1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_extern.h> 81 #include <vm/pmap.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_object.h> 84 #include <vm/vm_page.h> 85 #include <vm/uma.h> 86 87 #ifdef COMPAT_FREEBSD32 88 #include <compat/freebsd32/freebsd32.h> 89 #include <compat/freebsd32/freebsd32_util.h> 90 #endif 91 92 SDT_PROVIDER_DEFINE(proc); 93 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 98 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 103 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 108 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 112 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 116 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 120 121 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 122 MALLOC_DEFINE(M_SESSION, "session", "session header"); 123 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 124 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 125 126 static void doenterpgrp(struct proc *, struct pgrp *); 127 static void orphanpg(struct pgrp *pg); 128 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 129 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 130 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 131 int preferthread); 132 static void pgadjustjobc(struct pgrp *pgrp, int entering); 133 static void pgdelete(struct pgrp *); 134 static int proc_ctor(void *mem, int size, void *arg, int flags); 135 static void proc_dtor(void *mem, int size, void *arg); 136 static int proc_init(void *mem, int size, int flags); 137 static void proc_fini(void *mem, int size); 138 static void pargs_free(struct pargs *pa); 139 140 /* 141 * Other process lists 142 */ 143 struct pidhashhead *pidhashtbl; 144 u_long pidhash; 145 struct pgrphashhead *pgrphashtbl; 146 u_long pgrphash; 147 struct proclist allproc; 148 struct proclist zombproc; 149 struct sx allproc_lock; 150 struct sx proctree_lock; 151 struct mtx ppeers_lock; 152 uma_zone_t proc_zone; 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 158 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 159 #ifdef COMPAT_FREEBSD32 160 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 161 #endif 162 163 /* 164 * Initialize global process hashing structures. 165 */ 166 void 167 procinit() 168 { 169 170 sx_init(&allproc_lock, "allproc"); 171 sx_init(&proctree_lock, "proctree"); 172 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 173 LIST_INIT(&allproc); 174 LIST_INIT(&zombproc); 175 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 176 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 177 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 178 proc_ctor, proc_dtor, proc_init, proc_fini, 179 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 180 uihashinit(); 181 } 182 183 /* 184 * Prepare a proc for use. 185 */ 186 static int 187 proc_ctor(void *mem, int size, void *arg, int flags) 188 { 189 struct proc *p; 190 191 p = (struct proc *)mem; 192 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 193 EVENTHANDLER_INVOKE(process_ctor, p); 194 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 195 return (0); 196 } 197 198 /* 199 * Reclaim a proc after use. 200 */ 201 static void 202 proc_dtor(void *mem, int size, void *arg) 203 { 204 struct proc *p; 205 struct thread *td; 206 207 /* INVARIANTS checks go here */ 208 p = (struct proc *)mem; 209 td = FIRST_THREAD_IN_PROC(p); 210 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 211 if (td != NULL) { 212 #ifdef INVARIANTS 213 KASSERT((p->p_numthreads == 1), 214 ("bad number of threads in exiting process")); 215 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 216 #endif 217 /* Free all OSD associated to this thread. */ 218 osd_thread_exit(td); 219 } 220 EVENTHANDLER_INVOKE(process_dtor, p); 221 if (p->p_ksi != NULL) 222 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 223 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 224 } 225 226 /* 227 * Initialize type-stable parts of a proc (when newly created). 228 */ 229 static int 230 proc_init(void *mem, int size, int flags) 231 { 232 struct proc *p; 233 234 p = (struct proc *)mem; 235 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 236 p->p_sched = (struct p_sched *)&p[1]; 237 bzero(&p->p_mtx, sizeof(struct mtx)); 238 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 239 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 240 cv_init(&p->p_pwait, "ppwait"); 241 cv_init(&p->p_dbgwait, "dbgwait"); 242 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 243 EVENTHANDLER_INVOKE(process_init, p); 244 p->p_stats = pstats_alloc(); 245 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 246 return (0); 247 } 248 249 /* 250 * UMA should ensure that this function is never called. 251 * Freeing a proc structure would violate type stability. 252 */ 253 static void 254 proc_fini(void *mem, int size) 255 { 256 #ifdef notnow 257 struct proc *p; 258 259 p = (struct proc *)mem; 260 EVENTHANDLER_INVOKE(process_fini, p); 261 pstats_free(p->p_stats); 262 thread_free(FIRST_THREAD_IN_PROC(p)); 263 mtx_destroy(&p->p_mtx); 264 if (p->p_ksi != NULL) 265 ksiginfo_free(p->p_ksi); 266 #else 267 panic("proc reclaimed"); 268 #endif 269 } 270 271 /* 272 * Is p an inferior of the current process? 273 */ 274 int 275 inferior(p) 276 register struct proc *p; 277 { 278 279 sx_assert(&proctree_lock, SX_LOCKED); 280 for (; p != curproc; p = p->p_pptr) 281 if (p->p_pid == 0) 282 return (0); 283 return (1); 284 } 285 286 /* 287 * Locate a process by number; return only "live" processes -- i.e., neither 288 * zombies nor newly born but incompletely initialized processes. By not 289 * returning processes in the PRS_NEW state, we allow callers to avoid 290 * testing for that condition to avoid dereferencing p_ucred, et al. 291 */ 292 struct proc * 293 pfind(pid) 294 register pid_t pid; 295 { 296 register struct proc *p; 297 298 sx_slock(&allproc_lock); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 sx_sunlock(&allproc_lock); 309 return (p); 310 } 311 312 static struct proc * 313 pfind_tid(pid_t tid) 314 { 315 struct proc *p; 316 struct thread *td; 317 318 sx_slock(&allproc_lock); 319 FOREACH_PROC_IN_SYSTEM(p) { 320 PROC_LOCK(p); 321 if (p->p_state == PRS_NEW) { 322 PROC_UNLOCK(p); 323 continue; 324 } 325 FOREACH_THREAD_IN_PROC(p, td) { 326 if (td->td_tid == tid) 327 goto found; 328 } 329 PROC_UNLOCK(p); 330 } 331 found: 332 sx_sunlock(&allproc_lock); 333 return (p); 334 } 335 336 /* 337 * Locate a process group by number. 338 * The caller must hold proctree_lock. 339 */ 340 struct pgrp * 341 pgfind(pgid) 342 register pid_t pgid; 343 { 344 register struct pgrp *pgrp; 345 346 sx_assert(&proctree_lock, SX_LOCKED); 347 348 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 349 if (pgrp->pg_id == pgid) { 350 PGRP_LOCK(pgrp); 351 return (pgrp); 352 } 353 } 354 return (NULL); 355 } 356 357 /* 358 * Locate process and do additional manipulations, depending on flags. 359 */ 360 int 361 pget(pid_t pid, int flags, struct proc **pp) 362 { 363 struct proc *p; 364 int error; 365 366 if (pid <= PID_MAX) 367 p = pfind(pid); 368 else if ((flags & PGET_NOTID) == 0) 369 p = pfind_tid(pid); 370 else 371 p = NULL; 372 if (p == NULL) 373 return (ESRCH); 374 if ((flags & PGET_CANSEE) != 0) { 375 error = p_cansee(curthread, p); 376 if (error != 0) 377 goto errout; 378 } 379 if ((flags & PGET_CANDEBUG) != 0) { 380 error = p_candebug(curthread, p); 381 if (error != 0) 382 goto errout; 383 } 384 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 385 error = EPERM; 386 goto errout; 387 } 388 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 389 error = ESRCH; 390 goto errout; 391 } 392 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 393 /* 394 * XXXRW: Not clear ESRCH is the right error during proc 395 * execve(). 396 */ 397 error = ESRCH; 398 goto errout; 399 } 400 if ((flags & PGET_HOLD) != 0) { 401 _PHOLD(p); 402 PROC_UNLOCK(p); 403 } 404 *pp = p; 405 return (0); 406 errout: 407 PROC_UNLOCK(p); 408 return (error); 409 } 410 411 /* 412 * Create a new process group. 413 * pgid must be equal to the pid of p. 414 * Begin a new session if required. 