1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/dtrace_bsd.h> 69 #include <sys/sysctl.h> 70 #include <sys/filedesc.h> 71 #include <sys/tty.h> 72 #include <sys/signalvar.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/user.h> 76 #include <sys/vnode.h> 77 #include <sys/wait.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_extern.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/uma.h> 91 92 #include <fs/devfs/devfs.h> 93 94 #ifdef COMPAT_FREEBSD32 95 #include <compat/freebsd32/freebsd32.h> 96 #include <compat/freebsd32/freebsd32_util.h> 97 #endif 98 99 SDT_PROVIDER_DEFINE(proc); 100 101 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 102 MALLOC_DEFINE(M_SESSION, "session", "session header"); 103 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 104 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 105 106 static void fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp); 107 static void doenterpgrp(struct proc *, struct pgrp *); 108 static void orphanpg(struct pgrp *pg); 109 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 111 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 112 int preferthread); 113 static void pgadjustjobc(struct pgrp *pgrp, bool entering); 114 static void pgdelete(struct pgrp *); 115 static int proc_ctor(void *mem, int size, void *arg, int flags); 116 static void proc_dtor(void *mem, int size, void *arg); 117 static int proc_init(void *mem, int size, int flags); 118 static void proc_fini(void *mem, int size); 119 static void pargs_free(struct pargs *pa); 120 121 /* 122 * Other process lists 123 */ 124 struct pidhashhead *pidhashtbl; 125 struct sx *pidhashtbl_lock; 126 u_long pidhash; 127 u_long pidhashlock; 128 struct pgrphashhead *pgrphashtbl; 129 u_long pgrphash; 130 struct proclist allproc; 131 struct sx __exclusive_cache_line allproc_lock; 132 struct sx __exclusive_cache_line proctree_lock; 133 struct mtx __exclusive_cache_line ppeers_lock; 134 struct mtx __exclusive_cache_line procid_lock; 135 uma_zone_t proc_zone; 136 137 /* 138 * The offset of various fields in struct proc and struct thread. 139 * These are used by kernel debuggers to enumerate kernel threads and 140 * processes. 141 */ 142 const int proc_off_p_pid = offsetof(struct proc, p_pid); 143 const int proc_off_p_comm = offsetof(struct proc, p_comm); 144 const int proc_off_p_list = offsetof(struct proc, p_list); 145 const int proc_off_p_threads = offsetof(struct proc, p_threads); 146 const int thread_off_td_tid = offsetof(struct thread, td_tid); 147 const int thread_off_td_name = offsetof(struct thread, td_name); 148 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 149 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 150 const int thread_off_td_plist = offsetof(struct thread, td_plist); 151 152 EVENTHANDLER_LIST_DEFINE(process_ctor); 153 EVENTHANDLER_LIST_DEFINE(process_dtor); 154 EVENTHANDLER_LIST_DEFINE(process_init); 155 EVENTHANDLER_LIST_DEFINE(process_fini); 156 EVENTHANDLER_LIST_DEFINE(process_exit); 157 EVENTHANDLER_LIST_DEFINE(process_fork); 158 EVENTHANDLER_LIST_DEFINE(process_exec); 159 160 int kstack_pages = KSTACK_PAGES; 161 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 162 "Kernel stack size in pages"); 163 static int vmmap_skip_res_cnt = 0; 164 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 165 &vmmap_skip_res_cnt, 0, 166 "Skip calculation of the pages resident count in kern.proc.vmmap"); 167 168 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 169 #ifdef COMPAT_FREEBSD32 170 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 171 #endif 172 173 /* 174 * Initialize global process hashing structures. 175 */ 176 void 177 procinit(void) 178 { 179 u_long i; 180 181 sx_init(&allproc_lock, "allproc"); 182 sx_init(&proctree_lock, "proctree"); 183 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 184 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 185 LIST_INIT(&allproc); 186 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 187 pidhashlock = (pidhash + 1) / 64; 188 if (pidhashlock > 0) 189 pidhashlock--; 190 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 191 M_PROC, M_WAITOK | M_ZERO); 192 for (i = 0; i < pidhashlock + 1; i++) 193 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 194 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 195 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 196 proc_ctor, proc_dtor, proc_init, proc_fini, 197 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 198 uihashinit(); 199 } 200 201 /* 202 * Prepare a proc for use. 203 */ 204 static int 205 proc_ctor(void *mem, int size, void *arg, int flags) 206 { 207 struct proc *p; 208 struct thread *td; 209 210 p = (struct proc *)mem; 211 #ifdef KDTRACE_HOOKS 212 kdtrace_proc_ctor(p); 213 #endif 214 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 215 td = FIRST_THREAD_IN_PROC(p); 216 if (td != NULL) { 217 /* Make sure all thread constructors are executed */ 218 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 219 } 220 return (0); 221 } 222 223 /* 224 * Reclaim a proc after use. 225 */ 226 static void 227 proc_dtor(void *mem, int size, void *arg) 228 { 229 struct proc *p; 230 struct thread *td; 231 232 /* INVARIANTS checks go here */ 233 p = (struct proc *)mem; 234 td = FIRST_THREAD_IN_PROC(p); 235 if (td != NULL) { 236 #ifdef INVARIANTS 237 KASSERT((p->p_numthreads == 1), 238 ("bad number of threads in exiting process")); 239 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 240 #endif 241 /* Free all OSD associated to this thread. */ 242 osd_thread_exit(td); 243 td_softdep_cleanup(td); 244 MPASS(td->td_su == NULL); 245 246 /* Make sure all thread destructors are executed */ 247 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 248 } 249 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 250 #ifdef KDTRACE_HOOKS 251 kdtrace_proc_dtor(p); 252 #endif 253 if (p->p_ksi != NULL) 254 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 255 } 256 257 /* 258 * Initialize type-stable parts of a proc (when newly created). 259 */ 260 static int 261 proc_init(void *mem, int size, int flags) 262 { 263 struct proc *p; 264 265 p = (struct proc *)mem; 266 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 267 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 268 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 269 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 270 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 271 cv_init(&p->p_pwait, "ppwait"); 272 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 273 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 274 p->p_stats = pstats_alloc(); 275 p->p_pgrp = NULL; 276 return (0); 277 } 278 279 /* 280 * UMA should ensure that this function is never called. 281 * Freeing a proc structure would violate type stability. 282 */ 283 static void 284 proc_fini(void *mem, int size) 285 { 286 #ifdef notnow 287 struct proc *p; 288 289 p = (struct proc *)mem; 290 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 291 pstats_free(p->p_stats); 292 thread_free(FIRST_THREAD_IN_PROC(p)); 293 mtx_destroy(&p->p_mtx); 294 if (p->p_ksi != NULL) 295 ksiginfo_free(p->p_ksi); 296 #else 297 panic("proc reclaimed"); 298 #endif 299 } 300 301 /* 302 * PID space management. 303 * 304 * These bitmaps are used by fork_findpid. 305 */ 306 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 307 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 308 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 309 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 310 311 static bitstr_t *proc_id_array[] = { 312 proc_id_pidmap, 313 proc_id_grpidmap, 314 proc_id_sessidmap, 315 proc_id_reapmap, 316 }; 317 318 void 319 proc_id_set(int type, pid_t id) 320 { 321 322 KASSERT(type >= 0 && type < nitems(proc_id_array), 323 ("invalid type %d\n", type)); 324 mtx_lock(&procid_lock); 325 KASSERT(bit_test(proc_id_array[type], id) == 0, 326 ("bit %d already set in %d\n", id, type)); 327 bit_set(proc_id_array[type], id); 328 mtx_unlock(&procid_lock); 329 } 330 331 void 332 proc_id_set_cond(int type, pid_t id) 333 { 334 335 KASSERT(type >= 0 && type < nitems(proc_id_array), 336 ("invalid type %d\n", type)); 337 if (bit_test(proc_id_array[type], id)) 338 return; 339 mtx_lock(&procid_lock); 340 bit_set(proc_id_array[type], id); 341 mtx_unlock(&procid_lock); 342 } 343 344 void 345 proc_id_clear(int type, pid_t id) 346 { 347 348 KASSERT(type >= 0 && type < nitems(proc_id_array), 349 ("invalid type %d\n", type)); 350 mtx_lock(&procid_lock); 351 KASSERT(bit_test(proc_id_array[type], id) != 0, 352 ("bit %d not set in %d\n", id, type)); 353 bit_clear(proc_id_array[type], id); 354 mtx_unlock(&procid_lock); 355 } 356 357 /* 358 * Is p an inferior of the current process? 359 */ 360 int 361 inferior(struct proc *p) 362 { 363 364 sx_assert(&proctree_lock, SX_LOCKED); 365 PROC_LOCK_ASSERT(p, MA_OWNED); 366 for (; p != curproc; p = proc_realparent(p)) { 367 if (p->p_pid == 0) 368 return (0); 369 } 370 return (1); 371 } 372 373 /* 374 * Shared lock all the pid hash lists. 375 */ 376 void 377 pidhash_slockall(void) 378 { 379 u_long i; 380 381 for (i = 0; i < pidhashlock + 1; i++) 382 sx_slock(&pidhashtbl_lock[i]); 383 } 384 385 /* 386 * Shared unlock all the pid hash lists. 387 */ 388 void 389 pidhash_sunlockall(void) 390 { 391 u_long i; 392 393 for (i = 0; i < pidhashlock + 1; i++) 394 sx_sunlock(&pidhashtbl_lock[i]); 395 } 396 397 /* 398 * Similar to pfind_any(), this function finds zombies. 399 */ 400 struct proc * 401 pfind_any_locked(pid_t pid) 402 { 403 struct proc *p; 404 405 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 406 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 407 if (p->p_pid == pid) { 408 PROC_LOCK(p); 409 if (p->p_state == PRS_NEW) { 410 PROC_UNLOCK(p); 411 p = NULL; 412 } 413 break; 414 } 415 } 416 return (p); 417 } 418 419 /* 420 * Locate a process by number. 421 * 422 * By not returning processes in the PRS_NEW state, we allow callers to avoid 423 * testing for that condition to avoid dereferencing p_ucred, et al. 424 */ 425 static __always_inline struct proc * 426 _pfind(pid_t pid, bool zombie) 427 { 428 struct proc *p; 429 430 p = curproc; 431 if (p->p_pid == pid) { 432 PROC_LOCK(p); 433 return (p); 434 } 435 sx_slock(PIDHASHLOCK(pid)); 436 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 437 if (p->p_pid == pid) { 438 PROC_LOCK(p); 439 if (p->p_state == PRS_NEW || 440 (!zombie && p->p_state == PRS_ZOMBIE)) { 441 PROC_UNLOCK(p); 442 p = NULL; 443 } 444 break; 445 } 446 } 447 sx_sunlock(PIDHASHLOCK(pid)); 448 return (p); 449 } 450 451 struct proc * 452 pfind(pid_t pid) 453 { 454 455 return (_pfind(pid, false)); 456 } 457 458 /* 459 * Same as pfind but allow zombies. 460 */ 461 struct proc * 462 pfind_any(pid_t pid) 463 { 464 465 return (_pfind(pid, true)); 466 } 467 468 /* 469 * Locate a process group by number. 470 * The caller must hold proctree_lock. 471 */ 472 struct pgrp * 473 pgfind(pid_t pgid) 474 { 475 struct pgrp *pgrp; 476 477 sx_assert(&proctree_lock, SX_LOCKED); 478 479 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 480 if (pgrp->pg_id == pgid) { 481 PGRP_LOCK(pgrp); 482 return (pgrp); 483 } 484 } 485 return (NULL); 486 } 487 488 /* 489 * Locate process and do additional manipulations, depending on flags. 