xref: /freebsd/sys/kern/kern_proc.c (revision dcc3a33188bceb5b6e819efdb9c5f72d059084b6)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81 
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110 
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115 
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129 
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 uma_zone_t ithread_zone;
144 
145 int kstack_pages = KSTACK_PAGES;
146 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
147 
148 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
149 
150 /*
151  * Initialize global process hashing structures.
152  */
153 void
154 procinit()
155 {
156 
157 	sx_init(&allproc_lock, "allproc");
158 	sx_init(&proctree_lock, "proctree");
159 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
160 	LIST_INIT(&allproc);
161 	LIST_INIT(&zombproc);
162 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
163 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
164 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
165 	    proc_ctor, proc_dtor, proc_init, proc_fini,
166 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
167 	uihashinit();
168 }
169 
170 /*
171  * Prepare a proc for use.
172  */
173 static int
174 proc_ctor(void *mem, int size, void *arg, int flags)
175 {
176 	struct proc *p;
177 
178 	p = (struct proc *)mem;
179 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
180 	EVENTHANDLER_INVOKE(process_ctor, p);
181 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
182 	return (0);
183 }
184 
185 /*
186  * Reclaim a proc after use.
187  */
188 static void
189 proc_dtor(void *mem, int size, void *arg)
190 {
191 	struct proc *p;
192 	struct thread *td;
193 
194 	/* INVARIANTS checks go here */
195 	p = (struct proc *)mem;
196 	td = FIRST_THREAD_IN_PROC(p);
197 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
198 	if (td != NULL) {
199 #ifdef INVARIANTS
200 		KASSERT((p->p_numthreads == 1),
201 		    ("bad number of threads in exiting process"));
202 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
203 #endif
204 		/* Free all OSD associated to this thread. */
205 		osd_thread_exit(td);
206 	}
207 	EVENTHANDLER_INVOKE(process_dtor, p);
208 	if (p->p_ksi != NULL)
209 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
210 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
211 }
212 
213 /*
214  * Initialize type-stable parts of a proc (when newly created).
215  */
216 static int
217 proc_init(void *mem, int size, int flags)
218 {
219 	struct proc *p;
220 
221 	p = (struct proc *)mem;
222 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
223 	p->p_sched = (struct p_sched *)&p[1];
224 	bzero(&p->p_mtx, sizeof(struct mtx));
225 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
226 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
227 	cv_init(&p->p_pwait, "ppwait");
228 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
229 	EVENTHANDLER_INVOKE(process_init, p);
230 	p->p_stats = pstats_alloc();
231 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
232 	return (0);
233 }
234 
235 /*
236  * UMA should ensure that this function is never called.
237  * Freeing a proc structure would violate type stability.
238  */
239 static void
240 proc_fini(void *mem, int size)
241 {
242 #ifdef notnow
243 	struct proc *p;
244 
245 	p = (struct proc *)mem;
246 	EVENTHANDLER_INVOKE(process_fini, p);
247 	pstats_free(p->p_stats);
248 	thread_free(FIRST_THREAD_IN_PROC(p));
249 	mtx_destroy(&p->p_mtx);
250 	if (p->p_ksi != NULL)
251 		ksiginfo_free(p->p_ksi);
252 #else
253 	panic("proc reclaimed");
254 #endif
255 }
256 
257 /*
258  * Is p an inferior of the current process?
259  */
260 int
261 inferior(p)
262 	register struct proc *p;
263 {
264 
265 	sx_assert(&proctree_lock, SX_LOCKED);
266 	for (; p != curproc; p = p->p_pptr)
267 		if (p->p_pid == 0)
268 			return (0);
269 	return (1);
270 }
271 
272 /*
273  * Locate a process by number; return only "live" processes -- i.e., neither
274  * zombies nor newly born but incompletely initialized processes.  By not
275  * returning processes in the PRS_NEW state, we allow callers to avoid
276  * testing for that condition to avoid dereferencing p_ucred, et al.
277  */
278 struct proc *
279 pfind(pid)
280 	register pid_t pid;
281 {
282 	register struct proc *p;
283 
284 	sx_slock(&allproc_lock);
285 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
286 		if (p->p_pid == pid) {
287 			if (p->p_state == PRS_NEW) {
288 				p = NULL;
289 				break;
290 			}
291 			PROC_LOCK(p);
292 			break;
293 		}
294 	sx_sunlock(&allproc_lock);
295 	return (p);
296 }
297 
298 /*
299  * Locate a process group by number.
300  * The caller must hold proctree_lock.
301  */
302 struct pgrp *
303 pgfind(pgid)
304 	register pid_t pgid;
305 {
306 	register struct pgrp *pgrp;
307 
308 	sx_assert(&proctree_lock, SX_LOCKED);
309 
310 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
311 		if (pgrp->pg_id == pgid) {
312 			PGRP_LOCK(pgrp);
313 			return (pgrp);
314 		}
315 	}
316 	return (NULL);
317 }
318 
319 /*
320  * Create a new process group.
321  * pgid must be equal to the pid of p.
322  * Begin a new session if required.
323  */
324 int
325 enterpgrp(p, pgid, pgrp, sess)
326 	register struct proc *p;
327 	pid_t pgid;
328 	struct pgrp *pgrp;
329 	struct session *sess;
330 {
331 	struct pgrp *pgrp2;
332 
333 	sx_assert(&proctree_lock, SX_XLOCKED);
334 
335 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
336 	KASSERT(p->p_pid == pgid,
337 	    ("enterpgrp: new pgrp and pid != pgid"));
338 
339 	pgrp2 = pgfind(pgid);
340 
341 	KASSERT(pgrp2 == NULL,
342 	    ("enterpgrp: pgrp with pgid exists"));
343 	KASSERT(!SESS_LEADER(p),
344 	    ("enterpgrp: session leader attempted setpgrp"));
345 
346 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
347 
348 	if (sess != NULL) {
349 		/*
350 		 * new session
351 		 */
352 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
353 		PROC_LOCK(p);
354 		p->p_flag &= ~P_CONTROLT;
355 		PROC_UNLOCK(p);
356 		PGRP_LOCK(pgrp);
357 		sess->s_leader = p;
358 		sess->s_sid = p->p_pid;
359 		refcount_init(&sess->s_count, 1);
360 		sess->s_ttyvp = NULL;
361 		sess->s_ttyp = NULL;
362 		bcopy(p->p_session->s_login, sess->s_login,
363 			    sizeof(sess->s_login));
364 		pgrp->pg_session = sess;
365 		KASSERT(p == curproc,
366 		    ("enterpgrp: mksession and p != curproc"));
367 	} else {
368 		pgrp->pg_session = p->p_session;
369 		sess_hold(pgrp->pg_session);
370 		PGRP_LOCK(pgrp);
371 	}
372 	pgrp->pg_id = pgid;
373 	LIST_INIT(&pgrp->pg_members);
374 
375 	/*
376 	 * As we have an exclusive lock of proctree_lock,
377 	 * this should not deadlock.