415 */ 416 int 417 enterpgrp(p, pgid, pgrp, sess) 418 register struct proc *p; 419 pid_t pgid; 420 struct pgrp *pgrp; 421 struct session *sess; 422 { 423 struct pgrp *pgrp2; 424 425 sx_assert(&proctree_lock, SX_XLOCKED); 426 427 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 428 KASSERT(p->p_pid == pgid, 429 ("enterpgrp: new pgrp and pid != pgid")); 430 431 pgrp2 = pgfind(pgid); 432 433 KASSERT(pgrp2 == NULL, 434 ("enterpgrp: pgrp with pgid exists")); 435 KASSERT(!SESS_LEADER(p), 436 ("enterpgrp: session leader attempted setpgrp")); 437 438 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 439 440 if (sess != NULL) { 441 /* 442 * new session 443 */ 444 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 445 PROC_LOCK(p); 446 p->p_flag &= ~P_CONTROLT; 447 PROC_UNLOCK(p); 448 PGRP_LOCK(pgrp); 449 sess->s_leader = p; 450 sess->s_sid = p->p_pid; 451 refcount_init(&sess->s_count, 1); 452 sess->s_ttyvp = NULL; 453 sess->s_ttydp = NULL; 454 sess->s_ttyp = NULL; 455 bcopy(p->p_session->s_login, sess->s_login, 456 sizeof(sess->s_login)); 457 pgrp->pg_session = sess; 458 KASSERT(p == curproc, 459 ("enterpgrp: mksession and p != curproc")); 460 } else { 461 pgrp->pg_session = p->p_session; 462 sess_hold(pgrp->pg_session); 463 PGRP_LOCK(pgrp); 464 } 465 pgrp->pg_id = pgid; 466 LIST_INIT(&pgrp->pg_members); 467 468 /* 469 * As we have an exclusive lock of proctree_lock, 470 * this should not deadlock. 471 */ 472 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 473 pgrp->pg_jobc = 0; 474 SLIST_INIT(&pgrp->pg_sigiolst); 475 PGRP_UNLOCK(pgrp); 476 477 doenterpgrp(p, pgrp); 478 479 return (0); 480 } 481 482 /* 483 * Move p to an existing process group 484 */ 485 int 486 enterthispgrp(p, pgrp) 487 register struct proc *p; 488 struct pgrp *pgrp; 489 { 490 491 sx_assert(&proctree_lock, SX_XLOCKED); 492 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 495 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 496 KASSERT(pgrp->pg_session == p->p_session, 497 ("%s: pgrp's session %p, p->p_session %p.\n", 498 __func__, 499 pgrp->pg_session, 500 p->p_session)); 501 KASSERT(pgrp != p->p_pgrp, 502 ("%s: p belongs to pgrp.", __func__)); 503 504 doenterpgrp(p, pgrp); 505 506 return (0); 507 } 508 509 /* 510 * Move p to a process group 511 */ 512 static void 513 doenterpgrp(p, pgrp) 514 struct proc *p; 515 struct pgrp *pgrp; 516 { 517 struct pgrp *savepgrp; 518 519 sx_assert(&proctree_lock, SX_XLOCKED); 520 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 521 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 523 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 524 525 savepgrp = p->p_pgrp; 526 527 /* 528 * Adjust eligibility of affected pgrps to participate in job control. 529 * Increment eligibility counts before decrementing, otherwise we 530 * could reach 0 spuriously during the first call. 531 */ 532 fixjobc(p, pgrp, 1); 533 fixjobc(p, p->p_pgrp, 0); 534 535 PGRP_LOCK(pgrp); 536 PGRP_LOCK(savepgrp); 537 PROC_LOCK(p); 538 LIST_REMOVE(p, p_pglist); 539 p->p_pgrp = pgrp; 540 PROC_UNLOCK(p); 541 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 542 PGRP_UNLOCK(savepgrp); 543 PGRP_UNLOCK(pgrp); 544 if (LIST_EMPTY(&savepgrp->pg_members)) 545 pgdelete(savepgrp); 546 } 547 548 /* 549 * remove process from process group 550 */ 551 int 552 leavepgrp(p) 553 register struct proc *p; 554 { 555 struct pgrp *savepgrp; 556 557 sx_assert(&proctree_lock, SX_XLOCKED); 558 savepgrp = p->p_pgrp; 559 PGRP_LOCK(savepgrp); 560 PROC_LOCK(p); 561 LIST_REMOVE(p, p_pglist); 562 p->p_pgrp = NULL; 563 PROC_UNLOCK(p); 564 PGRP_UNLOCK(savepgrp); 565 if (LIST_EMPTY(&savepgrp->pg_members)) 566 pgdelete(savepgrp); 567 return (0); 568 } 569 570 /* 571 * delete a process group 572 */ 573 static void 574 pgdelete(pgrp) 575 register struct pgrp *pgrp; 576 { 577 struct session *savesess; 578 struct tty *tp; 579 580 sx_assert(&proctree_lock, SX_XLOCKED); 581 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 582 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 583 584 /* 585 * Reset any sigio structures pointing to us as a result of 586 * F_SETOWN with our pgid. 587 */ 588 funsetownlst(&pgrp->pg_sigiolst); 589 590 PGRP_LOCK(pgrp); 591 tp = pgrp->pg_session->s_ttyp; 592 LIST_REMOVE(pgrp, pg_hash); 593 savesess = pgrp->pg_session; 594 PGRP_UNLOCK(pgrp); 595 596 /* Remove the reference to the pgrp before deallocating it. */ 597 if (tp != NULL) { 598 tty_lock(tp); 599 tty_rel_pgrp(tp, pgrp); 600 } 601 602 mtx_destroy(&pgrp->pg_mtx); 603 free(pgrp, M_PGRP); 604 sess_release(savesess); 605 } 606 607 static void 608 pgadjustjobc(pgrp, entering) 609 struct pgrp *pgrp; 610 int entering; 611 { 612 613 PGRP_LOCK(pgrp); 614 if (entering) 615 pgrp->pg_jobc++; 616 else { 617 --pgrp->pg_jobc; 618 if (pgrp->pg_jobc == 0) 619 orphanpg(pgrp); 620 } 621 PGRP_UNLOCK(pgrp); 622 } 623 624 /* 625 * Adjust pgrp jobc counters when specified process changes process group. 626 * We count the number of processes in each process group that "qualify" 627 * the group for terminal job control (those with a parent in a different 628 * process group of the same session). If that count reaches zero, the 629 * process group becomes orphaned. Check both the specified process' 630 * process group and that of its children. 631 * entering == 0 => p is leaving specified group. 632 * entering == 1 => p is entering specified group. 633 */ 634 void 635 fixjobc(p, pgrp, entering) 636 register struct proc *p; 637 register struct pgrp *pgrp; 638 int entering; 639 { 640 register struct pgrp *hispgrp; 641 register struct session *mysession; 642 643 sx_assert(&proctree_lock, SX_LOCKED); 644 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 645 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 646 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 647 648 /* 649 * Check p's parent to see whether p qualifies its own process 650 * group; if so, adjust count for p's process group. 651 */ 652 mysession = pgrp->pg_session; 653 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 654 hispgrp->pg_session == mysession) 655 pgadjustjobc(pgrp, entering); 656 657 /* 658 * Check this process' children to see whether they qualify 659 * their process groups; if so, adjust counts for children's 660 * process groups. 661 */ 662 LIST_FOREACH(p, &p->p_children, p_sibling) { 663 hispgrp = p->p_pgrp; 664 if (hispgrp == pgrp || 665 hispgrp->pg_session != mysession) 666 continue; 667 PROC_LOCK(p); 668 if (p->p_state == PRS_ZOMBIE) { 669 PROC_UNLOCK(p); 670 continue; 671 } 672 PROC_UNLOCK(p); 673 pgadjustjobc(hispgrp, entering); 674 } 675 } 676 677 /* 678 * A process group has become orphaned; 679 * if there are any stopped processes in the group, 680 * hang-up all process in that group. 681 */ 682 static void 683 orphanpg(pg) 684 struct pgrp *pg; 685 { 686 register struct proc *p; 687 688 PGRP_LOCK_ASSERT(pg, MA_OWNED); 689 690 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 691 PROC_LOCK(p); 692 if (P_SHOULDSTOP(p)) { 693 PROC_UNLOCK(p); 694 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 695 PROC_LOCK(p); 696 kern_psignal(p, SIGHUP); 697 kern_psignal(p, SIGCONT); 698 PROC_UNLOCK(p); 699 } 700 return; 701 } 702 PROC_UNLOCK(p); 703 } 704 } 705 706 void 707 sess_hold(struct session *s) 708 { 709 710 refcount_acquire(&s->s_count); 711 } 712 713 void 714 sess_release(struct session *s) 715 { 716 717 if (refcount_release(&s->s_count)) { 718 if (s->s_ttyp != NULL) { 719 tty_lock(s->s_ttyp); 720 tty_rel_sess(s->s_ttyp, s); 721 } 722 mtx_destroy(&s->s_mtx); 723 free(s, M_SESSION); 724 } 725 } 726 727 #include "opt_ddb.h" 728 #ifdef DDB 729 #include <ddb/ddb.h> 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 PROC_LOCK_ASSERT(p, MA_OWNED); 795 bzero(kp, sizeof(*kp)); 796 797 kp->ki_structsize = sizeof(*kp); 798 kp->ki_paddr = p; 799 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 800 kp->ki_args = p->p_args; 801 kp->ki_textvp = p->p_textvp; 802 #ifdef KTRACE 803 kp->ki_tracep = p->p_tracevp; 804 kp->ki_traceflag = p->p_traceflag; 805 #endif 806 kp->ki_fd = p->p_fd; 807 kp->ki_vmspace = p->p_vmspace; 808 kp->ki_flag = p->p_flag; 809 cred = p->p_ucred; 810 if (cred) { 811 kp->ki_uid = cred->cr_uid; 812 kp->ki_ruid = cred->cr_ruid; 813 kp->ki_svuid = cred->cr_svuid; 814 kp->ki_cr_flags = 0; 815 if (cred->cr_flags & CRED_FLAG_CAPMODE) 816 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 817 /* XXX bde doesn't like KI_NGROUPS */ 818 if (cred->cr_ngroups > KI_NGROUPS) { 819 kp->ki_ngroups = KI_NGROUPS; 820 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 821 } else 822 kp->ki_ngroups = cred->cr_ngroups; 823 bcopy(cred->cr_groups, kp->ki_groups, 824 kp->ki_ngroups * sizeof(gid_t)); 825 kp->ki_rgid = cred->cr_rgid; 826 kp->ki_svgid = cred->cr_svgid; 827 /* If