490 */ 491 int 492 pget(pid_t pid, int flags, struct proc **pp) 493 { 494 struct proc *p; 495 struct thread *td1; 496 int error; 497 498 p = curproc; 499 if (p->p_pid == pid) { 500 PROC_LOCK(p); 501 } else { 502 p = NULL; 503 if (pid <= PID_MAX) { 504 if ((flags & PGET_NOTWEXIT) == 0) 505 p = pfind_any(pid); 506 else 507 p = pfind(pid); 508 } else if ((flags & PGET_NOTID) == 0) { 509 td1 = tdfind(pid, -1); 510 if (td1 != NULL) 511 p = td1->td_proc; 512 } 513 if (p == NULL) 514 return (ESRCH); 515 if ((flags & PGET_CANSEE) != 0) { 516 error = p_cansee(curthread, p); 517 if (error != 0) 518 goto errout; 519 } 520 } 521 if ((flags & PGET_CANDEBUG) != 0) { 522 error = p_candebug(curthread, p); 523 if (error != 0) 524 goto errout; 525 } 526 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 527 error = EPERM; 528 goto errout; 529 } 530 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 531 error = ESRCH; 532 goto errout; 533 } 534 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 535 /* 536 * XXXRW: Not clear ESRCH is the right error during proc 537 * execve(). 538 */ 539 error = ESRCH; 540 goto errout; 541 } 542 if ((flags & PGET_HOLD) != 0) { 543 _PHOLD(p); 544 PROC_UNLOCK(p); 545 } 546 *pp = p; 547 return (0); 548 errout: 549 PROC_UNLOCK(p); 550 return (error); 551 } 552 553 /* 554 * Create a new process group. 555 * pgid must be equal to the pid of p. 556 * Begin a new session if required. 557 */ 558 int 559 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 560 { 561 562 sx_assert(&proctree_lock, SX_XLOCKED); 563 564 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 565 KASSERT(p->p_pid == pgid, 566 ("enterpgrp: new pgrp and pid != pgid")); 567 KASSERT(pgfind(pgid) == NULL, 568 ("enterpgrp: pgrp with pgid exists")); 569 KASSERT(!SESS_LEADER(p), 570 ("enterpgrp: session leader attempted setpgrp")); 571 572 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 573 574 if (sess != NULL) { 575 /* 576 * new session 577 */ 578 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 579 PROC_LOCK(p); 580 p->p_flag &= ~P_CONTROLT; 581 PROC_UNLOCK(p); 582 PGRP_LOCK(pgrp); 583 sess->s_leader = p; 584 sess->s_sid = p->p_pid; 585 proc_id_set(PROC_ID_SESSION, p->p_pid); 586 refcount_init(&sess->s_count, 1); 587 sess->s_ttyvp = NULL; 588 sess->s_ttydp = NULL; 589 sess->s_ttyp = NULL; 590 bcopy(p->p_session->s_login, sess->s_login, 591 sizeof(sess->s_login)); 592 pgrp->pg_session = sess; 593 KASSERT(p == curproc, 594 ("enterpgrp: mksession and p != curproc")); 595 } else { 596 pgrp->pg_session = p->p_session; 597 sess_hold(pgrp->pg_session); 598 PGRP_LOCK(pgrp); 599 } 600 pgrp->pg_id = pgid; 601 proc_id_set(PROC_ID_GROUP, p->p_pid); 602 LIST_INIT(&pgrp->pg_members); 603 604 /* 605 * As we have an exclusive lock of proctree_lock, 606 * this should not deadlock. 607 */ 608 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 609 pgrp->pg_jobc = 0; 610 SLIST_INIT(&pgrp->pg_sigiolst); 611 PGRP_UNLOCK(pgrp); 612 613 doenterpgrp(p, pgrp); 614 615 return (0); 616 } 617 618 /* 619 * Move p to an existing process group 620 */ 621 int 622 enterthispgrp(struct proc *p, struct pgrp *pgrp) 623 { 624 625 sx_assert(&proctree_lock, SX_XLOCKED); 626 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 627 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 628 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 629 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 630 KASSERT(pgrp->pg_session == p->p_session, 631 ("%s: pgrp's session %p, p->p_session %p.\n", 632 __func__, 633 pgrp->pg_session, 634 p->p_session)); 635 KASSERT(pgrp != p->p_pgrp, 636 ("%s: p belongs to pgrp.", __func__)); 637 638 doenterpgrp(p, pgrp); 639 640 return (0); 641 } 642 643 /* 644 * If true, any child of q which belongs to group pgrp, qualifies the 645 * process group pgrp as not orphaned. 646 */ 647 static bool 648 isjobproc(struct proc *q, struct pgrp *pgrp) 649 { 650 sx_assert(&proctree_lock, SX_LOCKED); 651 return (q->p_pgrp != pgrp && 652 q->p_pgrp->pg_session == pgrp->pg_session); 653 } 654 655 static struct proc * 656 jobc_reaper(struct proc *p) 657 { 658 struct proc *pp; 659 660 sx_assert(&proctree_lock, SX_LOCKED); 661 662 for (pp = p;;) { 663 pp = pp->p_reaper; 664 if (pp->p_reaper == pp || 665 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 666 return (pp); 667 } 668 } 669 670 static struct proc * 671 jobc_parent(struct proc *p) 672 { 673 struct proc *pp; 674 675 sx_assert(&proctree_lock, SX_LOCKED); 676 677 pp = proc_realparent(p); 678 if (pp->p_pptr == NULL || 679 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 680 return (pp); 681 return (jobc_reaper(pp)); 682 } 683 684 #ifdef INVARIANTS 685 static void 686 check_pgrp_jobc(struct pgrp *pgrp) 687 { 688 struct proc *q; 689 int cnt; 690 691 sx_assert(&proctree_lock, SX_LOCKED); 692 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 693 694 cnt = 0; 695 PGRP_LOCK(pgrp); 696 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 697 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 698 q->p_pptr == NULL) 699 continue; 700 if (isjobproc(jobc_parent(q), pgrp)) 701 cnt++; 702 } 703 KASSERT(pgrp->pg_jobc == cnt, ("pgrp %d %p pg_jobc %d cnt %d", 704 pgrp->pg_id, pgrp, pgrp->pg_jobc, cnt)); 705 PGRP_UNLOCK(pgrp); 706 } 707 #endif 708 709 /* 710 * Move p to a process group 711 */ 712 static void 713 doenterpgrp(struct proc *p, struct pgrp *pgrp) 714 { 715 struct pgrp *savepgrp; 716 717 sx_assert(&proctree_lock, SX_XLOCKED); 718 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 719 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 720 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 721 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 722 723 savepgrp = p->p_pgrp; 724 725 #ifdef INVARIANTS 726 check_pgrp_jobc(pgrp); 727 check_pgrp_jobc(savepgrp); 728 #endif 729 730 /* 731 * Adjust eligibility of affected pgrps to participate in job control. 732 */ 733 fixjobc_enterpgrp(p, pgrp); 734 735 PGRP_LOCK(pgrp); 736 PGRP_LOCK(savepgrp); 737 PROC_LOCK(p); 738 LIST_REMOVE(p, p_pglist); 739 p->p_pgrp = pgrp; 740 PROC_UNLOCK(p); 741 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 742 PGRP_UNLOCK(savepgrp); 743 PGRP_UNLOCK(pgrp); 744 if (LIST_EMPTY(&savepgrp->pg_members)) 745 pgdelete(savepgrp); 746 } 747 748 /* 749 * remove process from process group 750 */ 751 int 752 leavepgrp(struct proc *p) 753 { 754 struct pgrp *savepgrp; 755 756 sx_assert(&proctree_lock, SX_XLOCKED); 757 savepgrp = p->p_pgrp; 758 PGRP_LOCK(savepgrp); 759 PROC_LOCK(p); 760 LIST_REMOVE(p, p_pglist); 761 p->p_pgrp = NULL; 762 PROC_UNLOCK(p); 763 PGRP_UNLOCK(savepgrp); 764 if (LIST_EMPTY(&savepgrp->pg_members)) 765 pgdelete(savepgrp); 766 return (0); 767 } 768 769 /* 770 * delete a process group 771 */ 772 static void 773 pgdelete(struct pgrp *pgrp) 774 { 775 struct session *savesess; 776 struct tty *tp; 777 778 sx_assert(&proctree_lock, SX_XLOCKED); 779 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 780 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 781 782 /* 783 * Reset any sigio structures pointing to us as a result of 784 * F_SETOWN with our pgid. The proctree lock ensures that 785 * new sigio structures will not be added after this point. 786 */ 787 funsetownlst(&pgrp->pg_sigiolst); 788 789 PGRP_LOCK(pgrp); 790 tp = pgrp->pg_session->s_ttyp; 791 LIST_REMOVE(pgrp, pg_hash); 792 savesess = pgrp->pg_session; 793 PGRP_UNLOCK(pgrp); 794 795 /* Remove the reference to the pgrp before deallocating it. */ 796 if (tp != NULL) { 797 tty_lock(tp); 798 tty_rel_pgrp(tp, pgrp); 799 } 800 801 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 802 mtx_destroy(&pgrp->pg_mtx); 803 free(pgrp, M_PGRP); 804 sess_release(savesess); 805 } 806 807 static void 808 pgadjustjobc(struct pgrp *pgrp, bool entering) 809 { 810 811 PGRP_LOCK(pgrp); 812 if (entering) { 813 MPASS(pgrp->pg_jobc >= 0); 814 pgrp->pg_jobc++; 815 } else { 816 MPASS(pgrp->pg_jobc > 0); 817 --pgrp->pg_jobc; 818 if (pgrp->pg_jobc == 0) 819 orphanpg(pgrp); 820 } 821 PGRP_UNLOCK(pgrp); 822 } 823 824 static void 825 fixjobc_enterpgrp_q(struct pgrp *pgrp, struct proc *p, struct proc *q, bool adj) 826 { 827 struct pgrp *childpgrp; 828 bool future_jobc; 829 830 sx_assert(&proctree_lock, SX_LOCKED); 831 832 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 833 return; 834 childpgrp = q->p_pgrp; 835 future_jobc = childpgrp != pgrp && 836 childpgrp->pg_session == pgrp->pg_session; 837 838 if ((adj && !isjobproc(p, childpgrp) && future_jobc) || 839 (!adj && isjobproc(p, childpgrp) && !future_jobc)) 840 pgadjustjobc(childpgrp, adj); 841 } 842 843 /* 844 * Adjust pgrp jobc counters when specified process changes process group. 845 * We count the number of processes in each process group that "qualify" 846 * the group for terminal job control (those with a parent in a different 847 * process group of the same session). If that count reaches zero, the 848 * process group becomes orphaned. Check both the specified process' 849 * process group and that of its children. 850 * We increment eligibility counts before decrementing, otherwise we 851 * could reach 0 spuriously during the decrement. 852 */ 853 static void 854 fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp) 855 { 856 struct proc *q; 857 858 sx_assert(&proctree_lock, SX_LOCKED); 859 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 860 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 861 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 862 863 if (p->p_pgrp == pgrp) 864 return; 865 866 if (isjobproc(jobc_parent(p), pgrp)) 867 pgadjustjobc(pgrp, true); 868 LIST_FOREACH(q, &p->p_children, p_sibling) { 869 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 870 continue; 871 fixjobc_enterpgrp_q(pgrp, p, q, true); 872 } 873 LIST_FOREACH(q, &p->p_orphans, p_orphan) 874 fixjobc_enterpgrp_q(pgrp, p, q, true); 875 876 if (isjobproc(jobc_parent(p), p->p_pgrp)) 877 pgadjustjobc(p->p_pgrp, false); 878 LIST_FOREACH(q, &p->p_children, p_sibling) { 879 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 880 continue; 881 fixjobc_enterpgrp_q(pgrp, p, q, false); 882 } 883 LIST_FOREACH(q, &p->p_orphans, p_orphan) 884 fixjobc_enterpgrp_q(pgrp, p, q, false); 885 } 886 887 static void 888 fixjobc_kill_q(struct proc *p, struct proc *q, bool adj) 889 { 890 struct pgrp *childpgrp; 891 892 sx_assert(&proctree_lock, SX_LOCKED); 893 894 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 895 return; 896 childpgrp = q->p_pgrp; 897 898 if ((adj && isjobproc(jobc_reaper(q), childpgrp) && 899 !isjobproc(p, childpgrp)) || (!adj && !isjobproc(jobc_reaper(q), 900 childpgrp) && isjobproc(p, childpgrp))) 901 pgadjustjobc(childpgrp, adj); 902 } 903 904 static void 905 fixjobc_kill(struct proc *p) 906 { 907 struct proc *q; 908 struct pgrp *pgrp; 909 910 sx_assert(&proctree_lock, SX_LOCKED); 911 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 912 pgrp = p->p_pgrp; 913 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 914 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 915 #ifdef INVARIANTS 916 check_pgrp_jobc(pgrp); 917 #endif 918 919 /* 920 * p no longer affects process group orphanage for children. 921 * It is marked by the flag because p is only physically 922 * removed from its process group on wait(2). 923 */ 924 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 925 p->p_treeflag |= P_TREE_GRPEXITED; 926 927 /* 928 * Check p's parent to see whether p qualifies its own process 929 * group; if so, adjust count for p's process group. 930 */ 931 if (isjobproc(jobc_parent(p), pgrp)) 932 pgadjustjobc(pgrp, false); 933 934 /* 935 * Check this process' children to see whether they qualify 936 * their process groups after reparenting to reaper. If so, 937 * adjust counts for children's process groups. 