1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_kstack_pages.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/sysent.h> 51 #include <sys/kse.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/sysctl.h> 55 #include <sys/filedesc.h> 56 #include <sys/tty.h> 57 #include <sys/signalvar.h> 58 #include <sys/sx.h> 59 #include <sys/user.h> 60 #include <sys/jail.h> 61 #ifdef KTRACE 62 #include <sys/uio.h> 63 #include <sys/ktrace.h> 64 #endif 65 66 #include <vm/vm.h> 67 #include <vm/vm_extern.h> 68 #include <vm/pmap.h> 69 #include <vm/vm_map.h> 70 #include <vm/uma.h> 71 #include <machine/critical.h> 72 73 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 74 MALLOC_DEFINE(M_SESSION, "session", "session header"); 75 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 76 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 77 78 static void doenterpgrp(struct proc *, struct pgrp *); 79 static void orphanpg(struct pgrp *pg); 80 static void pgadjustjobc(struct pgrp *pgrp, int entering); 81 static void pgdelete(struct pgrp *); 82 static void proc_ctor(void *mem, int size, void *arg); 83 static void proc_dtor(void *mem, int size, void *arg); 84 static void proc_init(void *mem, int size); 85 static void proc_fini(void *mem, int size); 86 87 /* 88 * Other process lists 89 */ 90 struct pidhashhead *pidhashtbl; 91 u_long pidhash; 92 struct pgrphashhead *pgrphashtbl; 93 u_long pgrphash; 94 struct proclist allproc; 95 struct proclist zombproc; 96 struct sx allproc_lock; 97 struct sx proctree_lock; 98 struct mtx pargs_ref_lock; 99 struct mtx ppeers_lock; 100 uma_zone_t proc_zone; 101 uma_zone_t ithread_zone; 102 103 int kstack_pages = KSTACK_PAGES; 104 int uarea_pages = UAREA_PAGES; 105 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 106 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 107 108 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 109 110 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 111 112 /* 113 * Initialize global process hashing structures. 114 */ 115 void 116 procinit() 117 { 118 119 sx_init(&allproc_lock, "allproc"); 120 sx_init(&proctree_lock, "proctree"); 121 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 122 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 123 LIST_INIT(&allproc); 124 LIST_INIT(&zombproc); 125 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 126 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 127 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 128 proc_ctor, proc_dtor, proc_init, proc_fini, 129 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 130 uihashinit(); 131 } 132 133 /* 134 * Prepare a proc for use. 135 */ 136 static void 137 proc_ctor(void *mem, int size, void *arg) 138 { 139 struct proc *p; 140 141 p = (struct proc *)mem; 142 } 143 144 /* 145 * Reclaim a proc after use. 146 */ 147 static void 148 proc_dtor(void *mem, int size, void *arg) 149 { 150 struct proc *p; 151 struct thread *td; 152 struct ksegrp *kg; 153 struct kse *ke; 154 155 /* INVARIANTS checks go here */ 156 p = (struct proc *)mem; 157 KASSERT((p->p_numthreads == 1), 158 ("bad number of threads in exiting process")); 159 td = FIRST_THREAD_IN_PROC(p); 160 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 161 kg = FIRST_KSEGRP_IN_PROC(p); 162 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 163 ke = FIRST_KSE_IN_KSEGRP(kg); 164 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 165 166 /* Dispose of an alternate kstack, if it exists. 