1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sysent.h> 61 #include <sys/sched.h> 62 #include <sys/smp.h> 63 #include <sys/stack.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/filedesc.h> 67 #include <sys/tty.h> 68 #include <sys/signalvar.h> 69 #include <sys/sdt.h> 70 #include <sys/sx.h> 71 #include <sys/user.h> 72 #include <sys/jail.h> 73 #include <sys/vnode.h> 74 #include <sys/eventhandler.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 100 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 103 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 110 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 112 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 113 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 114 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 116 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 118 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 120 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 121 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 122 123 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 124 MALLOC_DEFINE(M_SESSION, "session", "session header"); 125 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 126 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 127 128 static void doenterpgrp(struct proc *, struct pgrp *); 129 static void orphanpg(struct pgrp *pg); 130 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 131 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 132 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 133 int preferthread); 134 static void pgadjustjobc(struct pgrp *pgrp, int entering); 135 static void pgdelete(struct pgrp *); 136 static int proc_ctor(void *mem, int size, void *arg, int flags); 137 static void proc_dtor(void *mem, int size, void *arg); 138 static int proc_init(void *mem, int size, int flags); 139 static void proc_fini(void *mem, int size); 140 static void pargs_free(struct pargs *pa); 141 static struct proc *zpfind_locked(pid_t pid); 142 143 /* 144 * Other process lists 145 */ 146 struct pidhashhead *pidhashtbl; 147 u_long pidhash; 148 struct pgrphashhead *pgrphashtbl; 149 u_long pgrphash; 150 struct proclist allproc; 151 struct proclist zombproc; 152 struct sx allproc_lock; 153 struct sx proctree_lock; 154 struct mtx ppeers_lock; 155 uma_zone_t proc_zone; 156 157 int kstack_pages = KSTACK_PAGES; 158 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 159 "Kernel stack size in pages"); 160 161 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 162 #ifdef COMPAT_FREEBSD32 163 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 164 #endif 165 166 /* 167 * Initialize global process hashing structures. 168 */ 169 void 170 procinit() 171 { 172 173 sx_init(&allproc_lock, "allproc"); 174 sx_init(&proctree_lock, "proctree"); 175 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 176 LIST_INIT(&allproc); 177 LIST_INIT(&zombproc); 178 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 179 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 180 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 181 proc_ctor, proc_dtor, proc_init, proc_fini, 182 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 183 uihashinit(); 184 } 185 186 /* 187 * Prepare a proc for use. 188 */ 189 static int 190 proc_ctor(void *mem, int size, void *arg, int flags) 191 { 192 struct proc *p; 193 194 p = (struct proc *)mem; 195 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 196 EVENTHANDLER_INVOKE(process_ctor, p); 197 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 198 return (0); 199 } 200 201 /* 202 * Reclaim a proc after use. 203 */ 204 static void 205 proc_dtor(void *mem, int size, void *arg) 206 { 207 struct proc *p; 208 struct thread *td; 209 210 /* INVARIANTS checks go here */ 211 p = (struct proc *)mem; 212 td = FIRST_THREAD_IN_PROC(p); 213 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 214 if (td != NULL) { 215 #ifdef INVARIANTS 216 KASSERT((p->p_numthreads == 1), 217 ("bad number of threads in exiting process")); 218 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 219 #endif 220 /* Free all OSD associated to this thread. */ 221 osd_thread_exit(td); 222 } 223 EVENTHANDLER_INVOKE(process_dtor, p); 224 if (p->p_ksi != NULL) 225 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 226 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 227 } 228 229 /* 230 * Initialize type-stable parts of a proc (when newly created). 231 */ 232 static int 233 proc_init(void *mem, int size, int flags) 234 { 235 struct proc *p; 236 237 p = (struct proc *)mem; 238 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 239 p->p_sched = (struct p_sched *)&p[1]; 240 bzero(&p->p_mtx, sizeof(struct mtx)); 241 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 242 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 243 cv_init(&p->p_pwait, "ppwait"); 244 cv_init(&p->p_dbgwait, "dbgwait"); 245 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 246 EVENTHANDLER_INVOKE(process_init, p); 247 p->p_stats = pstats_alloc(); 248 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 249 return (0); 250 } 251 252 /* 253 * UMA should ensure that this function is never called. 254 * Freeing a proc structure would violate type stability. 255 */ 256 static void 257 proc_fini(void *mem, int size) 258 { 259 #ifdef notnow 260 struct proc *p; 261 262 p = (struct proc *)mem; 263 EVENTHANDLER_INVOKE(process_fini, p); 264 pstats_free(p->p_stats); 265 thread_free(FIRST_THREAD_IN_PROC(p)); 266 mtx_destroy(&p->p_mtx); 267 if (p->p_ksi != NULL) 268 ksiginfo_free(p->p_ksi); 269 #else 270 panic("proc reclaimed"); 271 #endif 272 } 273 274 /* 275 * Is p an inferior of the current process? 276 */ 277 int 278 inferior(p) 279 register struct proc *p; 280 { 281 282 sx_assert(&proctree_lock, SX_LOCKED); 283 for (; p != curproc; p = p->p_pptr) 284 if (p->p_pid == 0) 285 return (0); 286 return (1); 287 } 288 289 struct proc * 290 pfind_locked(pid_t pid) 291 { 292 struct proc *p; 293 294 sx_assert(&allproc_lock, SX_LOCKED); 295 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 296 if (p->p_pid == pid) { 297 PROC_LOCK(p); 298 if (p->p_state == PRS_NEW) { 299 PROC_UNLOCK(p); 300 p = NULL; 301 } 302 break; 303 } 304 } 305 return (p); 306 } 307 308 /* 309 * Locate a process by number; return only "live" processes -- i.e., neither 310 * zombies nor newly born but incompletely initialized processes. By not 311 * returning processes in the PRS_NEW state, we allow callers to avoid 312 * testing for that condition to avoid dereferencing p_ucred, et al. 313 */ 314 struct proc * 315 pfind(pid_t pid) 316 { 317 struct proc *p; 318 319 sx_slock(&allproc_lock); 320 p = pfind_locked(pid); 321 sx_sunlock(&allproc_lock); 322 return (p); 323 } 324 325 static struct proc * 326 pfind_tid_locked(pid_t tid) 327 { 328 struct proc *p; 329 struct thread *td; 330 331 sx_assert(&allproc_lock, SX_LOCKED); 332 FOREACH_PROC_IN_SYSTEM(p) { 333 PROC_LOCK(p); 334 if (p->p_state == PRS_NEW) { 335 PROC_UNLOCK(p); 336 continue; 337 } 338 FOREACH_THREAD_IN_PROC(p, td) { 339 if (td->td_tid == tid) 340 goto found; 341 } 342 PROC_UNLOCK(p); 343 } 344 found: 345 return (p); 346 } 347 348 /* 349 * Locate a process group by number. 350 * The caller must hold proctree_lock. 351 */ 352 struct pgrp * 353 pgfind(pgid) 354 register pid_t pgid; 355 { 356 register struct pgrp *pgrp; 357 358 sx_assert(&proctree_lock, SX_LOCKED); 359 360 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 361 if (pgrp->pg_id == pgid) { 362 PGRP_LOCK(pgrp); 363 return (pgrp); 364 } 365 } 366 return (NULL); 367 } 368 369 /* 370 * Locate process and do additional manipulations, depending on flags. 371 */ 372 int 373 pget(pid_t pid, int flags, struct proc **pp) 374 { 375 struct proc *p; 376 int error; 377 378 sx_slock(&allproc_lock); 379 if (pid <= PID_MAX) { 380 p = pfind_locked(pid); 381 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 382 p = zpfind_locked(pid); 383 } else if ((flags & PGET_NOTID) == 0) { 384 p = pfind_tid_locked(pid); 385 } else { 386 p = NULL; 387 } 388 sx_sunlock(&allproc_lock); 389 if (p == NULL) 390 return (ESRCH); 391 if ((flags & PGET_CANSEE) != 0) { 392 error = p_cansee(curthread, p); 393 if (error != 0) 394 goto errout; 395 } 396 if ((flags & PGET_CANDEBUG) != 0) { 397 error = p_candebug(curthread, p); 398 if (error != 0) 399 goto errout; 400 } 401 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 402 error = EPERM; 403 goto errout; 404 } 405 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 406 error = ESRCH; 407 goto errout; 408 } 409 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 410 /* 411 * XXXRW: Not clear ESRCH is the right error during proc 412 * execve(). 