1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #include <fs/devfs/devfs.h> 92 93 #ifdef COMPAT_FREEBSD32 94 #include <compat/freebsd32/freebsd32.h> 95 #include <compat/freebsd32/freebsd32_util.h> 96 #endif 97 98 SDT_PROVIDER_DEFINE(proc); 99 100 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 101 MALLOC_DEFINE(M_SESSION, "session", "session header"); 102 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 103 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 104 105 static void doenterpgrp(struct proc *, struct pgrp *); 106 static void orphanpg(struct pgrp *pg); 107 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 108 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 109 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 110 int preferthread); 111 static void pgadjustjobc(struct pgrp *pgrp, int entering); 112 static void pgdelete(struct pgrp *); 113 static int proc_ctor(void *mem, int size, void *arg, int flags); 114 static void proc_dtor(void *mem, int size, void *arg); 115 static int proc_init(void *mem, int size, int flags); 116 static void proc_fini(void *mem, int size); 117 static void pargs_free(struct pargs *pa); 118 119 /* 120 * Other process lists 121 */ 122 struct pidhashhead *pidhashtbl; 123 struct sx *pidhashtbl_lock; 124 u_long pidhash; 125 u_long pidhashlock; 126 struct pgrphashhead *pgrphashtbl; 127 u_long pgrphash; 128 struct proclist allproc; 129 struct sx __exclusive_cache_line allproc_lock; 130 struct sx __exclusive_cache_line proctree_lock; 131 struct mtx __exclusive_cache_line ppeers_lock; 132 struct mtx __exclusive_cache_line procid_lock; 133 uma_zone_t proc_zone; 134 135 /* 136 * The offset of various fields in struct proc and struct thread. 137 * These are used by kernel debuggers to enumerate kernel threads and 138 * processes. 139 */ 140 const int proc_off_p_pid = offsetof(struct proc, p_pid); 141 const int proc_off_p_comm = offsetof(struct proc, p_comm); 142 const int proc_off_p_list = offsetof(struct proc, p_list); 143 const int proc_off_p_threads = offsetof(struct proc, p_threads); 144 const int thread_off_td_tid = offsetof(struct thread, td_tid); 145 const int thread_off_td_name = offsetof(struct thread, td_name); 146 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 147 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 148 const int thread_off_td_plist = offsetof(struct thread, td_plist); 149 150 EVENTHANDLER_LIST_DEFINE(process_ctor); 151 EVENTHANDLER_LIST_DEFINE(process_dtor); 152 EVENTHANDLER_LIST_DEFINE(process_init); 153 EVENTHANDLER_LIST_DEFINE(process_fini); 154 EVENTHANDLER_LIST_DEFINE(process_exit); 155 EVENTHANDLER_LIST_DEFINE(process_fork); 156 EVENTHANDLER_LIST_DEFINE(process_exec); 157 158 int kstack_pages = KSTACK_PAGES; 159 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 160 "Kernel stack size in pages"); 161 static int vmmap_skip_res_cnt = 0; 162 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 163 &vmmap_skip_res_cnt, 0, 164 "Skip calculation of the pages resident count in kern.proc.vmmap"); 165 166 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 167 #ifdef COMPAT_FREEBSD32 168 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 169 #endif 170 171 /* 172 * Initialize global process hashing structures. 173 */ 174 void 175 procinit(void) 176 { 177 u_long i; 178 179 sx_init(&allproc_lock, "allproc"); 180 sx_init(&proctree_lock, "proctree"); 181 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 182 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 183 LIST_INIT(&allproc); 184 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 185 pidhashlock = (pidhash + 1) / 64; 186 if (pidhashlock > 0) 187 pidhashlock--; 188 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 189 M_PROC, M_WAITOK | M_ZERO); 190 for (i = 0; i < pidhashlock + 1; i++) 191 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 192 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 193 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 194 proc_ctor, proc_dtor, proc_init, proc_fini, 195 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uihashinit(); 197 } 198 199 /* 200 * Prepare a proc for use. 201 */ 202 static int 203 proc_ctor(void *mem, int size, void *arg, int flags) 204 { 205 struct proc *p; 206 struct thread *td; 207 208 p = (struct proc *)mem; 209 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 210 td = FIRST_THREAD_IN_PROC(p); 211 if (td != NULL) { 212 /* Make sure all thread constructors are executed */ 213 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 214 } 215 return (0); 216 } 217 218 /* 219 * Reclaim a proc after use. 220 */ 221 static void 222 proc_dtor(void *mem, int size, void *arg) 223 { 224 struct proc *p; 225 struct thread *td; 226 227 /* INVARIANTS checks go here */ 228 p = (struct proc *)mem; 229 td = FIRST_THREAD_IN_PROC(p); 230 if (td != NULL) { 231 #ifdef INVARIANTS 232 KASSERT((p->p_numthreads == 1), 233 ("bad number of threads in exiting process")); 234 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 235 #endif 236 /* Free all OSD associated to this thread. */ 237 osd_thread_exit(td); 238 td_softdep_cleanup(td); 239 MPASS(td->td_su == NULL); 240 241 /* Make sure all thread destructors are executed */ 242 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 243 } 244 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 245 if (p->p_ksi != NULL) 246 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 247 } 248 249 /* 250 * Initialize type-stable parts of a proc (when newly created). 251 */ 252 static int 253 proc_init(void *mem, int size, int flags) 254 { 255 struct proc *p; 256 257 p = (struct proc *)mem; 258 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 259 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 260 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 261 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 262 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 263 cv_init(&p->p_pwait, "ppwait"); 264 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 265 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 266 p->p_stats = pstats_alloc(); 267 p->p_pgrp = NULL; 268 return (0); 269 } 270 271 /* 272 * UMA should ensure that this function is never called. 273 * Freeing a proc structure would violate type stability. 274 */ 275 static void 276 proc_fini(void *mem, int size) 277 { 278 #ifdef notnow 279 struct proc *p; 280 281 p = (struct proc *)mem; 282 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 283 pstats_free(p->p_stats); 284 thread_free(FIRST_THREAD_IN_PROC(p)); 285 mtx_destroy(&p->p_mtx); 286 if (p->p_ksi != NULL) 287 ksiginfo_free(p->p_ksi); 288 #else 289 panic("proc reclaimed"); 290 #endif 291 } 292 293 /* 294 * PID space management. 295 * 296 * These bitmaps are used by fork_findpid. 297 */ 298 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 299 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 300 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 301 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 302 303 static bitstr_t *proc_id_array[] = { 304 proc_id_pidmap, 305 proc_id_grpidmap, 306 proc_id_sessidmap, 307 proc_id_reapmap, 308 }; 309 310 void 311 proc_id_set(int type, pid_t id) 312 { 313 314 KASSERT(type >= 0 && type < nitems(proc_id_array), 315 ("invalid type %d\n", type)); 316 mtx_lock(&procid_lock); 317 KASSERT(bit_test(proc_id_array[type], id) == 0, 318 ("bit %d already set in %d\n", id, type)); 319 bit_set(proc_id_array[type], id); 320 mtx_unlock(&procid_lock); 321 } 322 323 void 324 proc_id_set_cond(int type, pid_t id) 325 { 326 327 KASSERT(type >= 0 && type < nitems(proc_id_array), 328 ("invalid type %d\n", type)); 329 if (bit_test(proc_id_array[type], id)) 330 return; 331 mtx_lock(&procid_lock); 332 bit_set(proc_id_array[type], id); 333 mtx_unlock(&procid_lock); 334 } 335 336 void 337 proc_id_clear(int type, pid_t id) 338 { 339 340 KASSERT(type >= 0 && type < nitems(proc_id_array), 341 ("invalid type %d\n", type)); 342 mtx_lock(&procid_lock); 343 KASSERT(bit_test(proc_id_array[type], id) != 0, 344 ("bit %d not set in %d\n", id, type)); 345 bit_clear(proc_id_array[type], id); 346 mtx_unlock(&procid_lock); 347 } 348 349 /* 350 * Is p an inferior of the current process? 351 */ 352 int 353 inferior(struct proc *p) 354 { 355 356 sx_assert(&proctree_lock, SX_LOCKED); 357 PROC_LOCK_ASSERT(p, MA_OWNED); 358 for (; p != curproc; p = proc_realparent(p)) { 359 if (p->p_pid == 0) 360 return (0); 361 } 362 return (1); 363 } 364 365 /* 366 * Shared lock all the pid hash lists. 367 */ 368 void 369 pidhash_slockall(void) 370 { 371 u_long i; 372 373 for (i = 0; i < pidhashlock + 1; i++) 374 sx_slock(&pidhashtbl_lock[i]); 375 } 376 377 /* 378 * Shared unlock all the pid hash lists. 379 */ 380 void 381 pidhash_sunlockall(void) 382 { 383 u_long i; 384 385 for (i = 0; i < pidhashlock + 1; i++) 386 sx_sunlock(&pidhashtbl_lock[i]); 387 } 388 389 /* 390 * Similar to pfind_any(), this function finds zombies. 391 */ 392 struct proc * 393 pfind_any_locked(pid_t pid) 394 { 395 struct proc *p; 396 397 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 398 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 399 if (p->p_pid == pid) { 400 PROC_LOCK(p); 401 if (p->p_state == PRS_NEW) { 402 PROC_UNLOCK(p); 403 p = NULL; 404 } 405 break; 406 } 407 } 408 return (p); 409 } 410 411 /* 412 * Locate a process by number. 413 * 414 * By not returning processes in the PRS_NEW state, we allow callers to avoid 415 * testing for that condition to avoid dereferencing p_ucred, et al. 416 */ 417 static __always_inline struct proc * 418 _pfind(pid_t pid, bool zombie) 419 { 420 struct proc *p; 421 422 p = curproc; 423 if (p->p_pid == pid) { 424 PROC_LOCK(p); 425 return (p); 426 } 427 sx_slock(PIDHASHLOCK(pid)); 428 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 429 if (p->p_pid == pid) { 430 PROC_LOCK(p); 431 if (p->p_state == PRS_NEW || 432 (!zombie && p->p_state == PRS_ZOMBIE)) { 433 PROC_UNLOCK(p); 434 p = NULL; 435 } 436 break; 437 } 438 } 439 sx_sunlock(PIDHASHLOCK(pid)); 440 return (p); 441 } 442 443 struct proc * 444 pfind(pid_t pid) 445 { 446 447 return (_pfind(pid, false)); 448 } 449 450 /* 451 * Same as pfind but allow zombies. 452 */ 453 struct proc * 454 pfind_any(pid_t pid) 455 { 456 457 return (_pfind(pid, true)); 458 } 459 460 /* 461 * Locate a process group by number. 462 * The caller must hold proctree_lock. 463 */ 464 struct pgrp * 465 pgfind(pid_t pgid) 466 { 467 struct pgrp *pgrp; 468 469 sx_assert(&proctree_lock, SX_LOCKED); 470 471 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 472 if (pgrp->pg_id == pgid) { 473 PGRP_LOCK(pgrp); 474 return (pgrp); 475 } 476 } 477 return (NULL); 478 } 479 480 /* 481 * Locate process and do additional manipulations, depending on flags. 