378 	 */
379 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
380 	pgrp->pg_jobc = 0;
381 	SLIST_INIT(&pgrp->pg_sigiolst);
382 	PGRP_UNLOCK(pgrp);
383 
384 	doenterpgrp(p, pgrp);
385 
386 	return (0);
387 }
388 
389 /*
390  * Move p to an existing process group
391  */
392 int
393 enterthispgrp(p, pgrp)
394 	register struct proc *p;
395 	struct pgrp *pgrp;
396 {
397 
398 	sx_assert(&proctree_lock, SX_XLOCKED);
399 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
400 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
401 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
402 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
403 	KASSERT(pgrp->pg_session == p->p_session,
404 		("%s: pgrp's session %p, p->p_session %p.\n",
405 		__func__,
406 		pgrp->pg_session,
407 		p->p_session));
408 	KASSERT(pgrp != p->p_pgrp,
409 		("%s: p belongs to pgrp.", __func__));
410 
411 	doenterpgrp(p, pgrp);
412 
413 	return (0);
414 }
415 
416 /*
417  * Move p to a process group
418  */
419 static void
420 doenterpgrp(p, pgrp)
421 	struct proc *p;
422 	struct pgrp *pgrp;
423 {
424 	struct pgrp *savepgrp;
425 
426 	sx_assert(&proctree_lock, SX_XLOCKED);
427 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
428 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
429 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
430 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
431 
432 	savepgrp = p->p_pgrp;
433 
434 	/*
435 	 * Adjust eligibility of affected pgrps to participate in job control.
436 	 * Increment eligibility counts before decrementing, otherwise we
437 	 * could reach 0 spuriously during the first call.
438 	 */
439 	fixjobc(p, pgrp, 1);
440 	fixjobc(p, p->p_pgrp, 0);
441 
442 	PGRP_LOCK(pgrp);
443 	PGRP_LOCK(savepgrp);
444 	PROC_LOCK(p);
445 	LIST_REMOVE(p, p_pglist);
446 	p->p_pgrp = pgrp;
447 	PROC_UNLOCK(p);
448 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
449 	PGRP_UNLOCK(savepgrp);
450 	PGRP_UNLOCK(pgrp);
451 	if (LIST_EMPTY(&savepgrp->pg_members))
452 		pgdelete(savepgrp);
453 }
454 
455 /*
456  * remove process from process group
457  */
458 int
459 leavepgrp(p)
460 	register struct proc *p;
461 {
462 	struct pgrp *savepgrp;
463 
464 	sx_assert(&proctree_lock, SX_XLOCKED);
465 	savepgrp = p->p_pgrp;
466 	PGRP_LOCK(savepgrp);
467 	PROC_LOCK(p);
468 	LIST_REMOVE(p, p_pglist);
469 	p->p_pgrp = NULL;
470 	PROC_UNLOCK(p);
471 	PGRP_UNLOCK(savepgrp);
472 	if (LIST_EMPTY(&savepgrp->pg_members))
473 		pgdelete(savepgrp);
474 	return (0);
475 }
476 
477 /*
478  * delete a process group
479  */
480 static void
481 pgdelete(pgrp)
482 	register struct pgrp *pgrp;
483 {
484 	struct session *savesess;
485 	struct tty *tp;
486 
487 	sx_assert(&proctree_lock, SX_XLOCKED);
488 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
489 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
490 
491 	/*
492 	 * Reset any sigio structures pointing to us as a result of
493 	 * F_SETOWN with our pgid.
494 	 */
495 	funsetownlst(&pgrp->pg_sigiolst);
496 
497 	PGRP_LOCK(pgrp);
498 	tp = pgrp->pg_session->s_ttyp;
499 	LIST_REMOVE(pgrp, pg_hash);
500 	savesess = pgrp->pg_session;
501 	PGRP_UNLOCK(pgrp);
502 
503 	/* Remove the reference to the pgrp before deallocating it. */
504 	if (tp != NULL) {
505 		tty_lock(tp);
506 		tty_rel_pgrp(tp, pgrp);
507 	}
508 
509 	mtx_destroy(&pgrp->pg_mtx);
510 	free(pgrp, M_PGRP);
511 	sess_release(savesess);
512 }
513 
514 static void
515 pgadjustjobc(pgrp, entering)
516 	struct pgrp *pgrp;
517 	int entering;
518 {
519 
520 	PGRP_LOCK(pgrp);
521 	if (entering)
522 		pgrp->pg_jobc++;
523 	else {
524 		--pgrp->pg_jobc;
525 		if (pgrp->pg_jobc == 0)
526 			orphanpg(pgrp);
527 	}
528 	PGRP_UNLOCK(pgrp);
529 }
530 
531 /*
532  * Adjust pgrp jobc counters when specified process changes process group.
533  * We count the number of processes in each process group that "qualify"
534  * the group for terminal job control (those with a parent in a different
535  * process group of the same session).  If that count reaches zero, the
536  * process group becomes orphaned.  Check both the specified process'
537  * process group and that of its children.
538  * entering == 0 => p is leaving specified group.
539  * entering == 1 => p is entering specified group.
540  */
541 void
542 fixjobc(p, pgrp, entering)
543 	register struct proc *p;
544 	register struct pgrp *pgrp;
545 	int entering;
546 {
547 	register struct pgrp *hispgrp;
548 	register struct session *mysession;
549 
550 	sx_assert(&proctree_lock, SX_LOCKED);
551 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
552 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
553 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
554 
555 	/*
556 	 * Check p's parent to see whether p qualifies its own process
557 	 * group; if so, adjust count for p's process group.
558 	 */
559 	mysession = pgrp->pg_session;
560 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
561 	    hispgrp->pg_session == mysession)
562 		pgadjustjobc(pgrp, entering);
563 
564 	/*
565 	 * Check this process' children to see whether they qualify
566 	 * their process groups; if so, adjust counts for children's
567 	 * process groups.
568 	 */
569 	LIST_FOREACH(p, &p->p_children, p_sibling) {
570 		hispgrp = p->p_pgrp;
571 		if (hispgrp == pgrp ||
572 		    hispgrp->pg_session != mysession)
573 			continue;
574 		PROC_LOCK(p);
575 		if (p->p_state == PRS_ZOMBIE) {
576 			PROC_UNLOCK(p);
577 			continue;
578 		}
579 		PROC_UNLOCK(p);
580 		pgadjustjobc(hispgrp, entering);
581 	}
582 }
583 
584 /*
585  * A process group has become orphaned;
586  * if there are any stopped processes in the group,
587  * hang-up all process in that group.