413 */ 414 error = ESRCH; 415 goto errout; 416 } 417 if ((flags & PGET_HOLD) != 0) { 418 _PHOLD(p); 419 PROC_UNLOCK(p); 420 } 421 *pp = p; 422 return (0); 423 errout: 424 PROC_UNLOCK(p); 425 return (error); 426 } 427 428 /* 429 * Create a new process group. 430 * pgid must be equal to the pid of p. 431 * Begin a new session if required. 432 */ 433 int 434 enterpgrp(p, pgid, pgrp, sess) 435 register struct proc *p; 436 pid_t pgid; 437 struct pgrp *pgrp; 438 struct session *sess; 439 { 440 441 sx_assert(&proctree_lock, SX_XLOCKED); 442 443 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 444 KASSERT(p->p_pid == pgid, 445 ("enterpgrp: new pgrp and pid != pgid")); 446 KASSERT(pgfind(pgid) == NULL, 447 ("enterpgrp: pgrp with pgid exists")); 448 KASSERT(!SESS_LEADER(p), 449 ("enterpgrp: session leader attempted setpgrp")); 450 451 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 452 453 if (sess != NULL) { 454 /* 455 * new session 456 */ 457 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 458 PROC_LOCK(p); 459 p->p_flag &= ~P_CONTROLT; 460 PROC_UNLOCK(p); 461 PGRP_LOCK(pgrp); 462 sess->s_leader = p; 463 sess->s_sid = p->p_pid; 464 refcount_init(&sess->s_count, 1); 465 sess->s_ttyvp = NULL; 466 sess->s_ttydp = NULL; 467 sess->s_ttyp = NULL; 468 bcopy(p->p_session->s_login, sess->s_login, 469 sizeof(sess->s_login)); 470 pgrp->pg_session = sess; 471 KASSERT(p == curproc, 472 ("enterpgrp: mksession and p != curproc")); 473 } else { 474 pgrp->pg_session = p->p_session; 475 sess_hold(pgrp->pg_session); 476 PGRP_LOCK(pgrp); 477 } 478 pgrp->pg_id = pgid; 479 LIST_INIT(&pgrp->pg_members); 480 481 /* 482 * As we have an exclusive lock of proctree_lock, 483 * this should not deadlock. 484 */ 485 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 486 pgrp->pg_jobc = 0; 487 SLIST_INIT(&pgrp->pg_sigiolst); 488 PGRP_UNLOCK(pgrp); 489 490 doenterpgrp(p, pgrp); 491 492 return (0); 493 } 494 495 /* 496 * Move p to an existing process group 497 */ 498 int 499 enterthispgrp(p, pgrp) 500 register struct proc *p; 501 struct pgrp *pgrp; 502 { 503 504 sx_assert(&proctree_lock, SX_XLOCKED); 505 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 506 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 507 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 508 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 509 KASSERT(pgrp->pg_session == p->p_session, 510 ("%s: pgrp's session %p, p->p_session %p.\n", 511 __func__, 512 pgrp->pg_session, 513 p->p_session)); 514 KASSERT(pgrp != p->p_pgrp, 515 ("%s: p belongs to pgrp.", __func__)); 516 517 doenterpgrp(p, pgrp); 518 519 return (0); 520 } 521 522 /* 523 * Move p to a process group 524 */ 525 static void 526 doenterpgrp(p, pgrp) 527 struct proc *p; 528 struct pgrp *pgrp; 529 { 530 struct pgrp *savepgrp; 531 532 sx_assert(&proctree_lock, SX_XLOCKED); 533 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 534 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 535 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 536 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 537 538 savepgrp = p->p_pgrp; 539 540 /* 541 * Adjust eligibility of affected pgrps to participate in job control. 542 * Increment eligibility counts before decrementing, otherwise we 543 * could reach 0 spuriously during the first call. 544 */ 545 fixjobc(p, pgrp, 1); 546 fixjobc(p, p->p_pgrp, 0); 547 548 PGRP_LOCK(pgrp); 549 PGRP_LOCK(savepgrp); 550 PROC_LOCK(p); 551 LIST_REMOVE(p, p_pglist); 552 p->p_pgrp = pgrp; 553 PROC_UNLOCK(p); 554 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 555 PGRP_UNLOCK(savepgrp); 556 PGRP_UNLOCK(pgrp); 557 if (LIST_EMPTY(&savepgrp->pg_members)) 558 pgdelete(savepgrp); 559 } 560 561 /* 562 * remove process from process group 563 */ 564 int 565 leavepgrp(p) 566 register struct proc *p; 567 { 568 struct pgrp *savepgrp; 569 570 sx_assert(&proctree_lock, SX_XLOCKED); 571 savepgrp = p->p_pgrp; 572 PGRP_LOCK(savepgrp); 573 PROC_LOCK(p); 574 LIST_REMOVE(p, p_pglist); 575 p->p_pgrp = NULL; 576 PROC_UNLOCK(p); 577 PGRP_UNLOCK(savepgrp); 578 if (LIST_EMPTY(&savepgrp->pg_members)) 579 pgdelete(savepgrp); 580 return (0); 581 } 582 583 /* 584 * delete a process group 585 */ 586 static void 587 pgdelete(pgrp) 588 register struct pgrp *pgrp; 589 { 590 struct session *savesess; 591 struct tty *tp; 592 593 sx_assert(&proctree_lock, SX_XLOCKED); 594 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 595 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 596 597 /* 598 * Reset any sigio structures pointing to us as a result of 599 * F_SETOWN with our pgid. 600 */ 601 funsetownlst(&pgrp->pg_sigiolst); 602 603 PGRP_LOCK(pgrp); 604 tp = pgrp->pg_session->s_ttyp; 605 LIST_REMOVE(pgrp, pg_hash); 606 savesess = pgrp->pg_session; 607 PGRP_UNLOCK(pgrp); 608 609 /* Remove the reference to the pgrp before deallocating it. */ 610 if (tp != NULL) { 611 tty_lock(tp); 612 tty_rel_pgrp(tp, pgrp); 613 } 614 615 mtx_destroy(&pgrp->pg_mtx); 616 free(pgrp, M_PGRP); 617 sess_release(savesess); 618 } 619 620 static void 621 pgadjustjobc(pgrp, entering) 622 struct pgrp *pgrp; 623 int entering; 624 { 625 626 PGRP_LOCK(pgrp); 627 if (entering) 628 pgrp->pg_jobc++; 629 else { 630 --pgrp->pg_jobc; 631 if (pgrp->pg_jobc == 0) 632 orphanpg(pgrp); 633 } 634 PGRP_UNLOCK(pgrp); 635 } 636 637 /* 638 * Adjust pgrp jobc counters when specified process changes process group. 639 * We count the number of processes in each process group that "qualify" 640 * the group for terminal job control (those with a parent in a different 641 * process group of the same session). If that count reaches zero, the 642 * process group becomes orphaned. Check both the specified process' 643 * process group and that of its children. 644 * entering == 0 => p is leaving specified group. 645 * entering == 1 => p is entering specified group. 646 */ 647 void 648 fixjobc(p, pgrp, entering) 649 register struct proc *p; 650 register struct pgrp *pgrp; 651 int entering; 652 { 653 register struct pgrp *hispgrp; 654 register struct session *mysession; 655 656 sx_assert(&proctree_lock, SX_LOCKED); 657 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 658 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 659 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 660 661 /* 662 * Check p's parent to see whether p qualifies its own process 663 * group; if so, adjust count for p's process group. 664 */ 665 mysession = pgrp->pg_session; 666 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 667 hispgrp->pg_session == mysession) 668 pgadjustjobc(pgrp, entering); 669 670 /* 671 * Check this process' children to see whether they qualify 672 * their process groups; if so, adjust counts for children's 673 * process groups. 674 */ 675 LIST_FOREACH(p, &p->p_children, p_sibling) { 676 hispgrp = p->p_pgrp; 677 if (hispgrp == pgrp || 678 hispgrp->pg_session != mysession) 679 continue; 680 PROC_LOCK(p); 681 if (p->p_state == PRS_ZOMBIE) { 682 PROC_UNLOCK(p); 683 continue; 684 } 685 PROC_UNLOCK(p); 686 pgadjustjobc(hispgrp, entering); 687 } 688 } 689 690 /* 691 * A process group has become orphaned; 692 * if there are any stopped processes in the group, 693 * hang-up all process in that group. 694 */ 695 static void 696 orphanpg(pg) 697 struct pgrp *pg; 698 { 699 register struct proc *p; 700 701 PGRP_LOCK_ASSERT(pg, MA_OWNED); 702 703 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 704 PROC_LOCK(p); 705 if (P_SHOULDSTOP(p)) { 706 PROC_UNLOCK(p); 707 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 708 PROC_LOCK(p); 709 kern_psignal(p, SIGHUP); 710 kern_psignal(p, SIGCONT); 711 PROC_UNLOCK(p); 712 } 713 return; 714 } 715 PROC_UNLOCK(p); 716 } 717 } 718 719 void 720 sess_hold(struct session *s) 721 { 722 723 refcount_acquire(&s->s_count); 724 } 725 726 void 727 sess_release(struct session *s) 728 { 729 730 if (refcount_release(&s->s_count)) { 731 if (s->s_ttyp != NULL) { 732 tty_lock(s->s_ttyp); 733 tty_rel_sess(s->s_ttyp, s); 734 } 735 mtx_destroy(&s->s_mtx); 736 free(s, M_SESSION); 737 } 738 } 739 740 #ifdef DDB 741 742 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 743 { 744 register struct pgrp *pgrp; 745 register struct proc *p; 746 register int i; 747 748 for (i = 0; i <= pgrphash; i++) { 749 if (!LIST_EMPTY(&pgrphashtbl[i])) { 750 printf("\tindx %d\n", i); 751 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 752 printf( 753 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 754 (void *)pgrp, (long)pgrp->pg_id, 755 (void *)pgrp->pg_session, 756 pgrp->pg_session->s_count, 757 (void *)LIST_FIRST(&pgrp->pg_members)); 758 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 759 printf("\t\tpid %ld addr %p pgrp %p\n", 760 (long)p->p_pid, (void *)p, 761 (void *)p->p_pgrp); 762 } 763 } 764 } 765 } 766 } 767 #endif /* DDB */ 768 769 /* 770 * Calculate the kinfo_proc members which contain process-wide 771 * informations. 