938 */ 939 LIST_FOREACH(q, &p->p_children, p_sibling) { 940 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 941 continue; 942 fixjobc_kill_q(p, q, true); 943 } 944 LIST_FOREACH(q, &p->p_orphans, p_orphan) 945 fixjobc_kill_q(p, q, true); 946 LIST_FOREACH(q, &p->p_children, p_sibling) { 947 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 948 continue; 949 fixjobc_kill_q(p, q, false); 950 } 951 LIST_FOREACH(q, &p->p_orphans, p_orphan) 952 fixjobc_kill_q(p, q, false); 953 954 #ifdef INVARIANTS 955 check_pgrp_jobc(pgrp); 956 #endif 957 } 958 959 void 960 killjobc(void) 961 { 962 struct session *sp; 963 struct tty *tp; 964 struct proc *p; 965 struct vnode *ttyvp; 966 967 p = curproc; 968 MPASS(p->p_flag & P_WEXIT); 969 sx_assert(&proctree_lock, SX_LOCKED); 970 971 if (SESS_LEADER(p)) { 972 sp = p->p_session; 973 974 /* 975 * s_ttyp is not zero'd; we use this to indicate that 976 * the session once had a controlling terminal. (for 977 * logging and informational purposes) 978 */ 979 SESS_LOCK(sp); 980 ttyvp = sp->s_ttyvp; 981 tp = sp->s_ttyp; 982 sp->s_ttyvp = NULL; 983 sp->s_ttydp = NULL; 984 sp->s_leader = NULL; 985 SESS_UNLOCK(sp); 986 987 /* 988 * Signal foreground pgrp and revoke access to 989 * controlling terminal if it has not been revoked 990 * already. 991 * 992 * Because the TTY may have been revoked in the mean 993 * time and could already have a new session associated 994 * with it, make sure we don't send a SIGHUP to a 995 * foreground process group that does not belong to this 996 * session. 997 */ 998 999 if (tp != NULL) { 1000 tty_lock(tp); 1001 if (tp->t_session == sp) 1002 tty_signal_pgrp(tp, SIGHUP); 1003 tty_unlock(tp); 1004 } 1005 1006 if (ttyvp != NULL) { 1007 sx_xunlock(&proctree_lock); 1008 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 1009 VOP_REVOKE(ttyvp, REVOKEALL); 1010 VOP_UNLOCK(ttyvp); 1011 } 1012 devfs_ctty_unref(ttyvp); 1013 sx_xlock(&proctree_lock); 1014 } 1015 } 1016 fixjobc_kill(p); 1017 } 1018 1019 /* 1020 * A process group has become orphaned; 1021 * if there are any stopped processes in the group, 1022 * hang-up all process in that group. 1023 */ 1024 static void 1025 orphanpg(struct pgrp *pg) 1026 { 1027 struct proc *p; 1028 1029 PGRP_LOCK_ASSERT(pg, MA_OWNED); 1030 1031 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1032 PROC_LOCK(p); 1033 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 1034 PROC_UNLOCK(p); 1035 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1036 PROC_LOCK(p); 1037 kern_psignal(p, SIGHUP); 1038 kern_psignal(p, SIGCONT); 1039 PROC_UNLOCK(p); 1040 } 1041 return; 1042 } 1043 PROC_UNLOCK(p); 1044 } 1045 } 1046 1047 void 1048 sess_hold(struct session *s) 1049 { 1050 1051 refcount_acquire(&s->s_count); 1052 } 1053 1054 void 1055 sess_release(struct session *s) 1056 { 1057 1058 if (refcount_release(&s->s_count)) { 1059 if (s->s_ttyp != NULL) { 1060 tty_lock(s->s_ttyp); 1061 tty_rel_sess(s->s_ttyp, s); 1062 } 1063 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1064 mtx_destroy(&s->s_mtx); 1065 free(s, M_SESSION); 1066 } 1067 } 1068 1069 #ifdef DDB 1070 1071 static void 1072 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1073 { 1074 db_printf( 1075 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1076 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1077 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1078 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1079 } 1080 1081 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 1082 { 1083 struct pgrp *pgrp; 1084 struct proc *p; 1085 int i; 1086 1087 for (i = 0; i <= pgrphash; i++) { 1088 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1089 db_printf("indx %d\n", i); 1090 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1091 db_printf( 1092 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1093 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1094 pgrp->pg_session->s_count, 1095 LIST_FIRST(&pgrp->pg_members)); 1096 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1097 db_print_pgrp_one(pgrp, p); 1098 } 1099 } 1100 } 1101 } 1102 #endif /* DDB */ 1103 1104 /* 1105 * Calculate the kinfo_proc members which contain process-wide 1106 * informations. 1107 * Must be called with the target process locked. 1108 */ 1109 static void 1110 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1111 { 1112 struct thread *td; 1113 1114 PROC_LOCK_ASSERT(p, MA_OWNED); 1115 1116 kp->ki_estcpu = 0; 1117 kp->ki_pctcpu = 0; 1118 FOREACH_THREAD_IN_PROC(p, td) { 1119 thread_lock(td); 1120 kp->ki_pctcpu += sched_pctcpu(td); 1121 kp->ki_estcpu += sched_estcpu(td); 1122 thread_unlock(td); 1123 } 1124 } 1125 1126 /* 1127 * Clear kinfo_proc and fill in any information that is common 1128 * to all threads in the process. 1129 * Must be called with the target process locked. 1130 */ 1131 static void 1132 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1133 { 1134 struct thread *td0; 1135 struct tty *tp; 1136 struct session *sp; 1137 struct ucred *cred; 1138 struct sigacts *ps; 1139 struct timeval boottime; 1140 1141 PROC_LOCK_ASSERT(p, MA_OWNED); 1142 bzero(kp, sizeof(*kp)); 1143 1144 kp->ki_structsize = sizeof(*kp); 1145 kp->ki_paddr = p; 1146 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1147 kp->ki_args = p->p_args; 1148 kp->ki_textvp = p->p_textvp; 1149 #ifdef KTRACE 1150 kp->ki_tracep = p->p_tracevp; 1151 kp->ki_traceflag = p->p_traceflag; 1152 #endif 1153 kp->ki_fd = p->p_fd; 1154 kp->ki_pd = p->p_pd; 1155 kp->ki_vmspace = p->p_vmspace; 1156 kp->ki_flag = p->p_flag; 1157 kp->ki_flag2 = p->p_flag2; 1158 cred = p->p_ucred; 1159 if (cred) { 1160 kp->ki_uid = cred->cr_uid; 1161 kp->ki_ruid = cred->cr_ruid; 1162 kp->ki_svuid = cred->cr_svuid; 1163 kp->ki_cr_flags = 0; 1164 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1165 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1166 /* XXX bde doesn't like KI_NGROUPS */ 1167 if (cred->cr_ngroups > KI_NGROUPS) { 1168 kp->ki_ngroups = KI_NGROUPS; 1169 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1170 } else 1171 kp->ki_ngroups = cred->cr_ngroups; 1172 bcopy(cred->cr_groups, kp->ki_groups, 1173 kp->ki_ngroups * sizeof(gid_t)); 1174 kp->ki_rgid = cred->cr_rgid; 1175 kp->ki_svgid = cred->cr_svgid; 1176 /* If jailed(cred), emulate the old P_JAILED flag. */ 1177 if (jailed(cred)) { 1178 kp->ki_flag |= P_JAILED; 1179 /* If inside the jail, use 0 as a jail ID. */ 1180 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1181 kp->ki_jid = cred->cr_prison->pr_id; 1182 } 1183 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1184 sizeof(kp->ki_loginclass)); 1185 } 1186 ps = p->p_sigacts; 1187 if (ps) { 1188 mtx_lock(&ps->ps_mtx); 1189 kp->ki_sigignore = ps->ps_sigignore; 1190 kp->ki_sigcatch = ps->ps_sigcatch; 1191 mtx_unlock(&ps->ps_mtx); 1192 } 1193 if (p->p_state != PRS_NEW && 1194 p->p_state != PRS_ZOMBIE && 1195 p->p_vmspace != NULL) { 1196 struct vmspace *vm = p->p_vmspace; 1197 1198 kp->ki_size = vm->vm_map.size; 1199 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1200 FOREACH_THREAD_IN_PROC(p, td0) { 1201 if (!TD_IS_SWAPPED(td0)) 1202 kp->ki_rssize += td0->td_kstack_pages; 1203 } 1204 kp->ki_swrss = vm->vm_swrss; 1205 kp->ki_tsize = vm->vm_tsize; 1206 kp->ki_dsize = vm->vm_dsize; 1207 kp->ki_ssize = vm->vm_ssize; 1208 } else if (p->p_state == PRS_ZOMBIE) 1209 kp->ki_stat = SZOMB; 1210 if (kp->ki_flag & P_INMEM) 1211 kp->ki_sflag = PS_INMEM; 1212 else 1213 kp->ki_sflag = 0; 1214 /* Calculate legacy swtime as seconds since 'swtick'. */ 1215 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1216 kp->ki_pid = p->p_pid; 1217 kp->ki_nice = p->p_nice; 1218 kp->ki_fibnum = p->p_fibnum; 1219 kp->ki_start = p->p_stats->p_start; 1220 getboottime(&boottime); 1221 timevaladd(&kp->ki_start, &boottime); 1222 PROC_STATLOCK(p); 1223 rufetch(p, &kp->ki_rusage); 1224 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1225 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1226 PROC_STATUNLOCK(p); 1227 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1228 /* Some callers want child times in a single value. */ 1229 kp->ki_childtime = kp->ki_childstime; 1230 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1231 1232 FOREACH_THREAD_IN_PROC(p, td0) 1233 kp->ki_cow += td0->td_cow; 1234 1235 tp = NULL; 1236 if (p->p_pgrp) { 1237 kp->ki_pgid = p->p_pgrp->pg_id; 1238 kp->ki_jobc = p->p_pgrp->pg_jobc; 1239 sp = p->p_pgrp->pg_session; 1240 1241 if (sp != NULL) { 1242 kp->ki_sid = sp->s_sid; 1243 SESS_LOCK(sp); 1244 strlcpy(kp->ki_login, sp->s_login, 1245 sizeof(kp->ki_login)); 1246 if (sp->s_ttyvp) 1247 kp->ki_kiflag |= KI_CTTY; 1248 if (SESS_LEADER(p)) 1249 kp->ki_kiflag |= KI_SLEADER; 1250 /* XXX proctree_lock */ 1251 tp = sp->s_ttyp; 1252 SESS_UNLOCK(sp); 1253 } 1254 } 1255 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1256 kp->ki_tdev = tty_udev(tp); 1257 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1258 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1259 if (tp->t_session) 1260 kp->ki_tsid = tp->t_session->s_sid; 1261 } else { 1262 kp->ki_tdev = NODEV; 1263 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1264 } 1265 if (p->p_comm[0] != '\0') 1266 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1267 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1268 p->p_sysent->sv_name[0] != '\0') 1269 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1270 kp->ki_siglist = p->p_siglist; 1271 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1272 kp->ki_acflag = p->p_acflag; 1273 kp->ki_lock = p->p_lock; 1274 if (p->p_pptr) { 1275 kp->ki_ppid = p->p_oppid; 1276 if (p->p_flag & P_TRACED) 1277 kp->ki_tracer = p->p_pptr->p_pid; 1278 } 1279 } 1280 1281 /* 1282 * Fill in information that is thread specific. Must be called with 1283 * target process locked. If 'preferthread' is set, overwrite certain 1284 * process-related fields that are maintained for both threads and 1285 * processes. 1286 */ 1287 static void 1288 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1289 { 1290 struct proc *p; 1291 1292 p = td->td_proc; 1293 kp->ki_tdaddr = td; 1294 PROC_LOCK_ASSERT(p, MA_OWNED); 1295 1296 if (preferthread) 1297 PROC_STATLOCK(p); 1298 thread_lock(td); 1299 if (td->td_wmesg != NULL) 1300 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1301 else 1302 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1303 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1304 sizeof(kp->ki_tdname)) { 1305 strlcpy(kp->ki_moretdname, 1306 td->td_name + sizeof(kp->ki_tdname) - 1, 1307 sizeof(kp->ki_moretdname)); 1308 } else { 1309 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1310 } 1311 if (TD_ON_LOCK(td)) { 1312 kp->ki_kiflag |= KI_LOCKBLOCK; 1313 strlcpy(kp->ki_lockname, td->td_lockname, 1314 sizeof(kp->ki_lockname)); 1315 } else { 1316 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1317 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1318 } 1319 1320 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1321 if (TD_ON_RUNQ(td) || 1322 TD_CAN_RUN(td) || 1323 TD_IS_RUNNING(td)) { 1324 kp->ki_stat = SRUN; 1325 } else if (P_SHOULDSTOP(p)) { 1326 kp->ki_stat = SSTOP; 1327 } else if (TD_IS_SLEEPING(td)) { 1328 kp->ki_stat = SSLEEP; 1329 } else if (TD_ON_LOCK(td)) { 1330 kp->ki_stat = SLOCK; 1331 } else { 1332 kp->ki_stat = SWAIT; 1333 } 1334 } else if (p->p_state == PRS_ZOMBIE) { 1335 kp->ki_stat = SZOMB; 1336 } else { 1337 kp->ki_stat = SIDL; 1338 } 1339 1340 /* Things in the thread */ 1341 kp->ki_wchan = td->td_wchan; 1342 kp->ki_pri.pri_level = td->td_priority; 1343 kp->ki_pri.pri_native = td->td_base_pri; 1344 1345 /* 1346 * Note: legacy fields; clamp at the old NOCPU value and/or 1347 * the maximum u_char CPU value. 