588  */
589 static void
590 orphanpg(pg)
591 	struct pgrp *pg;
592 {
593 	register struct proc *p;
594 
595 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
596 
597 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
598 		PROC_LOCK(p);
599 		if (P_SHOULDSTOP(p)) {
600 			PROC_UNLOCK(p);
601 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
602 				PROC_LOCK(p);
603 				psignal(p, SIGHUP);
604 				psignal(p, SIGCONT);
605 				PROC_UNLOCK(p);
606 			}
607 			return;
608 		}
609 		PROC_UNLOCK(p);
610 	}
611 }
612 
613 void
614 sess_hold(struct session *s)
615 {
616 
617 	refcount_acquire(&s->s_count);
618 }
619 
620 void
621 sess_release(struct session *s)
622 {
623 
624 	if (refcount_release(&s->s_count)) {
625 		if (s->s_ttyp != NULL) {
626 			tty_lock(s->s_ttyp);
627 			tty_rel_sess(s->s_ttyp, s);
628 		}
629 		mtx_destroy(&s->s_mtx);
630 		free(s, M_SESSION);
631 	}
632 }
633 
634 #include "opt_ddb.h"
635 #ifdef DDB
636 #include <ddb/ddb.h>
637 
638 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
639 {
640 	register struct pgrp *pgrp;
641 	register struct proc *p;
642 	register int i;
643 
644 	for (i = 0; i <= pgrphash; i++) {
645 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
646 			printf("\tindx %d\n", i);
647 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
648 				printf(
649 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
650 				    (void *)pgrp, (long)pgrp->pg_id,
651 				    (void *)pgrp->pg_session,
652 				    pgrp->pg_session->s_count,
653 				    (void *)LIST_FIRST(&pgrp->pg_members));
654 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
655 					printf("\t\tpid %ld addr %p pgrp %p\n",
656 					    (long)p->p_pid, (void *)p,
657 					    (void *)p->p_pgrp);
658 				}
659 			}
660 		}
661 	}
662 }
663 #endif /* DDB */
664 
665 /*
666  * Calculate the kinfo_proc members which contain process-wide
667  * informations.
668  * Must be called with the target process locked.
669  */
670 static void
671 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
672 {
673 	struct thread *td;
674 
675 	PROC_LOCK_ASSERT(p, MA_OWNED);
676 
677 	kp->ki_estcpu = 0;
678 	kp->ki_pctcpu = 0;
679 	kp->ki_runtime = 0;
680 	FOREACH_THREAD_IN_PROC(p, td) {
681 		thread_lock(td);
682 		kp->ki_pctcpu += sched_pctcpu(td);
683 		kp->ki_runtime += cputick2usec(td->td_runtime);
684 		kp->ki_estcpu += td->td_estcpu;
685 		thread_unlock(td);
686 	}
687 }
688 
689 /*
690  * Clear kinfo_proc and fill in any information that is common
691  * to all threads in the process.
692  * Must be called with the target process locked.
693  */
694 static void
695 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
696 {
697 	struct thread *td0;
698 	struct tty *tp;
699 	struct session *sp;
700 	struct ucred *cred;
701 	struct sigacts *ps;
702 
703 	PROC_LOCK_ASSERT(p, MA_OWNED);
704 	bzero(kp, sizeof(*kp));
705 
706 	kp->ki_structsize = sizeof(*kp);
707 	kp->ki_paddr = p;
708 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
709 	kp->ki_args = p->p_args;
710 	kp->ki_textvp = p->p_textvp;
711 #ifdef KTRACE
712 	kp->ki_tracep = p->p_tracevp;
713 	mtx_lock(&ktrace_mtx);
714 	kp->ki_traceflag = p->p_traceflag;
715 	mtx_unlock(&ktrace_mtx);
716 #endif
717 	kp->ki_fd = p->p_fd;
718 	kp->ki_vmspace = p->p_vmspace;
719 	kp->ki_flag = p->p_flag;
720 	cred = p->p_ucred;
721 	if (cred) {
722 		kp->ki_uid = cred->cr_uid;
723 		kp->ki_ruid = cred->cr_ruid;
724 		kp->ki_svuid = cred->cr_svuid;
725 		kp->ki_cr_flags = cred->cr_flags;
726 		/* XXX bde doesn't like KI_NGROUPS */
727 		if (cred->cr_ngroups > KI_NGROUPS) {
728 			kp->ki_ngroups = KI_NGROUPS;
729 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
730 		} else
731 			kp->ki_ngroups = cred->cr_ngroups;
732 		bcopy(cred->cr_groups, kp->ki_groups,
733 		    kp->ki_ngroups * sizeof(gid_t));
734 		kp->ki_rgid = cred->cr_rgid;
735 		kp->ki_svgid = cred->cr_svgid;
736 		/* If jailed(cred), emulate the old P_JAILED flag. */
737 		if (jailed(cred)) {
738 			kp->ki_flag |= P_JAILED;
739 			/* If inside the jail, use 0 as a jail ID. */
740 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
741 				kp->ki_jid = cred->cr_prison->pr_id;
742 		}
743 	}
744 	ps = p->p_sigacts;
745 	if (ps) {
746 		mtx_lock(&ps->ps_mtx);
747 		kp->ki_sigignore = ps->ps_sigignore;
748 		kp->ki_sigcatch = ps->ps_sigcatch;
749 		mtx_unlock(&ps->ps_mtx);
750 	}
751 	PROC_SLOCK(p);
752 	if (p->p_state != PRS_NEW &&
753 	    p->p_state != PRS_ZOMBIE &&
754 	    p->p_vmspace != NULL) {
755 		struct vmspace *vm = p->p_vmspace;
756 
757 		kp->ki_size = vm->vm_map.size;
758 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
759 		FOREACH_THREAD_IN_PROC(p, td0) {
760 			if (!TD_IS_SWAPPED(td0))
761 				kp->ki_rssize += td0->td_kstack_pages;
762 		}
763 		kp->ki_swrss = vm->vm_swrss;
764 		kp->ki_tsize = vm->vm_tsize;
765 		kp->ki_dsize = vm->vm_dsize;
766 		kp->ki_ssize = vm->vm_ssize;
767 	} else if (p->p_state == PRS_ZOMBIE)
768 		kp->ki_stat = SZOMB;
769 	if (kp->ki_flag & P_INMEM)
770 		kp->ki_sflag = PS_INMEM;
771 	else
772 		kp->ki_sflag = 0;
773 	/* Calculate legacy swtime as seconds since 'swtick'. */
774 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
775 	kp->ki_pid = p->p_pid;
776 	kp->ki_nice = p->p_nice;
777 	rufetch(p, &kp->ki_rusage);
778 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
779 	PROC_SUNLOCK(p);
780 	if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
781 		kp->ki_start = p->p_stats->p_start;
782 		timevaladd(&kp->ki_start, &boottime);
783 		PROC_SLOCK(p);
784 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
785 		PROC_SUNLOCK(p);
786 		calccru(p, &kp->ki_childutime, &kp->ki_childstime);
787 
788 		/* Some callers want child-times in a single value */
789 		kp->ki_childtime = kp->ki_childstime;
790 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
791 	}
792 	tp = NULL;
793 	if (p->p_pgrp) {
794 		kp->ki_pgid = p->p_pgrp->pg_id;
795 		kp->ki_jobc = p->p_pgrp->pg_jobc;
796 		sp = p->p_pgrp->pg_session;
797 
798 		if (sp != NULL) {
799 			kp->ki_sid = sp->s_sid;
800 			SESS_LOCK(sp);
801 			strlcpy(kp->ki_login, sp->s_login,
802 			    sizeof(kp->ki_login));
803 			if (sp->s_ttyvp)
804 				kp->ki_kiflag |= KI_CTTY;
805 			if (SESS_LEADER(p))
806 				kp->ki_kiflag |= KI_SLEADER;
807 			/* XXX proctree_lock */
808 			tp = sp->s_ttyp;
809 			SESS_UNLOCK(sp);
810 		}
811 	}
812 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
813 		kp->ki_tdev = tty_udev(tp);
814 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
815 		if (tp->t_session)
816 			kp->ki_tsid = tp->t_session->s_sid;
817 	} else
818 		kp->ki_tdev = NODEV;
819 	if (p->p_comm[0] != '\0')
820 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
821 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
822 	    p->p_sysent->sv_name[0] != '\0')
823 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
824 	kp->ki_siglist = p->p_siglist;
825 	kp->ki_xstat = p->p_xstat;
826 	kp->ki_acflag = p->p_acflag;
827 	kp->ki_lock = p->p_lock;
828 	if (p->p_pptr)
829 		kp->ki_ppid = p->p_pptr->p_pid;
830 }
831 
832 /*
833  * Fill in information that is thread specific.  Must be called with p_slock
834  * locked.  If 'preferthread' is set, overwrite certain process-related
835  * fields that are maintained for both threads and processes.