167 * XXX What if there are more than one thread in the proc? 168 * The first thread in the proc is special and not 169 * freed, so you gotta do this here. 170 */ 171 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 172 vm_thread_dispose_altkstack(td); 173 174 /* 175 * We want to make sure we know the initial linkages. 176 * so for now tear them down and remake them. 177 * This is probably un-needed as we can probably rely 178 * on the state coming in here from wait4(). 179 */ 180 proc_linkup(p, kg, ke, td); 181 } 182 183 /* 184 * Initialize type-stable parts of a proc (when newly created). 185 */ 186 static void 187 proc_init(void *mem, int size) 188 { 189 struct proc *p; 190 struct thread *td; 191 struct ksegrp *kg; 192 struct kse *ke; 193 194 p = (struct proc *)mem; 195 p->p_sched = (struct p_sched *)&p[1]; 196 vm_proc_new(p); 197 td = thread_alloc(); 198 ke = kse_alloc(); 199 kg = ksegrp_alloc(); 200 proc_linkup(p, kg, ke, td); 201 bzero(&p->p_mtx, sizeof(struct mtx)); 202 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 203 } 204 205 /* 206 * Tear down type-stable parts of a proc (just before being discarded) 207 */ 208 static void 209 proc_fini(void *mem, int size) 210 { 211 struct proc *p; 212 struct thread *td; 213 struct ksegrp *kg; 214 struct kse *ke; 215 216 p = (struct proc *)mem; 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in freeing process")); 219 td = FIRST_THREAD_IN_PROC(p); 220 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 221 kg = FIRST_KSEGRP_IN_PROC(p); 222 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 223 ke = FIRST_KSE_IN_KSEGRP(kg); 224 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 225 vm_proc_dispose(p); 226 thread_free(td); 227 ksegrp_free(kg); 228 kse_free(ke); 229 mtx_destroy(&p->p_mtx); 230 } 231 232 /* 233 * Is p an inferior of the current process? 234 */ 235 int 236 inferior(p) 237 register struct proc *p; 238 { 239 240 sx_assert(&proctree_lock, SX_LOCKED); 241 for (; p != curproc; p = p->p_pptr) 242 if (p->p_pid == 0) 243 return (0); 244 return (1); 245 } 246 247 /* 248 * Locate a process by number 249 */ 250 struct proc * 251 pfind(pid) 252 register pid_t pid; 253 { 254 register struct proc *p; 255 256 sx_slock(&allproc_lock); 257 LIST_FOREACH(p, PIDHASH(pid), p_hash) 258 if (p->p_pid == pid) { 259 PROC_LOCK(p); 260 break; 261 } 262 sx_sunlock(&allproc_lock); 263 return (p); 264 } 265 266 /* 267 * Locate a process group by number. 268 * The caller must hold proctree_lock. 269 */ 270 struct pgrp * 271 pgfind(pgid) 272 register pid_t pgid; 273 { 274 register struct pgrp *pgrp; 275 276 sx_assert(&proctree_lock, SX_LOCKED); 277 278 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 279 if (pgrp->pg_id == pgid) { 280 PGRP_LOCK(pgrp); 281 return (pgrp); 282 } 283 } 284 return (NULL); 285 } 286 287 /* 288 * Create a new process group. 289 * pgid must be equal to the pid of p. 290 * Begin a new session if required. 291 */ 292 int 293 enterpgrp(p, pgid, pgrp, sess) 294 register struct proc *p; 295 pid_t pgid; 296 struct pgrp *pgrp; 297 struct session *sess; 298 { 299 struct pgrp *pgrp2; 300 301 sx_assert(&proctree_lock, SX_XLOCKED); 302 303 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 304 KASSERT(p->p_pid == pgid, 305 ("enterpgrp: new pgrp and pid != pgid")); 306 307 pgrp2 = pgfind(pgid); 308 309 KASSERT(pgrp2 == NULL, 310 ("enterpgrp: pgrp with pgid exists")); 311 KASSERT(!SESS_LEADER(p), 312 ("enterpgrp: session leader attempted setpgrp")); 313 314 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 315 316 if (sess != NULL) { 317 /* 318 * new session 319 */ 320 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 321 PROC_LOCK(p); 322 p->p_flag &= ~P_CONTROLT; 323 PROC_UNLOCK(p); 324 PGRP_LOCK(pgrp); 325 