482 */ 483 int 484 pget(pid_t pid, int flags, struct proc **pp) 485 { 486 struct proc *p; 487 struct thread *td1; 488 int error; 489 490 p = curproc; 491 if (p->p_pid == pid) { 492 PROC_LOCK(p); 493 } else { 494 p = NULL; 495 if (pid <= PID_MAX) { 496 if ((flags & PGET_NOTWEXIT) == 0) 497 p = pfind_any(pid); 498 else 499 p = pfind(pid); 500 } else if ((flags & PGET_NOTID) == 0) { 501 td1 = tdfind(pid, -1); 502 if (td1 != NULL) 503 p = td1->td_proc; 504 } 505 if (p == NULL) 506 return (ESRCH); 507 if ((flags & PGET_CANSEE) != 0) { 508 error = p_cansee(curthread, p); 509 if (error != 0) 510 goto errout; 511 } 512 } 513 if ((flags & PGET_CANDEBUG) != 0) { 514 error = p_candebug(curthread, p); 515 if (error != 0) 516 goto errout; 517 } 518 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 519 error = EPERM; 520 goto errout; 521 } 522 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 523 error = ESRCH; 524 goto errout; 525 } 526 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 527 /* 528 * XXXRW: Not clear ESRCH is the right error during proc 529 * execve(). 530 */ 531 error = ESRCH; 532 goto errout; 533 } 534 if ((flags & PGET_HOLD) != 0) { 535 _PHOLD(p); 536 PROC_UNLOCK(p); 537 } 538 *pp = p; 539 return (0); 540 errout: 541 PROC_UNLOCK(p); 542 return (error); 543 } 544 545 /* 546 * Create a new process group. 547 * pgid must be equal to the pid of p. 548 * Begin a new session if required. 549 */ 550 int 551 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 552 { 553 554 sx_assert(&proctree_lock, SX_XLOCKED); 555 556 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 557 KASSERT(p->p_pid == pgid, 558 ("enterpgrp: new pgrp and pid != pgid")); 559 KASSERT(pgfind(pgid) == NULL, 560 ("enterpgrp: pgrp with pgid exists")); 561 KASSERT(!SESS_LEADER(p), 562 ("enterpgrp: session leader attempted setpgrp")); 563 564 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 565 566 if (sess != NULL) { 567 /* 568 * new session 569 */ 570 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 571 PROC_LOCK(p); 572 p->p_flag &= ~P_CONTROLT; 573 PROC_UNLOCK(p); 574 PGRP_LOCK(pgrp); 575 sess->s_leader = p; 576 sess->s_sid = p->p_pid; 577 proc_id_set(PROC_ID_SESSION, p->p_pid); 578 refcount_init(&sess->s_count, 1); 579 sess->s_ttyvp = NULL; 580 sess->s_ttydp = NULL; 581 sess->s_ttyp = NULL; 582 bcopy(p->p_session->s_login, sess->s_login, 583 sizeof(sess->s_login)); 584 pgrp->pg_session = sess; 585 KASSERT(p == curproc, 586 ("enterpgrp: mksession and p != curproc")); 587 } else { 588 pgrp->pg_session = p->p_session; 589 sess_hold(pgrp->pg_session); 590 PGRP_LOCK(pgrp); 591 } 592 pgrp->pg_id = pgid; 593 proc_id_set(PROC_ID_GROUP, p->p_pid); 594 LIST_INIT(&pgrp->pg_members); 595 596 /* 597 * As we have an exclusive lock of proctree_lock, 598 * this should not deadlock. 599 */ 600 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 601 pgrp->pg_jobc = 0; 602 SLIST_INIT(&pgrp->pg_sigiolst); 603 PGRP_UNLOCK(pgrp); 604 605 doenterpgrp(p, pgrp); 606 607 return (0); 608 } 609 610 /* 611 * Move p to an existing process group 612 */ 613 int 614 enterthispgrp(struct proc *p, struct pgrp *pgrp) 615 { 616 617 sx_assert(&proctree_lock, SX_XLOCKED); 618 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 619 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 620 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 621 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 622 KASSERT(pgrp->pg_session == p->p_session, 623 ("%s: pgrp's session %p, p->p_session %p.\n", 624 __func__, 625 pgrp->pg_session, 626 p->p_session)); 627 KASSERT(pgrp != p->p_pgrp, 628 ("%s: p belongs to pgrp.", __func__)); 629 630 doenterpgrp(p, pgrp); 631 632 return (0); 633 } 634 635 /* 636 * Move p to a process group 637 */ 638 static void 639 doenterpgrp(struct proc *p, struct pgrp *pgrp) 640 { 641 struct pgrp *savepgrp; 642 643 sx_assert(&proctree_lock, SX_XLOCKED); 644 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 645 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 646 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 647 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 648 649 savepgrp = p->p_pgrp; 650 651 /* 652 * Adjust eligibility of affected pgrps to participate in job control. 653 * Increment eligibility counts before decrementing, otherwise we 654 * could reach 0 spuriously during the first call. 655 */ 656 fixjobc(p, pgrp, 1); 657 fixjobc(p, p->p_pgrp, 0); 658 659 PGRP_LOCK(pgrp); 660 PGRP_LOCK(savepgrp); 661 PROC_LOCK(p); 662 LIST_REMOVE(p, p_pglist); 663 p->p_pgrp = pgrp; 664 PROC_UNLOCK(p); 665 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 666 PGRP_UNLOCK(savepgrp); 667 PGRP_UNLOCK(pgrp); 668 if (LIST_EMPTY(&savepgrp->pg_members)) 669 pgdelete(savepgrp); 670 } 671 672 /* 673 * remove process from process group 674 */ 675 int 676 leavepgrp(struct proc *p) 677 { 678 struct pgrp *savepgrp; 679 680 sx_assert(&proctree_lock, SX_XLOCKED); 681 savepgrp = p->p_pgrp; 682 PGRP_LOCK(savepgrp); 683 PROC_LOCK(p); 684 LIST_REMOVE(p, p_pglist); 685 p->p_pgrp = NULL; 686 PROC_UNLOCK(p); 687 PGRP_UNLOCK(savepgrp); 688 if (LIST_EMPTY(&savepgrp->pg_members)) 689 pgdelete(savepgrp); 690 return (0); 691 } 692 693 /* 694 * delete a process group 695 */ 696 static void 697 pgdelete(struct pgrp *pgrp) 698 { 699 struct session *savesess; 700 struct tty *tp; 701 702 sx_assert(&proctree_lock, SX_XLOCKED); 703 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 704 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 705 706 /* 707 * Reset any sigio structures pointing to us as a result of 708 * F_SETOWN with our pgid. 709 */ 710 funsetownlst(&pgrp->pg_sigiolst); 711 712 PGRP_LOCK(pgrp); 713 tp = pgrp->pg_session->s_ttyp; 714 LIST_REMOVE(pgrp, pg_hash); 715 savesess = pgrp->pg_session; 716 PGRP_UNLOCK(pgrp); 717 718 /* Remove the reference to the pgrp before deallocating it. */ 719 if (tp != NULL) { 720 tty_lock(tp); 721 tty_rel_pgrp(tp, pgrp); 722 } 723 724 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 725 mtx_destroy(&pgrp->pg_mtx); 726 free(pgrp, M_PGRP); 727 sess_release(savesess); 728 } 729 730 static void 731 pgadjustjobc(struct pgrp *pgrp, int entering) 732 { 733 734 PGRP_LOCK(pgrp); 735 if (entering) { 736 #ifdef notyet 737 MPASS(pgrp->pg_jobc >= 0); 738 #endif 739 pgrp->pg_jobc++; 740 } else { 741 #ifdef notyet 742 MPASS(pgrp->pg_jobc > 0); 743 #endif 744 --pgrp->pg_jobc; 745 if (pgrp->pg_jobc == 0) 746 orphanpg(pgrp); 747 } 748 PGRP_UNLOCK(pgrp); 749 } 750 751 /* 752 * Adjust pgrp jobc counters when specified process changes process group. 753 * We count the number of processes in each process group that "qualify" 754 * the group for terminal job control (those with a parent in a different 755 * process group of the same session). If that count reaches zero, the 756 * process group becomes orphaned. Check both the specified process' 757 * process group and that of its children. 758 * entering == 0 => p is leaving specified group. 759 * entering == 1 => p is entering specified group. 760 */ 761 void 762 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 763 { 764 struct pgrp *hispgrp; 765 struct session *mysession; 766 struct proc *q; 767 768 sx_assert(&proctree_lock, SX_LOCKED); 769 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 770 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 771 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 772 773 /* 774 * Check p's parent to see whether p qualifies its own process 775 * group; if so, adjust count for p's process group. 776 */ 777 mysession = pgrp->pg_session; 778 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 779 hispgrp->pg_session == mysession) 780 pgadjustjobc(pgrp, entering); 781 782 /* 783 * Check this process' children to see whether they qualify 784 * their process groups; if so, adjust counts for children's 785 * process groups. 786 */ 787 LIST_FOREACH(q, &p->p_children, p_sibling) { 788 hispgrp = q->p_pgrp; 789 if (hispgrp == pgrp || 790 hispgrp->pg_session != mysession) 791 continue; 792 if (q->p_state == PRS_ZOMBIE) 793 continue; 794 pgadjustjobc(hispgrp, entering); 795 } 796 } 797 798 void 799 killjobc(void) 800 { 801 struct session *sp; 802 struct tty *tp; 803 struct proc *p; 804 struct vnode *ttyvp; 805 806 p = curproc; 807 MPASS(p->p_flag & P_WEXIT); 808 /* 809 * Do a quick check to see if there is anything to do with the 810 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 811 */ 812 PROC_LOCK(p); 813 if (!SESS_LEADER(p) && 814 (p->p_pgrp == p->p_pptr->p_pgrp) && 815 LIST_EMPTY(&p->p_children)) { 816 PROC_UNLOCK(p); 817 return; 818 } 819 PROC_UNLOCK(p); 820 821 sx_xlock(&proctree_lock); 822 if (SESS_LEADER(p)) { 823 sp = p->p_session; 824 825 /* 826 * s_ttyp is not zero'd; we use this to indicate that 827 * the session once had a controlling terminal. (for 828 * logging and informational purposes) 829 */ 830 SESS_LOCK(sp); 831 ttyvp = sp->s_ttyvp; 832 tp = sp->s_ttyp; 833 sp->s_ttyvp = NULL; 834 sp->s_ttydp = NULL; 835 sp->s_leader = NULL; 836 SESS_UNLOCK(sp); 837 838 /* 839 * Signal foreground pgrp and revoke access to 840 * controlling terminal if it has not been revoked 841 * already. 842 * 843 * Because the TTY may have been revoked in the mean 844 * time and could already have a new session associated 845 * with it, make sure we don't send a SIGHUP to a 846 * foreground process group that does not belong to this 847 * session. 848 */ 849 850 if (tp != NULL) { 851 tty_lock(tp); 852 if (tp->t_session == sp) 853 tty_signal_pgrp(tp, SIGHUP); 854 tty_unlock(tp); 855 } 856 857 if (ttyvp != NULL) { 858 sx_xunlock(&proctree_lock); 859 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 860 VOP_REVOKE(ttyvp, REVOKEALL); 861 VOP_UNLOCK(ttyvp); 862 } 863 devfs_ctty_unref(ttyvp); 864 sx_xlock(&proctree_lock); 865 } 866 } 867 fixjobc(p, p->p_pgrp, 0); 868 sx_xunlock(&proctree_lock); 869 } 870 871 /* 872 * A process group has become orphaned; 873 * if there are any stopped processes in the group, 874 * hang-up all process in that group. 875 */ 876 static void 877 orphanpg(struct pgrp *pg) 878 { 879 struct proc *p; 880 881 PGRP_LOCK_ASSERT(pg, MA_OWNED); 882 883 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 884 PROC_LOCK(p); 885 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 886 PROC_UNLOCK(p); 887 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 888 PROC_LOCK(p); 889 kern_psignal(p, SIGHUP); 890 kern_psignal(p, SIGCONT); 891 PROC_UNLOCK(p); 892 } 893 return; 894 } 895 PROC_UNLOCK(p); 896 } 897 } 898 899 void 900 sess_hold(struct session *s) 901 { 902 903 refcount_acquire(&s->s_count); 904 } 905 906 void 907 sess_release(struct session *s) 908 { 909 910 if (refcount_release(&s->s_count)) { 911 if (s->s_ttyp != NULL) { 912 tty_lock(s->s_ttyp); 913 tty_rel_sess(s->s_ttyp, s); 914 } 915 proc_id_clear(PROC_ID_SESSION, s->s_sid); 916 mtx_destroy(&s->s_mtx); 917 free(s, M_SESSION); 918 } 919 } 920 921 #ifdef DDB 922 923 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 924 { 925 struct pgrp *pgrp; 926 struct proc *p; 927 int i; 928 929 for (i = 0; i <= pgrphash; i++) { 930 if (!LIST_EMPTY(&pgrphashtbl[i])) { 931 printf("\tindx %d\n", i); 932 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 933 printf( 934 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 935 (void *)pgrp, (long)pgrp->pg_id, 936 (void *)pgrp->pg_session, 937 pgrp->pg_session->s_count, 938 (void *)LIST_FIRST(&pgrp->pg_members)); 939 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 940 printf("\t\tpid %ld addr %p pgrp %p\n", 941 (long)p->p_pid, (void *)p, 942 (void *)p->p_pgrp); 943 } 944 } 945 } 946 } 947 } 948 #endif /* DDB */ 949 950 /* 951 * Calculate the kinfo_proc members which contain process-wide 952 * informations. 