772 * Must be called with the target process locked. 773 */ 774 static void 775 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 776 { 777 struct thread *td; 778 779 PROC_LOCK_ASSERT(p, MA_OWNED); 780 781 kp->ki_estcpu = 0; 782 kp->ki_pctcpu = 0; 783 FOREACH_THREAD_IN_PROC(p, td) { 784 thread_lock(td); 785 kp->ki_pctcpu += sched_pctcpu(td); 786 kp->ki_estcpu += td->td_estcpu; 787 thread_unlock(td); 788 } 789 } 790 791 /* 792 * Clear kinfo_proc and fill in any information that is common 793 * to all threads in the process. 794 * Must be called with the target process locked. 795 */ 796 static void 797 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 798 { 799 struct thread *td0; 800 struct tty *tp; 801 struct session *sp; 802 struct ucred *cred; 803 struct sigacts *ps; 804 805 PROC_LOCK_ASSERT(p, MA_OWNED); 806 bzero(kp, sizeof(*kp)); 807 808 kp->ki_structsize = sizeof(*kp); 809 kp->ki_paddr = p; 810 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 811 kp->ki_args = p->p_args; 812 kp->ki_textvp = p->p_textvp; 813 #ifdef KTRACE 814 kp->ki_tracep = p->p_tracevp; 815 kp->ki_traceflag = p->p_traceflag; 816 #endif 817 kp->ki_fd = p->p_fd; 818 kp->ki_vmspace = p->p_vmspace; 819 kp->ki_flag = p->p_flag; 820 cred = p->p_ucred; 821 if (cred) { 822 kp->ki_uid = cred->cr_uid; 823 kp->ki_ruid = cred->cr_ruid; 824 kp->ki_svuid = cred->cr_svuid; 825 kp->ki_cr_flags = 0; 826 if (cred->cr_flags & CRED_FLAG_CAPMODE) 827 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 828 /* XXX bde doesn't like KI_NGROUPS */ 829 if (cred->cr_ngroups > KI_NGROUPS) { 830 kp->ki_ngroups = KI_NGROUPS; 831 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 832 } else 833 kp->ki_ngroups = cred->cr_ngroups; 834 bcopy(cred->cr_groups, kp->ki_groups, 835 kp->ki_ngroups * sizeof(gid_t)); 836 kp->ki_rgid = cred->cr_rgid; 837 kp->ki_svgid = cred->cr_svgid; 838 /* If jailed(cred), emulate the old P_JAILED flag. */ 839 if (jailed(cred)) { 840 kp->ki_flag |= P_JAILED; 841 /* If inside the jail, use 0 as a jail ID. */ 842 if (cred->cr_prison != curthread->td_ucred->cr_prison) 843 kp->ki_jid = cred->cr_prison->pr_id; 844 } 845 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 846 sizeof(kp->ki_loginclass)); 847 } 848 ps = p->p_sigacts; 849 if (ps) { 850 mtx_lock(&ps->ps_mtx); 851 kp->ki_sigignore = ps->ps_sigignore; 852 kp->ki_sigcatch = ps->ps_sigcatch; 853 mtx_unlock(&ps->ps_mtx); 854 } 855 if (p->p_state != PRS_NEW && 856 p->p_state != PRS_ZOMBIE && 857 p->p_vmspace != NULL) { 858 struct vmspace *vm = p->p_vmspace; 859 860 kp->ki_size = vm->vm_map.size; 861 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 862 FOREACH_THREAD_IN_PROC(p, td0) { 863 if (!TD_IS_SWAPPED(td0)) 864 kp->ki_rssize += td0->td_kstack_pages; 865 } 866 kp->ki_swrss = vm->vm_swrss; 867 kp->ki_tsize = vm->vm_tsize; 868 kp->ki_dsize = vm->vm_dsize; 869 kp->ki_ssize = vm->vm_ssize; 870 } else if (p->p_state == PRS_ZOMBIE) 871 kp->ki_stat = SZOMB; 872 if (kp->ki_flag & P_INMEM) 873 kp->ki_sflag = PS_INMEM; 874 else 875 kp->ki_sflag = 0; 876 /* Calculate legacy swtime as seconds since 'swtick'. */ 877 kp->ki_swtime = (ticks - p->p_swtick) / hz; 878 kp->ki_pid = p->p_pid; 879 kp->ki_nice = p->p_nice; 880 kp->ki_start = p->p_stats->p_start; 881 timevaladd(&kp->ki_start, &boottime); 882 PROC_SLOCK(p); 883 rufetch(p, &kp->ki_rusage); 884 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 885 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 886 PROC_SUNLOCK(p); 887 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 888 /* Some callers want child times in a single value. */ 889 kp->ki_childtime = kp->ki_childstime; 890 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 891 892 FOREACH_THREAD_IN_PROC(p, td0) 893 kp->ki_cow += td0->td_cow; 894 895 tp = NULL; 896 if (p->p_pgrp) { 897 kp->ki_pgid = p->p_pgrp->pg_id; 898 kp->ki_jobc = p->p_pgrp->pg_jobc; 899 sp = p->p_pgrp->pg_session; 900 901 if (sp != NULL) { 902 kp->ki_sid = sp->s_sid; 903 SESS_LOCK(sp); 904 strlcpy(kp->ki_login, sp->s_login, 905 sizeof(kp->ki_login)); 906 if (sp->s_ttyvp) 907 kp->ki_kiflag |= KI_CTTY; 908 if (SESS_LEADER(p)) 909 kp->ki_kiflag |= KI_SLEADER; 910 /* XXX proctree_lock */ 911 tp = sp->s_ttyp; 912 SESS_UNLOCK(sp); 913 } 914 } 915 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 916 kp->ki_tdev = tty_udev(tp); 917 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 918 if (tp->t_session) 919 kp->ki_tsid = tp->t_session->s_sid; 920 } else 921 kp->ki_tdev = NODEV; 922 if (p->p_comm[0] != '\0') 923 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 924 if (p->p_sysent && p->p_sysent->sv_name != NULL && 925 p->p_sysent->sv_name[0] != '\0') 926 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 927 kp->ki_siglist = p->p_siglist; 928 kp->ki_xstat = p->p_xstat; 929 kp->ki_acflag = p->p_acflag; 930 kp->ki_lock = p->p_lock; 931 if (p->p_pptr) 932 kp->ki_ppid = p->p_pptr->p_pid; 933 } 934 935 /* 936 * Fill in information that is thread specific. Must be called with 937 * target process locked. If 'preferthread' is set, overwrite certain 938 * process-related fields that are maintained for both threads and 939 * processes. 940 */ 941 static void 942 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 943 { 944 struct proc *p; 945 946 p = td->td_proc; 947 kp->ki_tdaddr = td; 948 PROC_LOCK_ASSERT(p, MA_OWNED); 949 950 if (preferthread) 951 PROC_SLOCK(p); 952 thread_lock(td); 953 if (td->td_wmesg != NULL) 954 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 955 else 956 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 957 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 958 if (TD_ON_LOCK(td)) { 959 kp->ki_kiflag |= KI_LOCKBLOCK; 960 strlcpy(kp->ki_lockname, td->td_lockname, 961 sizeof(kp->ki_lockname)); 962 } else { 963 kp->ki_kiflag &= ~KI_LOCKBLOCK; 964 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 965 } 966 967 if (p->p_state == PRS_NORMAL) { /* approximate. */ 968 if (TD_ON_RUNQ(td) || 969 TD_CAN_RUN(td) || 970 TD_IS_RUNNING(td)) { 971 kp->ki_stat = SRUN; 972 } else if (P_SHOULDSTOP(p)) { 973 kp->ki_stat = SSTOP; 974 } else if (TD_IS_SLEEPING(td)) { 975 kp->ki_stat = SSLEEP; 976 } else if (TD_ON_LOCK(td)) { 977 kp->ki_stat = SLOCK; 978 } else { 979 kp->ki_stat = SWAIT; 980 } 981 } else if (p->p_state == PRS_ZOMBIE) { 982 kp->ki_stat = SZOMB; 983 } else { 984 kp->ki_stat = SIDL; 985 } 986 987 /* Things in the thread */ 988 kp->ki_wchan = td->td_wchan; 989 kp->ki_pri.pri_level = td->td_priority; 990 kp->ki_pri.pri_native = td->td_base_pri; 991 kp->ki_lastcpu = td->td_lastcpu; 992 kp->ki_oncpu = td->td_oncpu; 993 kp->ki_tdflags = td->td_flags; 994 kp->ki_tid = td->td_tid; 995 kp->ki_numthreads = p->p_numthreads; 996 kp->ki_pcb = td->td_pcb; 997 kp->ki_kstack = (void *)td->td_kstack; 998 kp->ki_slptime = (ticks - td->td_slptick) / hz; 999 kp->ki_pri.pri_class = td->td_pri_class; 1000 kp->ki_pri.pri_user = td->td_user_pri; 1001 1002 if (preferthread) { 1003 rufetchtd(td, &kp->ki_rusage); 1004 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1005 kp->ki_pctcpu = sched_pctcpu(td); 1006 kp->ki_estcpu = td->td_estcpu; 1007 kp->ki_cow = td->td_cow; 1008 } 1009 1010 /* We can't get this anymore but ps etc never used it anyway. */ 1011 kp->ki_rqindex = 0; 1012 1013 if (preferthread) 1014 kp->ki_siglist = td->td_siglist; 1015 kp->ki_sigmask = td->td_sigmask; 1016 thread_unlock(td); 1017 if (preferthread) 1018 PROC_SUNLOCK(p); 1019 } 1020 1021 /* 1022 * Fill in a kinfo_proc structure for the specified process. 1023 * Must be called with the target process locked. 1024 */ 1025 void 1026 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1027 { 1028 1029 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1030 1031 fill_kinfo_proc_only(p, kp); 1032 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1033 fill_kinfo_aggregate(p, kp); 1034 } 1035 1036 struct pstats * 1037 pstats_alloc(void) 1038 { 1039 1040 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1041 } 1042 1043 /* 1044 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1045 */ 1046 void 1047 pstats_fork(struct pstats *src, struct pstats *dst) 1048 { 1049 1050 bzero(&dst->pstat_startzero, 1051 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1052 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1053 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1054 } 1055 1056 void 1057 pstats_free(struct pstats *ps) 1058 { 1059 1060 free(ps, M_SUBPROC); 1061 } 1062 1063 static struct proc * 1064 zpfind_locked(pid_t pid) 1065 { 1066 struct proc *p; 1067 1068 sx_assert(&allproc_lock, SX_LOCKED); 1069 LIST_FOREACH(p, &zombproc, p_list) { 1070 if (p->p_pid == pid) { 1071 PROC_LOCK(p); 1072 break; 1073 } 1074 } 1075 return (p); 1076 } 1077 1078 /* 1079 * Locate a zombie process by number 1080 */ 1081 struct proc * 1082 zpfind(pid_t pid) 1083 { 1084 struct proc *p; 1085 1086 sx_slock(&allproc_lock); 1087 p = zpfind_locked(pid); 1088 sx_sunlock(&allproc_lock); 1089 return (p); 1090 } 1091 1092 #define KERN_PROC_ZOMBMASK 0x3 1093 #define KERN_PROC_NOTHREADS 0x4 1094 1095 #ifdef COMPAT_FREEBSD32 1096 1097 /* 1098 * This function is typically used to copy out the kernel address, so 1099 * it can be replaced by assignment of zero. 1100 */ 1101 static inline uint32_t 1102 ptr32_trim(void *ptr) 1103 { 1104 uintptr_t uptr; 1105 1106 uptr = (uintptr_t)ptr; 1107 return ((uptr > UINT_MAX) ? 