sess->s_leader = p; 326 sess->s_sid = p->p_pid; 327 sess->s_count = 1; 328 sess->s_ttyvp = NULL; 329 sess->s_ttyp = NULL; 330 bcopy(p->p_session->s_login, sess->s_login, 331 sizeof(sess->s_login)); 332 pgrp->pg_session = sess; 333 KASSERT(p == curproc, 334 ("enterpgrp: mksession and p != curproc")); 335 } else { 336 pgrp->pg_session = p->p_session; 337 SESS_LOCK(pgrp->pg_session); 338 pgrp->pg_session->s_count++; 339 SESS_UNLOCK(pgrp->pg_session); 340 PGRP_LOCK(pgrp); 341 } 342 pgrp->pg_id = pgid; 343 LIST_INIT(&pgrp->pg_members); 344 345 /* 346 * As we have an exclusive lock of proctree_lock, 347 * this should not deadlock. 348 */ 349 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 350 pgrp->pg_jobc = 0; 351 SLIST_INIT(&pgrp->pg_sigiolst); 352 PGRP_UNLOCK(pgrp); 353 354 doenterpgrp(p, pgrp); 355 356 return (0); 357 } 358 359 /* 360 * Move p to an existing process group 361 */ 362 int 363 enterthispgrp(p, pgrp) 364 register struct proc *p; 365 struct pgrp *pgrp; 366 { 367 368 sx_assert(&proctree_lock, SX_XLOCKED); 369 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 370 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 371 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 372 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 373 KASSERT(pgrp->pg_session == p->p_session, 374 ("%s: pgrp's session %p, p->p_session %p.\n", 375 __func__, 376 pgrp->pg_session, 377 p->p_session)); 378 KASSERT(pgrp != p->p_pgrp, 379 ("%s: p belongs to pgrp.", __func__)); 380 381 doenterpgrp(p, pgrp); 382 383 return (0); 384 } 385 386 /* 387 * Move p to a process group 388 */ 389 static void 390 doenterpgrp(p, pgrp) 391 struct proc *p; 392 struct pgrp *pgrp; 393 { 394 struct pgrp *savepgrp; 395 396 sx_assert(&proctree_lock, SX_XLOCKED); 397 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 398 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 399 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 400 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 401 402 savepgrp = p->p_pgrp; 403 404 /* 405 * Adjust eligibility of affected pgrps to participate in job control. 406 * Increment eligibility counts before decrementing, otherwise we 407 * could reach 0 spuriously during the first call. 408 */ 409 fixjobc(p, pgrp, 1); 410 fixjobc(p, p->p_pgrp, 0); 411 412 PGRP_LOCK(pgrp); 413 PGRP_LOCK(savepgrp); 414 PROC_LOCK(p); 415 LIST_REMOVE(p, p_pglist); 416 p->p_pgrp = pgrp; 417 PROC_UNLOCK(p); 418 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 419 PGRP_UNLOCK(savepgrp); 420 PGRP_UNLOCK(pgrp); 421 if (LIST_EMPTY(&savepgrp->pg_members)) 422 pgdelete(savepgrp); 423 } 424 425 /* 426 * remove process from process group 427 */ 428 int 429 leavepgrp(p) 430 register struct proc *p; 431 { 432 struct pgrp *savepgrp; 433 434 sx_assert(&proctree_lock, SX_XLOCKED); 435 savepgrp = p->p_pgrp; 436 PGRP_LOCK(savepgrp); 437 PROC_LOCK(p); 438 LIST_REMOVE(p, p_pglist); 439 p->p_pgrp = NULL; 440 PROC_UNLOCK(p); 441 PGRP_UNLOCK(savepgrp); 442 if (LIST_EMPTY(&savepgrp->pg_members)) 443 pgdelete(savepgrp); 444 return (0); 445 } 446 447 /* 448 * delete a process group 449 */ 450 static void 451 pgdelete(pgrp) 452 register struct pgrp *pgrp; 453 { 454 struct session *savesess; 455 456 sx_assert(&proctree_lock, SX_XLOCKED); 457 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 458 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 459 460 /* 461 * Reset any sigio structures pointing to us as a result of 462 * F_SETOWN with our pgid. 463 */ 464 funsetownlst(&pgrp->pg_sigiolst); 465 466 PGRP_LOCK(pgrp); 467 if (pgrp->pg_session->s_ttyp != NULL && 468 