1348 */ 1349 if (td->td_lastcpu == NOCPU) 1350 kp->ki_lastcpu_old = NOCPU_OLD; 1351 else if (td->td_lastcpu > MAXCPU_OLD) 1352 kp->ki_lastcpu_old = MAXCPU_OLD; 1353 else 1354 kp->ki_lastcpu_old = td->td_lastcpu; 1355 1356 if (td->td_oncpu == NOCPU) 1357 kp->ki_oncpu_old = NOCPU_OLD; 1358 else if (td->td_oncpu > MAXCPU_OLD) 1359 kp->ki_oncpu_old = MAXCPU_OLD; 1360 else 1361 kp->ki_oncpu_old = td->td_oncpu; 1362 1363 kp->ki_lastcpu = td->td_lastcpu; 1364 kp->ki_oncpu = td->td_oncpu; 1365 kp->ki_tdflags = td->td_flags; 1366 kp->ki_tid = td->td_tid; 1367 kp->ki_numthreads = p->p_numthreads; 1368 kp->ki_pcb = td->td_pcb; 1369 kp->ki_kstack = (void *)td->td_kstack; 1370 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1371 kp->ki_pri.pri_class = td->td_pri_class; 1372 kp->ki_pri.pri_user = td->td_user_pri; 1373 1374 if (preferthread) { 1375 rufetchtd(td, &kp->ki_rusage); 1376 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1377 kp->ki_pctcpu = sched_pctcpu(td); 1378 kp->ki_estcpu = sched_estcpu(td); 1379 kp->ki_cow = td->td_cow; 1380 } 1381 1382 /* We can't get this anymore but ps etc never used it anyway. */ 1383 kp->ki_rqindex = 0; 1384 1385 if (preferthread) 1386 kp->ki_siglist = td->td_siglist; 1387 kp->ki_sigmask = td->td_sigmask; 1388 thread_unlock(td); 1389 if (preferthread) 1390 PROC_STATUNLOCK(p); 1391 } 1392 1393 /* 1394 * Fill in a kinfo_proc structure for the specified process. 1395 * Must be called with the target process locked. 1396 */ 1397 void 1398 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1399 { 1400 1401 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1402 1403 fill_kinfo_proc_only(p, kp); 1404 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1405 fill_kinfo_aggregate(p, kp); 1406 } 1407 1408 struct pstats * 1409 pstats_alloc(void) 1410 { 1411 1412 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1413 } 1414 1415 /* 1416 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1417 */ 1418 void 1419 pstats_fork(struct pstats *src, struct pstats *dst) 1420 { 1421 1422 bzero(&dst->pstat_startzero, 1423 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1424 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1425 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1426 } 1427 1428 void 1429 pstats_free(struct pstats *ps) 1430 { 1431 1432 free(ps, M_SUBPROC); 1433 } 1434 1435 #ifdef COMPAT_FREEBSD32 1436 1437 /* 1438 * This function is typically used to copy out the kernel address, so 1439 * it can be replaced by assignment of zero. 1440 */ 1441 static inline uint32_t 1442 ptr32_trim(const void *ptr) 1443 { 1444 uintptr_t uptr; 1445 1446 uptr = (uintptr_t)ptr; 1447 return ((uptr > UINT_MAX) ? 0 : uptr); 1448 } 1449 1450 #define PTRTRIM_CP(src,dst,fld) \ 1451 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1452 1453 static void 1454 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1455 { 1456 int i; 1457 1458 bzero(ki32, sizeof(struct kinfo_proc32)); 1459 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1460 CP(*ki, *ki32, ki_layout); 1461 PTRTRIM_CP(*ki, *ki32, ki_args); 1462 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1463 PTRTRIM_CP(*ki, *ki32, ki_addr); 1464 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1465 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1466 PTRTRIM_CP(*ki, *ki32, ki_fd); 1467 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1468 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1469 CP(*ki, *ki32, ki_pid); 1470 CP(*ki, *ki32, ki_ppid); 1471 CP(*ki, *ki32, ki_pgid); 1472 CP(*ki, *ki32, ki_tpgid); 1473 CP(*ki, *ki32, ki_sid); 1474 CP(*ki, *ki32, ki_tsid); 1475 CP(*ki, *ki32, ki_jobc); 1476 CP(*ki, *ki32, ki_tdev); 1477 CP(*ki, *ki32, ki_tdev_freebsd11); 1478 CP(*ki, *ki32, ki_siglist); 1479 CP(*ki, *ki32, ki_sigmask); 1480 CP(*ki, *ki32, ki_sigignore); 1481 CP(*ki, *ki32, ki_sigcatch); 1482 CP(*ki, *ki32, ki_uid); 1483 CP(*ki, *ki32, ki_ruid); 1484 CP(*ki, *ki32, ki_svuid); 1485 CP(*ki, *ki32, ki_rgid); 1486 CP(*ki, *ki32, ki_svgid); 1487 CP(*ki, *ki32, ki_ngroups); 1488 for (i = 0; i < KI_NGROUPS; i++) 1489 CP(*ki, *ki32, ki_groups[i]); 1490 CP(*ki, *ki32, ki_size); 1491 CP(*ki, *ki32, ki_rssize); 1492 CP(*ki, *ki32, ki_swrss); 1493 CP(*ki, *ki32, ki_tsize); 1494 CP(*ki, *ki32, ki_dsize); 1495 CP(*ki, *ki32, ki_ssize); 1496 CP(*ki, *ki32, ki_xstat); 1497 CP(*ki, *ki32, ki_acflag); 1498 CP(*ki, *ki32, ki_pctcpu); 1499 CP(*ki, *ki32, ki_estcpu); 1500 CP(*ki, *ki32, ki_slptime); 1501 CP(*ki, *ki32, ki_swtime); 1502 CP(*ki, *ki32, ki_cow); 1503 CP(*ki, *ki32, ki_runtime); 1504 TV_CP(*ki, *ki32, ki_start); 1505 TV_CP(*ki, *ki32, ki_childtime); 1506 CP(*ki, *ki32, ki_flag); 1507 CP(*ki, *ki32, ki_kiflag); 1508 CP(*ki, *ki32, ki_traceflag); 1509 CP(*ki, *ki32, ki_stat); 1510 CP(*ki, *ki32, ki_nice); 1511 CP(*ki, *ki32, ki_lock); 1512 CP(*ki, *ki32, ki_rqindex); 1513 CP(*ki, *ki32, ki_oncpu); 1514 CP(*ki, *ki32, ki_lastcpu); 1515 1516 /* XXX TODO: wrap cpu value as appropriate */ 1517 CP(*ki, *ki32, ki_oncpu_old); 1518 CP(*ki, *ki32, ki_lastcpu_old); 1519 1520 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1521 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1522 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1523 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1524 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1525 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1526 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1527 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1528 CP(*ki, *ki32, ki_tracer); 1529 CP(*ki, *ki32, ki_flag2); 1530 CP(*ki, *ki32, ki_fibnum); 1531 CP(*ki, *ki32, ki_cr_flags); 1532 CP(*ki, *ki32, ki_jid); 1533 CP(*ki, *ki32, ki_numthreads); 1534 CP(*ki, *ki32, ki_tid); 1535 CP(*ki, *ki32, ki_pri); 1536 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1537 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1538 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1539 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1540 PTRTRIM_CP(*ki, *ki32, ki_udata); 1541 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1542 CP(*ki, *ki32, ki_sflag); 1543 CP(*ki, *ki32, ki_tdflags); 1544 } 1545 #endif 1546 1547 static ssize_t 1548 kern_proc_out_size(struct proc *p, int flags) 1549 { 1550 ssize_t size = 0; 1551 1552 PROC_LOCK_ASSERT(p, MA_OWNED); 1553 1554 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1555 #ifdef COMPAT_FREEBSD32 1556 if ((flags & KERN_PROC_MASK32) != 0) { 1557 size += sizeof(struct kinfo_proc32); 1558 } else 1559 #endif 1560 size += sizeof(struct kinfo_proc); 1561 } else { 1562 #ifdef COMPAT_FREEBSD32 1563 if ((flags & KERN_PROC_MASK32) != 0) 1564 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1565 else 1566 #endif 1567 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1568 } 1569 PROC_UNLOCK(p); 1570 return (size); 1571 } 1572 1573 int 1574 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1575 { 1576 struct thread *td; 1577 struct kinfo_proc ki; 1578 #ifdef COMPAT_FREEBSD32 1579 struct kinfo_proc32 ki32; 1580 #endif 1581 int error; 1582 1583 PROC_LOCK_ASSERT(p, MA_OWNED); 1584 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1585 1586 error = 0; 1587 fill_kinfo_proc(p, &ki); 1588 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1589 #ifdef COMPAT_FREEBSD32 1590 if ((flags & KERN_PROC_MASK32) != 0) { 1591 freebsd32_kinfo_proc_out(&ki, &ki32); 1592 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1593 error = ENOMEM; 1594 } else 1595 #endif 1596 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1597 error = ENOMEM; 1598 } else { 1599 FOREACH_THREAD_IN_PROC(p, td) { 1600 fill_kinfo_thread(td, &ki, 1); 1601 #ifdef COMPAT_FREEBSD32 1602 if ((flags & KERN_PROC_MASK32) != 0) { 1603 freebsd32_kinfo_proc_out(&ki, &ki32); 1604 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1605 error = ENOMEM; 1606 } else 1607 #endif 1608 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1609 error = ENOMEM; 1610 if (error != 0) 1611 break; 1612 } 1613 } 1614 PROC_UNLOCK(p); 1615 return (error); 1616 } 1617 1618 static int 1619 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1620 { 1621 struct sbuf sb; 1622 struct kinfo_proc ki; 1623 int error, error2; 1624 1625 if (req->oldptr == NULL) 1626 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1627 1628 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1629 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1630 error = kern_proc_out(p, &sb, flags); 1631 error2 = sbuf_finish(&sb); 1632 sbuf_delete(&sb); 1633 if (error != 0) 1634 return (error); 1635 else if (error2 != 0) 1636 return (error2); 1637 return (0); 1638 } 1639 1640 int 1641 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1642 { 1643 struct proc *p; 1644 int error, i, j; 1645 1646 for (i = 0; i < pidhashlock + 1; i++) { 1647 sx_slock(&pidhashtbl_lock[i]); 1648 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1649 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1650 if (p->p_state == PRS_NEW) 1651 continue; 1652 error = cb(p, cbarg); 1653 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1654 if (error != 0) { 1655 sx_sunlock(&pidhashtbl_lock[i]); 1656 return (error); 1657 } 1658 } 1659 } 1660 sx_sunlock(&pidhashtbl_lock[i]); 1661 } 1662 return (0); 1663 } 1664 1665 struct kern_proc_out_args { 1666 struct sysctl_req *req; 1667 int flags; 1668 int oid_number; 1669 int *name; 1670 }; 1671 1672 static int 1673 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1674 { 1675 struct kern_proc_out_args *arg = origarg; 1676 int *name = arg->name; 1677 int oid_number = arg->oid_number; 1678 int flags = arg->flags; 1679 struct sysctl_req *req = arg->req; 1680 int error = 0; 1681 1682 PROC_LOCK(p); 1683 1684 KASSERT(p->p_ucred != NULL, 1685 ("process credential is NULL for non-NEW proc")); 1686 /* 1687 * Show a user only appropriate processes. 1688 */ 1689 if (p_cansee(curthread, p)) 1690 goto skip; 1691 /* 1692 * TODO - make more efficient (see notes below). 1693 * do by session. 