0 : uptr); 1108 } 1109 1110 #define PTRTRIM_CP(src,dst,fld) \ 1111 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1112 1113 static void 1114 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1115 { 1116 int i; 1117 1118 bzero(ki32, sizeof(struct kinfo_proc32)); 1119 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1120 CP(*ki, *ki32, ki_layout); 1121 PTRTRIM_CP(*ki, *ki32, ki_args); 1122 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1123 PTRTRIM_CP(*ki, *ki32, ki_addr); 1124 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1125 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1126 PTRTRIM_CP(*ki, *ki32, ki_fd); 1127 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1128 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1129 CP(*ki, *ki32, ki_pid); 1130 CP(*ki, *ki32, ki_ppid); 1131 CP(*ki, *ki32, ki_pgid); 1132 CP(*ki, *ki32, ki_tpgid); 1133 CP(*ki, *ki32, ki_sid); 1134 CP(*ki, *ki32, ki_tsid); 1135 CP(*ki, *ki32, ki_jobc); 1136 CP(*ki, *ki32, ki_tdev); 1137 CP(*ki, *ki32, ki_siglist); 1138 CP(*ki, *ki32, ki_sigmask); 1139 CP(*ki, *ki32, ki_sigignore); 1140 CP(*ki, *ki32, ki_sigcatch); 1141 CP(*ki, *ki32, ki_uid); 1142 CP(*ki, *ki32, ki_ruid); 1143 CP(*ki, *ki32, ki_svuid); 1144 CP(*ki, *ki32, ki_rgid); 1145 CP(*ki, *ki32, ki_svgid); 1146 CP(*ki, *ki32, ki_ngroups); 1147 for (i = 0; i < KI_NGROUPS; i++) 1148 CP(*ki, *ki32, ki_groups[i]); 1149 CP(*ki, *ki32, ki_size); 1150 CP(*ki, *ki32, ki_rssize); 1151 CP(*ki, *ki32, ki_swrss); 1152 CP(*ki, *ki32, ki_tsize); 1153 CP(*ki, *ki32, ki_dsize); 1154 CP(*ki, *ki32, ki_ssize); 1155 CP(*ki, *ki32, ki_xstat); 1156 CP(*ki, *ki32, ki_acflag); 1157 CP(*ki, *ki32, ki_pctcpu); 1158 CP(*ki, *ki32, ki_estcpu); 1159 CP(*ki, *ki32, ki_slptime); 1160 CP(*ki, *ki32, ki_swtime); 1161 CP(*ki, *ki32, ki_cow); 1162 CP(*ki, *ki32, ki_runtime); 1163 TV_CP(*ki, *ki32, ki_start); 1164 TV_CP(*ki, *ki32, ki_childtime); 1165 CP(*ki, *ki32, ki_flag); 1166 CP(*ki, *ki32, ki_kiflag); 1167 CP(*ki, *ki32, ki_traceflag); 1168 CP(*ki, *ki32, ki_stat); 1169 CP(*ki, *ki32, ki_nice); 1170 CP(*ki, *ki32, ki_lock); 1171 CP(*ki, *ki32, ki_rqindex); 1172 CP(*ki, *ki32, ki_oncpu); 1173 CP(*ki, *ki32, ki_lastcpu); 1174 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1175 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1176 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1177 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1178 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1179 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1180 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1181 CP(*ki, *ki32, ki_cr_flags); 1182 CP(*ki, *ki32, ki_jid); 1183 CP(*ki, *ki32, ki_numthreads); 1184 CP(*ki, *ki32, ki_tid); 1185 CP(*ki, *ki32, ki_pri); 1186 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1187 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1188 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1189 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1190 PTRTRIM_CP(*ki, *ki32, ki_udata); 1191 CP(*ki, *ki32, ki_sflag); 1192 CP(*ki, *ki32, ki_tdflags); 1193 } 1194 1195 static int 1196 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1197 { 1198 struct kinfo_proc32 ki32; 1199 int error; 1200 1201 if (req->flags & SCTL_MASK32) { 1202 freebsd32_kinfo_proc_out(ki, &ki32); 1203 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1204 } else 1205 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1206 return (error); 1207 } 1208 #else 1209 static int 1210 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1211 { 1212 1213 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1214 } 1215 #endif 1216 1217 /* 1218 * Must be called with the process locked and will return with it unlocked. 1219 */ 1220 static int 1221 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1222 { 1223 struct thread *td; 1224 struct kinfo_proc kinfo_proc; 1225 int error = 0; 1226 struct proc *np; 1227 pid_t pid = p->p_pid; 1228 1229 PROC_LOCK_ASSERT(p, MA_OWNED); 1230 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1231 1232 fill_kinfo_proc(p, &kinfo_proc); 1233 if (flags & KERN_PROC_NOTHREADS) 1234 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1235 else { 1236 FOREACH_THREAD_IN_PROC(p, td) { 1237 fill_kinfo_thread(td, &kinfo_proc, 1); 1238 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1239 if (error) 1240 break; 1241 } 1242 } 1243 PROC_UNLOCK(p); 1244 if (error) 1245 return (error); 1246 if (flags & KERN_PROC_ZOMBMASK) 1247 np = zpfind(pid); 1248 else { 1249 if (pid == 0) 1250 return (0); 1251 np = pfind(pid); 1252 } 1253 if (np == NULL) 1254 return (ESRCH); 1255 if (np != p) { 1256 PROC_UNLOCK(np); 1257 return (ESRCH); 1258 } 1259 PROC_UNLOCK(np); 1260 return (0); 1261 } 1262 1263 static int 1264 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1265 { 1266 int *name = (int *)arg1; 1267 u_int namelen = arg2; 1268 struct proc *p; 1269 int flags, doingzomb, oid_number; 1270 int error = 0; 1271 1272 oid_number = oidp->oid_number; 1273 if (oid_number != KERN_PROC_ALL && 1274 (oid_number & KERN_PROC_INC_THREAD) == 0) 1275 flags = KERN_PROC_NOTHREADS; 1276 else { 1277 flags = 0; 1278 oid_number &= ~KERN_PROC_INC_THREAD; 1279 } 1280 if (oid_number == KERN_PROC_PID) { 1281 if (namelen != 1) 1282 return (EINVAL); 1283 error = sysctl_wire_old_buffer(req, 0); 1284 if (error) 1285 return (error); 1286 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1287 if (error != 0) 1288 return (error); 1289 error = sysctl_out_proc(p, req, flags); 1290 return (error); 1291 } 1292 1293 switch (oid_number) { 1294 case KERN_PROC_ALL: 1295 if (namelen != 0) 1296 return (EINVAL); 1297 break; 1298 case KERN_PROC_PROC: 1299 if (namelen != 0 && namelen != 1) 1300 return (EINVAL); 1301 break; 1302 default: 1303 if (namelen != 1) 1304 return (EINVAL); 1305 break; 1306 } 1307 1308 if (!req->oldptr) { 1309 /* overestimate by 5 procs */ 1310 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1311 if (error) 1312 return (error); 1313 } 1314 error = sysctl_wire_old_buffer(req, 0); 1315 if (error != 0) 1316 return (error); 1317 sx_slock(&allproc_lock); 1318 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1319 if (!doingzomb) 1320 p = LIST_FIRST(&allproc); 1321 else 1322 p = LIST_FIRST(&zombproc); 1323 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1324 /* 1325 * Skip embryonic processes. 1326 */ 1327 PROC_LOCK(p); 1328 if (p->p_state == PRS_NEW) { 1329 PROC_UNLOCK(p); 1330 continue; 1331 } 1332 KASSERT(p->p_ucred != NULL, 1333 ("process credential is NULL for non-NEW proc")); 1334 /* 1335 * Show a user only appropriate processes. 1336 */ 1337 if (p_cansee(curthread, p)) { 1338 PROC_UNLOCK(p); 1339 continue; 1340 } 1341 /* 1342 * TODO - make more efficient (see notes below). 1343 * do by session. 1344 */ 1345 switch (oid_number) { 1346 1347 case KERN_PROC_GID: 1348 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1349 PROC_UNLOCK(p); 1350 continue; 1351 } 1352 break; 1353 1354 case KERN_PROC_PGRP: 1355 /* could do this by traversing pgrp */ 1356 if (p->p_pgrp == NULL || 1357 p->p_pgrp->pg_id != (pid_t)name[0]) { 1358 PROC_UNLOCK(p); 1359 continue; 1360 } 1361 break; 1362 1363 case KERN_PROC_RGID: 1364 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1365 PROC_UNLOCK(p); 1366 continue; 1367 } 1368 break; 1369 1370 case KERN_PROC_SESSION: 1371 if (p->p_session == NULL || 1372 p->p_session->s_sid != (pid_t)name[0]) { 1373 PROC_UNLOCK(p); 1374 continue; 1375 } 1376 break; 1377 1378 case KERN_PROC_TTY: 1379 if ((p->p_flag & P_CONTROLT) == 0 || 1380 p->p_session == NULL) { 1381 PROC_UNLOCK(p); 1382 continue; 1383 } 1384 /* XXX proctree_lock */ 1385 SESS_LOCK(p->p_session); 1386 if (p->p_session->s_ttyp == NULL || 1387 tty_udev(p->p_session->s_ttyp) != 1388 (dev_t)name[0]) { 1389 SESS_UNLOCK(p->p_session); 1390 PROC_UNLOCK(p); 1391 continue; 1392 } 1393 SESS_UNLOCK(p->p_session); 1394 break; 1395 1396 case KERN_PROC_UID: 1397 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1398 PROC_UNLOCK(p); 1399 continue; 1400 } 1401 break; 1402 1403 case KERN_PROC_RUID: 1404 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1405 PROC_UNLOCK(p); 1406 continue; 1407 } 1408 break; 1409 1410 case KERN_PROC_PROC: 1411 break; 1412 1413 default: 1414 break; 1415 