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 469 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 470 LIST_REMOVE(pgrp, pg_hash); 471 savesess = pgrp->pg_session; 472 SESS_LOCK(savesess); 473 savesess->s_count--; 474 SESS_UNLOCK(savesess); 475 PGRP_UNLOCK(pgrp); 476 if (savesess->s_count == 0) { 477 mtx_destroy(&savesess->s_mtx); 478 FREE(pgrp->pg_session, M_SESSION); 479 } 480 mtx_destroy(&pgrp->pg_mtx); 481 FREE(pgrp, M_PGRP); 482 } 483 484 static void 485 pgadjustjobc(pgrp, entering) 486 struct pgrp *pgrp; 487 int entering; 488 { 489 490 PGRP_LOCK(pgrp); 491 if (entering) 492 pgrp->pg_jobc++; 493 else { 494 --pgrp->pg_jobc; 495 if (pgrp->pg_jobc == 0) 496 orphanpg(pgrp); 497 } 498 PGRP_UNLOCK(pgrp); 499 } 500 501 /* 502 * Adjust pgrp jobc counters when specified process changes process group. 503 * We count the number of processes in each process group that "qualify" 504 * the group for terminal job control (those with a parent in a different 505 * process group of the same session). If that count reaches zero, the 506 * process group becomes orphaned. Check both the specified process' 507 * process group and that of its children. 508 * entering == 0 => p is leaving specified group. 509 * entering == 1 => p is entering specified group. 510 */ 511 void 512 fixjobc(p, pgrp, entering) 513 register struct proc *p; 514 register struct pgrp *pgrp; 515 int entering; 516 { 517 register struct pgrp *hispgrp; 518 register struct session *mysession; 519 520 sx_assert(&proctree_lock, SX_LOCKED); 521 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 523 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 524 525 /* 526 * Check p's parent to see whether p qualifies its own process 527 * group; if so, adjust count for p's process group. 528 */ 529 mysession = pgrp->pg_session; 530 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 531 hispgrp->pg_session == mysession) 532 pgadjustjobc(pgrp, entering); 533 534 /* 535 * Check this process' children to see whether they qualify 536 * their process groups; if so, adjust counts for children's 537 * process groups. 538 */ 539 LIST_FOREACH(p, &p->p_children, p_sibling) { 540 hispgrp = p->p_pgrp; 541 if (hispgrp == pgrp || 542 hispgrp->pg_session != mysession) 543 continue; 544 PROC_LOCK(p); 545 if (p->p_state == PRS_ZOMBIE) { 546 PROC_UNLOCK(p); 547 continue; 548 } 549 PROC_UNLOCK(p); 550 pgadjustjobc(hispgrp, entering); 551 } 552 } 553 554 /* 555 * A process group has become orphaned; 556 * if there are any stopped processes in the group, 557 * hang-up all process in that group. 558 */ 559 static void 560 orphanpg(pg) 561 struct pgrp *pg; 562 { 563 register struct proc *p; 564 565 PGRP_LOCK_ASSERT(pg, MA_OWNED); 566 567 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 568 PROC_LOCK(p); 569 if (P_SHOULDSTOP(p)) { 570 PROC_UNLOCK(p); 571 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 572 PROC_LOCK(p); 573 psignal(p, SIGHUP); 574 psignal(p, SIGCONT); 575 PROC_UNLOCK(p); 576 } 577 return; 578 } 579 PROC_UNLOCK(p); 580 } 581 } 582 583 #include "opt_ddb.h" 584 #ifdef DDB 585 #include <ddb/ddb.h> 586 587 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 588 { 589 register struct pgrp *pgrp; 590 register struct proc *p; 591 register int i; 592 593 for (i = 0; i <= pgrphash; i++) { 594 if (!LIST_EMPTY(&pgrphashtbl[i])) { 595 printf("\tindx %d\n", i); 596 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 597 printf( 598 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 599 (void *)pgrp, (long)pgrp->pg_id, 600 (void *)pgrp->pg_session, 601 pgrp->pg_session->s_count, 602 (void *)LIST_FIRST(&pgrp->pg_members)); 603 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 604 printf("\t\tpid %ld addr %p pgrp %p\n", 605 (long)p->p_pid, (void *)p, 606 (void *)p->p_pgrp); 607 } 608 } 609 } 610 } 611 } 612 #endif /* DDB */ 613 void 614 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 615 616 /* 617 * Fill in a kinfo_proc structure for the specified process. 