953 * Must be called with the target process locked. 954 */ 955 static void 956 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 957 { 958 struct thread *td; 959 960 PROC_LOCK_ASSERT(p, MA_OWNED); 961 962 kp->ki_estcpu = 0; 963 kp->ki_pctcpu = 0; 964 FOREACH_THREAD_IN_PROC(p, td) { 965 thread_lock(td); 966 kp->ki_pctcpu += sched_pctcpu(td); 967 kp->ki_estcpu += sched_estcpu(td); 968 thread_unlock(td); 969 } 970 } 971 972 /* 973 * Clear kinfo_proc and fill in any information that is common 974 * to all threads in the process. 975 * Must be called with the target process locked. 976 */ 977 static void 978 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 979 { 980 struct thread *td0; 981 struct tty *tp; 982 struct session *sp; 983 struct ucred *cred; 984 struct sigacts *ps; 985 struct timeval boottime; 986 987 PROC_LOCK_ASSERT(p, MA_OWNED); 988 bzero(kp, sizeof(*kp)); 989 990 kp->ki_structsize = sizeof(*kp); 991 kp->ki_paddr = p; 992 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 993 kp->ki_args = p->p_args; 994 kp->ki_textvp = p->p_textvp; 995 #ifdef KTRACE 996 kp->ki_tracep = p->p_tracevp; 997 kp->ki_traceflag = p->p_traceflag; 998 #endif 999 kp->ki_fd = p->p_fd; 1000 kp->ki_vmspace = p->p_vmspace; 1001 kp->ki_flag = p->p_flag; 1002 kp->ki_flag2 = p->p_flag2; 1003 cred = p->p_ucred; 1004 if (cred) { 1005 kp->ki_uid = cred->cr_uid; 1006 kp->ki_ruid = cred->cr_ruid; 1007 kp->ki_svuid = cred->cr_svuid; 1008 kp->ki_cr_flags = 0; 1009 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1010 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1011 /* XXX bde doesn't like KI_NGROUPS */ 1012 if (cred->cr_ngroups > KI_NGROUPS) { 1013 kp->ki_ngroups = KI_NGROUPS; 1014 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1015 } else 1016 kp->ki_ngroups = cred->cr_ngroups; 1017 bcopy(cred->cr_groups, kp->ki_groups, 1018 kp->ki_ngroups * sizeof(gid_t)); 1019 kp->ki_rgid = cred->cr_rgid; 1020 kp->ki_svgid = cred->cr_svgid; 1021 /* If jailed(cred), emulate the old P_JAILED flag. */ 1022 if (jailed(cred)) { 1023 kp->ki_flag |= P_JAILED; 1024 /* If inside the jail, use 0 as a jail ID. */ 1025 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1026 kp->ki_jid = cred->cr_prison->pr_id; 1027 } 1028 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1029 sizeof(kp->ki_loginclass)); 1030 } 1031 ps = p->p_sigacts; 1032 if (ps) { 1033 mtx_lock(&ps->ps_mtx); 1034 kp->ki_sigignore = ps->ps_sigignore; 1035 kp->ki_sigcatch = ps->ps_sigcatch; 1036 mtx_unlock(&ps->ps_mtx); 1037 } 1038 if (p->p_state != PRS_NEW && 1039 p->p_state != PRS_ZOMBIE && 1040 p->p_vmspace != NULL) { 1041 struct vmspace *vm = p->p_vmspace; 1042 1043 kp->ki_size = vm->vm_map.size; 1044 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1045 FOREACH_THREAD_IN_PROC(p, td0) { 1046 if (!TD_IS_SWAPPED(td0)) 1047 kp->ki_rssize += td0->td_kstack_pages; 1048 } 1049 kp->ki_swrss = vm->vm_swrss; 1050 kp->ki_tsize = vm->vm_tsize; 1051 kp->ki_dsize = vm->vm_dsize; 1052 kp->ki_ssize = vm->vm_ssize; 1053 } else if (p->p_state == PRS_ZOMBIE) 1054 kp->ki_stat = SZOMB; 1055 if (kp->ki_flag & P_INMEM) 1056 kp->ki_sflag = PS_INMEM; 1057 else 1058 kp->ki_sflag = 0; 1059 /* Calculate legacy swtime as seconds since 'swtick'. */ 1060 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1061 kp->ki_pid = p->p_pid; 1062 kp->ki_nice = p->p_nice; 1063 kp->ki_fibnum = p->p_fibnum; 1064 kp->ki_start = p->p_stats->p_start; 1065 getboottime(&boottime); 1066 timevaladd(&kp->ki_start, &boottime); 1067 PROC_STATLOCK(p); 1068 rufetch(p, &kp->ki_rusage); 1069 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1070 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1071 PROC_STATUNLOCK(p); 1072 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1073 /* Some callers want child times in a single value. */ 1074 kp->ki_childtime = kp->ki_childstime; 1075 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1076 1077 FOREACH_THREAD_IN_PROC(p, td0) 1078 kp->ki_cow += td0->td_cow; 1079 1080 tp = NULL; 1081 if (p->p_pgrp) { 1082 kp->ki_pgid = p->p_pgrp->pg_id; 1083 kp->ki_jobc = p->p_pgrp->pg_jobc; 1084 sp = p->p_pgrp->pg_session; 1085 1086 if (sp != NULL) { 1087 kp->ki_sid = sp->s_sid; 1088 SESS_LOCK(sp); 1089 strlcpy(kp->ki_login, sp->s_login, 1090 sizeof(kp->ki_login)); 1091 if (sp->s_ttyvp) 1092 kp->ki_kiflag |= KI_CTTY; 1093 if (SESS_LEADER(p)) 1094 kp->ki_kiflag |= KI_SLEADER; 1095 /* XXX proctree_lock */ 1096 tp = sp->s_ttyp; 1097 SESS_UNLOCK(sp); 1098 } 1099 } 1100 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1101 kp->ki_tdev = tty_udev(tp); 1102 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1103 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1104 if (tp->t_session) 1105 kp->ki_tsid = tp->t_session->s_sid; 1106 } else { 1107 kp->ki_tdev = NODEV; 1108 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1109 } 1110 if (p->p_comm[0] != '\0') 1111 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1112 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1113 p->p_sysent->sv_name[0] != '\0') 1114 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1115 kp->ki_siglist = p->p_siglist; 1116 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1117 kp->ki_acflag = p->p_acflag; 1118 kp->ki_lock = p->p_lock; 1119 if (p->p_pptr) { 1120 kp->ki_ppid = p->p_oppid; 1121 if (p->p_flag & P_TRACED) 1122 kp->ki_tracer = p->p_pptr->p_pid; 1123 } 1124 } 1125 1126 /* 1127 * Fill in information that is thread specific. Must be called with 1128 * target process locked. If 'preferthread' is set, overwrite certain 1129 * process-related fields that are maintained for both threads and 1130 * processes. 1131 */ 1132 static void 1133 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1134 { 1135 struct proc *p; 1136 1137 p = td->td_proc; 1138 kp->ki_tdaddr = td; 1139 PROC_LOCK_ASSERT(p, MA_OWNED); 1140 1141 if (preferthread) 1142 PROC_STATLOCK(p); 1143 thread_lock(td); 1144 if (td->td_wmesg != NULL) 1145 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1146 else 1147 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1148 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1149 sizeof(kp->ki_tdname)) { 1150 strlcpy(kp->ki_moretdname, 1151 td->td_name + sizeof(kp->ki_tdname) - 1, 1152 sizeof(kp->ki_moretdname)); 1153 } else { 1154 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1155 } 1156 if (TD_ON_LOCK(td)) { 1157 kp->ki_kiflag |= KI_LOCKBLOCK; 1158 strlcpy(kp->ki_lockname, td->td_lockname, 1159 sizeof(kp->ki_lockname)); 1160 } else { 1161 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1162 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1163 } 1164 1165 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1166 if (TD_ON_RUNQ(td) || 1167 TD_CAN_RUN(td) || 1168 TD_IS_RUNNING(td)) { 1169 kp->ki_stat = SRUN; 1170 } else if (P_SHOULDSTOP(p)) { 1171 kp->ki_stat = SSTOP; 1172 } else if (TD_IS_SLEEPING(td)) { 1173 kp->ki_stat = SSLEEP; 1174 } else if (TD_ON_LOCK(td)) { 1175 kp->ki_stat = SLOCK; 1176 } else { 1177 kp->ki_stat = SWAIT; 1178 } 1179 } else if (p->p_state == PRS_ZOMBIE) { 1180 kp->ki_stat = SZOMB; 1181 } else { 1182 kp->ki_stat = SIDL; 1183 } 1184 1185 /* Things in the thread */ 1186 kp->ki_wchan = td->td_wchan; 1187 kp->ki_pri.pri_level = td->td_priority; 1188 kp->ki_pri.pri_native = td->td_base_pri; 1189 1190 /* 1191 * Note: legacy fields; clamp at the old NOCPU value and/or 1192 * the maximum u_char CPU value. 1193 */ 1194 if (td->td_lastcpu == NOCPU) 1195 kp->ki_lastcpu_old = NOCPU_OLD; 1196 else if (td->td_lastcpu > MAXCPU_OLD) 1197 kp->ki_lastcpu_old = MAXCPU_OLD; 1198 else 1199 kp->ki_lastcpu_old = td->td_lastcpu; 1200 1201 if (td->td_oncpu == NOCPU) 1202 kp->ki_oncpu_old = NOCPU_OLD; 1203 else if (td->td_oncpu > MAXCPU_OLD) 1204 kp->ki_oncpu_old = MAXCPU_OLD; 1205 else 1206 kp->ki_oncpu_old = td->td_oncpu; 1207 1208 kp->ki_lastcpu = td->td_lastcpu; 1209 kp->ki_oncpu = td->td_oncpu; 1210 kp->ki_tdflags = td->td_flags; 1211 kp->ki_tid = td->td_tid; 1212 kp->ki_numthreads = p->p_numthreads; 1213 kp->ki_pcb = td->td_pcb; 1214 kp->ki_kstack = (void *)td->td_kstack; 1215 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1216 kp->ki_pri.pri_class = td->td_pri_class; 1217 kp->ki_pri.pri_user = td->td_user_pri; 1218 1219 if (preferthread) { 1220 rufetchtd(td, &kp->ki_rusage); 1221 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1222 kp->ki_pctcpu = sched_pctcpu(td); 1223 kp->ki_estcpu = sched_estcpu(td); 1224 kp->ki_cow = td->td_cow; 1225 } 1226 1227 /* We can't get this anymore but ps etc never used it anyway. */ 1228 kp->ki_rqindex = 0; 1229 1230 if (preferthread) 1231 kp->ki_siglist = td->td_siglist; 1232 kp->ki_sigmask = td->td_sigmask; 1233 thread_unlock(td); 1234 if (preferthread) 1235 PROC_STATUNLOCK(p); 1236 } 1237 1238 /* 1239 * Fill in a kinfo_proc structure for the specified process. 1240 * Must be called with the target process locked. 1241 */ 1242 void 1243 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1244 { 1245 1246 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1247 1248 fill_kinfo_proc_only(p, kp); 1249 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1250 fill_kinfo_aggregate(p, kp); 1251 } 1252 1253 struct pstats * 1254 pstats_alloc(void) 1255 { 1256 1257 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1258 } 1259 1260 /* 1261 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1262 */ 1263 void 1264 pstats_fork(struct pstats *src, struct pstats *dst) 1265 { 1266 1267 bzero(&dst->pstat_startzero, 1268 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1269 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1270 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1271 } 1272 1273 void 1274 pstats_free(struct pstats *ps) 1275 { 1276 1277 free(ps, M_SUBPROC); 1278 } 1279 1280 #ifdef COMPAT_FREEBSD32 1281 1282 /* 1283 * This function is typically used to copy out the kernel address, so 1284 * it can be replaced by assignment of zero. 1285 */ 1286 static inline uint32_t 1287 ptr32_trim(const void *ptr) 1288 { 1289 uintptr_t uptr; 1290 1291 uptr = (uintptr_t)ptr; 1292 return ((uptr > UINT_MAX) ? 