1694 */ 1695 switch (oid_number) { 1696 case KERN_PROC_GID: 1697 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1698 goto skip; 1699 break; 1700 1701 case KERN_PROC_PGRP: 1702 /* could do this by traversing pgrp */ 1703 if (p->p_pgrp == NULL || 1704 p->p_pgrp->pg_id != (pid_t)name[0]) 1705 goto skip; 1706 break; 1707 1708 case KERN_PROC_RGID: 1709 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1710 goto skip; 1711 break; 1712 1713 case KERN_PROC_SESSION: 1714 if (p->p_session == NULL || 1715 p->p_session->s_sid != (pid_t)name[0]) 1716 goto skip; 1717 break; 1718 1719 case KERN_PROC_TTY: 1720 if ((p->p_flag & P_CONTROLT) == 0 || 1721 p->p_session == NULL) 1722 goto skip; 1723 /* XXX proctree_lock */ 1724 SESS_LOCK(p->p_session); 1725 if (p->p_session->s_ttyp == NULL || 1726 tty_udev(p->p_session->s_ttyp) != 1727 (dev_t)name[0]) { 1728 SESS_UNLOCK(p->p_session); 1729 goto skip; 1730 } 1731 SESS_UNLOCK(p->p_session); 1732 break; 1733 1734 case KERN_PROC_UID: 1735 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1736 goto skip; 1737 break; 1738 1739 case KERN_PROC_RUID: 1740 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1741 goto skip; 1742 break; 1743 1744 case KERN_PROC_PROC: 1745 break; 1746 1747 default: 1748 break; 1749 } 1750 error = sysctl_out_proc(p, req, flags); 1751 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1752 return (error); 1753 skip: 1754 PROC_UNLOCK(p); 1755 return (0); 1756 } 1757 1758 static int 1759 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1760 { 1761 struct kern_proc_out_args iterarg; 1762 int *name = (int *)arg1; 1763 u_int namelen = arg2; 1764 struct proc *p; 1765 int flags, oid_number; 1766 int error = 0; 1767 1768 oid_number = oidp->oid_number; 1769 if (oid_number != KERN_PROC_ALL && 1770 (oid_number & KERN_PROC_INC_THREAD) == 0) 1771 flags = KERN_PROC_NOTHREADS; 1772 else { 1773 flags = 0; 1774 oid_number &= ~KERN_PROC_INC_THREAD; 1775 } 1776 #ifdef COMPAT_FREEBSD32 1777 if (req->flags & SCTL_MASK32) 1778 flags |= KERN_PROC_MASK32; 1779 #endif 1780 if (oid_number == KERN_PROC_PID) { 1781 if (namelen != 1) 1782 return (EINVAL); 1783 error = sysctl_wire_old_buffer(req, 0); 1784 if (error) 1785 return (error); 1786 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1787 if (error == 0) 1788 error = sysctl_out_proc(p, req, flags); 1789 return (error); 1790 } 1791 1792 switch (oid_number) { 1793 case KERN_PROC_ALL: 1794 if (namelen != 0) 1795 return (EINVAL); 1796 break; 1797 case KERN_PROC_PROC: 1798 if (namelen != 0 && namelen != 1) 1799 return (EINVAL); 1800 break; 1801 default: 1802 if (namelen != 1) 1803 return (EINVAL); 1804 break; 1805 } 1806 1807 if (req->oldptr == NULL) { 1808 /* overestimate by 5 procs */ 1809 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1810 if (error) 1811 return (error); 1812 } else { 1813 error = sysctl_wire_old_buffer(req, 0); 1814 if (error != 0) 1815 return (error); 1816 } 1817 iterarg.flags = flags; 1818 iterarg.oid_number = oid_number; 1819 iterarg.req = req; 1820 iterarg.name = name; 1821 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1822 return (error); 1823 } 1824 1825 struct pargs * 1826 pargs_alloc(int len) 1827 { 1828 struct pargs *pa; 1829 1830 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1831 M_WAITOK); 1832 refcount_init(&pa->ar_ref, 1); 1833 pa->ar_length = len; 1834 return (pa); 1835 } 1836 1837 static void 1838 pargs_free(struct pargs *pa) 1839 { 1840 1841 free(pa, M_PARGS); 1842 } 1843 1844 void 1845 pargs_hold(struct pargs *pa) 1846 { 1847 1848 if (pa == NULL) 1849 return; 1850 refcount_acquire(&pa->ar_ref); 1851 } 1852 1853 void 1854 pargs_drop(struct pargs *pa) 1855 { 1856 1857 if (pa == NULL) 1858 return; 1859 if (refcount_release(&pa->ar_ref)) 1860 pargs_free(pa); 1861 } 1862 1863 static int 1864 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1865 size_t len) 1866 { 1867 ssize_t n; 1868 1869 /* 1870 * This may return a short read if the string is shorter than the chunk 1871 * and is aligned at the end of the page, and the following page is not 1872 * mapped. 1873 */ 1874 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1875 if (n <= 0) 1876 return (ENOMEM); 1877 return (0); 1878 } 1879 1880 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1881 1882 enum proc_vector_type { 1883 PROC_ARG, 1884 PROC_ENV, 1885 PROC_AUX, 1886 }; 1887 1888 #ifdef COMPAT_FREEBSD32 1889 static int 1890 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1891 size_t *vsizep, enum proc_vector_type type) 1892 { 1893 struct freebsd32_ps_strings pss; 1894 Elf32_Auxinfo aux; 1895 vm_offset_t vptr, ptr; 1896 uint32_t *proc_vector32; 1897 char **proc_vector; 1898 size_t vsize, size; 1899 int i, error; 1900 1901 error = 0; 1902 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1903 sizeof(pss)) != sizeof(pss)) 1904 return (ENOMEM); 1905 switch (type) { 1906 case PROC_ARG: 1907 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1908 vsize = pss.ps_nargvstr; 1909 if (vsize > ARG_MAX) 1910 return (ENOEXEC); 1911 size = vsize * sizeof(int32_t); 1912 break; 1913 case PROC_ENV: 1914 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1915 vsize = pss.ps_nenvstr; 1916 if (vsize > ARG_MAX) 1917 return (ENOEXEC); 1918 size = vsize * sizeof(int32_t); 1919 break; 1920 case PROC_AUX: 1921 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1922 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1923 if (vptr % 4 != 0) 1924 return (ENOEXEC); 1925 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1926 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1927 sizeof(aux)) 1928 return (ENOMEM); 1929 if (aux.a_type == AT_NULL) 1930 break; 1931 ptr += sizeof(aux); 1932 } 1933 if (aux.a_type != AT_NULL) 1934 return (ENOEXEC); 1935 vsize = i + 1; 1936 size = vsize * sizeof(aux); 1937 break; 1938 default: 1939 KASSERT(0, ("Wrong proc vector type: %d", type)); 1940 return (EINVAL); 1941 } 1942 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1943 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1944 error = ENOMEM; 1945 goto done; 1946 } 1947 if (type == PROC_AUX) { 1948 *proc_vectorp = (char **)proc_vector32; 1949 *vsizep = vsize; 1950 return (0); 1951 } 1952 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1953 for (i = 0; i < (int)vsize; i++) 1954 proc_vector[i] = PTRIN(proc_vector32[i]); 1955 *proc_vectorp = proc_vector; 1956 *vsizep = vsize; 1957 done: 1958 free(proc_vector32, M_TEMP); 1959 return (error); 1960 } 1961 #endif 1962 1963 static int 1964 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1965 size_t *vsizep, enum proc_vector_type type) 1966 { 1967 struct ps_strings pss; 1968 Elf_Auxinfo aux; 1969 vm_offset_t vptr, ptr; 1970 char **proc_vector; 1971 size_t vsize, size; 1972 int i; 1973 1974 #ifdef COMPAT_FREEBSD32 1975 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1976 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1977 #endif 1978 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1979 sizeof(pss)) != sizeof(pss)) 1980 return (ENOMEM); 1981 switch (type) { 1982 case PROC_ARG: 1983 vptr = (vm_offset_t)pss.ps_argvstr; 1984 vsize = pss.ps_nargvstr; 1985 if (vsize > ARG_MAX) 1986 return (ENOEXEC); 1987 size = vsize * sizeof(char *); 1988 break; 1989 case PROC_ENV: 1990 vptr = (vm_offset_t)pss.ps_envstr; 1991 vsize = pss.ps_nenvstr; 1992 if (vsize > ARG_MAX) 1993 return (ENOEXEC); 1994 size = vsize * sizeof(char *); 1995 break; 1996 case PROC_AUX: 1997 /* 1998 * The aux array is just above env array on the stack. Check 1999 * that the address is naturally aligned. 2000 */ 2001 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 2002 * sizeof(char *); 2003 #if __ELF_WORD_SIZE == 64 2004 if (vptr % sizeof(uint64_t) != 0) 2005 #else 2006 if (vptr % sizeof(uint32_t) != 0) 2007 #endif 2008 return (ENOEXEC); 2009 /* 2010 * We count the array size reading the aux vectors from the 2011 * stack until AT_NULL vector is returned. So (to keep the code 2012 * simple) we read the process stack twice: the first time here 2013 * to find the size and the second time when copying the vectors 2014 * to the allocated proc_vector. 2015 */ 2016 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 2017 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 2018 sizeof(aux)) 2019 return (ENOMEM); 2020 if (aux.a_type == AT_NULL) 2021 break; 2022 ptr += sizeof(aux); 2023 } 2024 /* 2025 * If the PROC_AUXV_MAX entries are iterated over, and we have 2026 * not reached AT_NULL, it is most likely we are reading wrong 2027 * data: either the process doesn't have auxv array or data has 2028 * been modified. Return the error in this case. 2029 */ 2030 if (aux.a_type != AT_NULL) 2031 return (ENOEXEC); 2032 vsize = i + 1; 2033 size = vsize * sizeof(aux); 2034 break; 2035 default: 2036 KASSERT(0, ("Wrong proc vector type: %d", type)); 2037 return (EINVAL); /* In case we are built without INVARIANTS. */ 2038 } 2039 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2040 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2041 free(proc_vector, M_TEMP); 2042 return (ENOMEM); 2043 } 2044 *proc_vectorp = proc_vector; 2045 *vsizep = vsize; 2046 2047 return (0); 2048 } 2049 2050 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2051 2052 static int 2053 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2054 enum proc_vector_type type) 2055 { 2056 size_t done, len, nchr, vsize; 2057 int error, i; 2058 char **proc_vector, *sptr; 2059 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2060 2061 PROC_ASSERT_HELD(p); 2062 2063 /* 2064 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2065 */ 2066 nchr = 2 * (PATH_MAX + ARG_MAX); 2067 2068 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2069 if (error != 0) 2070 return (error); 2071 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2072 /* 2073 * The program may have scribbled into its argv array, e.g. to 2074 * remove some arguments. If that has happened, break out 2075 * before trying to read from NULL. 2076 */ 2077 if (proc_vector[i] == NULL) 2078 break; 2079 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2080 error = proc_read_string(td, p, sptr, pss_string, 2081 sizeof(pss_string)); 2082 if (error != 0) 2083 goto done; 2084 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2085 if (done + len >= nchr) 2086 len = nchr - done - 1; 2087 sbuf_bcat(sb, pss_string, len); 2088 if (len != GET_PS_STRINGS_CHUNK_SZ) 2089 break; 2090 done += GET_PS_STRINGS_CHUNK_SZ; 2091 } 2092 sbuf_bcat(sb, "", 1); 2093 done += len + 1; 2094 } 2095 done: 2096 free(proc_vector, M_TEMP); 2097 return (error); 2098 } 2099 2100 int 2101 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2102 { 2103 2104 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2105 } 2106 2107 int 2108 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2109 { 2110 2111 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2112 } 2113 2114 int 2115 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2116 { 2117 size_t vsize, size; 2118 char **auxv; 2119 int error; 2120 2121 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2122 if (error == 0) { 2123 #ifdef COMPAT_FREEBSD32 2124 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2125 size = vsize * sizeof(Elf32_Auxinfo); 2126 else 2127 #endif 2128 size = vsize * sizeof(Elf_Auxinfo); 2129 if (sbuf_bcat(sb, auxv, size) != 0) 2130 error = ENOMEM; 2131 free(auxv, M_TEMP); 2132 } 2133 return (error); 2134 } 2135 2136 /* 2137 * This sysctl allows a process to retrieve the argument list or process 2138 * title for another process without groping around in the address space 2139 * of the other process. It also allow a process to set its own "process 2140 * title to a string of its own choice. 2141 */ 2142 static int 2143 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2144 { 2145 int *name = (int *)arg1; 2146 u_int namelen = arg2; 2147 struct pargs *newpa, *pa; 2148 struct proc *p; 2149 struct sbuf sb; 2150 int flags, error = 0, error2; 2151 pid_t pid; 2152 2153 if (namelen != 1) 2154 return (EINVAL); 2155 2156 pid = (pid_t)name[0]; 2157 /* 2158 * If the query is for this process and it is single-threaded, there 2159 * is nobody to modify pargs, thus we can just read. 2160 */ 2161 p = curproc; 2162 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2163 (pa = p->p_args) != NULL) 2164 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2165 2166 flags = PGET_CANSEE; 2167 if (req->newptr != NULL) 2168 flags |= PGET_ISCURRENT; 2169 error = pget(pid, flags, &p); 2170 if (error) 2171 return (error); 2172 2173 pa = p->p_args; 2174 if (pa != NULL) { 2175 pargs_hold(pa); 2176 PROC_UNLOCK(p); 2177 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2178 pargs_drop(pa); 2179 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2180 _PHOLD(p); 2181 PROC_UNLOCK(p); 2182 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2183 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2184 error = proc_getargv(curthread, p, &sb); 2185 error2 = sbuf_finish(&sb); 2186 PRELE(p); 2187 sbuf_delete(&sb); 2188 if (error == 0 && error2 != 0) 2189 error = error2; 2190 } else { 2191 PROC_UNLOCK(p); 2192 } 2193 if (error != 0 || req->newptr == NULL) 2194 return (error); 2195 2196 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2197 return (ENOMEM); 2198 2199 if (req->newlen == 0) { 2200 /* 2201 * Clear the argument pointer, so that we'll fetch arguments 2202 * with proc_getargv() until further notice. 