618 * Must be called with the target process locked. 619 */ 620 void 621 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 622 { 623 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 624 } 625 626 void 627 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 628 { 629 struct proc *p; 630 struct thread *td0; 631 struct kse *ke; 632 struct ksegrp *kg; 633 struct tty *tp; 634 struct session *sp; 635 struct timeval tv; 636 struct sigacts *ps; 637 638 p = td->td_proc; 639 640 bzero(kp, sizeof(*kp)); 641 642 kp->ki_structsize = sizeof(*kp); 643 kp->ki_paddr = p; 644 PROC_LOCK_ASSERT(p, MA_OWNED); 645 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 646 kp->ki_args = p->p_args; 647 kp->ki_textvp = p->p_textvp; 648 #ifdef KTRACE 649 kp->ki_tracep = p->p_tracevp; 650 mtx_lock(&ktrace_mtx); 651 kp->ki_traceflag = p->p_traceflag; 652 mtx_unlock(&ktrace_mtx); 653 #endif 654 kp->ki_fd = p->p_fd; 655 kp->ki_vmspace = p->p_vmspace; 656 if (p->p_ucred) { 657 kp->ki_uid = p->p_ucred->cr_uid; 658 kp->ki_ruid = p->p_ucred->cr_ruid; 659 kp->ki_svuid = p->p_ucred->cr_svuid; 660 /* XXX bde doesn't like KI_NGROUPS */ 661 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 662 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 663 kp->ki_ngroups * sizeof(gid_t)); 664 kp->ki_rgid = p->p_ucred->cr_rgid; 665 kp->ki_svgid = p->p_ucred->cr_svgid; 666 } 667 if (p->p_sigacts) { 668 ps = p->p_sigacts; 669 mtx_lock(&ps->ps_mtx); 670 kp->ki_sigignore = ps->ps_sigignore; 671 kp->ki_sigcatch = ps->ps_sigcatch; 672 mtx_unlock(&ps->ps_mtx); 673 } 674 mtx_lock_spin(&sched_lock); 675 if (p->p_state != PRS_NEW && 676 p->p_state != PRS_ZOMBIE && 677 p->p_vmspace != NULL) { 678 struct vmspace *vm = p->p_vmspace; 679 680 kp->ki_size = vm->vm_map.size; 681 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 682 if (p->p_sflag & PS_INMEM) 683 kp->ki_rssize += UAREA_PAGES; 684 FOREACH_THREAD_IN_PROC(p, td0) { 685 if (!TD_IS_SWAPPED(td0)) 686 kp->ki_rssize += td0->td_kstack_pages; 687 if (td0->td_altkstack_obj != NULL) 688 kp->ki_rssize += td0->td_altkstack_pages; 689 } 690 kp->ki_swrss = vm->vm_swrss; 691 kp->ki_tsize = vm->vm_tsize; 692 kp->ki_dsize = vm->vm_dsize; 693 kp->ki_ssize = vm->vm_ssize; 694 } 695 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 696 kp->ki_start = p->p_stats->p_start; 697 timevaladd(&kp->ki_start, &boottime); 698 kp->ki_rusage = p->p_stats->p_ru; 699 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 700 p->p_stats->p_cru.ru_stime.tv_sec; 701 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 702 p->p_stats->p_cru.ru_stime.tv_usec; 703 } 704 if (p->p_state != PRS_ZOMBIE) { 705 #if 0 706 if (td == NULL) { 707 /* XXXKSE: This should never happen. */ 708 printf("fill_kinfo_proc(): pid %d has no threads!