dev2udev(tp->t_dev); 467 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 468 if (tp->t_session) 469 kp->ki_tsid = tp->t_session->s_sid; 470 } else 471 kp->ki_tdev = NOUDEV; 472 if (p->p_comm[0] != 0) { 473 strncpy(kp->ki_comm, p->p_comm, MAXCOMLEN); 474 kp->ki_comm[MAXCOMLEN] = 0; 475 } 476 kp->ki_siglist = p->p_siglist; 477 kp->ki_sigmask = p->p_sigmask; 478 kp->ki_xstat = p->p_xstat; 479 kp->ki_acflag = p->p_acflag; 480 kp->ki_flag = p->p_flag; 481 kp->ki_lock = p->p_lock; 482 PROC_UNLOCK(p); 483 PROCTREE_LOCK(PT_SHARED); 484 if (p->p_pptr) 485 kp->ki_ppid = p->p_pptr->p_pid; 486 PROCTREE_LOCK(PT_RELEASE); 487 } 488 489 /* 490 * Locate a zombie process by number 491 */ 492 struct proc * 493 zpfind(pid_t pid) 494 { 495 struct proc *p; 496 497 ALLPROC_LOCK(AP_SHARED); 498 LIST_FOREACH(p, &zombproc, p_list) 499 if (p->p_pid == pid) 500 break; 501 ALLPROC_LOCK(AP_RELEASE); 502 return (p); 503 } 504 505 506 static int 507 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) 508 { 509 struct kinfo_proc kinfo_proc; 510 int error; 511 pid_t pid = p->p_pid; 512 513 fill_kinfo_proc(p, &kinfo_proc); 514 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); 515 if (error) 516 return (error); 517 if (!doingzomb && pid && (pfind(pid) != p)) 518 return EAGAIN; 519 if (doingzomb && zpfind(pid) != p) 520 return EAGAIN; 521 return (0); 522 } 523 524 static int 525 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 526 { 527 int *name = (int*) arg1; 528 u_int namelen = arg2; 529 struct proc *p; 530 int doingzomb; 531 int error = 0; 532 533 if (oidp->oid_number == KERN_PROC_PID) { 534 if (namelen != 1) 535 return (EINVAL); 536 p = pfind((pid_t)name[0]); 537 if (!p) 538 return (0); 539 if (p_can(curproc, p, P_CAN_SEE, NULL)) 540 return (0); 541 error = sysctl_out_proc(p, req, 0); 542 return (error); 543 } 544 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 545 ; 546 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 547 ; 548 else 549 return (EINVAL); 550 551 if (!req->oldptr) { 552 /* overestimate by 5 procs */ 553 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 554 if (error) 555 return (error); 556 } 557 ALLPROC_LOCK(AP_SHARED); 558 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 559 if (!doingzomb) 560 p = LIST_FIRST(&allproc); 561 else 562 p = LIST_FIRST(&zombproc); 563 for (; p != 0; p = LIST_NEXT(p, p_list)) { 564 /* 565 * Show a user only appropriate processes. 566 */ 567 if (p_can(curproc, p, P_CAN_SEE, NULL)) 568 continue; 569 /* 570 * Skip embryonic processes. 571 */ 572 if (p->p_stat == SIDL) 573 continue; 574 /* 575 * TODO - make more efficient (see notes below). 576 * do by session. 577 */ 578 switch (oidp->oid_number) { 579 580 case KERN_PROC_PGRP: 581 /* could do this by traversing pgrp */ 582 if (p->p_pgrp == NULL || 583 p->p_pgrp->pg_id != (pid_t)name[0]) 584 continue; 585 break; 586 587 case KERN_PROC_TTY: 588 if ((p->p_flag & P_CONTROLT) == 0 || 589 p->p_session == NULL || 590 p->p_session->s_ttyp == NULL || 591 dev2udev(p->p_session->s_ttyp->t_dev) != 592 (udev_t)name[0]) 593 continue; 594 break; 595 596 case KERN_PROC_UID: 597 if (p->p_ucred == NULL || 598 p->p_ucred->cr_uid != (uid_t)name[0]) 599 continue; 600 break; 601 602 case KERN_PROC_RUID: 603 if (p->p_ucred == NULL || 604 p->p_cred->p_ruid != (uid_t)name[0]) 605 continue; 606 break; 607 } 608 609 if (p_can(curproc, p, P_CAN_SEE, NULL)) 610 continue; 611 612 error = sysctl_out_proc(p, req, doingzomb); 613 if (error) { 614 ALLPROC_LOCK(AP_RELEASE); 615 return (error); 616 } 617 } 618 } 619 ALLPROC_LOCK(AP_RELEASE); 620 return (0); 621 } 622 623 /* 624 * This sysctl allows a process to retrieve the argument list or process 625 * title for another process without groping around in the address space 626 * of the other process. It also allow a process to set its own "process 627 * title to a string of its own choice. 628 */ 629 static int 630 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 631 { 632 int *name = (int*) arg1; 633 u_int namelen = arg2; 634 struct proc *p; 635 struct pargs *pa; 636 int error = 0; 637 638 if (namelen != 1) 639 return (EINVAL); 640 641 p = pfind((pid_t)name[0]); 642 if (!p) 643 return (0); 644 645 if ((!ps_argsopen) && p_can(curproc, p, P_CAN_SEE, NULL)) 646 return (0); 647 648 if (req->newptr && curproc != p) 649 return (EPERM); 650 651 if (req->oldptr && p->p_args != NULL) 652 error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length); 653 if (req->newptr == NULL) 654 return (error); 655 656 if (p->p_args && --p->p_args->ar_ref == 0) 657 FREE(p->p_args, M_PARGS); 658 p->p_args = NULL; 659 660 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 661 return (error); 662 663 MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen, 664 M_PARGS, M_WAITOK); 665 pa->ar_ref = 1; 666 pa->ar_length = req->newlen; 667 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 668 if (!error) 669 p->p_args = pa; 670 else 671 FREE(pa, M_PARGS); 672 return (error); 673 } 674 675 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 676 677 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 678 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 679 680 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 681 sysctl_kern_proc, "Process table"); 682 683 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 684 sysctl_kern_proc, "Process table"); 685 686 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 687 sysctl_kern_proc, "Process table"); 688 689 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 690 sysctl_kern_proc, "Process table"); 691 692 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 693 sysctl_kern_proc, "Process table"); 694 695 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 696 sysctl_kern_proc_args, "Process argument list"); 697