2203 */ 2204 newpa = NULL; 2205 } else { 2206 newpa = pargs_alloc(req->newlen); 2207 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2208 if (error != 0) { 2209 pargs_free(newpa); 2210 return (error); 2211 } 2212 } 2213 PROC_LOCK(p); 2214 pa = p->p_args; 2215 p->p_args = newpa; 2216 PROC_UNLOCK(p); 2217 pargs_drop(pa); 2218 return (0); 2219 } 2220 2221 /* 2222 * This sysctl allows a process to retrieve environment of another process. 2223 */ 2224 static int 2225 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2226 { 2227 int *name = (int *)arg1; 2228 u_int namelen = arg2; 2229 struct proc *p; 2230 struct sbuf sb; 2231 int error, error2; 2232 2233 if (namelen != 1) 2234 return (EINVAL); 2235 2236 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2237 if (error != 0) 2238 return (error); 2239 if ((p->p_flag & P_SYSTEM) != 0) { 2240 PRELE(p); 2241 return (0); 2242 } 2243 2244 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2245 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2246 error = proc_getenvv(curthread, p, &sb); 2247 error2 = sbuf_finish(&sb); 2248 PRELE(p); 2249 sbuf_delete(&sb); 2250 return (error != 0 ? error : error2); 2251 } 2252 2253 /* 2254 * This sysctl allows a process to retrieve ELF auxiliary vector of 2255 * another process. 2256 */ 2257 static int 2258 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2259 { 2260 int *name = (int *)arg1; 2261 u_int namelen = arg2; 2262 struct proc *p; 2263 struct sbuf sb; 2264 int error, error2; 2265 2266 if (namelen != 1) 2267 return (EINVAL); 2268 2269 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2270 if (error != 0) 2271 return (error); 2272 if ((p->p_flag & P_SYSTEM) != 0) { 2273 PRELE(p); 2274 return (0); 2275 } 2276 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2277 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2278 error = proc_getauxv(curthread, p, &sb); 2279 error2 = sbuf_finish(&sb); 2280 PRELE(p); 2281 sbuf_delete(&sb); 2282 return (error != 0 ? error : error2); 2283 } 2284 2285 /* 2286 * This sysctl allows a process to retrieve the path of the executable for 2287 * itself or another process. 2288 */ 2289 static int 2290 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2291 { 2292 pid_t *pidp = (pid_t *)arg1; 2293 unsigned int arglen = arg2; 2294 struct proc *p; 2295 struct vnode *vp; 2296 char *retbuf, *freebuf; 2297 int error; 2298 2299 if (arglen != 1) 2300 return (EINVAL); 2301 if (*pidp == -1) { /* -1 means this process */ 2302 p = req->td->td_proc; 2303 } else { 2304 error = pget(*pidp, PGET_CANSEE, &p); 2305 if (error != 0) 2306 return (error); 2307 } 2308 2309 vp = p->p_textvp; 2310 if (vp == NULL) { 2311 if (*pidp != -1) 2312 PROC_UNLOCK(p); 2313 return (0); 2314 } 2315 vref(vp); 2316 if (*pidp != -1) 2317 PROC_UNLOCK(p); 2318 error = vn_fullpath(vp, &retbuf, &freebuf); 2319 vrele(vp); 2320 if (error) 2321 return (error); 2322 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2323 free(freebuf, M_TEMP); 2324 return (error); 2325 } 2326 2327 static int 2328 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2329 { 2330 struct proc *p; 2331 char *sv_name; 2332 int *name; 2333 int namelen; 2334 int error; 2335 2336 namelen = arg2; 2337 if (namelen != 1) 2338 return (EINVAL); 2339 2340 name = (int *)arg1; 2341 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2342 if (error != 0) 2343 return (error); 2344 sv_name = p->p_sysent->sv_name; 2345 PROC_UNLOCK(p); 2346 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2347 } 2348 2349 #ifdef KINFO_OVMENTRY_SIZE 2350 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2351 #endif 2352 2353 #ifdef COMPAT_FREEBSD7 2354 static int 2355 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2356 { 2357 vm_map_entry_t entry, tmp_entry; 2358 unsigned int last_timestamp; 2359 char *fullpath, *freepath; 2360 struct kinfo_ovmentry *kve; 2361 struct vattr va; 2362 struct ucred *cred; 2363 int error, *name; 2364 struct vnode *vp; 2365 struct proc *p; 2366 vm_map_t map; 2367 struct vmspace *vm; 2368 2369 name = (int *)arg1; 2370 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2371 if (error != 0) 2372 return (error); 2373 vm = vmspace_acquire_ref(p); 2374 if (vm == NULL) { 2375 PRELE(p); 2376 return (ESRCH); 2377 } 2378 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2379 2380 map = &vm->vm_map; 2381 vm_map_lock_read(map); 2382 VM_MAP_ENTRY_FOREACH(entry, map) { 2383 vm_object_t obj, tobj, lobj; 2384 vm_offset_t addr; 2385 2386 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2387 continue; 2388 2389 bzero(kve, sizeof(*kve)); 2390 kve->kve_structsize = sizeof(*kve); 2391 2392 kve->kve_private_resident = 0; 2393 obj = entry->object.vm_object; 2394 if (obj != NULL) { 2395 VM_OBJECT_RLOCK(obj); 2396 if (obj->shadow_count == 1) 2397 kve->kve_private_resident = 2398 obj->resident_page_count; 2399 } 2400 kve->kve_resident = 0; 2401 addr = entry->start; 2402 while (addr < entry->end) { 2403 if (pmap_extract(map->pmap, addr)) 2404 kve->kve_resident++; 2405 addr += PAGE_SIZE; 2406 } 2407 2408 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2409 if (tobj != obj) { 2410 VM_OBJECT_RLOCK(tobj); 2411 kve->kve_offset += tobj->backing_object_offset; 2412 } 2413 if (lobj != obj) 2414 VM_OBJECT_RUNLOCK(lobj); 2415 lobj = tobj; 2416 } 2417 2418 kve->kve_start = (void*)entry->start; 2419 kve->kve_end = (void*)entry->end; 2420 kve->kve_offset += (off_t)entry->offset; 2421 2422 if (entry->protection & VM_PROT_READ) 2423 kve->kve_protection |= KVME_PROT_READ; 2424 if (entry->protection & VM_PROT_WRITE) 2425 kve->kve_protection |= KVME_PROT_WRITE; 2426 if (entry->protection & VM_PROT_EXECUTE) 2427 kve->kve_protection |= KVME_PROT_EXEC; 2428 2429 if (entry->eflags & MAP_ENTRY_COW) 2430 kve->kve_flags |= KVME_FLAG_COW; 2431 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2432 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2433 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2434 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2435 2436 last_timestamp = map->timestamp; 2437 vm_map_unlock_read(map); 2438 2439 kve->kve_fileid = 0; 2440 kve->kve_fsid = 0; 2441 freepath = NULL; 2442 fullpath = ""; 2443 if (lobj) { 2444 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2445 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2446 kve->kve_type = KVME_TYPE_UNKNOWN; 2447 if (vp != NULL) 2448 vref(vp); 2449 if (lobj != obj) 2450 VM_OBJECT_RUNLOCK(lobj); 2451 2452 kve->kve_ref_count = obj->ref_count; 2453 kve->kve_shadow_count = obj->shadow_count; 2454 VM_OBJECT_RUNLOCK(obj); 2455 if (vp != NULL) { 2456 vn_fullpath(vp, &fullpath, &freepath); 2457 cred = curthread->td_ucred; 2458 vn_lock(vp, LK_SHARED | LK_RETRY); 2459 if (VOP_GETATTR(vp, &va, cred) == 0) { 2460 kve->kve_fileid = va.va_fileid; 2461 /* truncate */ 2462 kve->kve_fsid = va.va_fsid; 2463 } 2464 vput(vp); 2465 } 2466 } else { 2467 kve->kve_type = KVME_TYPE_NONE; 2468 kve->kve_ref_count = 0; 2469 kve->kve_shadow_count = 0; 2470 } 2471 2472 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2473 if (freepath != NULL) 2474 free(freepath, M_TEMP); 2475 2476 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2477 vm_map_lock_read(map); 2478 if (error) 2479 break; 2480 if (last_timestamp != map->timestamp) { 2481 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2482 entry = tmp_entry; 2483 } 2484 } 2485 vm_map_unlock_read(map); 2486 vmspace_free(vm); 2487 PRELE(p); 2488 free(kve, M_TEMP); 2489 return (error); 2490 } 2491 #endif /* COMPAT_FREEBSD7 */ 2492 2493 #ifdef KINFO_VMENTRY_SIZE 2494 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2495 #endif 2496 2497 void 2498 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2499 int *resident_count, bool *super) 2500 { 2501 vm_object_t obj, tobj; 2502 vm_page_t m, m_adv; 2503 vm_offset_t addr; 2504 vm_paddr_t pa; 2505 vm_pindex_t pi, pi_adv, pindex; 2506 2507 *super = false; 2508 *resident_count = 0; 2509 if (vmmap_skip_res_cnt) 2510 return; 2511 2512 pa = 0; 2513 obj = entry->object.vm_object; 2514 addr = entry->start; 2515 m_adv = NULL; 2516 pi = OFF_TO_IDX(entry->offset); 2517 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2518 if (m_adv != NULL) { 2519 m = m_adv; 2520 } else { 2521 pi_adv = atop(entry->end - addr); 2522 pindex = pi; 2523 for (tobj = obj;; tobj = tobj->backing_object) { 2524 m = vm_page_find_least(tobj, pindex); 2525 if (m != NULL) { 2526 if (m->pindex == pindex) 2527 break; 2528 if (pi_adv > m->pindex - pindex) { 2529 pi_adv = m->pindex - pindex; 2530 m_adv = m; 2531 } 2532 } 2533 if (tobj->backing_object == NULL) 2534 goto next; 2535 pindex += OFF_TO_IDX(tobj-> 2536 backing_object_offset); 2537 } 2538 } 2539 m_adv = NULL; 2540 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2541 (addr & (pagesizes[1] - 1)) == 0 && 2542 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2543 *super = true; 2544 pi_adv = atop(pagesizes[1]); 2545 } else { 2546 /* 2547 * We do not test the found page on validity. 2548 * Either the page is busy and being paged in, 2549 * or it was invalidated. The first case 2550 * should be counted as resident, the second 2551 * is not so clear; we do account both. 2552 */ 2553 pi_adv = 1; 2554 } 2555 *resident_count += pi_adv; 2556 next:; 2557 } 2558 } 2559 2560 /* 2561 * Must be called with the process locked and will return unlocked. 