0 : uptr); 1293 } 1294 1295 #define PTRTRIM_CP(src,dst,fld) \ 1296 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1297 1298 static void 1299 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1300 { 1301 int i; 1302 1303 bzero(ki32, sizeof(struct kinfo_proc32)); 1304 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1305 CP(*ki, *ki32, ki_layout); 1306 PTRTRIM_CP(*ki, *ki32, ki_args); 1307 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1308 PTRTRIM_CP(*ki, *ki32, ki_addr); 1309 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1310 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1311 PTRTRIM_CP(*ki, *ki32, ki_fd); 1312 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1313 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1314 CP(*ki, *ki32, ki_pid); 1315 CP(*ki, *ki32, ki_ppid); 1316 CP(*ki, *ki32, ki_pgid); 1317 CP(*ki, *ki32, ki_tpgid); 1318 CP(*ki, *ki32, ki_sid); 1319 CP(*ki, *ki32, ki_tsid); 1320 CP(*ki, *ki32, ki_jobc); 1321 CP(*ki, *ki32, ki_tdev); 1322 CP(*ki, *ki32, ki_tdev_freebsd11); 1323 CP(*ki, *ki32, ki_siglist); 1324 CP(*ki, *ki32, ki_sigmask); 1325 CP(*ki, *ki32, ki_sigignore); 1326 CP(*ki, *ki32, ki_sigcatch); 1327 CP(*ki, *ki32, ki_uid); 1328 CP(*ki, *ki32, ki_ruid); 1329 CP(*ki, *ki32, ki_svuid); 1330 CP(*ki, *ki32, ki_rgid); 1331 CP(*ki, *ki32, ki_svgid); 1332 CP(*ki, *ki32, ki_ngroups); 1333 for (i = 0; i < KI_NGROUPS; i++) 1334 CP(*ki, *ki32, ki_groups[i]); 1335 CP(*ki, *ki32, ki_size); 1336 CP(*ki, *ki32, ki_rssize); 1337 CP(*ki, *ki32, ki_swrss); 1338 CP(*ki, *ki32, ki_tsize); 1339 CP(*ki, *ki32, ki_dsize); 1340 CP(*ki, *ki32, ki_ssize); 1341 CP(*ki, *ki32, ki_xstat); 1342 CP(*ki, *ki32, ki_acflag); 1343 CP(*ki, *ki32, ki_pctcpu); 1344 CP(*ki, *ki32, ki_estcpu); 1345 CP(*ki, *ki32, ki_slptime); 1346 CP(*ki, *ki32, ki_swtime); 1347 CP(*ki, *ki32, ki_cow); 1348 CP(*ki, *ki32, ki_runtime); 1349 TV_CP(*ki, *ki32, ki_start); 1350 TV_CP(*ki, *ki32, ki_childtime); 1351 CP(*ki, *ki32, ki_flag); 1352 CP(*ki, *ki32, ki_kiflag); 1353 CP(*ki, *ki32, ki_traceflag); 1354 CP(*ki, *ki32, ki_stat); 1355 CP(*ki, *ki32, ki_nice); 1356 CP(*ki, *ki32, ki_lock); 1357 CP(*ki, *ki32, ki_rqindex); 1358 CP(*ki, *ki32, ki_oncpu); 1359 CP(*ki, *ki32, ki_lastcpu); 1360 1361 /* XXX TODO: wrap cpu value as appropriate */ 1362 CP(*ki, *ki32, ki_oncpu_old); 1363 CP(*ki, *ki32, ki_lastcpu_old); 1364 1365 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1366 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1367 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1368 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1369 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1370 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1371 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1372 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1373 CP(*ki, *ki32, ki_tracer); 1374 CP(*ki, *ki32, ki_flag2); 1375 CP(*ki, *ki32, ki_fibnum); 1376 CP(*ki, *ki32, ki_cr_flags); 1377 CP(*ki, *ki32, ki_jid); 1378 CP(*ki, *ki32, ki_numthreads); 1379 CP(*ki, *ki32, ki_tid); 1380 CP(*ki, *ki32, ki_pri); 1381 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1382 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1383 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1384 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1385 PTRTRIM_CP(*ki, *ki32, ki_udata); 1386 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1387 CP(*ki, *ki32, ki_sflag); 1388 CP(*ki, *ki32, ki_tdflags); 1389 } 1390 #endif 1391 1392 static ssize_t 1393 kern_proc_out_size(struct proc *p, int flags) 1394 { 1395 ssize_t size = 0; 1396 1397 PROC_LOCK_ASSERT(p, MA_OWNED); 1398 1399 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1400 #ifdef COMPAT_FREEBSD32 1401 if ((flags & KERN_PROC_MASK32) != 0) { 1402 size += sizeof(struct kinfo_proc32); 1403 } else 1404 #endif 1405 size += sizeof(struct kinfo_proc); 1406 } else { 1407 #ifdef COMPAT_FREEBSD32 1408 if ((flags & KERN_PROC_MASK32) != 0) 1409 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1410 else 1411 #endif 1412 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1413 } 1414 PROC_UNLOCK(p); 1415 return (size); 1416 } 1417 1418 int 1419 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1420 { 1421 struct thread *td; 1422 struct kinfo_proc ki; 1423 #ifdef COMPAT_FREEBSD32 1424 struct kinfo_proc32 ki32; 1425 #endif 1426 int error; 1427 1428 PROC_LOCK_ASSERT(p, MA_OWNED); 1429 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1430 1431 error = 0; 1432 fill_kinfo_proc(p, &ki); 1433 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1434 #ifdef COMPAT_FREEBSD32 1435 if ((flags & KERN_PROC_MASK32) != 0) { 1436 freebsd32_kinfo_proc_out(&ki, &ki32); 1437 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1438 error = ENOMEM; 1439 } else 1440 #endif 1441 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1442 error = ENOMEM; 1443 } else { 1444 FOREACH_THREAD_IN_PROC(p, td) { 1445 fill_kinfo_thread(td, &ki, 1); 1446 #ifdef COMPAT_FREEBSD32 1447 if ((flags & KERN_PROC_MASK32) != 0) { 1448 freebsd32_kinfo_proc_out(&ki, &ki32); 1449 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1450 error = ENOMEM; 1451 } else 1452 #endif 1453 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1454 error = ENOMEM; 1455 if (error != 0) 1456 break; 1457 } 1458 } 1459 PROC_UNLOCK(p); 1460 return (error); 1461 } 1462 1463 static int 1464 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1465 { 1466 struct sbuf sb; 1467 struct kinfo_proc ki; 1468 int error, error2; 1469 1470 if (req->oldptr == NULL) 1471 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1472 1473 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1474 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1475 error = kern_proc_out(p, &sb, flags); 1476 error2 = sbuf_finish(&sb); 1477 sbuf_delete(&sb); 1478 if (error != 0) 1479 return (error); 1480 else if (error2 != 0) 1481 return (error2); 1482 return (0); 1483 } 1484 1485 int 1486 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1487 { 1488 struct proc *p; 1489 int error, i, j; 1490 1491 for (i = 0; i < pidhashlock + 1; i++) { 1492 sx_slock(&pidhashtbl_lock[i]); 1493 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1494 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1495 if (p->p_state == PRS_NEW) 1496 continue; 1497 error = cb(p, cbarg); 1498 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1499 if (error != 0) { 1500 sx_sunlock(&pidhashtbl_lock[i]); 1501 return (error); 1502 } 1503 } 1504 } 1505 sx_sunlock(&pidhashtbl_lock[i]); 1506 } 1507 return (0); 1508 } 1509 1510 struct kern_proc_out_args { 1511 struct sysctl_req *req; 1512 int flags; 1513 int oid_number; 1514 int *name; 1515 }; 1516 1517 static int 1518 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1519 { 1520 struct kern_proc_out_args *arg = origarg; 1521 int *name = arg->name; 1522 int oid_number = arg->oid_number; 1523 int flags = arg->flags; 1524 struct sysctl_req *req = arg->req; 1525 int error = 0; 1526 1527 PROC_LOCK(p); 1528 1529 KASSERT(p->p_ucred != NULL, 1530 ("process credential is NULL for non-NEW proc")); 1531 /* 1532 * Show a user only appropriate processes. 1533 */ 1534 if (p_cansee(curthread, p)) 1535 goto skip; 1536 /* 1537 * TODO - make more efficient (see notes below). 1538 * do by session. 1539 */ 1540 switch (oid_number) { 1541 1542 case KERN_PROC_GID: 1543 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1544 goto skip; 1545 break; 1546 1547 case KERN_PROC_PGRP: 1548 /* could do this by traversing pgrp */ 1549 if (p->p_pgrp == NULL || 1550 p->p_pgrp->pg_id != (pid_t)name[0]) 1551 goto skip; 1552 break; 1553 1554 case KERN_PROC_RGID: 1555 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1556 goto skip; 1557 break; 1558 1559 case KERN_PROC_SESSION: 1560 if (p->p_session == NULL || 1561 p->p_session->s_sid != (pid_t)name[0]) 1562 goto skip; 1563 break; 1564 1565 case KERN_PROC_TTY: 1566 if ((p->p_flag & P_CONTROLT) == 0 || 1567 p->p_session == NULL) 1568 goto skip; 1569 /* XXX proctree_lock */ 1570 SESS_LOCK(p->p_session); 1571 if (p->p_session->s_ttyp == NULL || 1572 tty_udev(p->p_session->s_ttyp) != 1573 (dev_t)name[0]) { 1574 SESS_UNLOCK(p->p_session); 1575 goto skip; 1576 } 1577 SESS_UNLOCK(p->p_session); 1578 break; 1579 1580 case KERN_PROC_UID: 1581 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1582 goto skip; 1583 break; 1584 1585 case KERN_PROC_RUID: 1586 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1587 goto skip; 1588 break; 1589 1590 case KERN_PROC_PROC: 1591 break; 1592 1593 default: 1594 break; 1595 1596 } 1597 error = sysctl_out_proc(p, req, flags); 1598 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1599 return (error); 1600 skip: 1601 PROC_UNLOCK(p); 1602 return (0); 1603 } 1604 1605 static int 1606 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1607 { 1608 struct kern_proc_out_args iterarg; 1609 int *name = (int *)arg1; 1610 u_int namelen = arg2; 1611 struct proc *p; 1612 int flags, oid_number; 1613 int error = 0; 1614 1615 oid_number = oidp->oid_number; 1616 if (oid_number != KERN_PROC_ALL && 1617 (oid_number & KERN_PROC_INC_THREAD) == 0) 1618 flags = KERN_PROC_NOTHREADS; 1619 else { 1620 flags = 0; 1621 oid_number &= ~KERN_PROC_INC_THREAD; 1622 } 1623 #ifdef COMPAT_FREEBSD32 1624 if (req->flags & SCTL_MASK32) 1625 flags |= KERN_PROC_MASK32; 1626 #endif 1627 if (oid_number == KERN_PROC_PID) { 1628 if (namelen != 1) 1629 return (EINVAL); 1630 error = sysctl_wire_old_buffer(req, 0); 1631 if (error) 1632 return (error); 1633 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1634 if (error == 0) 1635 error = sysctl_out_proc(p, req, flags); 1636 return (error); 1637 } 1638 1639 switch (oid_number) { 1640 case KERN_PROC_ALL: 1641 if (namelen != 0) 1642 return (EINVAL); 1643 break; 1644 case KERN_PROC_PROC: 1645 if (namelen != 0 && namelen != 1) 1646 return (EINVAL); 1647 break; 1648 default: 1649 if (namelen != 1) 1650 return (EINVAL); 1651 break; 1652 } 1653 1654 if (req->oldptr == NULL) { 1655 /* overestimate by 5 procs */ 1656 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1657 if (error) 1658 return (error); 1659 } else { 1660 error = sysctl_wire_old_buffer(req, 0); 1661 if (error != 0) 1662 return (error); 1663 } 1664 iterarg.flags = flags; 1665 iterarg.oid_number = oid_number; 1666 iterarg.req = req; 1667 iterarg.name = name; 1668 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1669 return (error); 1670 } 1671 1672 struct pargs * 1673 pargs_alloc(int len) 1674 { 1675 struct pargs *pa; 1676 1677 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1678 M_WAITOK); 1679 refcount_init(&pa->ar_ref, 1); 1680 pa->ar_length = len; 1681 return (pa); 1682 } 1683 1684 static void 1685 pargs_free(struct pargs *pa) 1686 { 1687 1688 free(pa, M_PARGS); 1689 } 1690 1691 void 1692 pargs_hold(struct pargs *pa) 1693 { 1694 1695 if (pa == NULL) 1696 return; 1697 refcount_acquire(&pa->ar_ref); 1698 } 1699 1700 void 1701 pargs_drop(struct pargs *pa) 1702 { 1703 1704 if (pa == NULL) 1705 return; 1706 if (refcount_release(&pa->ar_ref)) 1707 pargs_free(pa); 1708 } 1709 1710 static int 1711 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1712 size_t len) 1713 { 1714 ssize_t n; 1715 1716 /* 1717 * This may return a short read if the string is shorter than the chunk 1718 * and is aligned at the end of the page, and the following page is not 1719 * mapped. 