1416 } 1417 1418 error = sysctl_out_proc(p, req, flags | doingzomb); 1419 if (error) { 1420 sx_sunlock(&allproc_lock); 1421 return (error); 1422 } 1423 } 1424 } 1425 sx_sunlock(&allproc_lock); 1426 return (0); 1427 } 1428 1429 struct pargs * 1430 pargs_alloc(int len) 1431 { 1432 struct pargs *pa; 1433 1434 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1435 M_WAITOK); 1436 refcount_init(&pa->ar_ref, 1); 1437 pa->ar_length = len; 1438 return (pa); 1439 } 1440 1441 static void 1442 pargs_free(struct pargs *pa) 1443 { 1444 1445 free(pa, M_PARGS); 1446 } 1447 1448 void 1449 pargs_hold(struct pargs *pa) 1450 { 1451 1452 if (pa == NULL) 1453 return; 1454 refcount_acquire(&pa->ar_ref); 1455 } 1456 1457 void 1458 pargs_drop(struct pargs *pa) 1459 { 1460 1461 if (pa == NULL) 1462 return; 1463 if (refcount_release(&pa->ar_ref)) 1464 pargs_free(pa); 1465 } 1466 1467 static int 1468 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1469 size_t len) 1470 { 1471 struct iovec iov; 1472 struct uio uio; 1473 1474 iov.iov_base = (caddr_t)buf; 1475 iov.iov_len = len; 1476 uio.uio_iov = &iov; 1477 uio.uio_iovcnt = 1; 1478 uio.uio_offset = offset; 1479 uio.uio_resid = (ssize_t)len; 1480 uio.uio_segflg = UIO_SYSSPACE; 1481 uio.uio_rw = UIO_READ; 1482 uio.uio_td = td; 1483 1484 return (proc_rwmem(p, &uio)); 1485 } 1486 1487 static int 1488 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1489 size_t len) 1490 { 1491 size_t i; 1492 int error; 1493 1494 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1495 /* 1496 * Reading the chunk may validly return EFAULT if the string is shorter 1497 * than the chunk and is aligned at the end of the page, assuming the 1498 * next page is not mapped. So if EFAULT is returned do a fallback to 1499 * one byte read loop. 1500 */ 1501 if (error == EFAULT) { 1502 for (i = 0; i < len; i++, buf++, sptr++) { 1503 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1504 if (error != 0) 1505 return (error); 1506 if (*buf == '\0') 1507 break; 1508 } 1509 error = 0; 1510 } 1511 return (error); 1512 } 1513 1514 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1515 1516 enum proc_vector_type { 1517 PROC_ARG, 1518 PROC_ENV, 1519 PROC_AUX, 1520 }; 1521 1522 #ifdef COMPAT_FREEBSD32 1523 static int 1524 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1525 size_t *vsizep, enum proc_vector_type type) 1526 { 1527 struct freebsd32_ps_strings pss; 1528 Elf32_Auxinfo aux; 1529 vm_offset_t vptr, ptr; 1530 uint32_t *proc_vector32; 1531 char **proc_vector; 1532 size_t vsize, size; 1533 int i, error; 1534 1535 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1536 &pss, sizeof(pss)); 1537 if (error != 0) 1538 return (error); 1539 switch (type) { 1540 case PROC_ARG: 1541 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1542 vsize = pss.ps_nargvstr; 1543 if (vsize > ARG_MAX) 1544 return (ENOEXEC); 1545 size = vsize * sizeof(int32_t); 1546 break; 1547 case PROC_ENV: 1548 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1549 vsize = pss.ps_nenvstr; 1550 if (vsize > ARG_MAX) 1551 return (ENOEXEC); 1552 size = vsize * sizeof(int32_t); 1553 break; 1554 case PROC_AUX: 1555 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1556 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1557 if (vptr % 4 != 0) 1558 return (ENOEXEC); 1559 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1560 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1561 if (error != 0) 1562 return (error); 1563 if (aux.a_type == AT_NULL) 1564 break; 1565 ptr += sizeof(aux); 1566 } 1567 if (aux.a_type != AT_NULL) 1568 return (ENOEXEC); 1569 vsize = i + 1; 1570 size = vsize * sizeof(aux); 1571 break; 1572 default: 1573 KASSERT(0, ("Wrong proc vector type: %d", type)); 1574 return (EINVAL); 1575 } 1576 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1577 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1578 if (error != 0) 1579 goto done; 1580 if (type == PROC_AUX) { 1581 *proc_vectorp = (char **)proc_vector32; 1582 *vsizep = vsize; 1583 return (0); 1584 } 1585 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1586 for (i = 0; i < (int)vsize; i++) 1587 proc_vector[i] = PTRIN(proc_vector32[i]); 1588 *proc_vectorp = proc_vector; 1589 *vsizep = vsize; 1590 done: 1591 free(proc_vector32, M_TEMP); 1592 return (error); 1593 } 1594 #endif 1595 1596 static int 1597 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1598 size_t *vsizep, enum proc_vector_type type) 1599 { 1600 struct ps_strings pss; 1601 Elf_Auxinfo aux; 1602 vm_offset_t vptr, ptr; 1603 char **proc_vector; 1604 size_t vsize, size; 1605 int error, i; 1606 1607 #ifdef COMPAT_FREEBSD32 1608 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1609 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1610 #endif 1611 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1612 &pss, sizeof(pss)); 1613 if (error != 0) 1614 return (error); 1615 switch (type) { 1616 case PROC_ARG: 1617 vptr = (vm_offset_t)pss.ps_argvstr; 1618 vsize = pss.ps_nargvstr; 1619 if (vsize > ARG_MAX) 1620 return (ENOEXEC); 1621 size = vsize * sizeof(char *); 1622 break; 1623 case PROC_ENV: 1624 vptr = (vm_offset_t)pss.ps_envstr; 1625 vsize = pss.ps_nenvstr; 1626 if (vsize > ARG_MAX) 1627 return (ENOEXEC); 1628 size = vsize * sizeof(char *); 1629 break; 1630 case PROC_AUX: 1631 /* 1632 * The aux array is just above env array on the stack. Check 1633 * that the address is naturally aligned. 1634 */ 1635 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1636 * sizeof(char *); 1637 #if __ELF_WORD_SIZE == 64 1638 if (vptr % sizeof(uint64_t) != 0) 1639 #else 1640 if (vptr % sizeof(uint32_t) != 0) 1641 #endif 1642 return (ENOEXEC); 1643 /* 1644 * We count the array size reading the aux vectors from the 1645 * stack until AT_NULL vector is returned. So (to keep the code 1646 * simple) we read the process stack twice: the first time here 1647 * to find the size and the second time when copying the vectors 1648 * to the allocated proc_vector. 1649 */ 1650 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1651 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1652 if (error != 0) 1653 return (error); 1654 if (aux.a_type == AT_NULL) 1655 break; 1656 ptr += sizeof(aux); 1657 } 1658 /* 1659 * If the PROC_AUXV_MAX entries are iterated over, and we have 1660 * not reached AT_NULL, it is most likely we are reading wrong 1661 * data: either the process doesn't have auxv array or data has 1662 * been modified. Return the error in this case. 1663 */ 1664 if (aux.a_type != AT_NULL) 1665 return (ENOEXEC); 1666 vsize = i + 1; 1667 size = vsize * sizeof(aux); 1668 break; 1669 default: 1670 KASSERT(0, ("Wrong proc vector type: %d", type)); 1671 return (EINVAL); /* In case we are built without INVARIANTS. */ 1672 } 1673 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1674 if (proc_vector == NULL) 1675 return (ENOMEM); 1676 error = proc_read_mem(td, p, vptr, proc_vector, size); 1677 if (error != 0) { 1678 free(proc_vector, M_TEMP); 1679 return (error); 1680 } 1681 *proc_vectorp = proc_vector; 1682 *vsizep = vsize; 1683 1684 return (0); 1685 } 1686 1687 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1688 1689 static int 1690 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1691 enum proc_vector_type type) 1692 { 1693 size_t done, len, nchr, vsize; 1694 int error, i; 1695 char **proc_vector, *sptr; 1696 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1697 1698 PROC_ASSERT_HELD(p); 1699 1700 /* 1701 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1702 */ 1703 nchr = 2 * (PATH_MAX + ARG_MAX); 1704 1705 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1706 if (error != 0) 1707 return (error); 1708 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1709 /* 1710 * The program may have scribbled into its argv array, e.g. to 1711 * remove some arguments. If that has happened, break out 1712 * before trying to read from NULL. 1713 */ 1714 if (proc_vector[i] == NULL) 1715 break; 1716 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1717 error = proc_read_string(td, p, sptr, pss_string, 1718 sizeof(pss_string)); 1719 if (error != 0) 1720 goto done; 1721 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1722 if (done + len >= nchr) 1723 len = nchr - done - 1; 1724 sbuf_bcat(sb, pss_string, len); 1725 if (len != GET_PS_STRINGS_CHUNK_SZ) 1726 break; 1727 done += GET_PS_STRINGS_CHUNK_SZ; 1728 } 1729 sbuf_bcat(sb, "", 1); 1730 done += len + 1; 1731 } 1732 done: 1733 free(proc_vector, M_TEMP); 1734 return (error); 1735 } 1736 1737 int 1738 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1739 { 1740 1741 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1742 } 1743 1744 int 1745 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1746 { 1747 1748 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1749 } 1750 1751 /* 1752 * This sysctl allows a process to retrieve the argument list or process 1753 * title for another process without groping around in the address space 1754 * of the other process. It also allow a process to set its own "process 1755 * title to a string of its own choice. 