2562 */ 2563 int 2564 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2565 { 2566 vm_map_entry_t entry, tmp_entry; 2567 struct vattr va; 2568 vm_map_t map; 2569 vm_object_t obj, tobj, lobj; 2570 char *fullpath, *freepath; 2571 struct kinfo_vmentry *kve; 2572 struct ucred *cred; 2573 struct vnode *vp; 2574 struct vmspace *vm; 2575 vm_offset_t addr; 2576 unsigned int last_timestamp; 2577 int error; 2578 bool super; 2579 2580 PROC_LOCK_ASSERT(p, MA_OWNED); 2581 2582 _PHOLD(p); 2583 PROC_UNLOCK(p); 2584 vm = vmspace_acquire_ref(p); 2585 if (vm == NULL) { 2586 PRELE(p); 2587 return (ESRCH); 2588 } 2589 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2590 2591 error = 0; 2592 map = &vm->vm_map; 2593 vm_map_lock_read(map); 2594 VM_MAP_ENTRY_FOREACH(entry, map) { 2595 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2596 continue; 2597 2598 addr = entry->end; 2599 bzero(kve, sizeof(*kve)); 2600 obj = entry->object.vm_object; 2601 if (obj != NULL) { 2602 for (tobj = obj; tobj != NULL; 2603 tobj = tobj->backing_object) { 2604 VM_OBJECT_RLOCK(tobj); 2605 kve->kve_offset += tobj->backing_object_offset; 2606 lobj = tobj; 2607 } 2608 if (obj->backing_object == NULL) 2609 kve->kve_private_resident = 2610 obj->resident_page_count; 2611 kern_proc_vmmap_resident(map, entry, 2612 &kve->kve_resident, &super); 2613 if (super) 2614 kve->kve_flags |= KVME_FLAG_SUPER; 2615 for (tobj = obj; tobj != NULL; 2616 tobj = tobj->backing_object) { 2617 if (tobj != obj && tobj != lobj) 2618 VM_OBJECT_RUNLOCK(tobj); 2619 } 2620 } else { 2621 lobj = NULL; 2622 } 2623 2624 kve->kve_start = entry->start; 2625 kve->kve_end = entry->end; 2626 kve->kve_offset += entry->offset; 2627 2628 if (entry->protection & VM_PROT_READ) 2629 kve->kve_protection |= KVME_PROT_READ; 2630 if (entry->protection & VM_PROT_WRITE) 2631 kve->kve_protection |= KVME_PROT_WRITE; 2632 if (entry->protection & VM_PROT_EXECUTE) 2633 kve->kve_protection |= KVME_PROT_EXEC; 2634 2635 if (entry->eflags & MAP_ENTRY_COW) 2636 kve->kve_flags |= KVME_FLAG_COW; 2637 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2638 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2639 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2640 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2641 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2642 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2643 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2644 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2645 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2646 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2647 2648 last_timestamp = map->timestamp; 2649 vm_map_unlock_read(map); 2650 2651 freepath = NULL; 2652 fullpath = ""; 2653 if (lobj != NULL) { 2654 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2655 if (vp != NULL) 2656 vref(vp); 2657 if (lobj != obj) 2658 VM_OBJECT_RUNLOCK(lobj); 2659 2660 kve->kve_ref_count = obj->ref_count; 2661 kve->kve_shadow_count = obj->shadow_count; 2662 VM_OBJECT_RUNLOCK(obj); 2663 if (vp != NULL) { 2664 vn_fullpath(vp, &fullpath, &freepath); 2665 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2666 cred = curthread->td_ucred; 2667 vn_lock(vp, LK_SHARED | LK_RETRY); 2668 if (VOP_GETATTR(vp, &va, cred) == 0) { 2669 kve->kve_vn_fileid = va.va_fileid; 2670 kve->kve_vn_fsid = va.va_fsid; 2671 kve->kve_vn_fsid_freebsd11 = 2672 kve->kve_vn_fsid; /* truncate */ 2673 kve->kve_vn_mode = 2674 MAKEIMODE(va.va_type, va.va_mode); 2675 kve->kve_vn_size = va.va_size; 2676 kve->kve_vn_rdev = va.va_rdev; 2677 kve->kve_vn_rdev_freebsd11 = 2678 kve->kve_vn_rdev; /* truncate */ 2679 kve->kve_status = KF_ATTR_VALID; 2680 } 2681 vput(vp); 2682 } 2683 } else { 2684 kve->kve_type = KVME_TYPE_NONE; 2685 kve->kve_ref_count = 0; 2686 kve->kve_shadow_count = 0; 2687 } 2688 2689 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2690 if (freepath != NULL) 2691 free(freepath, M_TEMP); 2692 2693 /* Pack record size down */ 2694 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2695 kve->kve_structsize = 2696 offsetof(struct kinfo_vmentry, kve_path) + 2697 strlen(kve->kve_path) + 1; 2698 else 2699 kve->kve_structsize = sizeof(*kve); 2700 kve->kve_structsize = roundup(kve->kve_structsize, 2701 sizeof(uint64_t)); 2702 2703 /* Halt filling and truncate rather than exceeding maxlen */ 2704 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2705 error = 0; 2706 vm_map_lock_read(map); 2707 break; 2708 } else if (maxlen != -1) 2709 maxlen -= kve->kve_structsize; 2710 2711 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2712 error = ENOMEM; 2713 vm_map_lock_read(map); 2714 if (error != 0) 2715 break; 2716 if (last_timestamp != map->timestamp) { 2717 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2718 entry = tmp_entry; 2719 } 2720 } 2721 vm_map_unlock_read(map); 2722 vmspace_free(vm); 2723 PRELE(p); 2724 free(kve, M_TEMP); 2725 return (error); 2726 } 2727 2728 static int 2729 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2730 { 2731 struct proc *p; 2732 struct sbuf sb; 2733 int error, error2, *name; 2734 2735 name = (int *)arg1; 2736 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2737 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2738 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2739 if (error != 0) { 2740 sbuf_delete(&sb); 2741 return (error); 2742 } 2743 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2744 error2 = sbuf_finish(&sb); 2745 sbuf_delete(&sb); 2746 return (error != 0 ? error : error2); 2747 } 2748 2749 #if defined(STACK) || defined(DDB) 2750 static int 2751 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2752 { 2753 struct kinfo_kstack *kkstp; 2754 int error, i, *name, numthreads; 2755 lwpid_t *lwpidarray; 2756 struct thread *td; 2757 struct stack *st; 2758 struct sbuf sb; 2759 struct proc *p; 2760 2761 name = (int *)arg1; 2762 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2763 if (error != 0) 2764 return (error); 2765 2766 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2767 st = stack_create(M_WAITOK); 2768 2769 lwpidarray = NULL; 2770 PROC_LOCK(p); 2771 do { 2772 if (lwpidarray != NULL) { 2773 free(lwpidarray, M_TEMP); 2774 lwpidarray = NULL; 2775 } 2776 numthreads = p->p_numthreads; 2777 PROC_UNLOCK(p); 2778 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2779 M_WAITOK | M_ZERO); 2780 PROC_LOCK(p); 2781 } while (numthreads < p->p_numthreads); 2782 2783 /* 2784 * XXXRW: During the below loop, execve(2) and countless other sorts 2785 * of changes could have taken place. Should we check to see if the 2786 * vmspace has been replaced, or the like, in order to prevent 2787 * giving a snapshot that spans, say, execve(2), with some threads 2788 * before and some after? Among other things, the credentials could 2789 * have changed, in which case the right to extract debug info might 2790 * no longer be assured. 2791 */ 2792 i = 0; 2793 FOREACH_THREAD_IN_PROC(p, td) { 2794 KASSERT(i < numthreads, 2795 ("sysctl_kern_proc_kstack: numthreads")); 2796 lwpidarray[i] = td->td_tid; 2797 i++; 2798 } 2799 PROC_UNLOCK(p); 2800 numthreads = i; 2801 for (i = 0; i < numthreads; i++) { 2802 td = tdfind(lwpidarray[i], p->p_pid); 2803 if (td == NULL) { 2804 continue; 2805 } 2806 bzero(kkstp, sizeof(*kkstp)); 2807 (void)sbuf_new(&sb, kkstp->kkst_trace, 2808 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2809 thread_lock(td); 2810 kkstp->kkst_tid = td->td_tid; 2811 if (TD_IS_SWAPPED(td)) 2812 kkstp->kkst_state = KKST_STATE_SWAPPED; 2813 else if (stack_save_td(st, td) == 0) 2814 kkstp->kkst_state = KKST_STATE_STACKOK; 2815 else 2816 kkstp->kkst_state = KKST_STATE_RUNNING; 2817 thread_unlock(td); 2818 PROC_UNLOCK(p); 2819 stack_sbuf_print(&sb, st); 2820 sbuf_finish(&sb); 2821 sbuf_delete(&sb); 2822 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2823 if (error) 2824 break; 2825 } 2826 PRELE(p); 2827 if (lwpidarray != NULL) 2828 free(lwpidarray, M_TEMP); 2829 stack_destroy(st); 2830 free(kkstp, M_TEMP); 2831 return (error); 2832 } 2833 #endif 2834 2835 /* 2836 * This sysctl allows a process to retrieve the full list of groups from 2837 * itself or another process. 2838 */ 2839 static int 2840 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2841 { 2842 pid_t *pidp = (pid_t *)arg1; 2843 unsigned int arglen = arg2; 2844 struct proc *p; 2845 struct ucred *cred; 2846 int error; 2847 2848 if (arglen != 1) 2849 return (EINVAL); 2850 if (*pidp == -1) { /* -1 means this process */ 2851 p = req->td->td_proc; 2852 PROC_LOCK(p); 2853 } else { 2854 error = pget(*pidp, PGET_CANSEE, &p); 2855 if (error != 0) 2856 return (error); 2857 } 2858 2859 cred = crhold(p->p_ucred); 2860 PROC_UNLOCK(p); 2861 2862 error = SYSCTL_OUT(req, cred->cr_groups, 2863 cred->cr_ngroups * sizeof(gid_t)); 2864 crfree(cred); 2865 return (error); 2866 } 2867 2868 /* 2869 * This sysctl allows a process to retrieve or/and set the resource limit for 2870 * another process. 2871 */ 2872 static int 2873 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2874 { 2875 int *name = (int *)arg1; 2876 u_int namelen = arg2; 2877 struct rlimit rlim; 2878 struct proc *p; 2879 u_int which; 2880 int flags, error; 2881 2882 if (namelen != 2) 2883 return (EINVAL); 2884 2885 which = (u_int)name[1]; 2886 if (which >= RLIM_NLIMITS) 2887 return (EINVAL); 2888 2889 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2890 return (EINVAL); 2891 2892 flags = PGET_HOLD | PGET_NOTWEXIT; 2893 if (req->newptr != NULL) 2894 flags |= PGET_CANDEBUG; 2895 else 2896 flags |= PGET_CANSEE; 2897 error = pget((pid_t)name[0], flags, &p); 2898 if (error != 0) 2899 return (error); 2900 2901 /* 2902 * Retrieve limit. 2903 */ 2904 if (req->oldptr != NULL) { 2905 PROC_LOCK(p); 2906 lim_rlimit_proc(p, which, &rlim); 2907 PROC_UNLOCK(p); 2908 } 2909 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2910 if (error != 0) 2911 goto errout; 2912 2913 /* 2914 * Set limit. 2915 */ 2916 if (req->newptr != NULL) { 2917 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2918 if (error == 0) 2919 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2920 } 2921 2922 errout: 2923 PRELE(p); 2924 return (error); 2925 } 2926 2927 /* 2928 * This sysctl allows a process to retrieve ps_strings structure location of 2929 * another process. 2930 */ 2931 static int 2932 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2933 { 2934 int *name = (int *)arg1; 2935 u_int namelen = arg2; 2936 struct proc *p; 2937 vm_offset_t ps_strings; 2938 int error; 2939 #ifdef COMPAT_FREEBSD32 2940 uint32_t ps_strings32; 2941 #endif 2942 2943 if (namelen != 1) 2944 return (EINVAL); 2945 2946 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2947 if (error != 0) 2948 return (error); 2949 #ifdef COMPAT_FREEBSD32 2950 if ((req->flags & SCTL_MASK32) != 0) { 2951 /* 2952 * We return 0 if the 32 bit emulation request is for a 64 bit 2953 * process. 2954 */ 2955 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2956 PTROUT(p->p_sysent->sv_psstrings) : 0; 2957 PROC_UNLOCK(p); 2958 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2959 return (error); 2960 } 2961 #endif 2962 ps_strings = p->p_sysent->sv_psstrings; 2963 PROC_UNLOCK(p); 2964 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2965 return (error); 2966 } 2967 2968 /* 2969 * This sysctl allows a process to retrieve umask of another process. 2970 */ 2971 static int 2972 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2973 { 2974 int *name = (int *)arg1; 2975 u_int namelen = arg2; 2976 struct proc *p; 2977 int error; 2978 u_short cmask; 2979 pid_t pid; 2980 2981 if (namelen != 1) 2982 return (EINVAL); 2983 2984 pid = (pid_t)name[0]; 2985 p = curproc; 2986 if (pid == p->p_pid || pid == 0) { 2987 cmask = p->p_pd->pd_cmask; 2988 goto out; 2989 } 2990 2991 error = pget(pid, PGET_WANTREAD, &p); 2992 if (error != 0) 2993 return (error); 2994 2995 cmask = p->p_pd->pd_cmask; 2996 PRELE(p); 2997 out: 2998 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 2999 return (error); 3000 } 3001 3002 /* 3003 * This sysctl allows a process to set and retrieve binary osreldate of 3004 * another process. 