jailed(cred), emulate the old P_JAILED flag. */ 828 if (jailed(cred)) { 829 kp->ki_flag |= P_JAILED; 830 /* If inside the jail, use 0 as a jail ID. */ 831 if (cred->cr_prison != curthread->td_ucred->cr_prison) 832 kp->ki_jid = cred->cr_prison->pr_id; 833 } 834 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 835 sizeof(kp->ki_loginclass)); 836 } 837 ps = p->p_sigacts; 838 if (ps) { 839 mtx_lock(&ps->ps_mtx); 840 kp->ki_sigignore = ps->ps_sigignore; 841 kp->ki_sigcatch = ps->ps_sigcatch; 842 mtx_unlock(&ps->ps_mtx); 843 } 844 if (p->p_state != PRS_NEW && 845 p->p_state != PRS_ZOMBIE && 846 p->p_vmspace != NULL) { 847 struct vmspace *vm = p->p_vmspace; 848 849 kp->ki_size = vm->vm_map.size; 850 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 851 FOREACH_THREAD_IN_PROC(p, td0) { 852 if (!TD_IS_SWAPPED(td0)) 853 kp->ki_rssize += td0->td_kstack_pages; 854 } 855 kp->ki_swrss = vm->vm_swrss; 856 kp->ki_tsize = vm->vm_tsize; 857 kp->ki_dsize = vm->vm_dsize; 858 kp->ki_ssize = vm->vm_ssize; 859 } else if (p->p_state == PRS_ZOMBIE) 860 kp->ki_stat = SZOMB; 861 if (kp->ki_flag & P_INMEM) 862 kp->ki_sflag = PS_INMEM; 863 else 864 kp->ki_sflag = 0; 865 /* Calculate legacy swtime as seconds since 'swtick'. */ 866 kp->ki_swtime = (ticks - p->p_swtick) / hz; 867 kp->ki_pid = p->p_pid; 868 kp->ki_nice = p->p_nice; 869 kp->ki_start = p->p_stats->p_start; 870 timevaladd(&kp->ki_start, &boottime); 871 PROC_SLOCK(p); 872 rufetch(p, &kp->ki_rusage); 873 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 874 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 875 PROC_SUNLOCK(p); 876 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 877 /* Some callers want child times in a single value. */ 878 kp->ki_childtime = kp->ki_childstime; 879 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 880 881 tp = NULL; 882 if (p->p_pgrp) { 883 kp->ki_pgid = p->p_pgrp->pg_id; 884 kp->ki_jobc = p->p_pgrp->pg_jobc; 885 sp = p->p_pgrp->pg_session; 886 887 if (sp != NULL) { 888 kp->ki_sid = sp->s_sid; 889 SESS_LOCK(sp); 890 strlcpy(kp->ki_login, sp->s_login, 891 sizeof(kp->ki_login)); 892 if (sp->s_ttyvp) 893 kp->ki_kiflag |= KI_CTTY; 894 if (SESS_LEADER(p)) 895 kp->ki_kiflag |= KI_SLEADER; 896 /* XXX proctree_lock */ 897 tp = sp->s_ttyp; 898 SESS_UNLOCK(sp); 899 } 900 } 901 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 902 kp->ki_tdev = tty_udev(tp); 903 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 904 if (tp->t_session) 905 kp->ki_tsid = tp->t_session->s_sid; 906 } else 907 kp->ki_tdev = NODEV; 908 if (p->p_comm[0] != '\0') 909 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 910 if (p->p_sysent && p->p_sysent->sv_name != NULL && 911 p->p_sysent->sv_name[0] != '\0') 912 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 913 kp->ki_siglist = p->p_siglist; 914 kp->ki_xstat = p->p_xstat; 915 kp->ki_acflag = p->p_acflag; 916 kp->ki_lock = p->p_lock; 917 if (p->p_pptr) 918 kp->ki_ppid = p->p_pptr->p_pid; 919 } 920 921 /* 922 * Fill in information that is thread specific. Must be called with 923 * target process locked. If 'preferthread' is set, overwrite certain 924 * process-related fields that are maintained for both threads and 925 * processes. 926 */ 927 static void 928 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 929 { 930 struct proc *p; 931 932 p = td->td_proc; 933 kp->ki_tdaddr = td; 934 PROC_LOCK_ASSERT(p, MA_OWNED); 935 936 if (preferthread) 937 PROC_SLOCK(p); 938 thread_lock(td); 939 if (td->td_wmesg != NULL) 940 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 941 else 942 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 943 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 944 if (TD_ON_LOCK(td)) { 945 kp->ki_kiflag |= KI_LOCKBLOCK; 946 strlcpy(kp->ki_lockname, td->td_lockname, 947 sizeof(kp->ki_lockname)); 948 } else { 949 kp->ki_kiflag &= ~KI_LOCKBLOCK; 950 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 951 } 952 953 if (p->p_state == PRS_NORMAL) { /* approximate. */ 954 if (TD_ON_RUNQ(td) || 955 TD_CAN_RUN(td) || 956 TD_IS_RUNNING(td)) { 957 kp->ki_stat = SRUN; 958 } else if (P_SHOULDSTOP(p)) { 959 kp->ki_stat = SSTOP; 960 } else if (TD_IS_SLEEPING(td)) { 961 kp->ki_stat = SSLEEP; 962 } else if (TD_ON_LOCK(td)) { 963 kp->ki_stat = SLOCK; 964 } else { 965 kp->ki_stat = SWAIT; 966 } 967 } else if (p->p_state == PRS_ZOMBIE) { 968 kp->ki_stat = SZOMB; 969 } else { 970 kp->ki_stat = SIDL; 971 } 972 973 /* Things in the thread */ 974 kp->ki_wchan = td->td_wchan; 975 kp->ki_pri.pri_level = td->td_priority; 976 kp->ki_pri.pri_native = td->td_base_pri; 977 kp->ki_lastcpu = td->td_lastcpu; 978 kp->ki_oncpu = td->td_oncpu; 979 kp->ki_tdflags = td->td_flags; 980 kp->ki_tid = td->td_tid; 981 kp->ki_numthreads = p->p_numthreads; 982 kp->ki_pcb = td->td_pcb; 983 kp->ki_kstack = (void *)td->td_kstack; 984 kp->ki_slptime = (ticks - td->td_slptick) / hz; 985 kp->ki_pri.pri_class = td->td_pri_class; 986 kp->ki_pri.pri_user = td->td_user_pri; 987 988 if (preferthread) { 989 rufetchtd(td, &kp->ki_rusage); 990 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 991 kp->ki_pctcpu = sched_pctcpu(td); 992 kp->ki_estcpu = td->td_estcpu; 993 } 994 995 /* We can't get this anymore but ps etc never used it anyway. */ 996 kp->ki_rqindex = 0; 997 998 if (preferthread) 999 kp->ki_siglist = td->td_siglist; 1000 kp->ki_sigmask = td->td_sigmask; 1001 thread_unlock(td); 1002 if (preferthread) 1003 PROC_SUNLOCK(p); 1004 } 1005 1006 /* 1007 * Fill in a kinfo_proc structure for the specified process. 1008 * Must be called with the target process locked. 1009 */ 1010 void 1011 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1012 { 1013 1014 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1015 1016 fill_kinfo_proc_only(p, kp); 1017 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1018 fill_kinfo_aggregate(p, kp); 1019 } 1020 1021 struct pstats * 1022 pstats_alloc(void) 1023 { 1024 1025 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1026 } 1027 1028 /* 1029 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1030 */ 1031 void 1032 pstats_fork(struct pstats *src, struct pstats *dst) 1033 { 1034 1035 bzero(&dst->pstat_startzero, 1036 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1037 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1038 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1039 } 1040 1041 void 1042 pstats_free(struct pstats *ps) 1043 { 1044 1045 free(ps, M_SUBPROC); 1046 } 1047 1048 /* 1049 * Locate a zombie process by number 1050 */ 1051 struct proc * 1052 zpfind(pid_t pid) 1053 { 1054 struct proc *p; 1055 1056 sx_slock(&allproc_lock); 1057 LIST_FOREACH(p, &zombproc, p_list) 1058 if (p->p_pid == pid) { 1059 PROC_LOCK(p); 1060 break; 1061 } 1062 sx_sunlock(&allproc_lock); 1063 return (p); 1064 } 1065 1066 #define KERN_PROC_ZOMBMASK 0x3 1067 #define KERN_PROC_NOTHREADS 0x4 1068 1069 #ifdef COMPAT_FREEBSD32 1070 1071 /* 1072 * This function is typically used to copy out the kernel address, so 1073 * it can be replaced by assignment of zero. 1074 */ 1075 static inline uint32_t 1076 ptr32_trim(void *ptr) 1077 { 1078 uintptr_t uptr; 1079 1080 uptr = (uintptr_t)ptr; 1081 return ((uptr > UINT_MAX) ? 0 : uptr); 1082 } 1083 1084 #define PTRTRIM_CP(src,dst,fld) \ 1085 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1086 1087 static void 1088 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1089 { 1090 int i; 1091 1092 bzero(ki32, sizeof(struct kinfo_proc32)); 1093 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1094 CP(*ki, *ki32, ki_layout); 1095 PTRTRIM_CP(*ki, *ki32, ki_args); 1096 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1097 PTRTRIM_CP(*ki, *ki32, ki_addr); 1098 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1099 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1100 PTRTRIM_CP(*ki, *ki32, ki_fd); 1101 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1102 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1103 CP(*ki, *ki32, ki_pid); 1104 CP(*ki, *ki32, ki_ppid); 1105 CP(*ki, *ki32, ki_pgid); 1106 CP(*ki, *ki32, ki_tpgid); 1107 CP(*ki, *ki32, ki_sid); 1108 CP(*ki, *ki32, ki_tsid); 1109 CP(*ki, *ki32, ki_jobc); 1110 CP(*ki, *ki32, ki_tdev); 1111 CP(*ki, *ki32, ki_siglist); 1112 CP(*ki, *ki32, ki_sigmask); 1113 CP(*ki, *ki32, ki_sigignore); 1114 CP(*ki, *ki32, ki_sigcatch); 1115 CP(*ki, *ki32, ki_uid); 1116 CP(*ki, *ki32, ki_ruid); 1117 CP(*ki, *ki32, ki_svuid); 1118 CP(*ki, *ki32, ki_rgid); 1119 CP(*ki, *ki32, ki_svgid); 