836  */
837 static void
838 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
839 {
840 	struct proc *p;
841 
842 	p = td->td_proc;
843 	PROC_LOCK_ASSERT(p, MA_OWNED);
844 
845 	thread_lock(td);
846 	if (td->td_wmesg != NULL)
847 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
848 	else
849 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
850 	if (td->td_name[0] != '\0')
851 		strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
852 	if (TD_ON_LOCK(td)) {
853 		kp->ki_kiflag |= KI_LOCKBLOCK;
854 		strlcpy(kp->ki_lockname, td->td_lockname,
855 		    sizeof(kp->ki_lockname));
856 	} else {
857 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
858 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
859 	}
860 
861 	if (p->p_state == PRS_NORMAL) { /* approximate. */
862 		if (TD_ON_RUNQ(td) ||
863 		    TD_CAN_RUN(td) ||
864 		    TD_IS_RUNNING(td)) {
865 			kp->ki_stat = SRUN;
866 		} else if (P_SHOULDSTOP(p)) {
867 			kp->ki_stat = SSTOP;
868 		} else if (TD_IS_SLEEPING(td)) {
869 			kp->ki_stat = SSLEEP;
870 		} else if (TD_ON_LOCK(td)) {
871 			kp->ki_stat = SLOCK;
872 		} else {
873 			kp->ki_stat = SWAIT;
874 		}
875 	} else if (p->p_state == PRS_ZOMBIE) {
876 		kp->ki_stat = SZOMB;
877 	} else {
878 		kp->ki_stat = SIDL;
879 	}
880 
881 	/* Things in the thread */
882 	kp->ki_wchan = td->td_wchan;
883 	kp->ki_pri.pri_level = td->td_priority;
884 	kp->ki_pri.pri_native = td->td_base_pri;
885 	kp->ki_lastcpu = td->td_lastcpu;
886 	kp->ki_oncpu = td->td_oncpu;
887 	kp->ki_tdflags = td->td_flags;
888 	kp->ki_tid = td->td_tid;
889 	kp->ki_numthreads = p->p_numthreads;
890 	kp->ki_pcb = td->td_pcb;
891 	kp->ki_kstack = (void *)td->td_kstack;
892 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
893 	kp->ki_pri.pri_class = td->td_pri_class;
894 	kp->ki_pri.pri_user = td->td_user_pri;
895 
896 	if (preferthread) {
897 		kp->ki_runtime = cputick2usec(td->td_runtime);
898 		kp->ki_pctcpu = sched_pctcpu(td);
899 		kp->ki_estcpu = td->td_estcpu;
900 	}
901 
902 	/* We can't get this anymore but ps etc never used it anyway. */
903 	kp->ki_rqindex = 0;
904 
905 	SIGSETOR(kp->ki_siglist, td->td_siglist);
906 	kp->ki_sigmask = td->td_sigmask;
907 	thread_unlock(td);
908 }
909 
910 /*
911  * Fill in a kinfo_proc structure for the specified process.
912  * Must be called with the target process locked.
913  */
914 void
915 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
916 {
917 
918 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
919 
920 	fill_kinfo_proc_only(p, kp);
921 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
922 	fill_kinfo_aggregate(p, kp);
923 }
924 
925 struct pstats *
926 pstats_alloc(void)
927 {
928 
929 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
930 }
931 
932 /*
933  * Copy parts of p_stats; zero the rest of p_stats (statistics).
934  */
935 void
936 pstats_fork(struct pstats *src, struct pstats *dst)
937 {
938 
939 	bzero(&dst->pstat_startzero,
940 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
941 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
942 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
943 }
944 
945 void
946 pstats_free(struct pstats *ps)
947 {
948 
949 	free(ps, M_SUBPROC);
950 }
951 
952 /*
953  * Locate a zombie process by number
954  */
955 struct proc *
956 zpfind(pid_t pid)
957 {
958 	struct proc *p;
959 
960 	sx_slock(&allproc_lock);
961 	LIST_FOREACH(p, &zombproc, p_list)
962 		if (p->p_pid == pid) {
963 			PROC_LOCK(p);
964 			break;
965 		}
966 	sx_sunlock(&allproc_lock);
967 	return (p);
968 }
969 
970 #define KERN_PROC_ZOMBMASK	0x3
971 #define KERN_PROC_NOTHREADS	0x4
972 
973 /*
974  * Must be called with the process locked and will return with it unlocked.
975  */
976 static int
977 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
978 {
979 	struct thread *td;
980 	struct kinfo_proc kinfo_proc;
981 	int error = 0;
982 	struct proc *np;
983 	pid_t pid = p->p_pid;
984 
985 	PROC_LOCK_ASSERT(p, MA_OWNED);
986 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
987 
988 	fill_kinfo_proc(p, &kinfo_proc);
989 	if (flags & KERN_PROC_NOTHREADS)
990 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
991 		    sizeof(kinfo_proc));
992 	else {
993 		FOREACH_THREAD_IN_PROC(p, td) {
994 			fill_kinfo_thread(td, &kinfo_proc, 1);
995 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
996 			    sizeof(kinfo_proc));
997 			if (error)
998 				break;
999 		}
1000 	}
1001 	PROC_UNLOCK(p);
1002 	if (error)
1003 		return (error);
1004 	if (flags & KERN_PROC_ZOMBMASK)
1005 		np = zpfind(pid);
1006 	else {
1007 		if (pid == 0)
1008 			return (0);
1009 		np = pfind(pid);
1010 	}
1011 	if (np == NULL)
1012 		return (ESRCH);
1013 	if (np != p) {
1014 		PROC_UNLOCK(np);
1015 		return (ESRCH);
1016 	}
1017 	PROC_UNLOCK(np);
1018 	return (0);
1019 }
1020 
1021 static int
1022 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1023 {
1024 	int *name = (int*) arg1;
1025 	u_int namelen = arg2;
1026 	struct proc *p;
1027 	int flags, doingzomb, oid_number;
1028 	int error = 0;
1029 
1030 	oid_number = oidp->oid_number;
1031 	if (oid_number != KERN_PROC_ALL &&
1032 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1033 		flags = KERN_PROC_NOTHREADS;
1034 	else {
1035 		flags = 0;
1036 		oid_number &= ~KERN_PROC_INC_THREAD;
1037 	}
1038 	if (oid_number == KERN_PROC_PID) {
1039 		if (namelen != 1)
1040 			return (EINVAL);
1041 		error = sysctl_wire_old_buffer(req, 0);
1042 		if (error)
1043 			return (error);
1044 		p = pfind((pid_t)name[0]);
1045 		if (!p)
1046 			return (ESRCH);
1047 		if ((error = p_cansee(curthread, p))) {
1048 			PROC_UNLOCK(p);
1049 			return (error);
1050 		}
1051 		error = sysctl_out_proc(p, req, flags);
1052 		return (error);
1053 	}
1054 
1055 	switch (oid_number) {
1056 	case KERN_PROC_ALL:
1057 		if (namelen != 0)
1058 			return (EINVAL);
1059 		break;
1060 	case KERN_PROC_PROC:
1061 		if (namelen != 0 && namelen != 1)
1062 			return (EINVAL);
1063 		break;
1064 	default:
1065 		if (namelen != 1)
1066 			return (EINVAL);
1067 		break;
1068 	}
1069 
1070 	if (!req->oldptr) {
1071 		/* overestimate by 5 procs */
1072 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1073 		if (error)
1074 			return (error);
1075 	}
1076 	error = sysctl_wire_old_buffer(req, 0);
1077 	if (error != 0)
1078 		return (error);
1079 	sx_slock(&allproc_lock);
1080 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1081 		if (!doingzomb)
1082 			p = LIST_FIRST(&allproc);
1083 		else
1084 			p = LIST_FIRST(&zombproc);
1085 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1086 			/*
1087 			 * Skip embryonic processes.