1720 */ 1721 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1722 if (n <= 0) 1723 return (ENOMEM); 1724 return (0); 1725 } 1726 1727 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1728 1729 enum proc_vector_type { 1730 PROC_ARG, 1731 PROC_ENV, 1732 PROC_AUX, 1733 }; 1734 1735 #ifdef COMPAT_FREEBSD32 1736 static int 1737 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1738 size_t *vsizep, enum proc_vector_type type) 1739 { 1740 struct freebsd32_ps_strings pss; 1741 Elf32_Auxinfo aux; 1742 vm_offset_t vptr, ptr; 1743 uint32_t *proc_vector32; 1744 char **proc_vector; 1745 size_t vsize, size; 1746 int i, error; 1747 1748 error = 0; 1749 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1750 sizeof(pss)) != sizeof(pss)) 1751 return (ENOMEM); 1752 switch (type) { 1753 case PROC_ARG: 1754 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1755 vsize = pss.ps_nargvstr; 1756 if (vsize > ARG_MAX) 1757 return (ENOEXEC); 1758 size = vsize * sizeof(int32_t); 1759 break; 1760 case PROC_ENV: 1761 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1762 vsize = pss.ps_nenvstr; 1763 if (vsize > ARG_MAX) 1764 return (ENOEXEC); 1765 size = vsize * sizeof(int32_t); 1766 break; 1767 case PROC_AUX: 1768 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1769 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1770 if (vptr % 4 != 0) 1771 return (ENOEXEC); 1772 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1773 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1774 sizeof(aux)) 1775 return (ENOMEM); 1776 if (aux.a_type == AT_NULL) 1777 break; 1778 ptr += sizeof(aux); 1779 } 1780 if (aux.a_type != AT_NULL) 1781 return (ENOEXEC); 1782 vsize = i + 1; 1783 size = vsize * sizeof(aux); 1784 break; 1785 default: 1786 KASSERT(0, ("Wrong proc vector type: %d", type)); 1787 return (EINVAL); 1788 } 1789 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1790 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1791 error = ENOMEM; 1792 goto done; 1793 } 1794 if (type == PROC_AUX) { 1795 *proc_vectorp = (char **)proc_vector32; 1796 *vsizep = vsize; 1797 return (0); 1798 } 1799 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1800 for (i = 0; i < (int)vsize; i++) 1801 proc_vector[i] = PTRIN(proc_vector32[i]); 1802 *proc_vectorp = proc_vector; 1803 *vsizep = vsize; 1804 done: 1805 free(proc_vector32, M_TEMP); 1806 return (error); 1807 } 1808 #endif 1809 1810 static int 1811 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1812 size_t *vsizep, enum proc_vector_type type) 1813 { 1814 struct ps_strings pss; 1815 Elf_Auxinfo aux; 1816 vm_offset_t vptr, ptr; 1817 char **proc_vector; 1818 size_t vsize, size; 1819 int i; 1820 1821 #ifdef COMPAT_FREEBSD32 1822 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1823 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1824 #endif 1825 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1826 sizeof(pss)) != sizeof(pss)) 1827 return (ENOMEM); 1828 switch (type) { 1829 case PROC_ARG: 1830 vptr = (vm_offset_t)pss.ps_argvstr; 1831 vsize = pss.ps_nargvstr; 1832 if (vsize > ARG_MAX) 1833 return (ENOEXEC); 1834 size = vsize * sizeof(char *); 1835 break; 1836 case PROC_ENV: 1837 vptr = (vm_offset_t)pss.ps_envstr; 1838 vsize = pss.ps_nenvstr; 1839 if (vsize > ARG_MAX) 1840 return (ENOEXEC); 1841 size = vsize * sizeof(char *); 1842 break; 1843 case PROC_AUX: 1844 /* 1845 * The aux array is just above env array on the stack. Check 1846 * that the address is naturally aligned. 1847 */ 1848 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1849 * sizeof(char *); 1850 #if __ELF_WORD_SIZE == 64 1851 if (vptr % sizeof(uint64_t) != 0) 1852 #else 1853 if (vptr % sizeof(uint32_t) != 0) 1854 #endif 1855 return (ENOEXEC); 1856 /* 1857 * We count the array size reading the aux vectors from the 1858 * stack until AT_NULL vector is returned. So (to keep the code 1859 * simple) we read the process stack twice: the first time here 1860 * to find the size and the second time when copying the vectors 1861 * to the allocated proc_vector. 1862 */ 1863 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1864 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1865 sizeof(aux)) 1866 return (ENOMEM); 1867 if (aux.a_type == AT_NULL) 1868 break; 1869 ptr += sizeof(aux); 1870 } 1871 /* 1872 * If the PROC_AUXV_MAX entries are iterated over, and we have 1873 * not reached AT_NULL, it is most likely we are reading wrong 1874 * data: either the process doesn't have auxv array or data has 1875 * been modified. Return the error in this case. 1876 */ 1877 if (aux.a_type != AT_NULL) 1878 return (ENOEXEC); 1879 vsize = i + 1; 1880 size = vsize * sizeof(aux); 1881 break; 1882 default: 1883 KASSERT(0, ("Wrong proc vector type: %d", type)); 1884 return (EINVAL); /* In case we are built without INVARIANTS. */ 1885 } 1886 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1887 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1888 free(proc_vector, M_TEMP); 1889 return (ENOMEM); 1890 } 1891 *proc_vectorp = proc_vector; 1892 *vsizep = vsize; 1893 1894 return (0); 1895 } 1896 1897 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1898 1899 static int 1900 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1901 enum proc_vector_type type) 1902 { 1903 size_t done, len, nchr, vsize; 1904 int error, i; 1905 char **proc_vector, *sptr; 1906 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1907 1908 PROC_ASSERT_HELD(p); 1909 1910 /* 1911 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1912 */ 1913 nchr = 2 * (PATH_MAX + ARG_MAX); 1914 1915 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1916 if (error != 0) 1917 return (error); 1918 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1919 /* 1920 * The program may have scribbled into its argv array, e.g. to 1921 * remove some arguments. If that has happened, break out 1922 * before trying to read from NULL. 1923 */ 1924 if (proc_vector[i] == NULL) 1925 break; 1926 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1927 error = proc_read_string(td, p, sptr, pss_string, 1928 sizeof(pss_string)); 1929 if (error != 0) 1930 goto done; 1931 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1932 if (done + len >= nchr) 1933 len = nchr - done - 1; 1934 sbuf_bcat(sb, pss_string, len); 1935 if (len != GET_PS_STRINGS_CHUNK_SZ) 1936 break; 1937 done += GET_PS_STRINGS_CHUNK_SZ; 1938 } 1939 sbuf_bcat(sb, "", 1); 1940 done += len + 1; 1941 } 1942 done: 1943 free(proc_vector, M_TEMP); 1944 return (error); 1945 } 1946 1947 int 1948 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1949 { 1950 1951 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1952 } 1953 1954 int 1955 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1956 { 1957 1958 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1959 } 1960 1961 int 1962 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1963 { 1964 size_t vsize, size; 1965 char **auxv; 1966 int error; 1967 1968 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1969 if (error == 0) { 1970 #ifdef COMPAT_FREEBSD32 1971 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1972 size = vsize * sizeof(Elf32_Auxinfo); 1973 else 1974 #endif 1975 size = vsize * sizeof(Elf_Auxinfo); 1976 if (sbuf_bcat(sb, auxv, size) != 0) 1977 error = ENOMEM; 1978 free(auxv, M_TEMP); 1979 } 1980 return (error); 1981 } 1982 1983 /* 1984 * This sysctl allows a process to retrieve the argument list or process 1985 * title for another process without groping around in the address space 1986 * of the other process. It also allow a process to set its own "process 1987 * title to a string of its own choice. 1988 */ 1989 static int 1990 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1991 { 1992 int *name = (int *)arg1; 1993 u_int namelen = arg2; 1994 struct pargs *newpa, *pa; 1995 struct proc *p; 1996 struct sbuf sb; 1997 int flags, error = 0, error2; 1998 pid_t pid; 1999 2000 if (namelen != 1) 2001 return (EINVAL); 2002 2003 pid = (pid_t)name[0]; 2004 /* 2005 * If the query is for this process and it is single-threaded, there 2006 * is nobody to modify pargs, thus we can just read. 2007 */ 2008 p = curproc; 2009 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2010 (pa = p->p_args) != NULL) 2011 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2012 2013 flags = PGET_CANSEE; 2014 if (req->newptr != NULL) 2015 flags |= PGET_ISCURRENT; 2016 error = pget(pid, flags, &p); 2017 if (error) 2018 return (error); 2019 2020 pa = p->p_args; 2021 if (pa != NULL) { 2022 pargs_hold(pa); 2023 PROC_UNLOCK(p); 2024 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2025 pargs_drop(pa); 2026 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2027 _PHOLD(p); 2028 PROC_UNLOCK(p); 2029 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2030 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2031 error = proc_getargv(curthread, p, &sb); 2032 error2 = sbuf_finish(&sb); 2033 PRELE(p); 2034 sbuf_delete(&sb); 2035 if (error == 0 && error2 != 0) 2036 error = error2; 2037 } else { 2038 PROC_UNLOCK(p); 2039 } 2040 if (error != 0 || req->newptr == NULL) 2041 return (error); 2042 2043 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2044 return (ENOMEM); 2045 2046 if (req->newlen == 0) { 2047 /* 2048 * Clear the argument pointer, so that we'll fetch arguments 2049 * with proc_getargv() until further notice. 2050 */ 2051 newpa = NULL; 2052 } else { 2053 newpa = pargs_alloc(req->newlen); 2054 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2055 if (error != 0) { 2056 pargs_free(newpa); 2057 return (error); 2058 } 2059 } 2060 PROC_LOCK(p); 2061 pa = p->p_args; 2062 p->p_args = newpa; 2063 PROC_UNLOCK(p); 2064 pargs_drop(pa); 2065 return (0); 2066 } 2067 2068 /* 2069 * This sysctl allows a process to retrieve environment of another process. 2070 */ 2071 static int 2072 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2073 { 2074 int *name = (int *)arg1; 2075 u_int namelen = arg2; 2076 struct proc *p; 2077 struct sbuf sb; 2078 int error, error2; 2079 2080 if (namelen != 1) 2081 return (EINVAL); 2082 2083 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2084 if (error != 0) 2085 return (error); 2086 if ((p->p_flag & P_SYSTEM) != 0) { 2087 PRELE(p); 2088 return (0); 2089 } 2090 2091 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2092 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2093 error = proc_getenvv(curthread, p, &sb); 2094 error2 = sbuf_finish(&sb); 2095 PRELE(p); 2096 sbuf_delete(&sb); 2097 return (error != 0 ? error : error2); 2098 } 2099 2100 /* 2101 * This sysctl allows a process to retrieve ELF auxiliary vector of 2102 * another process. 