1120 CP(*ki, *ki32, ki_ngroups); 1121 for (i = 0; i < KI_NGROUPS; i++) 1122 CP(*ki, *ki32, ki_groups[i]); 1123 CP(*ki, *ki32, ki_size); 1124 CP(*ki, *ki32, ki_rssize); 1125 CP(*ki, *ki32, ki_swrss); 1126 CP(*ki, *ki32, ki_tsize); 1127 CP(*ki, *ki32, ki_dsize); 1128 CP(*ki, *ki32, ki_ssize); 1129 CP(*ki, *ki32, ki_xstat); 1130 CP(*ki, *ki32, ki_acflag); 1131 CP(*ki, *ki32, ki_pctcpu); 1132 CP(*ki, *ki32, ki_estcpu); 1133 CP(*ki, *ki32, ki_slptime); 1134 CP(*ki, *ki32, ki_swtime); 1135 CP(*ki, *ki32, ki_runtime); 1136 TV_CP(*ki, *ki32, ki_start); 1137 TV_CP(*ki, *ki32, ki_childtime); 1138 CP(*ki, *ki32, ki_flag); 1139 CP(*ki, *ki32, ki_kiflag); 1140 CP(*ki, *ki32, ki_traceflag); 1141 CP(*ki, *ki32, ki_stat); 1142 CP(*ki, *ki32, ki_nice); 1143 CP(*ki, *ki32, ki_lock); 1144 CP(*ki, *ki32, ki_rqindex); 1145 CP(*ki, *ki32, ki_oncpu); 1146 CP(*ki, *ki32, ki_lastcpu); 1147 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1148 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1149 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1150 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1151 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1152 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1153 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1154 CP(*ki, *ki32, ki_cr_flags); 1155 CP(*ki, *ki32, ki_jid); 1156 CP(*ki, *ki32, ki_numthreads); 1157 CP(*ki, *ki32, ki_tid); 1158 CP(*ki, *ki32, ki_pri); 1159 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1160 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1161 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1162 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1163 PTRTRIM_CP(*ki, *ki32, ki_udata); 1164 CP(*ki, *ki32, ki_sflag); 1165 CP(*ki, *ki32, ki_tdflags); 1166 } 1167 1168 static int 1169 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1170 { 1171 struct kinfo_proc32 ki32; 1172 int error; 1173 1174 if (req->flags & SCTL_MASK32) { 1175 freebsd32_kinfo_proc_out(ki, &ki32); 1176 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1177 } else 1178 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1179 return (error); 1180 } 1181 #else 1182 static int 1183 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1184 { 1185 1186 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1187 } 1188 #endif 1189 1190 /* 1191 * Must be called with the process locked and will return with it unlocked. 1192 */ 1193 static int 1194 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1195 { 1196 struct thread *td; 1197 struct kinfo_proc kinfo_proc; 1198 int error = 0; 1199 struct proc *np; 1200 pid_t pid = p->p_pid; 1201 1202 PROC_LOCK_ASSERT(p, MA_OWNED); 1203 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1204 1205 fill_kinfo_proc(p, &kinfo_proc); 1206 if (flags & KERN_PROC_NOTHREADS) 1207 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1208 else { 1209 FOREACH_THREAD_IN_PROC(p, td) { 1210 fill_kinfo_thread(td, &kinfo_proc, 1); 1211 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1212 if (error) 1213 break; 1214 } 1215 } 1216 PROC_UNLOCK(p); 1217 if (error) 1218 return (error); 1219 if (flags & KERN_PROC_ZOMBMASK) 1220 np = zpfind(pid); 1221 else { 1222 if (pid == 0) 1223 return (0); 1224 np = pfind(pid); 1225 } 1226 if (np == NULL) 1227 return (ESRCH); 1228 if (np != p) { 1229 PROC_UNLOCK(np); 1230 return (ESRCH); 1231 } 1232 PROC_UNLOCK(np); 1233 return (0); 1234 } 1235 1236 static int 1237 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1238 { 1239 int *name = (int *)arg1; 1240 u_int namelen = arg2; 1241 struct proc *p; 1242 int flags, doingzomb, oid_number; 1243 int error = 0; 1244 1245 oid_number = oidp->oid_number; 1246 if (oid_number != KERN_PROC_ALL && 1247 (oid_number & KERN_PROC_INC_THREAD) == 0) 1248 flags = KERN_PROC_NOTHREADS; 1249 else { 1250 flags = 0; 1251 oid_number &= ~KERN_PROC_INC_THREAD; 1252 } 1253 if (oid_number == KERN_PROC_PID) { 1254 if (namelen != 1) 1255 return (EINVAL); 1256 error = sysctl_wire_old_buffer(req, 0); 1257 if (error) 1258 return (error); 1259 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1260 if (error != 0) 1261 return (error); 1262 error = sysctl_out_proc(p, req, flags); 1263 return (error); 1264 } 1265 1266 switch (oid_number) { 1267 case KERN_PROC_ALL: 1268 if (namelen != 0) 1269 return (EINVAL); 1270 break; 1271 case KERN_PROC_PROC: 1272 if (namelen != 0 && namelen != 1) 1273 return (EINVAL); 1274 break; 1275 default: 1276 if (namelen != 1) 1277 return (EINVAL); 1278 break; 1279 } 1280 1281 if (!req->oldptr) { 1282 /* overestimate by 5 procs */ 1283 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1284 if (error) 1285 return (error); 1286 } 1287 error = sysctl_wire_old_buffer(req, 0); 1288 if (error != 0) 1289 return (error); 1290 sx_slock(&allproc_lock); 1291 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1292 if (!doingzomb) 1293 p = LIST_FIRST(&allproc); 1294 else 1295 p = LIST_FIRST(&zombproc); 1296 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1297 /* 1298 * Skip embryonic processes. 1299 */ 1300 PROC_LOCK(p); 1301 if (p->p_state == PRS_NEW) { 1302 PROC_UNLOCK(p); 1303 continue; 1304 } 1305 KASSERT(p->p_ucred != NULL, 1306 ("process credential is NULL for non-NEW proc")); 1307 /* 1308 * Show a user only appropriate processes. 1309 */ 1310 if (p_cansee(curthread, p)) { 1311 PROC_UNLOCK(p); 1312 continue; 1313 } 1314 /* 1315 * TODO - make more efficient (see notes below). 1316 * do by session. 1317 */ 1318 switch (oid_number) { 1319 1320 case KERN_PROC_GID: 1321 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1322 PROC_UNLOCK(p); 1323 continue; 1324 } 1325 break; 1326 1327 case KERN_PROC_PGRP: 1328 /* could do this by traversing pgrp */ 1329 if (p->p_pgrp == NULL || 1330 p->p_pgrp->pg_id != (pid_t)name[0]) { 1331 PROC_UNLOCK(p); 1332 continue; 1333 } 1334 break; 1335 1336 case KERN_PROC_RGID: 1337 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1338 PROC_UNLOCK(p); 1339 continue; 1340 } 1341 break; 1342 1343 case KERN_PROC_SESSION: 1344 if (p->p_session == NULL || 1345 p->p_session->s_sid != (pid_t)name[0]) { 1346 PROC_UNLOCK(p); 1347 continue; 1348 } 1349 break; 1350 1351 case KERN_PROC_TTY: 1352 if ((p->p_flag & P_CONTROLT) == 0 || 1353 p->p_session == NULL) { 1354 PROC_UNLOCK(p); 1355 continue; 1356 } 1357 /* XXX proctree_lock */ 1358 SESS_LOCK(p->p_session); 1359 if (p->p_session->s_ttyp == NULL || 1360 tty_udev(p->p_session->s_ttyp) != 1361 (dev_t)name[0]) { 1362 SESS_UNLOCK(p->p_session); 1363 PROC_UNLOCK(p); 1364 continue; 1365 } 1366 SESS_UNLOCK(p->p_session); 1367 break; 1368 1369 case KERN_PROC_UID: 1370 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1371 PROC_UNLOCK(p); 1372 continue; 1373 } 1374 break; 1375 1376 case KERN_PROC_RUID: 1377 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1378 PROC_UNLOCK(p); 1379 continue; 1380 } 1381 break; 1382 1383 case KERN_PROC_PROC: 1384 break; 1385 1386 default: 1387 break; 1388 1389 } 1390 1391 error = sysctl_out_proc(p, req, flags | doingzomb); 1392 if (error) { 1393 sx_sunlock(&allproc_lock); 1394 return (error); 1395 } 1396 } 1397 } 1398 sx_sunlock(&allproc_lock); 1399 return (0); 1400 } 1401 1402 struct pargs * 1403 pargs_alloc(int len) 1404 { 1405 struct pargs *pa; 1406 1407 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1408 M_WAITOK); 1409 refcount_init(&pa->ar_ref, 1); 1410 pa->ar_length = len; 1411 return (pa); 1412 } 1413 1414 static void 1415 pargs_free(struct pargs *pa) 1416 { 1417 1418 free(pa, M_PARGS); 1419 } 1420 1421 void 1422 pargs_hold(struct pargs *pa) 1423 { 1424 1425 if (pa == NULL) 1426 return; 1427 refcount_acquire(&pa->ar_ref); 1428 } 1429 1430 void 1431 pargs_drop(struct pargs *pa) 1432 { 1433 1434 if (pa == NULL) 1435 return; 1436 if (refcount_release(&pa->ar_ref)) 1437 pargs_free(pa); 1438 } 1439 1440 static int 1441 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1442 size_t len) 1443 { 1444 struct iovec iov; 1445 struct uio uio; 1446 1447 iov.iov_base = (caddr_t)buf; 1448 iov.iov_len = len; 1449 uio.uio_iov = &iov; 1450 uio.uio_iovcnt = 1; 1451 uio.uio_offset = offset; 1452 uio.uio_resid = (ssize_t)len; 1453 uio.uio_segflg = UIO_SYSSPACE; 1454 uio.uio_rw = UIO_READ; 1455 uio.uio_td = td; 1456 1457 return (proc_rwmem(p, &uio)); 1458 } 1459 1460 static int 1461 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1462 size_t len) 1463 { 1464 size_t i; 1465 int error; 1466 1467 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1468 /* 1469 * Reading the chunk may validly return EFAULT if the string is shorter 1470 * than the chunk and is aligned at the end of the page, assuming the 1471 * next page is not mapped. So if EFAULT is returned do a fallback to 1472 * one byte read loop. 1473 */ 1474 if (error == EFAULT) { 1475 for (i = 0; i < len; i++, buf++, sptr++) { 1476 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1477 if (error != 0) 1478 return (error); 1479 if (*buf == '\0') 1480 break; 1481 } 1482 error = 0; 1483 } 1484 return (error); 1485 } 1486 1487 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1488 1489 enum proc_vector_type { 1490 PROC_ARG, 1491 PROC_ENV, 1492 PROC_AUX, 1493 }; 1494 1495 #ifdef COMPAT_FREEBSD32 1496 static int 1497 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1498 size_t *vsizep, enum proc_vector_type type) 1499 { 1500 struct freebsd32_ps_strings pss; 1501 Elf32_Auxinfo aux; 1502 vm_offset_t vptr, ptr; 1503 uint32_t *proc_vector32; 1504 char **proc_vector; 1505 size_t vsize, size; 1506 int i, error; 1507 1508 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1509 &pss, sizeof(pss)); 1510 if (error != 0) 1511 return (error); 1512 switch (type) { 1513 case PROC_ARG: 1514 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1515 vsize = pss.ps_nargvstr; 1516 if (vsize > ARG_MAX) 1517 return (ENOEXEC); 1518 size = vsize * sizeof(int32_t); 1519 break; 1520 case PROC_ENV: 1521 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1522 vsize = pss.ps_nenvstr; 1523 if (vsize > ARG_MAX) 1524 return (ENOEXEC); 1525 size = vsize * sizeof(int32_t); 1526 break; 1527 case PROC_AUX: 1528 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1529 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1530 if (vptr % 4 != 0) 1531 return (ENOEXEC); 1532 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1533 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1534 if (error != 0) 1535 return (error); 1536 if (aux.a_type == AT_NULL) 1537 break; 1538 ptr += sizeof(aux); 1539 } 1540 if (aux.a_type != AT_NULL) 1541 return (ENOEXEC); 1542 vsize = i + 1; 1543 size = vsize * sizeof(aux); 1544 break; 1545 default: 1546 KASSERT(0, ("Wrong proc vector type: %d", type)); 1547 return (EINVAL); 1548 } 1549 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1550 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1551 if (error != 0) 1552 goto done; 1553 if (type == PROC_AUX) { 1554 *proc_vectorp = (char **)proc_vector32; 1555 *vsizep = vsize; 1556 return (0); 1557 } 1558 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1559 for (i = 0; i < (int)vsize; i++) 1560 proc_vector[i] = PTRIN(proc_vector32[i]); 1561 *proc_vectorp = proc_vector; 1562 *vsizep = vsize; 1563 done: 1564 free(proc_vector32, M_TEMP); 1565 return (error); 1566 } 1567 #endif 1568 1569 static int 1570 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1571 size_t *vsizep, enum proc_vector_type type) 1572 { 1573 struct ps_strings pss; 1574 Elf_Auxinfo aux; 1575 vm_offset_t vptr, ptr; 1576 char **proc_vector; 1577 size_t vsize, size; 1578 int error, i; 1579 1580 #ifdef COMPAT_FREEBSD32 1581 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1582 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1583 #endif 1584 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1585 &pss, sizeof(pss)); 1586 if (error != 0) 1587 return (error); 1588 switch (type) { 1589 case PROC_ARG: 1590 vptr = (vm_offset_t)pss.ps_argvstr; 1591 vsize = pss.ps_nargvstr; 1592 if (vsize > ARG_MAX) 1593 return (ENOEXEC); 1594 size = vsize * sizeof(char *); 1595 break; 1596 case PROC_ENV: 1597 vptr = (vm_offset_t)pss.ps_envstr; 1598 vsize = pss.ps_nenvstr; 1599 if (vsize > ARG_MAX) 1600 return (ENOEXEC); 1601 size = vsize * sizeof(char *); 1602 break; 1603 case PROC_AUX: 1604 /* 1605 * The aux array is just above env array on the stack. Check 1606 * that the address is naturally aligned. 1607 */ 1608 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1609 * sizeof(char *); 1610 #if __ELF_WORD_SIZE == 64 1611 if (vptr % sizeof(uint64_t) != 0) 1612 #else 1613 if (vptr % sizeof(uint32_t) != 0) 1614 #endif 1615 return (ENOEXEC); 1616 /* 1617 * We count the array size reading the aux vectors from the 1618 * stack until AT_NULL vector is returned. So (to keep the code 1619 * simple) we read the process stack twice: the first time here 1620 * to find the size and the second time when copying the vectors 1621 * to the allocated proc_vector. 1622 */ 1623 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1624 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1625 if (error != 0) 1626 return (error); 1627 if (aux.a_type == AT_NULL) 1628 break; 1629 ptr += sizeof(aux); 1630 } 1631 /* 1632 * If the PROC_AUXV_MAX entries are iterated over, and we have 1633 * not reached AT_NULL, it is most likely we are reading wrong 1634 * data: either the process doesn't have auxv array or data has 1635 * been modified. Return the error in this case. 1636 */ 1637 if (aux.a_type != AT_NULL) 1638 return (ENOEXEC); 1639 vsize = i + 1; 1640 size = vsize * sizeof(aux); 1641 break; 1642 default: 1643 KASSERT(0, ("Wrong proc vector type: %d", type)); 1644 return (EINVAL); /* In case we are built without INVARIANTS. */ 1645 } 1646 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1647 if (proc_vector == NULL) 1648 return (ENOMEM); 1649 error = proc_read_mem(td, p, vptr, proc_vector, size); 1650 if (error != 0) { 1651 free(proc_vector, M_TEMP); 1652 return (error); 1653 } 1654 *proc_vectorp = proc_vector; 1655 *vsizep = vsize; 1656 1657 return (0); 1658 } 1659 1660 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1661 1662 static int 1663 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1664 enum proc_vector_type type) 1665 { 1666 size_t done, len, nchr, vsize; 1667 int error, i; 1668 char **proc_vector, *sptr; 1669 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1670 1671 PROC_ASSERT_HELD(p); 1672 1673 /* 1674 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1675 */ 1676 nchr = 2 * (PATH_MAX + ARG_MAX); 1677 1678 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1679 if (error != 0) 1680 return (error); 1681 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1682 /* 1683 * The program may have scribbled into its argv array, e.g. to 1684 * remove some arguments. If that has happened, break out 1685 * before trying to read from NULL. 1686 */ 1687 if (proc_vector[i] == NULL) 1688 break; 1689 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1690 error = proc_read_string(td, p, sptr, pss_string, 1691 sizeof(pss_string)); 1692 if (error != 0) 1693 goto done; 1694 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1695 if (done + len >= nchr) 1696 len = nchr - done - 1; 1697 sbuf_bcat(sb, pss_string, len); 1698 if (len != GET_PS_STRINGS_CHUNK_SZ) 1699 break; 1700 done += GET_PS_STRINGS_CHUNK_SZ; 1701 } 1702 sbuf_bcat(sb, "", 1); 1703 done += len + 1; 1704 } 1705 done: 1706 free(proc_vector, M_TEMP); 1707 return (error); 1708 } 1709 1710 int 1711 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1712 { 1713 1714 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1715 } 1716 1717 int 1718 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1719 { 1720 1721 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1722 } 1723 1724 /* 1725 * This sysctl allows a process to retrieve the argument list or process 1726 * title for another process without groping around in the address space 1727 * of the other process. It also allow a process to set its own "process 1728 * title to a string of its own choice. 1729 */ 1730 static int 1731 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1732 { 1733 int *name = (int *)arg1; 1734 u_int namelen = arg2; 1735 struct pargs *newpa, *pa; 1736 struct proc *p; 1737 struct sbuf sb; 1738 int flags, error = 0, error2; 1739 1740 if (namelen != 1) 1741 return (EINVAL); 1742 1743 flags = PGET_CANSEE; 1744 if (req->newptr != NULL) 1745 flags |= PGET_ISCURRENT; 1746 error = pget((pid_t)name[0], flags, &p); 1747 if (error) 1748 return (error); 1749 1750 pa = p->p_args; 1751 if (pa != NULL) { 1752 pargs_hold(pa); 1753 PROC_UNLOCK(p); 1754 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1755 pargs_drop(pa); 1756 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1757 _PHOLD(p); 1758 PROC_UNLOCK(p); 1759 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1760 error = proc_getargv(curthread, p, &sb); 1761 error2 = sbuf_finish(&sb); 1762 PRELE(p); 1763 sbuf_delete(&sb); 1764 if (error == 0 && error2 != 0) 1765 error = error2; 1766 } else { 1767 PROC_UNLOCK(p); 1768 } 1769 if (error != 0 || req->newptr == NULL) 1770 return (error); 1771 1772 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1773 return (ENOMEM); 1774 newpa = pargs_alloc(req->newlen); 1775 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1776 if (error != 0) { 1777 pargs_free(newpa); 1778 return (error); 1779 } 1780 PROC_LOCK(p); 1781 pa = p->p_args; 1782 p->p_args = newpa; 1783 PROC_UNLOCK(p); 1784 pargs_drop(pa); 1785 return (0); 1786 } 1787 1788 /* 1789 * This sysctl allows a process to retrieve environment of another process. 