1088 			 */
1089 			PROC_SLOCK(p);
1090 			if (p->p_state == PRS_NEW) {
1091 				PROC_SUNLOCK(p);
1092 				continue;
1093 			}
1094 			PROC_SUNLOCK(p);
1095 			PROC_LOCK(p);
1096 			KASSERT(p->p_ucred != NULL,
1097 			    ("process credential is NULL for non-NEW proc"));
1098 			/*
1099 			 * Show a user only appropriate processes.
1100 			 */
1101 			if (p_cansee(curthread, p)) {
1102 				PROC_UNLOCK(p);
1103 				continue;
1104 			}
1105 			/*
1106 			 * TODO - make more efficient (see notes below).
1107 			 * do by session.
1108 			 */
1109 			switch (oid_number) {
1110 
1111 			case KERN_PROC_GID:
1112 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1113 					PROC_UNLOCK(p);
1114 					continue;
1115 				}
1116 				break;
1117 
1118 			case KERN_PROC_PGRP:
1119 				/* could do this by traversing pgrp */
1120 				if (p->p_pgrp == NULL ||
1121 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1122 					PROC_UNLOCK(p);
1123 					continue;
1124 				}
1125 				break;
1126 
1127 			case KERN_PROC_RGID:
1128 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1129 					PROC_UNLOCK(p);
1130 					continue;
1131 				}
1132 				break;
1133 
1134 			case KERN_PROC_SESSION:
1135 				if (p->p_session == NULL ||
1136 				    p->p_session->s_sid != (pid_t)name[0]) {
1137 					PROC_UNLOCK(p);
1138 					continue;
1139 				}
1140 				break;
1141 
1142 			case KERN_PROC_TTY:
1143 				if ((p->p_flag & P_CONTROLT) == 0 ||
1144 				    p->p_session == NULL) {
1145 					PROC_UNLOCK(p);
1146 					continue;
1147 				}
1148 				/* XXX proctree_lock */
1149 				SESS_LOCK(p->p_session);
1150 				if (p->p_session->s_ttyp == NULL ||
1151 				    tty_udev(p->p_session->s_ttyp) !=
1152 				    (dev_t)name[0]) {
1153 					SESS_UNLOCK(p->p_session);
1154 					PROC_UNLOCK(p);
1155 					continue;
1156 				}
1157 				SESS_UNLOCK(p->p_session);
1158 				break;
1159 
1160 			case KERN_PROC_UID:
1161 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1162 					PROC_UNLOCK(p);
1163 					continue;
1164 				}
1165 				break;
1166 
1167 			case KERN_PROC_RUID:
1168 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1169 					PROC_UNLOCK(p);
1170 					continue;
1171 				}
1172 				break;
1173 
1174 			case KERN_PROC_PROC:
1175 				break;
1176 
1177 			default:
1178 				break;
1179 
1180 			}
1181 
1182 			error = sysctl_out_proc(p, req, flags | doingzomb);
1183 			if (error) {
1184 				sx_sunlock(&allproc_lock);
1185 				return (error);
1186 			}
1187 		}
1188 	}
1189 	sx_sunlock(&allproc_lock);
1190 	return (0);
1191 }
1192 
1193 struct pargs *
1194 pargs_alloc(int len)
1195 {
1196 	struct pargs *pa;
1197 
1198 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1199 		M_WAITOK);
1200 	refcount_init(&pa->ar_ref, 1);
1201 	pa->ar_length = len;
1202 	return (pa);
1203 }
1204 
1205 static void
1206 pargs_free(struct pargs *pa)
1207 {
1208 
1209 	free(pa, M_PARGS);
1210 }
1211 
1212 void
1213 pargs_hold(struct pargs *pa)
1214 {
1215 
1216 	if (pa == NULL)
1217 		return;
1218 	refcount_acquire(&pa->ar_ref);
1219 }
1220 
1221 void
1222 pargs_drop(struct pargs *pa)
1223 {
1224 
1225 	if (pa == NULL)
1226 		return;
1227 	if (refcount_release(&pa->ar_ref))
1228 		pargs_free(pa);
1229 }
1230 
1231 /*
1232  * This sysctl allows a process to retrieve the argument list or process
1233  * title for another process without groping around in the address space
1234  * of the other process.  It also allow a process to set its own "process
1235  * title to a string of its own choice.
1236  */
1237 static int
1238 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1239 {
1240 	int *name = (int*) arg1;
1241 	u_int namelen = arg2;
1242 	struct pargs *newpa, *pa;
1243 	struct proc *p;
1244 	int error = 0;
1245 
1246 	if (namelen != 1)
1247 		return (EINVAL);
1248 
1249 	p = pfind((pid_t)name[0]);
1250 	if (!p)
1251 		return (ESRCH);
1252 
1253 	if ((error = p_cansee(curthread, p)) != 0) {
1254 		PROC_UNLOCK(p);
1255 		return (error);
1256 	}
1257 
1258 	if (req->newptr && curproc != p) {
1259 		PROC_UNLOCK(p);
1260 		return (EPERM);
1261 	}
1262 
1263 	pa = p->p_args;
1264 	pargs_hold(pa);
1265 	PROC_UNLOCK(p);
1266 	if (req->oldptr != NULL && pa != NULL)
1267 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1268 	pargs_drop(pa);
1269 	if (error != 0 || req->newptr == NULL)
1270 		return (error);
1271 
1272 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1273 		return (ENOMEM);
1274 	newpa = pargs_alloc(req->newlen);
1275 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1276 	if (error != 0) {
1277 		pargs_free(newpa);
1278 		return (error);
1279 	}
1280 	PROC_LOCK(p);
1281 	pa = p->p_args;
1282 	p->p_args = newpa;
1283 	PROC_UNLOCK(p);
1284 	pargs_drop(pa);
1285 	return (0);
1286 }
1287 
1288 /*
1289  * This sysctl allows a process to retrieve the path of the executable for
1290  * itself or another process.