2103 */ 2104 static int 2105 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2106 { 2107 int *name = (int *)arg1; 2108 u_int namelen = arg2; 2109 struct proc *p; 2110 struct sbuf sb; 2111 int error, error2; 2112 2113 if (namelen != 1) 2114 return (EINVAL); 2115 2116 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2117 if (error != 0) 2118 return (error); 2119 if ((p->p_flag & P_SYSTEM) != 0) { 2120 PRELE(p); 2121 return (0); 2122 } 2123 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2124 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2125 error = proc_getauxv(curthread, p, &sb); 2126 error2 = sbuf_finish(&sb); 2127 PRELE(p); 2128 sbuf_delete(&sb); 2129 return (error != 0 ? error : error2); 2130 } 2131 2132 /* 2133 * This sysctl allows a process to retrieve the path of the executable for 2134 * itself or another process. 2135 */ 2136 static int 2137 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2138 { 2139 pid_t *pidp = (pid_t *)arg1; 2140 unsigned int arglen = arg2; 2141 struct proc *p; 2142 struct vnode *vp; 2143 char *retbuf, *freebuf; 2144 int error; 2145 2146 if (arglen != 1) 2147 return (EINVAL); 2148 if (*pidp == -1) { /* -1 means this process */ 2149 p = req->td->td_proc; 2150 } else { 2151 error = pget(*pidp, PGET_CANSEE, &p); 2152 if (error != 0) 2153 return (error); 2154 } 2155 2156 vp = p->p_textvp; 2157 if (vp == NULL) { 2158 if (*pidp != -1) 2159 PROC_UNLOCK(p); 2160 return (0); 2161 } 2162 vref(vp); 2163 if (*pidp != -1) 2164 PROC_UNLOCK(p); 2165 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2166 vrele(vp); 2167 if (error) 2168 return (error); 2169 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2170 free(freebuf, M_TEMP); 2171 return (error); 2172 } 2173 2174 static int 2175 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2176 { 2177 struct proc *p; 2178 char *sv_name; 2179 int *name; 2180 int namelen; 2181 int error; 2182 2183 namelen = arg2; 2184 if (namelen != 1) 2185 return (EINVAL); 2186 2187 name = (int *)arg1; 2188 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2189 if (error != 0) 2190 return (error); 2191 sv_name = p->p_sysent->sv_name; 2192 PROC_UNLOCK(p); 2193 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2194 } 2195 2196 #ifdef KINFO_OVMENTRY_SIZE 2197 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2198 #endif 2199 2200 #ifdef COMPAT_FREEBSD7 2201 static int 2202 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2203 { 2204 vm_map_entry_t entry, tmp_entry; 2205 unsigned int last_timestamp; 2206 char *fullpath, *freepath; 2207 struct kinfo_ovmentry *kve; 2208 struct vattr va; 2209 struct ucred *cred; 2210 int error, *name; 2211 struct vnode *vp; 2212 struct proc *p; 2213 vm_map_t map; 2214 struct vmspace *vm; 2215 2216 name = (int *)arg1; 2217 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2218 if (error != 0) 2219 return (error); 2220 vm = vmspace_acquire_ref(p); 2221 if (vm == NULL) { 2222 PRELE(p); 2223 return (ESRCH); 2224 } 2225 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2226 2227 map = &vm->vm_map; 2228 vm_map_lock_read(map); 2229 VM_MAP_ENTRY_FOREACH(entry, map) { 2230 vm_object_t obj, tobj, lobj; 2231 vm_offset_t addr; 2232 2233 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2234 continue; 2235 2236 bzero(kve, sizeof(*kve)); 2237 kve->kve_structsize = sizeof(*kve); 2238 2239 kve->kve_private_resident = 0; 2240 obj = entry->object.vm_object; 2241 if (obj != NULL) { 2242 VM_OBJECT_RLOCK(obj); 2243 if (obj->shadow_count == 1) 2244 kve->kve_private_resident = 2245 obj->resident_page_count; 2246 } 2247 kve->kve_resident = 0; 2248 addr = entry->start; 2249 while (addr < entry->end) { 2250 if (pmap_extract(map->pmap, addr)) 2251 kve->kve_resident++; 2252 addr += PAGE_SIZE; 2253 } 2254 2255 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2256 if (tobj != obj) { 2257 VM_OBJECT_RLOCK(tobj); 2258 kve->kve_offset += tobj->backing_object_offset; 2259 } 2260 if (lobj != obj) 2261 VM_OBJECT_RUNLOCK(lobj); 2262 lobj = tobj; 2263 } 2264 2265 kve->kve_start = (void*)entry->start; 2266 kve->kve_end = (void*)entry->end; 2267 kve->kve_offset += (off_t)entry->offset; 2268 2269 if (entry->protection & VM_PROT_READ) 2270 kve->kve_protection |= KVME_PROT_READ; 2271 if (entry->protection & VM_PROT_WRITE) 2272 kve->kve_protection |= KVME_PROT_WRITE; 2273 if (entry->protection & VM_PROT_EXECUTE) 2274 kve->kve_protection |= KVME_PROT_EXEC; 2275 2276 if (entry->eflags & MAP_ENTRY_COW) 2277 kve->kve_flags |= KVME_FLAG_COW; 2278 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2279 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2280 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2281 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2282 2283 last_timestamp = map->timestamp; 2284 vm_map_unlock_read(map); 2285 2286 kve->kve_fileid = 0; 2287 kve->kve_fsid = 0; 2288 freepath = NULL; 2289 fullpath = ""; 2290 if (lobj) { 2291 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2292 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2293 kve->kve_type = KVME_TYPE_UNKNOWN; 2294 if (vp != NULL) 2295 vref(vp); 2296 if (lobj != obj) 2297 VM_OBJECT_RUNLOCK(lobj); 2298 2299 kve->kve_ref_count = obj->ref_count; 2300 kve->kve_shadow_count = obj->shadow_count; 2301 VM_OBJECT_RUNLOCK(obj); 2302 if (vp != NULL) { 2303 vn_fullpath(curthread, vp, &fullpath, 2304 &freepath); 2305 cred = curthread->td_ucred; 2306 vn_lock(vp, LK_SHARED | LK_RETRY); 2307 if (VOP_GETATTR(vp, &va, cred) == 0) { 2308 kve->kve_fileid = va.va_fileid; 2309 /* truncate */ 2310 kve->kve_fsid = va.va_fsid; 2311 } 2312 vput(vp); 2313 } 2314 } else { 2315 kve->kve_type = KVME_TYPE_NONE; 2316 kve->kve_ref_count = 0; 2317 kve->kve_shadow_count = 0; 2318 } 2319 2320 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2321 if (freepath != NULL) 2322 free(freepath, M_TEMP); 2323 2324 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2325 vm_map_lock_read(map); 2326 if (error) 2327 break; 2328 if (last_timestamp != map->timestamp) { 2329 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2330 entry = tmp_entry; 2331 } 2332 } 2333 vm_map_unlock_read(map); 2334 vmspace_free(vm); 2335 PRELE(p); 2336 free(kve, M_TEMP); 2337 return (error); 2338 } 2339 #endif /* COMPAT_FREEBSD7 */ 2340 2341 #ifdef KINFO_VMENTRY_SIZE 2342 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2343 #endif 2344 2345 void 2346 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2347 int *resident_count, bool *super) 2348 { 2349 vm_object_t obj, tobj; 2350 vm_page_t m, m_adv; 2351 vm_offset_t addr; 2352 vm_paddr_t pa; 2353 vm_pindex_t pi, pi_adv, pindex; 2354 2355 *super = false; 2356 *resident_count = 0; 2357 if (vmmap_skip_res_cnt) 2358 return; 2359 2360 pa = 0; 2361 obj = entry->object.vm_object; 2362 addr = entry->start; 2363 m_adv = NULL; 2364 pi = OFF_TO_IDX(entry->offset); 2365 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2366 if (m_adv != NULL) { 2367 m = m_adv; 2368 } else { 2369 pi_adv = atop(entry->end - addr); 2370 pindex = pi; 2371 for (tobj = obj;; tobj = tobj->backing_object) { 2372 m = vm_page_find_least(tobj, pindex); 2373 if (m != NULL) { 2374 if (m->pindex == pindex) 2375 break; 2376 if (pi_adv > m->pindex - pindex) { 2377 pi_adv = m->pindex - pindex; 2378 m_adv = m; 2379 } 2380 } 2381 if (tobj->backing_object == NULL) 2382 goto next; 2383 pindex += OFF_TO_IDX(tobj-> 2384 backing_object_offset); 2385 } 2386 } 2387 m_adv = NULL; 2388 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2389 (addr & (pagesizes[1] - 1)) == 0 && 2390 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2391 *super = true; 2392 pi_adv = atop(pagesizes[1]); 2393 } else { 2394 /* 2395 * We do not test the found page on validity. 2396 * Either the page is busy and being paged in, 2397 * or it was invalidated. The first case 2398 * should be counted as resident, the second 2399 * is not so clear; we do account both. 2400 */ 2401 pi_adv = 1; 2402 } 2403 *resident_count += pi_adv; 2404 next:; 2405 } 2406 } 2407 2408 /* 2409 * Must be called with the process locked and will return unlocked. 2410 */ 2411 int 2412 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2413 { 2414 vm_map_entry_t entry, tmp_entry; 2415 struct vattr va; 2416 vm_map_t map; 2417 vm_object_t obj, tobj, lobj; 2418 char *fullpath, *freepath; 2419 struct kinfo_vmentry *kve; 2420 struct ucred *cred; 2421 struct vnode *vp; 2422 struct vmspace *vm; 2423 vm_offset_t addr; 2424 unsigned int last_timestamp; 2425 int error; 2426 bool super; 2427 2428 PROC_LOCK_ASSERT(p, MA_OWNED); 2429 2430 _PHOLD(p); 2431 PROC_UNLOCK(p); 2432 vm = vmspace_acquire_ref(p); 2433 if (vm == NULL) { 2434 PRELE(p); 2435 return (ESRCH); 2436 } 2437 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2438 2439 error = 0; 2440 map = &vm->vm_map; 2441 vm_map_lock_read(map); 2442 VM_MAP_ENTRY_FOREACH(entry, map) { 2443 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2444 continue; 2445 2446 addr = entry->end; 2447 bzero(kve, sizeof(*kve)); 2448 obj = entry->object.vm_object; 2449 if (obj != NULL) { 2450 for (tobj = obj; tobj != NULL; 2451 tobj = tobj->backing_object) { 2452 VM_OBJECT_RLOCK(tobj); 2453 kve->kve_offset += tobj->backing_object_offset; 2454 lobj = tobj; 2455 } 2456 if (obj->backing_object == NULL) 2457 kve->kve_private_resident = 2458 obj->resident_page_count; 2459 kern_proc_vmmap_resident(map, entry, 2460 &kve->kve_resident, &super); 2461 if (super) 2462 kve->kve_flags |= KVME_FLAG_SUPER; 2463 for (tobj = obj; tobj != NULL; 2464 tobj = tobj->backing_object) { 2465 if (tobj != obj && tobj != lobj) 2466 VM_OBJECT_RUNLOCK(tobj); 2467 } 2468 } else { 2469 lobj = NULL; 2470 } 2471 2472 kve->kve_start = entry->start; 2473 kve->kve_end = entry->end; 2474 kve->kve_offset += entry->offset; 2475 2476 if (entry->protection & VM_PROT_READ) 2477 kve->kve_protection |= KVME_PROT_READ; 2478 if (entry->protection & VM_PROT_WRITE) 2479 kve->kve_protection |= KVME_PROT_WRITE; 2480 if (entry->protection & VM_PROT_EXECUTE) 2481 kve->kve_protection |= KVME_PROT_EXEC; 2482 2483 if (entry->eflags & MAP_ENTRY_COW) 2484 kve->kve_flags |= KVME_FLAG_COW; 2485 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2486 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2487 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2488 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2489 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2490 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2491 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2492 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2493 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2494 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2495 2496 last_timestamp = map->timestamp; 2497 vm_map_unlock_read(map); 2498 2499 