1790 */ 1791 static int 1792 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1793 { 1794 int *name = (int *)arg1; 1795 u_int namelen = arg2; 1796 struct proc *p; 1797 struct sbuf sb; 1798 int error, error2; 1799 1800 if (namelen != 1) 1801 return (EINVAL); 1802 1803 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1804 if (error != 0) 1805 return (error); 1806 if ((p->p_flag & P_SYSTEM) != 0) { 1807 PRELE(p); 1808 return (0); 1809 } 1810 1811 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1812 error = proc_getenvv(curthread, p, &sb); 1813 error2 = sbuf_finish(&sb); 1814 PRELE(p); 1815 sbuf_delete(&sb); 1816 return (error != 0 ? error : error2); 1817 } 1818 1819 /* 1820 * This sysctl allows a process to retrieve ELF auxiliary vector of 1821 * another process. 1822 */ 1823 static int 1824 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1825 { 1826 int *name = (int *)arg1; 1827 u_int namelen = arg2; 1828 struct proc *p; 1829 size_t vsize, size; 1830 char **auxv; 1831 int error; 1832 1833 if (namelen != 1) 1834 return (EINVAL); 1835 1836 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1837 if (error != 0) 1838 return (error); 1839 if ((p->p_flag & P_SYSTEM) != 0) { 1840 PRELE(p); 1841 return (0); 1842 } 1843 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1844 if (error == 0) { 1845 #ifdef COMPAT_FREEBSD32 1846 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1847 size = vsize * sizeof(Elf32_Auxinfo); 1848 else 1849 #endif 1850 size = vsize * sizeof(Elf_Auxinfo); 1851 PRELE(p); 1852 error = SYSCTL_OUT(req, auxv, size); 1853 free(auxv, M_TEMP); 1854 } else { 1855 PRELE(p); 1856 } 1857 return (error); 1858 } 1859 1860 /* 1861 * This sysctl allows a process to retrieve the path of the executable for 1862 * itself or another process. 1863 */ 1864 static int 1865 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1866 { 1867 pid_t *pidp = (pid_t *)arg1; 1868 unsigned int arglen = arg2; 1869 struct proc *p; 1870 struct vnode *vp; 1871 char *retbuf, *freebuf; 1872 int error, vfslocked; 1873 1874 if (arglen != 1) 1875 return (EINVAL); 1876 if (*pidp == -1) { /* -1 means this process */ 1877 p = req->td->td_proc; 1878 } else { 1879 error = pget(*pidp, PGET_CANSEE, &p); 1880 if (error != 0) 1881 return (error); 1882 } 1883 1884 vp = p->p_textvp; 1885 if (vp == NULL) { 1886 if (*pidp != -1) 1887 PROC_UNLOCK(p); 1888 return (0); 1889 } 1890 vref(vp); 1891 if (*pidp != -1) 1892 PROC_UNLOCK(p); 1893 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1894 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1895 vrele(vp); 1896 VFS_UNLOCK_GIANT(vfslocked); 1897 if (error) 1898 return (error); 1899 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1900 free(freebuf, M_TEMP); 1901 return (error); 1902 } 1903 1904 static int 1905 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1906 { 1907 struct proc *p; 1908 char *sv_name; 1909 int *name; 1910 int namelen; 1911 int error; 1912 1913 namelen = arg2; 1914 if (namelen != 1) 1915 return (EINVAL); 1916 1917 name = (int *)arg1; 1918 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1919 if (error != 0) 1920 return (error); 1921 sv_name = p->p_sysent->sv_name; 1922 PROC_UNLOCK(p); 1923 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1924 } 1925 1926 #ifdef KINFO_OVMENTRY_SIZE 1927 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1928 #endif 1929 1930 #ifdef COMPAT_FREEBSD7 1931 static int 1932 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1933 { 1934 vm_map_entry_t entry, tmp_entry; 1935 unsigned int last_timestamp; 1936 char *fullpath, *freepath; 1937 struct kinfo_ovmentry *kve; 1938 struct vattr va; 1939 struct ucred *cred; 1940 int error, *name; 1941 struct vnode *vp; 1942 struct proc *p; 1943 vm_map_t map; 1944 struct vmspace *vm; 1945 1946 name = (int *)arg1; 1947 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1948 if (error != 0) 1949 return (error); 1950 vm = vmspace_acquire_ref(p); 1951 if (vm == NULL) { 1952 PRELE(p); 1953 return (ESRCH); 1954 } 1955 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1956 1957 map = &vm->vm_map; 1958 vm_map_lock_read(map); 1959 for (entry = map->header.next; entry != &map->header; 1960 entry = entry->next) { 1961 vm_object_t obj, tobj, lobj; 1962 vm_offset_t addr; 1963 int vfslocked; 1964 1965 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1966 continue; 1967 1968 bzero(kve, sizeof(*kve)); 1969 kve->kve_structsize = sizeof(*kve); 1970 1971 kve->kve_private_resident = 0; 1972 obj = entry->object.vm_object; 1973 if (obj != NULL) { 1974 VM_OBJECT_LOCK(obj); 1975 if (obj->shadow_count == 1) 1976 kve->kve_private_resident = 1977 obj->resident_page_count; 1978 } 1979 kve->kve_resident = 0; 1980 addr = entry->start; 1981 while (addr < entry->end) { 1982 if (pmap_extract(map->pmap, addr)) 1983 kve->kve_resident++; 1984 addr += PAGE_SIZE; 1985 } 1986 1987 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1988 if (tobj != obj) 1989 VM_OBJECT_LOCK(tobj); 1990 if (lobj != obj) 1991 VM_OBJECT_UNLOCK(lobj); 1992 lobj = tobj; 1993 } 1994 1995 kve->kve_start = (void*)entry->start; 1996 kve->kve_end = (void*)entry->end; 1997 kve->kve_offset = (off_t)entry->offset; 1998 1999 if (entry->protection & VM_PROT_READ) 2000 kve->kve_protection |= KVME_PROT_READ; 2001 if (entry->protection & VM_PROT_WRITE) 2002 kve->kve_protection |= KVME_PROT_WRITE; 2003 if (entry->protection & VM_PROT_EXECUTE) 2004 kve->kve_protection |= KVME_PROT_EXEC; 2005 2006 if (entry->eflags & MAP_ENTRY_COW) 2007 kve->kve_flags |= KVME_FLAG_COW; 2008 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2009 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2010 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2011 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2012 2013 last_timestamp = map->timestamp; 2014 vm_map_unlock_read(map); 2015 2016 kve->kve_fileid = 0; 2017 kve->kve_fsid = 0; 2018 freepath = NULL; 2019 fullpath = ""; 2020 if (lobj) { 2021 vp = NULL; 2022 switch (lobj->type) { 2023 case OBJT_DEFAULT: 2024 kve->kve_type = KVME_TYPE_DEFAULT; 2025 break; 2026 case OBJT_VNODE: 2027 kve->kve_type = KVME_TYPE_VNODE; 2028 vp = lobj->handle; 2029 vref(vp); 2030 break; 2031 case OBJT_SWAP: 2032 kve->kve_type = KVME_TYPE_SWAP; 2033 break; 2034 case OBJT_DEVICE: 2035 kve->kve_type = KVME_TYPE_DEVICE; 2036 break; 2037 case OBJT_PHYS: 2038 kve->kve_type = KVME_TYPE_PHYS; 2039 break; 2040 case OBJT_DEAD: 2041 kve->kve_type = KVME_TYPE_DEAD; 2042 break; 2043 case OBJT_SG: 2044 kve->kve_type = KVME_TYPE_SG; 2045 break; 2046 default: 2047 kve->kve_type = KVME_TYPE_UNKNOWN; 2048 break; 2049 } 2050 if (lobj != obj) 2051 VM_OBJECT_UNLOCK(lobj); 2052 2053 kve->kve_ref_count = obj->ref_count; 2054 kve->kve_shadow_count = obj->shadow_count; 2055 VM_OBJECT_UNLOCK(obj); 2056 if (vp != NULL) { 2057 vn_fullpath(curthread, vp, &fullpath, 2058 &freepath); 2059 cred = curthread->td_ucred; 2060 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2061 vn_lock(vp, LK_SHARED | LK_RETRY); 2062 if (VOP_GETATTR(vp, &va, cred) == 0) { 2063 kve->kve_fileid = va.va_fileid; 2064 kve->kve_fsid = va.va_fsid; 2065 } 2066 vput(vp); 2067 VFS_UNLOCK_GIANT(vfslocked); 2068 } 2069 } else { 2070 kve->kve_type = KVME_TYPE_NONE; 2071 kve->kve_ref_count = 0; 2072 kve->kve_shadow_count = 0; 2073 } 2074 2075 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2076 if (freepath != NULL) 2077 free(freepath, M_TEMP); 2078 2079 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2080 vm_map_lock_read(map); 2081 if (error) 2082 break; 2083 if (last_timestamp != map->timestamp) { 2084 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2085 entry = tmp_entry; 2086 } 2087 } 2088 vm_map_unlock_read(map); 2089 vmspace_free(vm); 2090 PRELE(p); 