\n", 709 p->p_pid); 710 mtx_unlock_spin(&sched_lock); 711 return; 712 } 713 #endif 714 if (td->td_wmesg != NULL) { 715 strlcpy(kp->ki_wmesg, td->td_wmesg, 716 sizeof(kp->ki_wmesg)); 717 } 718 if (TD_ON_LOCK(td)) { 719 kp->ki_kiflag |= KI_LOCKBLOCK; 720 strlcpy(kp->ki_lockname, td->td_lockname, 721 sizeof(kp->ki_lockname)); 722 } 723 724 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 725 if (TD_ON_RUNQ(td) || 726 TD_CAN_RUN(td) || 727 TD_IS_RUNNING(td)) { 728 kp->ki_stat = SRUN; 729 } else if (P_SHOULDSTOP(p)) { 730 kp->ki_stat = SSTOP; 731 } else if (TD_IS_SLEEPING(td)) { 732 kp->ki_stat = SSLEEP; 733 } else if (TD_ON_LOCK(td)) { 734 kp->ki_stat = SLOCK; 735 } else { 736 kp->ki_stat = SWAIT; 737 } 738 } else { 739 kp->ki_stat = SIDL; 740 } 741 742 kp->ki_sflag = p->p_sflag; 743 kp->ki_swtime = p->p_swtime; 744 kp->ki_pid = p->p_pid; 745 kg = td->td_ksegrp; 746 ke = td->td_kse; 747 bintime2timeval(&p->p_runtime, &tv); 748 kp->ki_runtime = 749 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 750 751 /* things in the KSE GROUP */ 752 kp->ki_estcpu = kg->kg_estcpu; 753 kp->ki_slptime = kg->kg_slptime; 754 kp->ki_pri.pri_user = kg->kg_user_pri; 755 kp->ki_pri.pri_class = kg->kg_pri_class; 756 kp->ki_nice = kg->kg_nice; 757 758 /* Things in the thread */ 759 kp->ki_wchan = td->td_wchan; 760 kp->ki_pri.pri_level = td->td_priority; 761 kp->ki_pri.pri_native = td->td_base_pri; 762 kp->ki_lastcpu = td->td_lastcpu; 763 kp->ki_oncpu = td->td_oncpu; 764 kp->ki_tdflags = td->td_flags; 765 kp->ki_pcb = td->td_pcb; 766 kp->ki_kstack = (void *)td->td_kstack; 767 768 /* Things in the kse */ 769 770 if (ke) { 771 kp->ki_rqindex = ke->ke_rqindex; 772 kp->ki_pctcpu = sched_pctcpu(ke); 773 } else { 774 kp->ki_rqindex = 0; 775 kp->ki_pctcpu = 0; 776 } 777 778 } else { 779 kp->ki_stat = SZOMB; 780 } 781 mtx_unlock_spin(&sched_lock); 782 sp = NULL; 783 tp = NULL; 784 if (p->p_pgrp) { 785 kp->ki_pgid = p->p_pgrp->pg_id; 786 kp->ki_jobc = p->p_pgrp->pg_jobc; 787 sp = p->p_pgrp->pg_session; 788 789 if (sp != NULL) { 790 kp->ki_sid = sp->s_sid; 791 SESS_LOCK(sp); 792 strlcpy(kp->ki_login, sp->s_login, 793 sizeof(kp->ki_login)); 794 if (sp->s_ttyvp) 795 kp->ki_kiflag |= KI_CTTY; 796 if (SESS_LEADER(p)) 797 kp->ki_kiflag |= KI_SLEADER; 798 tp = sp->s_ttyp; 799 SESS_UNLOCK(sp); 800 } 801 } 802 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 803 kp->ki_tdev = dev2udev(tp->t_dev); 804 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 805 if (tp->t_session) 806 kp->ki_tsid = tp->t_session->s_sid; 807 } else 808 kp->ki_tdev = NOUDEV; 809 if (p->p_comm[0] != '\0') { 810 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 811 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 812 } 813 kp->ki_siglist = p->p_siglist; 814 SIGSETOR(kp->ki_siglist, td->td_siglist); 815 kp->ki_sigmask = td->td_sigmask; 816 kp->ki_xstat = p->p_xstat; 817 kp->ki_acflag = p->p_acflag; 818 kp->ki_flag = p->p_flag; 819 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 820 if (jailed(p->p_ucred)) 821 kp->ki_flag |= P_JAILED; 822 kp->ki_lock = p->p_lock; 823 if (p->p_pptr) 824 kp->ki_ppid = p->p_pptr->p_pid; 825 } 826 827 /* 828 * Locate a zombie process by number 829 */ 830 struct proc * 831 zpfind(pid_t pid) 832 { 833 struct proc *p; 834 835 sx_slock(&allproc_lock); 836 LIST_FOREACH(p, &zombproc, p_list) 837 if (p->p_pid == pid) { 838 PROC_LOCK(p); 839 break; 840 } 841 sx_sunlock(&allproc_lock); 842 return (p); 843 } 844 845 #define KERN_PROC_ZOMBMASK 0x3 846 #define KERN_PROC_NOTHREADS 0x4 847 848 /* 849 * Must be called with the process locked and will return with it unlocked. 