freepath = NULL; 2500 fullpath = ""; 2501 if (lobj != NULL) { 2502 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2503 if (vp != NULL) 2504 vref(vp); 2505 if (lobj != obj) 2506 VM_OBJECT_RUNLOCK(lobj); 2507 2508 kve->kve_ref_count = obj->ref_count; 2509 kve->kve_shadow_count = obj->shadow_count; 2510 VM_OBJECT_RUNLOCK(obj); 2511 if (vp != NULL) { 2512 vn_fullpath(curthread, vp, &fullpath, 2513 &freepath); 2514 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2515 cred = curthread->td_ucred; 2516 vn_lock(vp, LK_SHARED | LK_RETRY); 2517 if (VOP_GETATTR(vp, &va, cred) == 0) { 2518 kve->kve_vn_fileid = va.va_fileid; 2519 kve->kve_vn_fsid = va.va_fsid; 2520 kve->kve_vn_fsid_freebsd11 = 2521 kve->kve_vn_fsid; /* truncate */ 2522 kve->kve_vn_mode = 2523 MAKEIMODE(va.va_type, va.va_mode); 2524 kve->kve_vn_size = va.va_size; 2525 kve->kve_vn_rdev = va.va_rdev; 2526 kve->kve_vn_rdev_freebsd11 = 2527 kve->kve_vn_rdev; /* truncate */ 2528 kve->kve_status = KF_ATTR_VALID; 2529 } 2530 vput(vp); 2531 } 2532 } else { 2533 kve->kve_type = KVME_TYPE_NONE; 2534 kve->kve_ref_count = 0; 2535 kve->kve_shadow_count = 0; 2536 } 2537 2538 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2539 if (freepath != NULL) 2540 free(freepath, M_TEMP); 2541 2542 /* Pack record size down */ 2543 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2544 kve->kve_structsize = 2545 offsetof(struct kinfo_vmentry, kve_path) + 2546 strlen(kve->kve_path) + 1; 2547 else 2548 kve->kve_structsize = sizeof(*kve); 2549 kve->kve_structsize = roundup(kve->kve_structsize, 2550 sizeof(uint64_t)); 2551 2552 /* Halt filling and truncate rather than exceeding maxlen */ 2553 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2554 error = 0; 2555 vm_map_lock_read(map); 2556 break; 2557 } else if (maxlen != -1) 2558 maxlen -= kve->kve_structsize; 2559 2560 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2561 error = ENOMEM; 2562 vm_map_lock_read(map); 2563 if (error != 0) 2564 break; 2565 if (last_timestamp != map->timestamp) { 2566 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2567 entry = tmp_entry; 2568 } 2569 } 2570 vm_map_unlock_read(map); 2571 vmspace_free(vm); 2572 PRELE(p); 2573 free(kve, M_TEMP); 2574 return (error); 2575 } 2576 2577 static int 2578 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2579 { 2580 struct proc *p; 2581 struct sbuf sb; 2582 int error, error2, *name; 2583 2584 name = (int *)arg1; 2585 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2586 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2587 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2588 if (error != 0) { 2589 sbuf_delete(&sb); 2590 return (error); 2591 } 2592 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2593 error2 = sbuf_finish(&sb); 2594 sbuf_delete(&sb); 2595 return (error != 0 ? error : error2); 2596 } 2597 2598 #if defined(STACK) || defined(DDB) 2599 static int 2600 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2601 { 2602 struct kinfo_kstack *kkstp; 2603 int error, i, *name, numthreads; 2604 lwpid_t *lwpidarray; 2605 struct thread *td; 2606 struct stack *st; 2607 struct sbuf sb; 2608 struct proc *p; 2609 2610 name = (int *)arg1; 2611 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2612 if (error != 0) 2613 return (error); 2614 2615 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2616 st = stack_create(M_WAITOK); 2617 2618 lwpidarray = NULL; 2619 PROC_LOCK(p); 2620 do { 2621 if (lwpidarray != NULL) { 2622 free(lwpidarray, M_TEMP); 2623 lwpidarray = NULL; 2624 } 2625 numthreads = p->p_numthreads; 2626 PROC_UNLOCK(p); 2627 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2628 M_WAITOK | M_ZERO); 2629 PROC_LOCK(p); 2630 } while (numthreads < p->p_numthreads); 2631 2632 /* 2633 * XXXRW: During the below loop, execve(2) and countless other sorts 2634 * of changes could have taken place. Should we check to see if the 2635 * vmspace has been replaced, or the like, in order to prevent 2636 * giving a snapshot that spans, say, execve(2), with some threads 2637 * before and some after? Among other things, the credentials could 2638 * have changed, in which case the right to extract debug info might 2639 * no longer be assured. 2640 */ 2641 i = 0; 2642 FOREACH_THREAD_IN_PROC(p, td) { 2643 KASSERT(i < numthreads, 2644 ("sysctl_kern_proc_kstack: numthreads")); 2645 lwpidarray[i] = td->td_tid; 2646 i++; 2647 } 2648 numthreads = i; 2649 for (i = 0; i < numthreads; i++) { 2650 td = thread_find(p, lwpidarray[i]); 2651 if (td == NULL) { 2652 continue; 2653 } 2654 bzero(kkstp, sizeof(*kkstp)); 2655 (void)sbuf_new(&sb, kkstp->kkst_trace, 2656 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2657 thread_lock(td); 2658 kkstp->kkst_tid = td->td_tid; 2659 if (TD_IS_SWAPPED(td)) 2660 kkstp->kkst_state = KKST_STATE_SWAPPED; 2661 else if (stack_save_td(st, td) == 0) 2662 kkstp->kkst_state = KKST_STATE_STACKOK; 2663 else 2664 kkstp->kkst_state = KKST_STATE_RUNNING; 2665 thread_unlock(td); 2666 PROC_UNLOCK(p); 2667 stack_sbuf_print(&sb, st); 2668 sbuf_finish(&sb); 2669 sbuf_delete(&sb); 2670 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2671 PROC_LOCK(p); 2672 if (error) 2673 break; 2674 } 2675 _PRELE(p); 2676 PROC_UNLOCK(p); 2677 if (lwpidarray != NULL) 2678 free(lwpidarray, M_TEMP); 2679 stack_destroy(st); 2680 free(kkstp, M_TEMP); 2681 return (error); 2682 } 2683 #endif 2684 2685 /* 2686 * This sysctl allows a process to retrieve the full list of groups from 2687 * itself or another process. 2688 */ 2689 static int 2690 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2691 { 2692 pid_t *pidp = (pid_t *)arg1; 2693 unsigned int arglen = arg2; 2694 struct proc *p; 2695 struct ucred *cred; 2696 int error; 2697 2698 if (arglen != 1) 2699 return (EINVAL); 2700 if (*pidp == -1) { /* -1 means this process */ 2701 p = req->td->td_proc; 2702 PROC_LOCK(p); 2703 } else { 2704 error = pget(*pidp, PGET_CANSEE, &p); 2705 if (error != 0) 2706 return (error); 2707 } 2708 2709 cred = crhold(p->p_ucred); 2710 PROC_UNLOCK(p); 2711 2712 error = SYSCTL_OUT(req, cred->cr_groups, 2713 cred->cr_ngroups * sizeof(gid_t)); 2714 crfree(cred); 2715 return (error); 2716 } 2717 2718 /* 2719 * This sysctl allows a process to retrieve or/and set the resource limit for 2720 * another process. 2721 */ 2722 static int 2723 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2724 { 2725 int *name = (int *)arg1; 2726 u_int namelen = arg2; 2727 struct rlimit rlim; 2728 struct proc *p; 2729 u_int which; 2730 int flags, error; 2731 2732 if (namelen != 2) 2733 return (EINVAL); 2734 2735 which = (u_int)name[1]; 2736 if (which >= RLIM_NLIMITS) 2737 return (EINVAL); 2738 2739 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2740 return (EINVAL); 2741 2742 flags = PGET_HOLD | PGET_NOTWEXIT; 2743 if (req->newptr != NULL) 2744 flags |= PGET_CANDEBUG; 2745 else 2746 flags |= PGET_CANSEE; 2747 error = pget((pid_t)name[0], flags, &p); 2748 if (error != 0) 2749 return (error); 2750 2751 /* 2752 * Retrieve limit. 2753 */ 2754 if (req->oldptr != NULL) { 2755 PROC_LOCK(p); 2756 lim_rlimit_proc(p, which, &rlim); 2757 PROC_UNLOCK(p); 2758 } 2759 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2760 if (error != 0) 2761 goto errout; 2762 2763 /* 2764 * Set limit. 2765 */ 2766 if (req->newptr != NULL) { 2767 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2768 if (error == 0) 2769 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2770 } 2771 2772 errout: 2773 PRELE(p); 2774 return (error); 2775 } 2776 2777 /* 2778 * This sysctl allows a process to retrieve ps_strings structure location of 2779 * another process. 2780 */ 2781 static int 2782 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2783 { 2784 int *name = (int *)arg1; 2785 u_int namelen = arg2; 2786 struct proc *p; 2787 vm_offset_t ps_strings; 2788 int error; 2789 #ifdef COMPAT_FREEBSD32 2790 uint32_t ps_strings32; 2791 #endif 2792 2793 if (namelen != 1) 2794 return (EINVAL); 2795 2796 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2797 if (error != 0) 2798 return (error); 2799 #ifdef COMPAT_FREEBSD32 2800 if ((req->flags & SCTL_MASK32) != 0) { 2801 /* 2802 * We return 0 if the 32 bit emulation request is for a 64 bit 2803 * process. 2804 */ 2805 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2806 PTROUT(p->p_sysent->sv_psstrings) : 0; 2807 PROC_UNLOCK(p); 2808 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2809 return (error); 2810 } 2811 #endif 2812 ps_strings = p->p_sysent->sv_psstrings; 2813 PROC_UNLOCK(p); 2814 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2815 return (error); 2816 } 2817 2818 /* 2819 * This sysctl allows a process to retrieve umask of another process. 2820 */ 2821 static int 2822 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2823 { 2824 int *name = (int *)arg1; 2825 u_int namelen = arg2; 2826 struct proc *p; 2827 int error; 2828 u_short fd_cmask; 2829 pid_t pid; 2830 2831 if (namelen != 1) 2832 return (EINVAL); 2833 2834 pid = (pid_t)name[0]; 2835 p = curproc; 2836 if (pid == p->p_pid || pid == 0) { 2837 fd_cmask = p->p_fd->fd_cmask; 2838 goto out; 2839 } 2840 2841 error = pget(pid, PGET_WANTREAD, &p); 2842 if (error != 0) 2843 return (error); 2844 2845 fd_cmask = p->p_fd->fd_cmask; 2846 PRELE(p); 2847 out: 2848 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2849 return (error); 2850 } 2851 2852 /* 2853 * This sysctl allows a process to set and retrieve binary osreldate of 2854 * another process. 