2091 free(kve, M_TEMP); 2092 return (error); 2093 } 2094 #endif /* COMPAT_FREEBSD7 */ 2095 2096 #ifdef KINFO_VMENTRY_SIZE 2097 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2098 #endif 2099 2100 static int 2101 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2102 { 2103 vm_map_entry_t entry, tmp_entry; 2104 unsigned int last_timestamp; 2105 char *fullpath, *freepath; 2106 struct kinfo_vmentry *kve; 2107 struct vattr va; 2108 struct ucred *cred; 2109 int error, *name; 2110 struct vnode *vp; 2111 struct proc *p; 2112 struct vmspace *vm; 2113 vm_map_t map; 2114 2115 name = (int *)arg1; 2116 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2117 if (error != 0) 2118 return (error); 2119 vm = vmspace_acquire_ref(p); 2120 if (vm == NULL) { 2121 PRELE(p); 2122 return (ESRCH); 2123 } 2124 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2125 2126 map = &vm->vm_map; 2127 vm_map_lock_read(map); 2128 for (entry = map->header.next; entry != &map->header; 2129 entry = entry->next) { 2130 vm_object_t obj, tobj, lobj; 2131 vm_offset_t addr; 2132 vm_paddr_t locked_pa; 2133 int vfslocked, mincoreinfo; 2134 2135 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2136 continue; 2137 2138 bzero(kve, sizeof(*kve)); 2139 2140 kve->kve_private_resident = 0; 2141 obj = entry->object.vm_object; 2142 if (obj != NULL) { 2143 VM_OBJECT_LOCK(obj); 2144 if (obj->shadow_count == 1) 2145 kve->kve_private_resident = 2146 obj->resident_page_count; 2147 } 2148 kve->kve_resident = 0; 2149 addr = entry->start; 2150 while (addr < entry->end) { 2151 locked_pa = 0; 2152 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2153 if (locked_pa != 0) 2154 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2155 if (mincoreinfo & MINCORE_INCORE) 2156 kve->kve_resident++; 2157 if (mincoreinfo & MINCORE_SUPER) 2158 kve->kve_flags |= KVME_FLAG_SUPER; 2159 addr += PAGE_SIZE; 2160 } 2161 2162 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2163 if (tobj != obj) 2164 VM_OBJECT_LOCK(tobj); 2165 if (lobj != obj) 2166 VM_OBJECT_UNLOCK(lobj); 2167 lobj = tobj; 2168 } 2169 2170 kve->kve_start = entry->start; 2171 kve->kve_end = entry->end; 2172 kve->kve_offset = entry->offset; 2173 2174 if (entry->protection & VM_PROT_READ) 2175 kve->kve_protection |= KVME_PROT_READ; 2176 if (entry->protection & VM_PROT_WRITE) 2177 kve->kve_protection |= KVME_PROT_WRITE; 2178 if (entry->protection & VM_PROT_EXECUTE) 2179 kve->kve_protection |= KVME_PROT_EXEC; 2180 2181 if (entry->eflags & MAP_ENTRY_COW) 2182 kve->kve_flags |= KVME_FLAG_COW; 2183 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2184 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2185 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2186 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2187 2188 last_timestamp = map->timestamp; 2189 vm_map_unlock_read(map); 2190 2191 freepath = NULL; 2192 fullpath = ""; 2193 if (lobj) { 2194 vp = NULL; 2195 switch (lobj->type) { 2196 case OBJT_DEFAULT: 2197 kve->kve_type = KVME_TYPE_DEFAULT; 2198 break; 2199 case OBJT_VNODE: 2200 kve->kve_type = KVME_TYPE_VNODE; 2201 vp = lobj->handle; 2202 vref(vp); 2203 break; 2204 case OBJT_SWAP: 2205 kve->kve_type = KVME_TYPE_SWAP; 2206 break; 2207 case OBJT_DEVICE: 2208 kve->kve_type = KVME_TYPE_DEVICE; 2209 break; 2210 case OBJT_PHYS: 2211 kve->kve_type = KVME_TYPE_PHYS; 2212 break; 2213 case OBJT_DEAD: 2214 kve->kve_type = KVME_TYPE_DEAD; 2215 break; 2216 case OBJT_SG: 2217 kve->kve_type = KVME_TYPE_SG; 2218 break; 2219 default: 2220 kve->kve_type = KVME_TYPE_UNKNOWN; 2221 break; 2222 } 2223 if (lobj != obj) 2224 VM_OBJECT_UNLOCK(lobj); 2225 2226 kve->kve_ref_count = obj->ref_count; 2227 kve->kve_shadow_count = obj->shadow_count; 2228 VM_OBJECT_UNLOCK(obj); 2229 if (vp != NULL) { 2230 vn_fullpath(curthread, vp, &fullpath, 2231 &freepath); 2232 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2233 cred = curthread->td_ucred; 2234 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2235 vn_lock(vp, LK_SHARED | LK_RETRY); 2236 if (VOP_GETATTR(vp, &va, cred) == 0) { 2237 kve->kve_vn_fileid = va.va_fileid; 2238 kve->kve_vn_fsid = va.va_fsid; 2239 kve->kve_vn_mode = 2240 MAKEIMODE(va.va_type, va.va_mode); 2241 kve->kve_vn_size = va.va_size; 2242 kve->kve_vn_rdev = va.va_rdev; 2243 kve->kve_status = KF_ATTR_VALID; 2244 } 2245 vput(vp); 2246 VFS_UNLOCK_GIANT(vfslocked); 2247 } 2248 } else { 2249 kve->kve_type = KVME_TYPE_NONE; 2250 kve->kve_ref_count = 0; 2251 kve->kve_shadow_count = 0; 2252 } 2253 2254 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2255 if (freepath != NULL) 2256 free(freepath, M_TEMP); 2257 2258 /* Pack record size down */ 2259 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2260 strlen(kve->kve_path) + 1; 2261 kve->kve_structsize = roundup(kve->kve_structsize, 2262 sizeof(uint64_t)); 2263 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2264 vm_map_lock_read(map); 2265 if (error) 2266 break; 2267 if (last_timestamp != map->timestamp) { 2268 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2269 entry = tmp_entry; 2270 } 2271 } 2272 vm_map_unlock_read(map); 2273 vmspace_free(vm); 2274 PRELE(p); 2275 free(kve, M_TEMP); 2276 return (error); 2277 } 2278 2279 #if defined(STACK) || defined(DDB) 2280 static int 2281 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2282 { 2283 struct kinfo_kstack *kkstp; 2284 int error, i, *name, numthreads; 2285 lwpid_t *lwpidarray; 2286 struct thread *td; 2287 struct stack *st; 2288 struct sbuf sb; 2289 struct proc *p; 2290 2291 name = (int *)arg1; 2292 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2293 if (error != 0) 2294 return (error); 2295 2296 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2297 st = stack_create(); 2298 2299 lwpidarray = NULL; 2300 numthreads = 0; 2301 PROC_LOCK(p); 2302 repeat: 2303 if (numthreads < p->p_numthreads) { 2304 if (lwpidarray != NULL) { 2305 free(lwpidarray, M_TEMP); 2306 lwpidarray = NULL; 2307 } 2308 numthreads = p->p_numthreads; 2309 PROC_UNLOCK(p); 2310 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2311 M_WAITOK | M_ZERO); 2312 PROC_LOCK(p); 2313 goto repeat; 2314 } 2315 i = 0; 2316 2317 /* 2318 * XXXRW: During the below loop, execve(2) and countless other sorts 2319 * of changes could have taken place. Should we check to see if the 2320 * vmspace has been replaced, or the like, in order to prevent 2321 * giving a snapshot that spans, say, execve(2), with some threads 2322 * before and some after? Among other things, the credentials could 2323 * have changed, in which case the right to extract debug info might 2324 * no longer be assured. 2325 */ 2326 FOREACH_THREAD_IN_PROC(p, td) { 2327 KASSERT(i < numthreads, 2328 ("sysctl_kern_proc_kstack: numthreads")); 2329 lwpidarray[i] = td->td_tid; 2330 i++; 2331 } 2332 numthreads = i; 2333 for (i = 0; i < numthreads; i++) { 2334 td = thread_find(p, lwpidarray[i]); 2335 if (td == NULL) { 2336 continue; 2337 } 2338 bzero(kkstp, sizeof(*kkstp)); 2339 (void)sbuf_new(&sb, kkstp->kkst_trace, 2340 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2341 thread_lock(td); 2342 kkstp->kkst_tid = td->td_tid; 2343 if (TD_IS_SWAPPED(td)) 2344 kkstp->kkst_state = KKST_STATE_SWAPPED; 2345 else if (TD_IS_RUNNING(td)) 2346 kkstp->kkst_state = KKST_STATE_RUNNING; 2347 else { 2348 kkstp->kkst_state = KKST_STATE_STACKOK; 2349 stack_save_td(st, td); 2350 } 2351 thread_unlock(td); 2352 PROC_UNLOCK(p); 2353 stack_sbuf_print(&sb, st); 2354 sbuf_finish(&sb); 2355 sbuf_delete(&sb); 2356 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2357 PROC_LOCK(p); 2358 if (error) 2359 break; 2360 } 2361 _PRELE(p); 2362 PROC_UNLOCK(p); 2363 if (lwpidarray != NULL) 2364 free(lwpidarray, M_TEMP); 2365 stack_destroy(st); 2366 free(kkstp, M_TEMP); 2367 return (error); 2368 } 2369 #endif 2370 2371 /* 2372 * This sysctl allows a process to retrieve the full list of groups from 2373 * itself or another process. 2374 */ 2375 static int 2376 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2377 { 2378 pid_t *pidp = (pid_t *)arg1; 2379 unsigned int arglen = arg2; 2380 struct proc *p; 2381 struct ucred *cred; 2382 int error; 2383 2384 if (arglen != 1) 2385 return (EINVAL); 2386 if (*pidp == -1) { /* -1 means this process */ 2387 p = req->td->td_proc; 2388 } else { 2389 error = pget(*pidp, PGET_CANSEE, &p); 2390 if (error != 0) 2391 return (error); 2392 } 2393 2394 cred = crhold(p->p_ucred); 2395 if (*pidp != -1) 2396 PROC_UNLOCK(p); 2397 2398 error = SYSCTL_OUT(req, cred->cr_groups, 2399 cred->cr_ngroups * sizeof(gid_t)); 2400 crfree(cred); 2401 return (error); 2402 } 2403 2404 /* 2405 * This sysctl allows a process to retrieve or/and set the resource limit for 2406 * another process. 