1291  */
1292 static int
1293 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1294 {
1295 	pid_t *pidp = (pid_t *)arg1;
1296 	unsigned int arglen = arg2;
1297 	struct proc *p;
1298 	struct vnode *vp;
1299 	char *retbuf, *freebuf;
1300 	int error, vfslocked;
1301 
1302 	if (arglen != 1)
1303 		return (EINVAL);
1304 	if (*pidp == -1) {	/* -1 means this process */
1305 		p = req->td->td_proc;
1306 	} else {
1307 		p = pfind(*pidp);
1308 		if (p == NULL)
1309 			return (ESRCH);
1310 		if ((error = p_cansee(curthread, p)) != 0) {
1311 			PROC_UNLOCK(p);
1312 			return (error);
1313 		}
1314 	}
1315 
1316 	vp = p->p_textvp;
1317 	if (vp == NULL) {
1318 		if (*pidp != -1)
1319 			PROC_UNLOCK(p);
1320 		return (0);
1321 	}
1322 	vref(vp);
1323 	if (*pidp != -1)
1324 		PROC_UNLOCK(p);
1325 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1326 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1327 	vrele(vp);
1328 	VFS_UNLOCK_GIANT(vfslocked);
1329 	if (error)
1330 		return (error);
1331 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1332 	free(freebuf, M_TEMP);
1333 	return (error);
1334 }
1335 
1336 static int
1337 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1338 {
1339 	struct proc *p;
1340 	char *sv_name;
1341 	int *name;
1342 	int namelen;
1343 	int error;
1344 
1345 	namelen = arg2;
1346 	if (namelen != 1)
1347 		return (EINVAL);
1348 
1349 	name = (int *)arg1;
1350 	if ((p = pfind((pid_t)name[0])) == NULL)
1351 		return (ESRCH);
1352 	if ((error = p_cansee(curthread, p))) {
1353 		PROC_UNLOCK(p);
1354 		return (error);
1355 	}
1356 	sv_name = p->p_sysent->sv_name;
1357 	PROC_UNLOCK(p);
1358 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1359 }
1360 
1361 #ifdef KINFO_OVMENTRY_SIZE
1362 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1363 #endif
1364 
1365 #ifdef COMPAT_FREEBSD7
1366 static int
1367 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1368 {
1369 	vm_map_entry_t entry, tmp_entry;
1370 	unsigned int last_timestamp;
1371 	char *fullpath, *freepath;
1372 	struct kinfo_ovmentry *kve;
1373 	struct vattr va;
1374 	struct ucred *cred;
1375 	int error, *name;
1376 	struct vnode *vp;
1377 	struct proc *p;
1378 	vm_map_t map;
1379 	struct vmspace *vm;
1380 
1381 	name = (int *)arg1;
1382 	if ((p = pfind((pid_t)name[0])) == NULL)
1383 		return (ESRCH);
1384 	if (p->p_flag & P_WEXIT) {
1385 		PROC_UNLOCK(p);
1386 		return (ESRCH);
1387 	}
1388 	if ((error = p_candebug(curthread, p))) {
1389 		PROC_UNLOCK(p);
1390 		return (error);
1391 	}
1392 	_PHOLD(p);
1393 	PROC_UNLOCK(p);
1394 	vm = vmspace_acquire_ref(p);
1395 	if (vm == NULL) {
1396 		PRELE(p);
1397 		return (ESRCH);
1398 	}
1399 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1400 
1401 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1402 	vm_map_lock_read(map);
1403 	for (entry = map->header.next; entry != &map->header;
1404 	    entry = entry->next) {
1405 		vm_object_t obj, tobj, lobj;
1406 		vm_offset_t addr;
1407 		int vfslocked;
1408 
1409 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1410 			continue;
1411 
1412 		bzero(kve, sizeof(*kve));
1413 		kve->kve_structsize = sizeof(*kve);
1414 
1415 		kve->kve_private_resident = 0;
1416 		obj = entry->object.vm_object;
1417 		if (obj != NULL) {
1418 			VM_OBJECT_LOCK(obj);
1419 			if (obj->shadow_count == 1)
1420 				kve->kve_private_resident =
1421 				    obj->resident_page_count;
1422 		}
1423 		kve->kve_resident = 0;
1424 		addr = entry->start;
1425 		while (addr < entry->end) {
1426 			if (pmap_extract(map->pmap, addr))
1427 				kve->kve_resident++;
1428 			addr += PAGE_SIZE;
1429 		}
1430 
1431 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1432 			if (tobj != obj)
1433 				VM_OBJECT_LOCK(tobj);
1434 			if (lobj != obj)
1435 				VM_OBJECT_UNLOCK(lobj);
1436 			lobj = tobj;
1437 		}
1438 
1439 		kve->kve_start = (void*)entry->start;
1440 		kve->kve_end = (void*)entry->end;
1441 		kve->kve_offset = (off_t)entry->offset;
1442 
1443 		if (entry->protection & VM_PROT_READ)
1444 			kve->kve_protection |= KVME_PROT_READ;
1445 		if (entry->protection & VM_PROT_WRITE)
1446 			kve->kve_protection |= KVME_PROT_WRITE;
1447 		if (entry->protection & VM_PROT_EXECUTE)
1448 			kve->kve_protection |= KVME_PROT_EXEC;
1449 
1450 		if (entry->eflags & MAP_ENTRY_COW)
1451 			kve->kve_flags |= KVME_FLAG_COW;
1452 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1453 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1454 
1455 		last_timestamp = map->timestamp;
1456 		vm_map_unlock_read(map);
1457 
1458 		kve->kve_fileid = 0;
1459 		kve->kve_fsid = 0;
1460 		freepath = NULL;
1461 		fullpath = "";
1462 		if (lobj) {
1463 			vp = NULL;
1464 			switch (lobj->type) {
1465 			case OBJT_DEFAULT:
1466 				kve->kve_type = KVME_TYPE_DEFAULT;
1467 				break;
1468 			case OBJT_VNODE:
1469 				kve->kve_type = KVME_TYPE_VNODE;
1470 				vp = lobj->handle;
1471 				vref(vp);
1472 				break;
1473 			case OBJT_SWAP:
1474 				kve->kve_type = KVME_TYPE_SWAP;
1475 				break;
1476 			case OBJT_DEVICE:
1477 				kve->kve_type = KVME_TYPE_DEVICE;
1478 				break;
1479 			case OBJT_PHYS:
1480 				kve->kve_type = KVME_TYPE_PHYS;
1481 				break;
1482 			case OBJT_DEAD:
1483 				kve->kve_type = KVME_TYPE_DEAD;
1484 				break;
1485 			case OBJT_SG:
1486 				kve->kve_type = KVME_TYPE_SG;
1487 				break;
1488 			default:
1489 				kve->kve_type = KVME_TYPE_UNKNOWN;
1490 				break;
1491 			}
1492 			if (lobj != obj)
1493 				VM_OBJECT_UNLOCK(lobj);
1494 
1495 			kve->kve_ref_count = obj->ref_count;
1496 			kve->kve_shadow_count = obj->shadow_count;
1497 			VM_OBJECT_UNLOCK(obj);
1498 			if (vp != NULL) {
1499 				vn_fullpath(curthread, vp, &fullpath,
1500 				    &freepath);
1501 				cred = curthread->td_ucred;
1502 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1503 				vn_lock(vp, LK_SHARED | LK_RETRY);
1504 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1505 					kve->kve_fileid = va.va_fileid;
1506 					kve->kve_fsid = va.va_fsid;
1507 				}
1508 				vput(vp);
1509 				VFS_UNLOCK_GIANT(vfslocked);
1510 			}
1511 		} else {
1512 			kve->kve_type = KVME_TYPE_NONE;
1513 			kve->kve_ref_count = 0;
1514 			kve->kve_shadow_count = 0;
1515 		}
1516 
1517 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1518 		if (freepath != NULL)
1519 			free(freepath, M_TEMP);
1520 
1521 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1522 		vm_map_lock_read(map);