850 */ 851 static int 852 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 853 { 854 struct thread *td; 855 struct kinfo_proc kinfo_proc; 856 int error = 0; 857 struct proc *np; 858 pid_t pid = p->p_pid; 859 860 PROC_LOCK_ASSERT(p, MA_OWNED); 861 862 if (flags & KERN_PROC_NOTHREADS) { 863 fill_kinfo_proc(p, &kinfo_proc); 864 PROC_UNLOCK(p); 865 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 866 sizeof(kinfo_proc)); 867 PROC_LOCK(p); 868 } else { 869 _PHOLD(p); 870 FOREACH_THREAD_IN_PROC(p, td) { 871 fill_kinfo_thread(td, &kinfo_proc); 872 PROC_UNLOCK(p); 873 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 874 sizeof(kinfo_proc)); 875 PROC_LOCK(p); 876 if (error) 877 break; 878 } 879 _PRELE(p); 880 } 881 PROC_UNLOCK(p); 882 if (error) 883 return (error); 884 if (flags & KERN_PROC_ZOMBMASK) 885 np = zpfind(pid); 886 else { 887 if (pid == 0) 888 return (0); 889 np = pfind(pid); 890 } 891 if (np == NULL) 892 return EAGAIN; 893 if (np != p) { 894 PROC_UNLOCK(np); 895 return EAGAIN; 896 } 897 PROC_UNLOCK(np); 898 return (0); 899 } 900 901 static int 902 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 903 { 904 int *name = (int*) arg1; 905 u_int namelen = arg2; 906 struct proc *p; 907 int flags, doingzomb; 908 int error = 0; 909 910 if (oidp->oid_number == KERN_PROC_PID) { 911 if (namelen != 1) 912 return (EINVAL); 913 p = pfind((pid_t)name[0]); 914 if (!p) 915 return (ESRCH); 916 if ((error = p_cansee(curthread, p))) { 917 PROC_UNLOCK(p); 918 return (error); 919 } 920 error = sysctl_out_proc(p, req, KERN_PROC_NOTHREADS); 921 return (error); 922 } 923 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 924 ; 925 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 926 ; 927 else 928 return (EINVAL); 929 930 if (!req->oldptr) { 931 /* overestimate by 5 procs */ 932 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 933 if (error) 934 return (error); 935 } 936 sysctl_wire_old_buffer(req, 0); 937 sx_slock(&allproc_lock); 938 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 939 if (!doingzomb) 940 p = LIST_FIRST(&allproc); 941 else 942 p = LIST_FIRST(&zombproc); 943 for (; p != 0; p = LIST_NEXT(p, p_list)) { 944 /* 945 * Skip embryonic processes. 946 */ 947 mtx_lock_spin(&sched_lock); 948 if (p->p_state == PRS_NEW) { 949 mtx_unlock_spin(&sched_lock); 950 continue; 951 } 952 mtx_unlock_spin(&sched_lock); 953 PROC_LOCK(p); 954 /* 955 * Show a user only appropriate processes. 956 */ 957 if (p_cansee(curthread, p)) { 958 PROC_UNLOCK(p); 959 continue; 960 } 961 flags = 0; 962 /* 963 * TODO - make more efficient (see notes below). 964 * do by session. 965 */ 966 switch (oidp->oid_number) { 967 968 case KERN_PROC_PGRP: 969 /* could do this by traversing pgrp */ 970 if (p->p_pgrp == NULL || 971 p->p_pgrp->pg_id != (pid_t)name[0]) { 972 PROC_UNLOCK(p); 973 continue; 974 } 975 break; 976 977 case KERN_PROC_TTY: 978 if ((p->p_flag & P_CONTROLT) == 0 || 979 p->p_session == NULL) { 980 PROC_UNLOCK(p); 981 continue; 982 } 983 SESS_LOCK(p->p_session); 984 if (p->p_session->s_ttyp == NULL || 985 dev2udev(p->p_session->s_ttyp->t_dev) != 986 (udev_t)name[0]) { 987 SESS_UNLOCK(p->p_session); 988 PROC_UNLOCK(p); 989 continue; 990 } 991 SESS_UNLOCK(p->p_session); 992 break; 993 994 case KERN_PROC_UID: 995 if (p->p_ucred == NULL || 996 p->p_ucred->cr_uid != (uid_t)name[0]) { 997 PROC_UNLOCK(p); 998 continue; 999 } 1000 break; 1001 1002 case KERN_PROC_RUID: 1003 if (p->p_ucred == NULL || 1004 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1005 PROC_UNLOCK(p); 1006 continue; 1007 } 1008 break; 1009 1010 case KERN_PROC_PROC: 1011 flags |= KERN_PROC_NOTHREADS; 1012 break; 1013 1014 default: 1015 break; 1016 1017 } 1018 1019 error = sysctl_out_proc(p, req, flags | doingzomb); 1020 if (error) { 1021 sx_sunlock(&allproc_lock); 1022 return (error); 1023 } 1024 } 1025 } 1026 sx_sunlock(&allproc_lock); 1027 return (0); 1028 } 1029 1030 struct pargs * 1031 pargs_alloc(int len) 1032 { 1033 struct pargs *pa; 1034 1035 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1036 M_WAITOK); 1037 pa->ar_ref = 1; 1038 pa->ar_length = len; 1039 return (pa); 1040 } 1041 1042 void 1043 pargs_free(struct pargs *pa) 1044 { 1045 1046 FREE(pa, M_PARGS); 1047 } 1048 1049 void 1050 pargs_hold(struct pargs *pa) 1051 { 1052 1053 if (pa == NULL) 1054 return; 1055 PARGS_LOCK(pa); 1056 pa->ar_ref++; 1057 PARGS_UNLOCK(pa); 1058 } 1059 1060 void 1061 pargs_drop(struct pargs *pa) 1062 { 1063 1064 if (pa == NULL) 1065 return; 1066 PARGS_LOCK(pa); 1067 if (--pa->ar_ref == 0) { 1068 PARGS_UNLOCK(pa); 1069 pargs_free(pa); 1070 } else 1071 PARGS_UNLOCK(pa); 1072 } 1073 1074 /* 1075 * This sysctl allows a process to retrieve the argument list or process 1076 * title for another process without groping around in the address space 1077 * of the other process. It also allow a process to set its own "process 1078 * title to a string of its own choice. 1079 */ 1080 static int 1081 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1082 { 1083 int *name = (int*) arg1; 1084 u_int namelen = arg2; 1085 struct pargs *newpa, *pa; 1086 struct proc *p; 1087 int error = 0; 1088 1089 if (namelen != 1) 1090 return (EINVAL); 1091 1092 p = pfind((pid_t)name[0]); 1093 if (!p) 1094 return (ESRCH); 1095 1096 if ((!ps_argsopen) && (error = p_cansee(curthread, p))) { 1097 PROC_UNLOCK(p); 1098 return (error); 1099 } 1100 1101 if (req->newptr && curproc != p) { 1102 PROC_UNLOCK(p); 1103 return (EPERM); 1104 } 1105 1106 pa = p->p_args; 1107 pargs_hold(pa); 1108 PROC_UNLOCK(p); 1109 if (req->oldptr != NULL && pa != NULL) 1110 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1111 pargs_drop(pa); 1112 if (error != 0 || req->newptr == NULL) 1113 return (error); 1114 1115 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1116 return (ENOMEM); 1117 newpa = pargs_alloc(req->newlen); 1118 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1119 if (error != 0) { 1120 pargs_free(newpa); 1121 return (error); 1122 } 1123 PROC_LOCK(p); 1124 pa = p->p_args; 1125 p->p_args = newpa; 1126 PROC_UNLOCK(p); 1127 pargs_drop(pa); 1128 return (0); 1129 } 1130 1131 static int 1132 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1133 { 1134 struct proc *p; 1135 char *sv_name; 1136 int *name; 1137 int namelen; 1138 int error; 1139 1140 namelen = arg2; 1141 if (namelen != 1) 1142 return (EINVAL); 1143 1144 name = (int *)arg1; 1145 if ((p = pfind((pid_t)name[0])) == NULL) 1146 return (ESRCH); 1147 if ((error = p_cansee(curthread, p))) { 1148 PROC_UNLOCK(p); 1149 return (error); 1150 } 1151 sv_name = p->p_sysent->sv_name; 1152 PROC_UNLOCK(p); 1153 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1154 } 1155 1156 1157 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1158 1159 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1160 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1161 1162 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1163 sysctl_kern_proc, "Process table"); 1164 1165 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1166 sysctl_kern_proc, "Process table"); 1167 1168 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1169 sysctl_kern_proc, "Process table"); 1170 1171 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1172 sysctl_kern_proc, "Process table"); 1173 1174 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1175 sysctl_kern_proc, "Process table"); 1176 1177 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1178 sysctl_kern_proc, "Return process table, no threads"); 1179 1180 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1181 sysctl_kern_proc_args, "Process argument list"); 1182 1183 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1184 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1185