2407 */ 2408 static int 2409 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2410 { 2411 int *name = (int *)arg1; 2412 u_int namelen = arg2; 2413 struct rlimit rlim; 2414 struct proc *p; 2415 u_int which; 2416 int flags, error; 2417 2418 if (namelen != 2) 2419 return (EINVAL); 2420 2421 which = (u_int)name[1]; 2422 if (which >= RLIM_NLIMITS) 2423 return (EINVAL); 2424 2425 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2426 return (EINVAL); 2427 2428 flags = PGET_HOLD | PGET_NOTWEXIT; 2429 if (req->newptr != NULL) 2430 flags |= PGET_CANDEBUG; 2431 else 2432 flags |= PGET_CANSEE; 2433 error = pget((pid_t)name[0], flags, &p); 2434 if (error != 0) 2435 return (error); 2436 2437 /* 2438 * Retrieve limit. 2439 */ 2440 if (req->oldptr != NULL) { 2441 PROC_LOCK(p); 2442 lim_rlimit(p, which, &rlim); 2443 PROC_UNLOCK(p); 2444 } 2445 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2446 if (error != 0) 2447 goto errout; 2448 2449 /* 2450 * Set limit. 2451 */ 2452 if (req->newptr != NULL) { 2453 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2454 if (error == 0) 2455 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2456 } 2457 2458 errout: 2459 PRELE(p); 2460 return (error); 2461 } 2462 2463 /* 2464 * This sysctl allows a process to retrieve ps_strings structure location of 2465 * another process. 2466 */ 2467 static int 2468 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2469 { 2470 int *name = (int *)arg1; 2471 u_int namelen = arg2; 2472 struct proc *p; 2473 vm_offset_t ps_strings; 2474 int error; 2475 #ifdef COMPAT_FREEBSD32 2476 uint32_t ps_strings32; 2477 #endif 2478 2479 if (namelen != 1) 2480 return (EINVAL); 2481 2482 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2483 if (error != 0) 2484 return (error); 2485 #ifdef COMPAT_FREEBSD32 2486 if ((req->flags & SCTL_MASK32) != 0) { 2487 /* 2488 * We return 0 if the 32 bit emulation request is for a 64 bit 2489 * process. 2490 */ 2491 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2492 PTROUT(p->p_sysent->sv_psstrings) : 0; 2493 PROC_UNLOCK(p); 2494 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2495 return (error); 2496 } 2497 #endif 2498 ps_strings = p->p_sysent->sv_psstrings; 2499 PROC_UNLOCK(p); 2500 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2501 return (error); 2502 } 2503 2504 /* 2505 * This sysctl allows a process to retrieve umask of another process. 2506 */ 2507 static int 2508 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2509 { 2510 int *name = (int *)arg1; 2511 u_int namelen = arg2; 2512 struct proc *p; 2513 int error; 2514 u_short fd_cmask; 2515 2516 if (namelen != 1) 2517 return (EINVAL); 2518 2519 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2520 if (error != 0) 2521 return (error); 2522 2523 FILEDESC_SLOCK(p->p_fd); 2524 fd_cmask = p->p_fd->fd_cmask; 2525 FILEDESC_SUNLOCK(p->p_fd); 2526 PRELE(p); 2527 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2528 return (error); 2529 } 2530 2531 /* 2532 * This sysctl allows a process to set and retrieve binary osreldate of 2533 * another process. 2534 */ 2535 static int 2536 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2537 { 2538 int *name = (int *)arg1; 2539 u_int namelen = arg2; 2540 struct proc *p; 2541 int flags, error, osrel; 2542 2543 if (namelen != 1) 2544 return (EINVAL); 2545 2546 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2547 return (EINVAL); 2548 2549 flags = PGET_HOLD | PGET_NOTWEXIT; 2550 if (req->newptr != NULL) 2551 flags |= PGET_CANDEBUG; 2552 else 2553 flags |= PGET_CANSEE; 2554 error = pget((pid_t)name[0], flags, &p); 2555 if (error != 0) 2556 return (error); 2557 2558 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2559 if (error != 0) 2560 goto errout; 2561 2562 if (req->newptr != NULL) { 2563 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2564 if (error != 0) 2565 goto errout; 2566 if (osrel < 0) { 2567 error = EINVAL; 2568 goto errout; 2569 } 2570 p->p_osrel = osrel; 2571 } 2572 errout: 2573 PRELE(p); 2574 return (error); 2575 } 2576 2577 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2578 2579 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2580 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2581 "Return entire process table"); 2582 2583 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2584 sysctl_kern_proc, "Process table"); 2585 2586 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2587 sysctl_kern_proc, "Process table"); 2588 2589 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2590 sysctl_kern_proc, "Process table"); 2591 2592 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2593 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2594 2595 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2596 sysctl_kern_proc, "Process table"); 2597 2598 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2599 sysctl_kern_proc, "Process table"); 2600 2601 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2602 sysctl_kern_proc, "Process table"); 2603 2604 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2605 sysctl_kern_proc, "Process table"); 2606 2607 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2608 sysctl_kern_proc, "Return process table, no threads"); 2609 2610 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2611 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2612 sysctl_kern_proc_args, "Process argument list"); 2613 2614 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2615 sysctl_kern_proc_env, "Process environment"); 2616 2617 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2618 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2619 2620 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2621 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2622 2623 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2624 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2625 "Process syscall vector name (ABI type)"); 2626 2627 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2628 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2629 2630 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2631 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2632 2633 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2634 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2635 2636 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2637 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2638 2639 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2640 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2641 2642 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2643 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2644 2645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2646 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2647 2648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2649 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2650 2651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2652 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2653 "Return process table, no threads"); 2654 2655 #ifdef COMPAT_FREEBSD7 2656 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2657 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2658 #endif 2659 2660 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2661 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2662 2663 #if defined(STACK) || defined(DDB) 2664 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2665 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2666 #endif 2667 2668 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2669 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2670 2671 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2672 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2673 "Process resource limits"); 2674 2675 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2676 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2677 "Process ps_strings location"); 2678 2679 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2680 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2681 2682 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2683 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2684 "Process binary osreldate"); 2685