1756 */ 1757 static int 1758 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1759 { 1760 int *name = (int *)arg1; 1761 u_int namelen = arg2; 1762 struct pargs *newpa, *pa; 1763 struct proc *p; 1764 struct sbuf sb; 1765 int flags, error = 0, error2; 1766 1767 if (namelen != 1) 1768 return (EINVAL); 1769 1770 flags = PGET_CANSEE; 1771 if (req->newptr != NULL) 1772 flags |= PGET_ISCURRENT; 1773 error = pget((pid_t)name[0], flags, &p); 1774 if (error) 1775 return (error); 1776 1777 pa = p->p_args; 1778 if (pa != NULL) { 1779 pargs_hold(pa); 1780 PROC_UNLOCK(p); 1781 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1782 pargs_drop(pa); 1783 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1784 _PHOLD(p); 1785 PROC_UNLOCK(p); 1786 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1787 error = proc_getargv(curthread, p, &sb); 1788 error2 = sbuf_finish(&sb); 1789 PRELE(p); 1790 sbuf_delete(&sb); 1791 if (error == 0 && error2 != 0) 1792 error = error2; 1793 } else { 1794 PROC_UNLOCK(p); 1795 } 1796 if (error != 0 || req->newptr == NULL) 1797 return (error); 1798 1799 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1800 return (ENOMEM); 1801 newpa = pargs_alloc(req->newlen); 1802 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1803 if (error != 0) { 1804 pargs_free(newpa); 1805 return (error); 1806 } 1807 PROC_LOCK(p); 1808 pa = p->p_args; 1809 p->p_args = newpa; 1810 PROC_UNLOCK(p); 1811 pargs_drop(pa); 1812 return (0); 1813 } 1814 1815 /* 1816 * This sysctl allows a process to retrieve environment of another process. 1817 */ 1818 static int 1819 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1820 { 1821 int *name = (int *)arg1; 1822 u_int namelen = arg2; 1823 struct proc *p; 1824 struct sbuf sb; 1825 int error, error2; 1826 1827 if (namelen != 1) 1828 return (EINVAL); 1829 1830 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1831 if (error != 0) 1832 return (error); 1833 if ((p->p_flag & P_SYSTEM) != 0) { 1834 PRELE(p); 1835 return (0); 1836 } 1837 1838 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1839 error = proc_getenvv(curthread, p, &sb); 1840 error2 = sbuf_finish(&sb); 1841 PRELE(p); 1842 sbuf_delete(&sb); 1843 return (error != 0 ? error : error2); 1844 } 1845 1846 /* 1847 * This sysctl allows a process to retrieve ELF auxiliary vector of 1848 * another process. 1849 */ 1850 static int 1851 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1852 { 1853 int *name = (int *)arg1; 1854 u_int namelen = arg2; 1855 struct proc *p; 1856 size_t vsize, size; 1857 char **auxv; 1858 int error; 1859 1860 if (namelen != 1) 1861 return (EINVAL); 1862 1863 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1864 if (error != 0) 1865 return (error); 1866 if ((p->p_flag & P_SYSTEM) != 0) { 1867 PRELE(p); 1868 return (0); 1869 } 1870 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1871 if (error == 0) { 1872 #ifdef COMPAT_FREEBSD32 1873 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1874 size = vsize * sizeof(Elf32_Auxinfo); 1875 else 1876 #endif 1877 size = vsize * sizeof(Elf_Auxinfo); 1878 PRELE(p); 1879 error = SYSCTL_OUT(req, auxv, size); 1880 free(auxv, M_TEMP); 1881 } else { 1882 PRELE(p); 1883 } 1884 return (error); 1885 } 1886 1887 /* 1888 * This sysctl allows a process to retrieve the path of the executable for 1889 * itself or another process. 1890 */ 1891 static int 1892 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1893 { 1894 pid_t *pidp = (pid_t *)arg1; 1895 unsigned int arglen = arg2; 1896 struct proc *p; 1897 struct vnode *vp; 1898 char *retbuf, *freebuf; 1899 int error; 1900 1901 if (arglen != 1) 1902 return (EINVAL); 1903 if (*pidp == -1) { /* -1 means this process */ 1904 p = req->td->td_proc; 1905 } else { 1906 error = pget(*pidp, PGET_CANSEE, &p); 1907 if (error != 0) 1908 return (error); 1909 } 1910 1911 vp = p->p_textvp; 1912 if (vp == NULL) { 1913 if (*pidp != -1) 1914 PROC_UNLOCK(p); 1915 return (0); 1916 } 1917 vref(vp); 1918 if (*pidp != -1) 1919 PROC_UNLOCK(p); 1920 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1921 vrele(vp); 1922 if (error) 1923 return (error); 1924 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1925 free(freebuf, M_TEMP); 1926 return (error); 1927 } 1928 1929 static int 1930 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1931 { 1932 struct proc *p; 1933 char *sv_name; 1934 int *name; 1935 int namelen; 1936 int error; 1937 1938 namelen = arg2; 1939 if (namelen != 1) 1940 return (EINVAL); 1941 1942 name = (int *)arg1; 1943 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1944 if (error != 0) 1945 return (error); 1946 sv_name = p->p_sysent->sv_name; 1947 PROC_UNLOCK(p); 1948 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1949 } 1950 1951 #ifdef KINFO_OVMENTRY_SIZE 1952 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1953 #endif 1954 1955 #ifdef COMPAT_FREEBSD7 1956 static int 1957 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1958 { 1959 vm_map_entry_t entry, tmp_entry; 1960 unsigned int last_timestamp; 1961 char *fullpath, *freepath; 1962 struct kinfo_ovmentry *kve; 1963 struct vattr va; 1964 struct ucred *cred; 1965 int error, *name; 1966 struct vnode *vp; 1967 struct proc *p; 1968 vm_map_t map; 1969 struct vmspace *vm; 1970 1971 name = (int *)arg1; 1972 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1973 if (error != 0) 1974 return (error); 1975 vm = vmspace_acquire_ref(p); 1976 if (vm == NULL) { 1977 PRELE(p); 1978 return (ESRCH); 1979 } 1980 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1981 1982 map = &vm->vm_map; 1983 vm_map_lock_read(map); 1984 for (entry = map->header.next; entry != &map->header; 1985 entry = entry->next) { 1986 vm_object_t obj, tobj, lobj; 1987 vm_offset_t addr; 1988 1989 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1990 continue; 1991 1992 bzero(kve, sizeof(*kve)); 1993 kve->kve_structsize = sizeof(*kve); 1994 1995 kve->kve_private_resident = 0; 1996 obj = entry->object.vm_object; 1997 if (obj != NULL) { 1998 VM_OBJECT_RLOCK(obj); 1999 if (obj->shadow_count == 1) 2000 kve->kve_private_resident = 2001 obj->resident_page_count; 2002 } 2003 kve->kve_resident = 0; 2004 addr = entry->start; 2005 while (addr < entry->end) { 2006 if (pmap_extract(map->pmap, addr)) 2007 kve->kve_resident++; 2008 addr += PAGE_SIZE; 2009 } 2010 2011 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2012 if (tobj != obj) 2013 VM_OBJECT_RLOCK(tobj); 2014 if (lobj != obj) 2015 VM_OBJECT_RUNLOCK(lobj); 2016 lobj = tobj; 2017 } 2018 2019 kve->kve_start = (void*)entry->start; 2020 kve->kve_end = (void*)entry->end; 2021 kve->kve_offset = (off_t)entry->offset; 2022 2023 if (entry->protection & VM_PROT_READ) 2024 kve->kve_protection |= KVME_PROT_READ; 2025 if (entry->protection & VM_PROT_WRITE) 2026 kve->kve_protection |= KVME_PROT_WRITE; 2027 if (entry->protection & VM_PROT_EXECUTE) 2028 kve->kve_protection |= KVME_PROT_EXEC; 2029 2030 if (entry->eflags & MAP_ENTRY_COW) 2031 kve->kve_flags |= KVME_FLAG_COW; 2032 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2033 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2034 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2035 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2036 2037 last_timestamp = map->timestamp; 2038 vm_map_unlock_read(map); 2039 2040 kve->kve_fileid = 0; 2041 kve->kve_fsid = 0; 2042 freepath = NULL; 2043 fullpath = ""; 2044 if (lobj) { 2045 vp = NULL; 2046 switch (lobj->type) { 2047 case OBJT_DEFAULT: 2048 kve->kve_type = KVME_TYPE_DEFAULT; 2049 break; 2050 case OBJT_VNODE: 2051 kve->kve_type = KVME_TYPE_VNODE; 2052 vp = lobj->handle; 2053 vref(vp); 2054 break; 2055 case OBJT_SWAP: 2056 kve->kve_type = KVME_TYPE_SWAP; 2057 break; 2058 case OBJT_DEVICE: 2059 kve->kve_type = KVME_TYPE_DEVICE; 2060 break; 2061 case OBJT_PHYS: 2062 kve->kve_type = KVME_TYPE_PHYS; 2063 break; 2064 case OBJT_DEAD: 2065 kve->kve_type = KVME_TYPE_DEAD; 2066 break; 2067 case OBJT_SG: 2068 kve->kve_type = KVME_TYPE_SG; 2069 break; 2070 default: 2071 kve->kve_type = KVME_TYPE_UNKNOWN; 2072 break; 2073 } 2074 if (lobj != obj) 2075 VM_OBJECT_RUNLOCK(lobj); 2076 2077 kve->kve_ref_count = obj->ref_count; 2078 kve->kve_shadow_count = obj->shadow_count; 2079 VM_OBJECT_RUNLOCK(obj); 2080 if (vp != NULL) { 2081 vn_fullpath(curthread, vp, &fullpath, 2082 &freepath); 2083 cred = curthread->td_ucred; 2084 vn_lock(vp, LK_SHARED | LK_RETRY); 2085 if (VOP_GETATTR(vp, &va, cred) == 0) { 2086 kve->kve_fileid = va.va_fileid; 2087 kve->kve_fsid = va.va_fsid; 2088 } 2089 vput(vp); 