3005 */ 3006 static int 3007 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3008 { 3009 int *name = (int *)arg1; 3010 u_int namelen = arg2; 3011 struct proc *p; 3012 int flags, error, osrel; 3013 3014 if (namelen != 1) 3015 return (EINVAL); 3016 3017 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3018 return (EINVAL); 3019 3020 flags = PGET_HOLD | PGET_NOTWEXIT; 3021 if (req->newptr != NULL) 3022 flags |= PGET_CANDEBUG; 3023 else 3024 flags |= PGET_CANSEE; 3025 error = pget((pid_t)name[0], flags, &p); 3026 if (error != 0) 3027 return (error); 3028 3029 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3030 if (error != 0) 3031 goto errout; 3032 3033 if (req->newptr != NULL) { 3034 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3035 if (error != 0) 3036 goto errout; 3037 if (osrel < 0) { 3038 error = EINVAL; 3039 goto errout; 3040 } 3041 p->p_osrel = osrel; 3042 } 3043 errout: 3044 PRELE(p); 3045 return (error); 3046 } 3047 3048 static int 3049 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3050 { 3051 int *name = (int *)arg1; 3052 u_int namelen = arg2; 3053 struct proc *p; 3054 struct kinfo_sigtramp kst; 3055 const struct sysentvec *sv; 3056 int error; 3057 #ifdef COMPAT_FREEBSD32 3058 struct kinfo_sigtramp32 kst32; 3059 #endif 3060 3061 if (namelen != 1) 3062 return (EINVAL); 3063 3064 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3065 if (error != 0) 3066 return (error); 3067 sv = p->p_sysent; 3068 #ifdef COMPAT_FREEBSD32 3069 if ((req->flags & SCTL_MASK32) != 0) { 3070 bzero(&kst32, sizeof(kst32)); 3071 if (SV_PROC_FLAG(p, SV_ILP32)) { 3072 if (sv->sv_sigcode_base != 0) { 3073 kst32.ksigtramp_start = sv->sv_sigcode_base; 3074 kst32.ksigtramp_end = sv->sv_sigcode_base + 3075 *sv->sv_szsigcode; 3076 } else { 3077 kst32.ksigtramp_start = sv->sv_psstrings - 3078 *sv->sv_szsigcode; 3079 kst32.ksigtramp_end = sv->sv_psstrings; 3080 } 3081 } 3082 PROC_UNLOCK(p); 3083 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3084 return (error); 3085 } 3086 #endif 3087 bzero(&kst, sizeof(kst)); 3088 if (sv->sv_sigcode_base != 0) { 3089 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 3090 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 3091 *sv->sv_szsigcode; 3092 } else { 3093 kst.ksigtramp_start = (char *)sv->sv_psstrings - 3094 *sv->sv_szsigcode; 3095 kst.ksigtramp_end = (char *)sv->sv_psstrings; 3096 } 3097 PROC_UNLOCK(p); 3098 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3099 return (error); 3100 } 3101 3102 static int 3103 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3104 { 3105 int *name = (int *)arg1; 3106 u_int namelen = arg2; 3107 pid_t pid; 3108 struct proc *p; 3109 struct thread *td1; 3110 uintptr_t addr; 3111 #ifdef COMPAT_FREEBSD32 3112 uint32_t addr32; 3113 #endif 3114 int error; 3115 3116 if (namelen != 1 || req->newptr != NULL) 3117 return (EINVAL); 3118 3119 pid = (pid_t)name[0]; 3120 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3121 if (error != 0) 3122 return (error); 3123 3124 PROC_LOCK(p); 3125 #ifdef COMPAT_FREEBSD32 3126 if (SV_CURPROC_FLAG(SV_ILP32)) { 3127 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3128 error = EINVAL; 3129 goto errlocked; 3130 } 3131 } 3132 #endif 3133 if (pid <= PID_MAX) { 3134 td1 = FIRST_THREAD_IN_PROC(p); 3135 } else { 3136 FOREACH_THREAD_IN_PROC(p, td1) { 3137 if (td1->td_tid == pid) 3138 break; 3139 } 3140 } 3141 if (td1 == NULL) { 3142 error = ESRCH; 3143 goto errlocked; 3144 } 3145 /* 3146 * The access to the private thread flags. It is fine as far 3147 * as no out-of-thin-air values are read from td_pflags, and 3148 * usermode read of the td_sigblock_ptr is racy inherently, 3149 * since target process might have already changed it 3150 * meantime. 3151 */ 3152 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3153 addr = (uintptr_t)td1->td_sigblock_ptr; 3154 else 3155 error = ENOTTY; 3156 3157 errlocked: 3158 _PRELE(p); 3159 PROC_UNLOCK(p); 3160 if (error != 0) 3161 return (error); 3162 3163 #ifdef COMPAT_FREEBSD32 3164 if (SV_CURPROC_FLAG(SV_ILP32)) { 3165 addr32 = addr; 3166 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3167 } else 3168 #endif 3169 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3170 return (error); 3171 } 3172 3173 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3174 "Process table"); 3175 3176 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3177 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3178 "Return entire process table"); 3179 3180 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3181 sysctl_kern_proc, "Process table"); 3182 3183 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3184 sysctl_kern_proc, "Process table"); 3185 3186 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3187 sysctl_kern_proc, "Process table"); 3188 3189 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3190 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3191 3192 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3193 sysctl_kern_proc, "Process table"); 3194 3195 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3196 sysctl_kern_proc, "Process table"); 3197 3198 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3199 sysctl_kern_proc, "Process table"); 3200 3201 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3202 sysctl_kern_proc, "Process table"); 3203 3204 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3205 sysctl_kern_proc, "Return process table, no threads"); 3206 3207 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3208 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3209 sysctl_kern_proc_args, "Process argument list"); 3210 3211 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3212 sysctl_kern_proc_env, "Process environment"); 3213 3214 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3215 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3216 3217 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3218 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3219 3220 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3221 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3222 "Process syscall vector name (ABI type)"); 3223 3224 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3225 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3226 3227 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3228 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3229 3230 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3231 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3232 3233 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3234 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3235 3236 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3237 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3238 3239 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3240 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3241 3242 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3243 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3244 3245 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3246 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3247 3248 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3249 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3250 "Return process table, no threads"); 3251 3252 #ifdef COMPAT_FREEBSD7 3253 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3254 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3255 #endif 3256 3257 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3258 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3259 3260 #if defined(STACK) || defined(DDB) 3261 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3262 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3263 #endif 3264 3265 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3266 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3267 3268 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3269 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3270 "Process resource limits"); 3271 3272 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3273 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3274 "Process ps_strings location"); 3275 3276 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3277 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3278 3279 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3280 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3281 "Process binary osreldate"); 3282 3283 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3284 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3285 "Process signal trampoline location"); 3286 3287 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3288 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3289 "Thread sigfastblock address"); 3290 3291 int allproc_gen; 3292 3293 /* 3294 * stop_all_proc() purpose is to stop all process which have usermode, 3295 * except current process for obvious reasons. This makes it somewhat 3296 * unreliable when invoked from multithreaded process. The service 3297 * must not be user-callable anyway. 3298 */ 3299 void 3300 stop_all_proc(void) 3301 { 3302 struct proc *cp, *p; 3303 int r, gen; 3304 bool restart, seen_stopped, seen_exiting, stopped_some; 3305 3306 cp = curproc; 3307 allproc_loop: 3308 sx_xlock(&allproc_lock); 3309 gen = allproc_gen; 3310 seen_exiting = seen_stopped = stopped_some = restart = false; 3311 LIST_REMOVE(cp, p_list); 3312 LIST_INSERT_HEAD(&allproc, cp, p_list); 3313 for (;;) { 3314 p = LIST_NEXT(cp, p_list); 3315 if (p == NULL) 3316 break; 3317 LIST_REMOVE(cp, p_list); 3318 LIST_INSERT_AFTER(p, cp, p_list); 3319 PROC_LOCK(p); 3320 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3321 PROC_UNLOCK(p); 3322 continue; 3323 } 3324 if ((p->p_flag & P_WEXIT) != 0) { 3325 seen_exiting = true; 3326 PROC_UNLOCK(p); 3327 continue; 3328 } 3329 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3330 /* 3331 * Stopped processes are tolerated when there 3332 * are no other processes which might continue 3333 * them. P_STOPPED_SINGLE but not 3334 * P_TOTAL_STOP process still has at least one 3335 * thread running. 3336 */ 3337 seen_stopped = true; 3338 PROC_UNLOCK(p); 3339 continue; 3340 } 3341 sx_xunlock(&allproc_lock); 3342 _PHOLD(p); 3343 r = thread_single(p, SINGLE_ALLPROC); 3344 if (r != 0) 3345 restart = true; 3346 else 3347 stopped_some = true; 3348 _PRELE(p); 3349 PROC_UNLOCK(p); 3350 sx_xlock(&allproc_lock); 3351 } 3352 /* Catch forked children we did not see in iteration. */ 3353 if (gen != allproc_gen) 3354 restart = true; 3355 sx_xunlock(&allproc_lock); 3356 if (restart || stopped_some || seen_exiting || seen_stopped) { 3357 kern_yield(PRI_USER); 3358 goto allproc_loop; 3359 } 3360 } 3361 3362 void 3363 resume_all_proc(void) 3364 { 3365 struct proc *cp, *p; 3366 3367 cp = curproc; 3368 sx_xlock(&allproc_lock); 3369 again: 3370 LIST_REMOVE(cp, p_list); 3371 LIST_INSERT_HEAD(&allproc, cp, p_list); 3372 for (;;) { 3373 p = LIST_NEXT(cp, p_list); 3374 if (p == NULL) 3375 break; 3376 LIST_REMOVE(cp, p_list); 3377 LIST_INSERT_AFTER(p, cp, p_list); 3378 PROC_LOCK(p); 3379 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3380 sx_xunlock(&allproc_lock); 3381 _PHOLD(p); 3382 thread_single_end(p, SINGLE_ALLPROC); 3383 _PRELE(p); 3384 PROC_UNLOCK(p); 3385 sx_xlock(&allproc_lock); 3386 } else { 3387 PROC_UNLOCK(p); 3388 } 3389 } 3390 /* Did the loop above missed any stopped process ? */ 3391 FOREACH_PROC_IN_SYSTEM(p) { 3392 /* No need for proc lock. */ 3393 if ((p->p_flag & P_TOTAL_STOP) != 0) 3394 goto again; 3395 } 3396 sx_xunlock(&allproc_lock); 3397 } 3398 3399 /* #define TOTAL_STOP_DEBUG 1 */ 3400 #ifdef TOTAL_STOP_DEBUG 3401 volatile static int ap_resume; 3402 #include <sys/mount.h> 3403 3404 static int 3405 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3406 { 3407 int error, val; 3408 3409 val = 0; 3410 ap_resume = 0; 3411 error = sysctl_handle_int(oidp, &val, 0, req); 3412 if (error != 0 || req->newptr == NULL) 3413 return (error); 3414 if (val != 0) { 3415 stop_all_proc(); 3416 syncer_suspend(); 3417 while (ap_resume == 0) 3418 ; 3419 syncer_resume(); 3420 resume_all_proc(); 3421 } 3422 return (0); 3423 } 3424 3425 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3426 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3427 sysctl_debug_stop_all_proc, "I", 3428 ""); 3429 #endif 3430