1523 		if (error)
1524 			break;
1525 		if (last_timestamp != map->timestamp) {
1526 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1527 			entry = tmp_entry;
1528 		}
1529 	}
1530 	vm_map_unlock_read(map);
1531 	vmspace_free(vm);
1532 	PRELE(p);
1533 	free(kve, M_TEMP);
1534 	return (error);
1535 }
1536 #endif	/* COMPAT_FREEBSD7 */
1537 
1538 #ifdef KINFO_VMENTRY_SIZE
1539 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1540 #endif
1541 
1542 static int
1543 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1544 {
1545 	vm_map_entry_t entry, tmp_entry;
1546 	unsigned int last_timestamp;
1547 	char *fullpath, *freepath;
1548 	struct kinfo_vmentry *kve;
1549 	struct vattr va;
1550 	struct ucred *cred;
1551 	int error, *name;
1552 	struct vnode *vp;
1553 	struct proc *p;
1554 	struct vmspace *vm;
1555 	vm_map_t map;
1556 
1557 	name = (int *)arg1;
1558 	if ((p = pfind((pid_t)name[0])) == NULL)
1559 		return (ESRCH);
1560 	if (p->p_flag & P_WEXIT) {
1561 		PROC_UNLOCK(p);
1562 		return (ESRCH);
1563 	}
1564 	if ((error = p_candebug(curthread, p))) {
1565 		PROC_UNLOCK(p);
1566 		return (error);
1567 	}
1568 	_PHOLD(p);
1569 	PROC_UNLOCK(p);
1570 	vm = vmspace_acquire_ref(p);
1571 	if (vm == NULL) {
1572 		PRELE(p);
1573 		return (ESRCH);
1574 	}
1575 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1576 
1577 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1578 	vm_map_lock_read(map);
1579 	for (entry = map->header.next; entry != &map->header;
1580 	    entry = entry->next) {
1581 		vm_object_t obj, tobj, lobj;
1582 		vm_offset_t addr;
1583 		int vfslocked;
1584 
1585 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1586 			continue;
1587 
1588 		bzero(kve, sizeof(*kve));
1589 
1590 		kve->kve_private_resident = 0;
1591 		obj = entry->object.vm_object;
1592 		if (obj != NULL) {
1593 			VM_OBJECT_LOCK(obj);
1594 			if (obj->shadow_count == 1)
1595 				kve->kve_private_resident =
1596 				    obj->resident_page_count;
1597 		}
1598 		kve->kve_resident = 0;
1599 		addr = entry->start;
1600 		while (addr < entry->end) {
1601 			if (pmap_extract(map->pmap, addr))
1602 				kve->kve_resident++;
1603 			addr += PAGE_SIZE;
1604 		}
1605 
1606 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1607 			if (tobj != obj)
1608 				VM_OBJECT_LOCK(tobj);
1609 			if (lobj != obj)
1610 				VM_OBJECT_UNLOCK(lobj);
1611 			lobj = tobj;
1612 		}
1613 
1614 		kve->kve_start = entry->start;
1615 		kve->kve_end = entry->end;
1616 		kve->kve_offset = entry->offset;
1617 
1618 		if (entry->protection & VM_PROT_READ)
1619 			kve->kve_protection |= KVME_PROT_READ;
1620 		if (entry->protection & VM_PROT_WRITE)
1621 			kve->kve_protection |= KVME_PROT_WRITE;
1622 		if (entry->protection & VM_PROT_EXECUTE)
1623 			kve->kve_protection |= KVME_PROT_EXEC;
1624 
1625 		if (entry->eflags & MAP_ENTRY_COW)
1626 			kve->kve_flags |= KVME_FLAG_COW;
1627 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1628 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1629 
1630 		last_timestamp = map->timestamp;
1631 		vm_map_unlock_read(map);
1632 
1633 		kve->kve_fileid = 0;
1634 		kve->kve_fsid = 0;
1635 		freepath = NULL;
1636 		fullpath = "";
1637 		if (lobj) {
1638 			vp = NULL;
1639 			switch (lobj->type) {
1640 			case OBJT_DEFAULT:
1641 				kve->kve_type = KVME_TYPE_DEFAULT;
1642 				break;
1643 			case OBJT_VNODE:
1644 				kve->kve_type = KVME_TYPE_VNODE;
1645 				vp = lobj->handle;
1646 				vref(vp);
1647 				break;
1648 			case OBJT_SWAP:
1649 				kve->kve_type = KVME_TYPE_SWAP;
1650 				break;
1651 			case OBJT_DEVICE:
1652 				kve->kve_type = KVME_TYPE_DEVICE;
1653 				break;
1654 			case OBJT_PHYS:
1655 				kve->kve_type = KVME_TYPE_PHYS;
1656 				break;
1657 			case OBJT_DEAD:
1658 				kve->kve_type = KVME_TYPE_DEAD;
1659 				break;
1660 			case OBJT_SG:
1661 				kve->kve_type = KVME_TYPE_SG;
1662 				break;
1663 			default:
1664 				kve->kve_type = KVME_TYPE_UNKNOWN;
1665 				break;
1666 			}
1667 			if (lobj != obj)
1668 				VM_OBJECT_UNLOCK(lobj);
1669 
1670 			kve->kve_ref_count = obj->ref_count;
1671 			kve->kve_shadow_count = obj->shadow_count;
1672 			VM_OBJECT_UNLOCK(obj);
1673 			if (vp != NULL) {
1674 				vn_fullpath(curthread, vp, &fullpath,
1675 				    &freepath);
1676 				cred = curthread->td_ucred;
1677 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1678 				vn_lock(vp, LK_SHARED | LK_RETRY);
1679 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1680 					kve->kve_fileid = va.va_fileid;
1681 					kve->kve_fsid = va.va_fsid;
1682 				}
1683 				vput(vp);
1684 				VFS_UNLOCK_GIANT(vfslocked);
1685 			}
1686 		} else {
1687 			kve->kve_type = KVME_TYPE_NONE;
1688 			kve->kve_ref_count = 0;
1689 			kve->kve_shadow_count = 0;
1690 		}
1691 
1692 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1693 		if (freepath != NULL)
1694 			free(freepath, M_TEMP);
1695 
1696 		/* Pack record size down */
1697 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1698 		    strlen(kve->kve_path) + 1;
1699 		kve->kve_structsize = roundup(kve->kve_structsize,
1700 		    sizeof(uint64_t));
1701 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1702 		vm_map_lock_read(map);
1703 		if (error)
1704 			break;
1705 		if (last_timestamp != map->timestamp) {
1706 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1707 			entry = tmp_entry;
1708 		}
1709 	}
1710 	vm_map_unlock_read(map);
1711 	vmspace_free(vm);
1712 	PRELE(p);
1713 	free(kve, M_TEMP);
1714 	return (error);
1715 }
1716 
1717 #if defined(STACK) || defined(DDB)
1718 static int
1719 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1720 {
1721 	struct kinfo_kstack *kkstp;
1722 	int error, i, *name, numthreads;
1723 	lwpid_t *lwpidarray;
1724 	struct thread *td;
1725 	struct stack *st;
1726 	struct sbuf sb;
1727 	struct proc *p;
1728 
1729 	name = (int *)arg1;
1730 	if ((p = pfind((pid_t)name[0])) == NULL)
1731 		return (ESRCH);
1732 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1733 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1734 		PROC_UNLOCK(p);
1735 		return (ESRCH);
1736 	}
1737 	if ((error = p_candebug(curthread, p))) {
1738 		PROC_UNLOCK(p);
1739 		return (error);
1740 	}
1741 	_PHOLD(p);
1742 	PROC_UNLOCK(p);
1743 
1744 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1745 	st = stack_create();
1746 
1747 	lwpidarray = NULL;
1748 	numthreads = 0;
1749 	PROC_LOCK(p);
1750 repeat:
1751 	if (numthreads < p->p_numthreads) {