2090 } 2091 } else { 2092 kve->kve_type = KVME_TYPE_NONE; 2093 kve->kve_ref_count = 0; 2094 kve->kve_shadow_count = 0; 2095 } 2096 2097 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2098 if (freepath != NULL) 2099 free(freepath, M_TEMP); 2100 2101 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2102 vm_map_lock_read(map); 2103 if (error) 2104 break; 2105 if (last_timestamp != map->timestamp) { 2106 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2107 entry = tmp_entry; 2108 } 2109 } 2110 vm_map_unlock_read(map); 2111 vmspace_free(vm); 2112 PRELE(p); 2113 free(kve, M_TEMP); 2114 return (error); 2115 } 2116 #endif /* COMPAT_FREEBSD7 */ 2117 2118 #ifdef KINFO_VMENTRY_SIZE 2119 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2120 #endif 2121 2122 static int 2123 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2124 { 2125 vm_map_entry_t entry, tmp_entry; 2126 unsigned int last_timestamp; 2127 char *fullpath, *freepath; 2128 struct kinfo_vmentry *kve; 2129 struct vattr va; 2130 struct ucred *cred; 2131 int error, *name; 2132 struct vnode *vp; 2133 struct proc *p; 2134 struct vmspace *vm; 2135 vm_map_t map; 2136 2137 name = (int *)arg1; 2138 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2139 if (error != 0) 2140 return (error); 2141 vm = vmspace_acquire_ref(p); 2142 if (vm == NULL) { 2143 PRELE(p); 2144 return (ESRCH); 2145 } 2146 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2147 2148 map = &vm->vm_map; 2149 vm_map_lock_read(map); 2150 for (entry = map->header.next; entry != &map->header; 2151 entry = entry->next) { 2152 vm_object_t obj, tobj, lobj; 2153 vm_offset_t addr; 2154 vm_paddr_t locked_pa; 2155 int mincoreinfo; 2156 2157 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2158 continue; 2159 2160 bzero(kve, sizeof(*kve)); 2161 2162 kve->kve_private_resident = 0; 2163 obj = entry->object.vm_object; 2164 if (obj != NULL) { 2165 VM_OBJECT_RLOCK(obj); 2166 if (obj->shadow_count == 1) 2167 kve->kve_private_resident = 2168 obj->resident_page_count; 2169 } 2170 kve->kve_resident = 0; 2171 addr = entry->start; 2172 while (addr < entry->end) { 2173 locked_pa = 0; 2174 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2175 if (locked_pa != 0) 2176 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2177 if (mincoreinfo & MINCORE_INCORE) 2178 kve->kve_resident++; 2179 if (mincoreinfo & MINCORE_SUPER) 2180 kve->kve_flags |= KVME_FLAG_SUPER; 2181 addr += PAGE_SIZE; 2182 } 2183 2184 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2185 if (tobj != obj) 2186 VM_OBJECT_RLOCK(tobj); 2187 if (lobj != obj) 2188 VM_OBJECT_RUNLOCK(lobj); 2189 lobj = tobj; 2190 } 2191 2192 kve->kve_start = entry->start; 2193 kve->kve_end = entry->end; 2194 kve->kve_offset = entry->offset; 2195 2196 if (entry->protection & VM_PROT_READ) 2197 kve->kve_protection |= KVME_PROT_READ; 2198 if (entry->protection & VM_PROT_WRITE) 2199 kve->kve_protection |= KVME_PROT_WRITE; 2200 if (entry->protection & VM_PROT_EXECUTE) 2201 kve->kve_protection |= KVME_PROT_EXEC; 2202 2203 if (entry->eflags & MAP_ENTRY_COW) 2204 kve->kve_flags |= KVME_FLAG_COW; 2205 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2206 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2207 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2208 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2209 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2210 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2211 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2212 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2213 2214 last_timestamp = map->timestamp; 2215 vm_map_unlock_read(map); 2216 2217 freepath = NULL; 2218 fullpath = ""; 2219 if (lobj) { 2220 vp = NULL; 2221 switch (lobj->type) { 2222 case OBJT_DEFAULT: 2223 kve->kve_type = KVME_TYPE_DEFAULT; 2224 break; 2225 case OBJT_VNODE: 2226 kve->kve_type = KVME_TYPE_VNODE; 2227 vp = lobj->handle; 2228 vref(vp); 2229 break; 2230 case OBJT_SWAP: 2231 kve->kve_type = KVME_TYPE_SWAP; 2232 break; 2233 case OBJT_DEVICE: 2234 kve->kve_type = KVME_TYPE_DEVICE; 2235 break; 2236 case OBJT_PHYS: 2237 kve->kve_type = KVME_TYPE_PHYS; 2238 break; 2239 case OBJT_DEAD: 2240 kve->kve_type = KVME_TYPE_DEAD; 2241 break; 2242 case OBJT_SG: 2243 kve->kve_type = KVME_TYPE_SG; 2244 break; 2245 default: 2246 kve->kve_type = KVME_TYPE_UNKNOWN; 2247 break; 2248 } 2249 if (lobj != obj) 2250 VM_OBJECT_RUNLOCK(lobj); 2251 2252 kve->kve_ref_count = obj->ref_count; 2253 kve->kve_shadow_count = obj->shadow_count; 2254 VM_OBJECT_RUNLOCK(obj); 2255 if (vp != NULL) { 2256 vn_fullpath(curthread, vp, &fullpath, 2257 &freepath); 2258 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2259 cred = curthread->td_ucred; 2260 vn_lock(vp, LK_SHARED | LK_RETRY); 2261 if (VOP_GETATTR(vp, &va, cred) == 0) { 2262 kve->kve_vn_fileid = va.va_fileid; 2263 kve->kve_vn_fsid = va.va_fsid; 2264 kve->kve_vn_mode = 2265 MAKEIMODE(va.va_type, va.va_mode); 2266 kve->kve_vn_size = va.va_size; 2267 kve->kve_vn_rdev = va.va_rdev; 2268 kve->kve_status = KF_ATTR_VALID; 2269 } 2270 vput(vp); 2271 } 2272 } else { 2273 kve->kve_type = KVME_TYPE_NONE; 2274 kve->kve_ref_count = 0; 2275 kve->kve_shadow_count = 0; 2276 } 2277 2278 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2279 if (freepath != NULL) 2280 free(freepath, M_TEMP); 2281 2282 /* Pack record size down */ 2283 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2284 strlen(kve->kve_path) + 1; 2285 kve->kve_structsize = roundup(kve->kve_structsize, 2286 sizeof(uint64_t)); 2287 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2288 vm_map_lock_read(map); 2289 if (error) 2290 break; 2291 if (last_timestamp != map->timestamp) { 2292 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2293 entry = tmp_entry; 2294 } 2295 } 2296 vm_map_unlock_read(map); 2297 vmspace_free(vm); 2298 PRELE(p); 2299 free(kve, M_TEMP); 2300 return (error); 2301 } 2302 2303 #if defined(STACK) || defined(DDB) 2304 static int 2305 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2306 { 2307 struct kinfo_kstack *kkstp; 2308 int error, i, *name, numthreads; 2309 lwpid_t *lwpidarray; 2310 struct thread *td; 2311 struct stack *st; 2312 struct sbuf sb; 2313 struct proc *p; 2314 2315 name = (int *)arg1; 2316 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2317 if (error != 0) 2318 return (error); 2319 2320 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2321 st = stack_create(); 2322 2323 lwpidarray = NULL; 2324 numthreads = 0; 2325 PROC_LOCK(p); 2326 repeat: 2327 if (numthreads < p->p_numthreads) { 2328 if (lwpidarray != NULL) { 2329 free(lwpidarray, M_TEMP); 2330 lwpidarray = NULL; 2331 } 2332 numthreads = p->p_numthreads; 2333 PROC_UNLOCK(p); 2334 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2335 M_WAITOK | M_ZERO); 2336 PROC_LOCK(p); 2337 goto repeat; 2338 } 2339 i = 0; 2340 2341 /* 2342 * XXXRW: During the below loop, execve(2) and countless other sorts 2343 * of changes could have taken place. Should we check to see if the 2344 * vmspace has been replaced, or the like, in order to prevent 2345 * giving a snapshot that spans, say, execve(2), with some threads 2346 * before and some after? Among other things, the credentials could 2347 * have changed, in which case the right to extract debug info might 2348 * no longer be assured. 2349 */ 2350 FOREACH_THREAD_IN_PROC(p, td) { 2351 KASSERT(i < numthreads, 2352 ("sysctl_kern_proc_kstack: numthreads")); 2353 lwpidarray[i] = td->td_tid; 2354 i++; 2355 } 2356 numthreads = i; 2357 for (i = 0; i < numthreads; i++) { 2358 td = thread_find(p, lwpidarray[i]); 2359 if (td == NULL) { 2360 continue; 2361 } 2362 bzero(kkstp, sizeof(*kkstp)); 2363 (void)sbuf_new(&sb, kkstp->kkst_trace, 2364 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2365 thread_lock(td); 2366 kkstp->kkst_tid = td->td_tid; 2367 if (TD_IS_SWAPPED(td)) 2368 kkstp->kkst_state = KKST_STATE_SWAPPED; 2369 else if (TD_IS_RUNNING(td)) 2370 kkstp->kkst_state = KKST_STATE_RUNNING; 2371 else { 2372 kkstp->kkst_state = KKST_STATE_STACKOK; 2373 stack_save_td(st, td); 2374 } 2375 thread_unlock(td); 2376 PROC_UNLOCK(p); 2377 stack_sbuf_print(&sb, st); 2378 sbuf_finish(&sb); 2379 sbuf_delete(&sb); 2380 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2381 PROC_LOCK(p); 2382 if (error) 2383 break; 2384 } 2385 _PRELE(p); 2386 PROC_UNLOCK(p); 2387 if (lwpidarray != NULL) 2388 free(lwpidarray, M_TEMP); 2389 stack_destroy(st); 2390 free(kkstp, M_TEMP); 2391 return (error); 2392 } 2393 #endif 2394 2395 /* 2396 * This sysctl allows a process to retrieve the full list of groups from 2397 * itself or another process. 