2855 */ 2856 static int 2857 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2858 { 2859 int *name = (int *)arg1; 2860 u_int namelen = arg2; 2861 struct proc *p; 2862 int flags, error, osrel; 2863 2864 if (namelen != 1) 2865 return (EINVAL); 2866 2867 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2868 return (EINVAL); 2869 2870 flags = PGET_HOLD | PGET_NOTWEXIT; 2871 if (req->newptr != NULL) 2872 flags |= PGET_CANDEBUG; 2873 else 2874 flags |= PGET_CANSEE; 2875 error = pget((pid_t)name[0], flags, &p); 2876 if (error != 0) 2877 return (error); 2878 2879 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2880 if (error != 0) 2881 goto errout; 2882 2883 if (req->newptr != NULL) { 2884 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2885 if (error != 0) 2886 goto errout; 2887 if (osrel < 0) { 2888 error = EINVAL; 2889 goto errout; 2890 } 2891 p->p_osrel = osrel; 2892 } 2893 errout: 2894 PRELE(p); 2895 return (error); 2896 } 2897 2898 static int 2899 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2900 { 2901 int *name = (int *)arg1; 2902 u_int namelen = arg2; 2903 struct proc *p; 2904 struct kinfo_sigtramp kst; 2905 const struct sysentvec *sv; 2906 int error; 2907 #ifdef COMPAT_FREEBSD32 2908 struct kinfo_sigtramp32 kst32; 2909 #endif 2910 2911 if (namelen != 1) 2912 return (EINVAL); 2913 2914 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2915 if (error != 0) 2916 return (error); 2917 sv = p->p_sysent; 2918 #ifdef COMPAT_FREEBSD32 2919 if ((req->flags & SCTL_MASK32) != 0) { 2920 bzero(&kst32, sizeof(kst32)); 2921 if (SV_PROC_FLAG(p, SV_ILP32)) { 2922 if (sv->sv_sigcode_base != 0) { 2923 kst32.ksigtramp_start = sv->sv_sigcode_base; 2924 kst32.ksigtramp_end = sv->sv_sigcode_base + 2925 *sv->sv_szsigcode; 2926 } else { 2927 kst32.ksigtramp_start = sv->sv_psstrings - 2928 *sv->sv_szsigcode; 2929 kst32.ksigtramp_end = sv->sv_psstrings; 2930 } 2931 } 2932 PROC_UNLOCK(p); 2933 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2934 return (error); 2935 } 2936 #endif 2937 bzero(&kst, sizeof(kst)); 2938 if (sv->sv_sigcode_base != 0) { 2939 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2940 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2941 *sv->sv_szsigcode; 2942 } else { 2943 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2944 *sv->sv_szsigcode; 2945 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2946 } 2947 PROC_UNLOCK(p); 2948 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2949 return (error); 2950 } 2951 2952 static int 2953 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 2954 { 2955 int *name = (int *)arg1; 2956 u_int namelen = arg2; 2957 pid_t pid; 2958 struct proc *p; 2959 struct thread *td1; 2960 uintptr_t addr; 2961 #ifdef COMPAT_FREEBSD32 2962 uint32_t addr32; 2963 #endif 2964 int error; 2965 2966 if (namelen != 1 || req->newptr != NULL) 2967 return (EINVAL); 2968 2969 pid = (pid_t)name[0]; 2970 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 2971 if (error != 0) 2972 return (error); 2973 2974 PROC_LOCK(p); 2975 #ifdef COMPAT_FREEBSD32 2976 if (SV_CURPROC_FLAG(SV_ILP32)) { 2977 if (!SV_PROC_FLAG(p, SV_ILP32)) { 2978 error = EINVAL; 2979 goto errlocked; 2980 } 2981 } 2982 #endif 2983 if (pid <= PID_MAX) { 2984 td1 = FIRST_THREAD_IN_PROC(p); 2985 } else { 2986 FOREACH_THREAD_IN_PROC(p, td1) { 2987 if (td1->td_tid == pid) 2988 break; 2989 } 2990 } 2991 if (td1 == NULL) { 2992 error = ESRCH; 2993 goto errlocked; 2994 } 2995 /* 2996 * The access to the private thread flags. It is fine as far 2997 * as no out-of-thin-air values are read from td_pflags, and 2998 * usermode read of the td_sigblock_ptr is racy inherently, 2999 * since target process might have already changed it 3000 * meantime. 3001 */ 3002 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3003 addr = (uintptr_t)td1->td_sigblock_ptr; 3004 else 3005 error = ENOTTY; 3006 3007 errlocked: 3008 _PRELE(p); 3009 PROC_UNLOCK(p); 3010 if (error != 0) 3011 return (error); 3012 3013 #ifdef COMPAT_FREEBSD32 3014 if (SV_CURPROC_FLAG(SV_ILP32)) { 3015 addr32 = addr; 3016 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3017 } else 3018 #endif 3019 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3020 return (error); 3021 } 3022 3023 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3024 "Process table"); 3025 3026 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3027 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3028 "Return entire process table"); 3029 3030 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3031 sysctl_kern_proc, "Process table"); 3032 3033 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3034 sysctl_kern_proc, "Process table"); 3035 3036 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3037 sysctl_kern_proc, "Process table"); 3038 3039 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3040 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3041 3042 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3043 sysctl_kern_proc, "Process table"); 3044 3045 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3046 sysctl_kern_proc, "Process table"); 3047 3048 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3049 sysctl_kern_proc, "Process table"); 3050 3051 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3052 sysctl_kern_proc, "Process table"); 3053 3054 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3055 sysctl_kern_proc, "Return process table, no threads"); 3056 3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3058 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3059 sysctl_kern_proc_args, "Process argument list"); 3060 3061 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3062 sysctl_kern_proc_env, "Process environment"); 3063 3064 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3065 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3066 3067 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3068 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3069 3070 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3071 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3072 "Process syscall vector name (ABI type)"); 3073 3074 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3075 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3076 3077 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3078 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3079 3080 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3081 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3082 3083 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3084 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3085 3086 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3087 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3088 3089 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3090 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3091 3092 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3093 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3094 3095 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3096 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3097 3098 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3099 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3100 "Return process table, no threads"); 3101 3102 #ifdef COMPAT_FREEBSD7 3103 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3104 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3105 #endif 3106 3107 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3108 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3109 3110 #if defined(STACK) || defined(DDB) 3111 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3112 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3113 #endif 3114 3115 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3116 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3117 3118 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3119 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3120 "Process resource limits"); 3121 3122 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3123 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3124 "Process ps_strings location"); 3125 3126 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3127 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3128 3129 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3130 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3131 "Process binary osreldate"); 3132 3133 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3134 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3135 "Process signal trampoline location"); 3136 3137 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3138 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3139 "Thread sigfastblock address"); 3140 3141 int allproc_gen; 3142 3143 /* 3144 * stop_all_proc() purpose is to stop all process which have usermode, 3145 * except current process for obvious reasons. This makes it somewhat 3146 * unreliable when invoked from multithreaded process. The service 3147 * must not be user-callable anyway. 3148 */ 3149 void 3150 stop_all_proc(void) 3151 { 3152 struct proc *cp, *p; 3153 int r, gen; 3154 bool restart, seen_stopped, seen_exiting, stopped_some; 3155 3156 cp = curproc; 3157 allproc_loop: 3158 sx_xlock(&allproc_lock); 3159 gen = allproc_gen; 3160 seen_exiting = seen_stopped = stopped_some = restart = false; 3161 LIST_REMOVE(cp, p_list); 3162 LIST_INSERT_HEAD(&allproc, cp, p_list); 3163 for (;;) { 3164 p = LIST_NEXT(cp, p_list); 3165 if (p == NULL) 3166 break; 3167 LIST_REMOVE(cp, p_list); 3168 LIST_INSERT_AFTER(p, cp, p_list); 3169 PROC_LOCK(p); 3170 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3171 PROC_UNLOCK(p); 3172 continue; 3173 } 3174 if ((p->p_flag & P_WEXIT) != 0) { 3175 seen_exiting = true; 3176 PROC_UNLOCK(p); 3177 continue; 3178 } 3179 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3180 /* 3181 * Stopped processes are tolerated when there 3182 * are no other processes which might continue 3183 * them. P_STOPPED_SINGLE but not 3184 * P_TOTAL_STOP process still has at least one 3185 * thread running. 3186 */ 3187 seen_stopped = true; 3188 PROC_UNLOCK(p); 3189 continue; 3190 } 3191 sx_xunlock(&allproc_lock); 3192 _PHOLD(p); 3193 r = thread_single(p, SINGLE_ALLPROC); 3194 if (r != 0) 3195 restart = true; 3196 else 3197 stopped_some = true; 3198 _PRELE(p); 3199 PROC_UNLOCK(p); 3200 sx_xlock(&allproc_lock); 3201 } 3202 /* Catch forked children we did not see in iteration. */ 3203 if (gen != allproc_gen) 3204 restart = true; 3205 sx_xunlock(&allproc_lock); 3206 if (restart || stopped_some || seen_exiting || seen_stopped) { 3207 kern_yield(PRI_USER); 3208 goto allproc_loop; 3209 } 3210 } 3211 3212 void 3213 resume_all_proc(void) 3214 { 3215 struct proc *cp, *p; 3216 3217 cp = curproc; 3218 sx_xlock(&allproc_lock); 3219 again: 3220 LIST_REMOVE(cp, p_list); 3221 LIST_INSERT_HEAD(&allproc, cp, p_list); 3222 for (;;) { 3223 p = LIST_NEXT(cp, p_list); 3224 if (p == NULL) 3225 break; 3226 LIST_REMOVE(cp, p_list); 3227 LIST_INSERT_AFTER(p, cp, p_list); 3228 PROC_LOCK(p); 3229 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3230 sx_xunlock(&allproc_lock); 3231 _PHOLD(p); 3232 thread_single_end(p, SINGLE_ALLPROC); 3233 _PRELE(p); 3234 PROC_UNLOCK(p); 3235 sx_xlock(&allproc_lock); 3236 } else { 3237 PROC_UNLOCK(p); 3238 } 3239 } 3240 /* Did the loop above missed any stopped process ? */ 3241 FOREACH_PROC_IN_SYSTEM(p) { 3242 /* No need for proc lock. */ 3243 if ((p->p_flag & P_TOTAL_STOP) != 0) 3244 goto again; 3245 } 3246 sx_xunlock(&allproc_lock); 3247 } 3248 3249 /* #define TOTAL_STOP_DEBUG 1 */ 3250 #ifdef TOTAL_STOP_DEBUG 3251 volatile static int ap_resume; 3252 #include <sys/mount.h> 3253 3254 static int 3255 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3256 { 3257 int error, val; 3258 3259 val = 0; 3260 ap_resume = 0; 3261 error = sysctl_handle_int(oidp, &val, 0, req); 3262 if (error != 0 || req->newptr == NULL) 3263 return (error); 3264 if (val != 0) { 3265 stop_all_proc(); 3266 syncer_suspend(); 3267 while (ap_resume == 0) 3268 ; 3269 syncer_resume(); 3270 resume_all_proc(); 3271 } 3272 return (0); 3273 } 3274 3275 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3276 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3277 sysctl_debug_stop_all_proc, "I", 3278 ""); 3279 #endif 3280