1752 		if (lwpidarray != NULL) {
1753 			free(lwpidarray, M_TEMP);
1754 			lwpidarray = NULL;
1755 		}
1756 		numthreads = p->p_numthreads;
1757 		PROC_UNLOCK(p);
1758 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1759 		    M_WAITOK | M_ZERO);
1760 		PROC_LOCK(p);
1761 		goto repeat;
1762 	}
1763 	i = 0;
1764 
1765 	/*
1766 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1767 	 * of changes could have taken place.  Should we check to see if the
1768 	 * vmspace has been replaced, or the like, in order to prevent
1769 	 * giving a snapshot that spans, say, execve(2), with some threads
1770 	 * before and some after?  Among other things, the credentials could
1771 	 * have changed, in which case the right to extract debug info might
1772 	 * no longer be assured.
1773 	 */
1774 	FOREACH_THREAD_IN_PROC(p, td) {
1775 		KASSERT(i < numthreads,
1776 		    ("sysctl_kern_proc_kstack: numthreads"));
1777 		lwpidarray[i] = td->td_tid;
1778 		i++;
1779 	}
1780 	numthreads = i;
1781 	for (i = 0; i < numthreads; i++) {
1782 		td = thread_find(p, lwpidarray[i]);
1783 		if (td == NULL) {
1784 			continue;
1785 		}
1786 		bzero(kkstp, sizeof(*kkstp));
1787 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1788 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1789 		thread_lock(td);
1790 		kkstp->kkst_tid = td->td_tid;
1791 		if (TD_IS_SWAPPED(td))
1792 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1793 		else if (TD_IS_RUNNING(td))
1794 			kkstp->kkst_state = KKST_STATE_RUNNING;
1795 		else {
1796 			kkstp->kkst_state = KKST_STATE_STACKOK;
1797 			stack_save_td(st, td);
1798 		}
1799 		thread_unlock(td);
1800 		PROC_UNLOCK(p);
1801 		stack_sbuf_print(&sb, st);
1802 		sbuf_finish(&sb);
1803 		sbuf_delete(&sb);
1804 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1805 		PROC_LOCK(p);
1806 		if (error)
1807 			break;
1808 	}
1809 	_PRELE(p);
1810 	PROC_UNLOCK(p);
1811 	if (lwpidarray != NULL)
1812 		free(lwpidarray, M_TEMP);
1813 	stack_destroy(st);
1814 	free(kkstp, M_TEMP);
1815 	return (error);
1816 }
1817 #endif
1818 
1819 /*
1820  * This sysctl allows a process to retrieve the full list of groups from
1821  * itself or another process.
1822  */
1823 static int
1824 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1825 {
1826 	pid_t *pidp = (pid_t *)arg1;
1827 	unsigned int arglen = arg2;
1828 	struct proc *p;
1829 	struct ucred *cred;
1830 	int error;
1831 
1832 	if (arglen != 1)
1833 		return (EINVAL);
1834 	if (*pidp == -1) {	/* -1 means this process */
1835 		p = req->td->td_proc;
1836 	} else {
1837 		p = pfind(*pidp);
1838 		if (p == NULL)
1839 			return (ESRCH);
1840 		if ((error = p_cansee(curthread, p)) != 0) {
1841 			PROC_UNLOCK(p);
1842 			return (error);
1843 		}
1844 	}
1845 
1846 	cred = crhold(p->p_ucred);
1847 	if (*pidp != -1)
1848 		PROC_UNLOCK(p);
1849 
1850 	error = SYSCTL_OUT(req, cred->cr_groups,
1851 	    cred->cr_ngroups * sizeof(gid_t));
1852 	crfree(cred);
1853 	return (error);
1854 }
1855 
1856 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1857 
1858 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1859 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1860 	"Return entire process table");
1861 
1862 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1863 	sysctl_kern_proc, "Process table");
1864 
1865 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1866 	sysctl_kern_proc, "Process table");
1867 
1868 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1869 	sysctl_kern_proc, "Process table");
1870 
1871 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1872 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1873 
1874 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
1875 	sysctl_kern_proc, "Process table");
1876 
1877 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1878 	sysctl_kern_proc, "Process table");
1879 
1880 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1881 	sysctl_kern_proc, "Process table");
1882 
1883 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1884 	sysctl_kern_proc, "Process table");
1885 
1886 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1887 	sysctl_kern_proc, "Return process table, no threads");
1888 
1889 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1890 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1891 	sysctl_kern_proc_args, "Process argument list");
1892 
1893 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1894 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1895 
1896 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1897 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1898 	"Process syscall vector name (ABI type)");
1899 
1900 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1901 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1902 
1903 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1904 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1905 
1906 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1907 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1908 
1909 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1910 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1911 
1912 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1913 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1914 
1915 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1916 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1917 
1918 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1919 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1920 
1921 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1922 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1923 
1924 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1925 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1926 	"Return process table, no threads");
1927 
1928 #ifdef COMPAT_FREEBSD7
1929 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1930 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1931 #endif
1932 
1933 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1934 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1935 
1936 #if defined(STACK) || defined(DDB)
1937 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1938 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1939 #endif
1940 
1941 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
1942 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
1943