2398 */ 2399 static int 2400 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2401 { 2402 pid_t *pidp = (pid_t *)arg1; 2403 unsigned int arglen = arg2; 2404 struct proc *p; 2405 struct ucred *cred; 2406 int error; 2407 2408 if (arglen != 1) 2409 return (EINVAL); 2410 if (*pidp == -1) { /* -1 means this process */ 2411 p = req->td->td_proc; 2412 } else { 2413 error = pget(*pidp, PGET_CANSEE, &p); 2414 if (error != 0) 2415 return (error); 2416 } 2417 2418 cred = crhold(p->p_ucred); 2419 if (*pidp != -1) 2420 PROC_UNLOCK(p); 2421 2422 error = SYSCTL_OUT(req, cred->cr_groups, 2423 cred->cr_ngroups * sizeof(gid_t)); 2424 crfree(cred); 2425 return (error); 2426 } 2427 2428 /* 2429 * This sysctl allows a process to retrieve or/and set the resource limit for 2430 * another process. 2431 */ 2432 static int 2433 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2434 { 2435 int *name = (int *)arg1; 2436 u_int namelen = arg2; 2437 struct rlimit rlim; 2438 struct proc *p; 2439 u_int which; 2440 int flags, error; 2441 2442 if (namelen != 2) 2443 return (EINVAL); 2444 2445 which = (u_int)name[1]; 2446 if (which >= RLIM_NLIMITS) 2447 return (EINVAL); 2448 2449 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2450 return (EINVAL); 2451 2452 flags = PGET_HOLD | PGET_NOTWEXIT; 2453 if (req->newptr != NULL) 2454 flags |= PGET_CANDEBUG; 2455 else 2456 flags |= PGET_CANSEE; 2457 error = pget((pid_t)name[0], flags, &p); 2458 if (error != 0) 2459 return (error); 2460 2461 /* 2462 * Retrieve limit. 2463 */ 2464 if (req->oldptr != NULL) { 2465 PROC_LOCK(p); 2466 lim_rlimit(p, which, &rlim); 2467 PROC_UNLOCK(p); 2468 } 2469 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2470 if (error != 0) 2471 goto errout; 2472 2473 /* 2474 * Set limit. 2475 */ 2476 if (req->newptr != NULL) { 2477 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2478 if (error == 0) 2479 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2480 } 2481 2482 errout: 2483 PRELE(p); 2484 return (error); 2485 } 2486 2487 /* 2488 * This sysctl allows a process to retrieve ps_strings structure location of 2489 * another process. 2490 */ 2491 static int 2492 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2493 { 2494 int *name = (int *)arg1; 2495 u_int namelen = arg2; 2496 struct proc *p; 2497 vm_offset_t ps_strings; 2498 int error; 2499 #ifdef COMPAT_FREEBSD32 2500 uint32_t ps_strings32; 2501 #endif 2502 2503 if (namelen != 1) 2504 return (EINVAL); 2505 2506 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2507 if (error != 0) 2508 return (error); 2509 #ifdef COMPAT_FREEBSD32 2510 if ((req->flags & SCTL_MASK32) != 0) { 2511 /* 2512 * We return 0 if the 32 bit emulation request is for a 64 bit 2513 * process. 2514 */ 2515 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2516 PTROUT(p->p_sysent->sv_psstrings) : 0; 2517 PROC_UNLOCK(p); 2518 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2519 return (error); 2520 } 2521 #endif 2522 ps_strings = p->p_sysent->sv_psstrings; 2523 PROC_UNLOCK(p); 2524 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2525 return (error); 2526 } 2527 2528 /* 2529 * This sysctl allows a process to retrieve umask of another process. 2530 */ 2531 static int 2532 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2533 { 2534 int *name = (int *)arg1; 2535 u_int namelen = arg2; 2536 struct proc *p; 2537 int error; 2538 u_short fd_cmask; 2539 2540 if (namelen != 1) 2541 return (EINVAL); 2542 2543 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2544 if (error != 0) 2545 return (error); 2546 2547 FILEDESC_SLOCK(p->p_fd); 2548 fd_cmask = p->p_fd->fd_cmask; 2549 FILEDESC_SUNLOCK(p->p_fd); 2550 PRELE(p); 2551 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2552 return (error); 2553 } 2554 2555 /* 2556 * This sysctl allows a process to set and retrieve binary osreldate of 2557 * another process. 2558 */ 2559 static int 2560 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2561 { 2562 int *name = (int *)arg1; 2563 u_int namelen = arg2; 2564 struct proc *p; 2565 int flags, error, osrel; 2566 2567 if (namelen != 1) 2568 return (EINVAL); 2569 2570 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2571 return (EINVAL); 2572 2573 flags = PGET_HOLD | PGET_NOTWEXIT; 2574 if (req->newptr != NULL) 2575 flags |= PGET_CANDEBUG; 2576 else 2577 flags |= PGET_CANSEE; 2578 error = pget((pid_t)name[0], flags, &p); 2579 if (error != 0) 2580 return (error); 2581 2582 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2583 if (error != 0) 2584 goto errout; 2585 2586 if (req->newptr != NULL) { 2587 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2588 if (error != 0) 2589 goto errout; 2590 if (osrel < 0) { 2591 error = EINVAL; 2592 goto errout; 2593 } 2594 p->p_osrel = osrel; 2595 } 2596 errout: 2597 PRELE(p); 2598 return (error); 2599 } 2600 2601 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2602 2603 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2604 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2605 "Return entire process table"); 2606 2607 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2608 sysctl_kern_proc, "Process table"); 2609 2610 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2611 sysctl_kern_proc, "Process table"); 2612 2613 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2614 sysctl_kern_proc, "Process table"); 2615 2616 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2617 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2618 2619 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2620 sysctl_kern_proc, "Process table"); 2621 2622 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2623 sysctl_kern_proc, "Process table"); 2624 2625 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2626 sysctl_kern_proc, "Process table"); 2627 2628 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2629 sysctl_kern_proc, "Process table"); 2630 2631 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2632 sysctl_kern_proc, "Return process table, no threads"); 2633 2634 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2635 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2636 sysctl_kern_proc_args, "Process argument list"); 2637 2638 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2639 sysctl_kern_proc_env, "Process environment"); 2640 2641 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2642 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2643 2644 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2645 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2646 2647 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2648 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2649 "Process syscall vector name (ABI type)"); 2650 2651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2652 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2653 2654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2655 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2656 2657 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2658 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2659 2660 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2661 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2662 2663 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2664 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2665 2666 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2667 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2668 2669 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2670 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2671 2672 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2673 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2674 2675 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2676 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2677 "Return process table, no threads"); 2678 2679 #ifdef COMPAT_FREEBSD7 2680 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2681 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2682 #endif 2683 2684 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2685 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2686 2687 #if defined(STACK) || defined(DDB) 2688 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2689 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2690 #endif 2691 2692 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2693 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2694 2695 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2696 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2697 "Process resource limits"); 2698 2699 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2700 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2701 "Process ps_strings location"); 2702 2703 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2704 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2705 2706 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2707 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2708 "Process binary osreldate"); 2709