1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_kdtrace.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mount.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/refcount.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysent.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/stack.h> 55 #include <sys/sysctl.h> 56 #include <sys/filedesc.h> 57 #include <sys/tty.h> 58 #include <sys/signalvar.h> 59 #include <sys/sdt.h> 60 #include <sys/sx.h> 61 #include <sys/user.h> 62 #include <sys/jail.h> 63 #include <sys/vnode.h> 64 #include <sys/eventhandler.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/uma.h> 80 81 SDT_PROVIDER_DEFINE(proc); 82 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 83 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 87 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 92 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 93 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 97 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 101 SDT_PROBE_DEFINE(proc, kernel, init, entry); 102 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, init, return); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 109 110 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 111 MALLOC_DEFINE(M_SESSION, "session", "session header"); 112 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 113 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 114 115 static void doenterpgrp(struct proc *, struct pgrp *); 116 static void orphanpg(struct pgrp *pg); 117 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 118 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 119 int preferthread); 120 static void pgadjustjobc(struct pgrp *pgrp, int entering); 121 static void pgdelete(struct pgrp *); 122 static int proc_ctor(void *mem, int size, void *arg, int flags); 123 static void proc_dtor(void *mem, int size, void *arg); 124 static int proc_init(void *mem, int size, int flags); 125 static void proc_fini(void *mem, int size); 126 static void pargs_free(struct pargs *pa); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 uma_zone_t ithread_zone; 142 143 int kstack_pages = KSTACK_PAGES; 144 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 148 /* 149 * Initialize global process hashing structures. 150 */ 151 void 152 procinit() 153 { 154 155 sx_init(&allproc_lock, "allproc"); 156 sx_init(&proctree_lock, "proctree"); 157 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 158 LIST_INIT(&allproc); 159 LIST_INIT(&zombproc); 160 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 161 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 162 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 163 proc_ctor, proc_dtor, proc_init, proc_fini, 164 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uihashinit(); 166 } 167 168 /* 169 * Prepare a proc for use. 170 */ 171 static int 172 proc_ctor(void *mem, int size, void *arg, int flags) 173 { 174 struct proc *p; 175 176 p = (struct proc *)mem; 177 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 178 EVENTHANDLER_INVOKE(process_ctor, p); 179 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 180 return (0); 181 } 182 183 /* 184 * Reclaim a proc after use. 185 */ 186 static void 187 proc_dtor(void *mem, int size, void *arg) 188 { 189 struct proc *p; 190 struct thread *td; 191 192 /* INVARIANTS checks go here */ 193 p = (struct proc *)mem; 194 td = FIRST_THREAD_IN_PROC(p); 195 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 196 if (td != NULL) { 197 #ifdef INVARIANTS 198 KASSERT((p->p_numthreads == 1), 199 ("bad number of threads in exiting process")); 200 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 201 #endif 202 /* Dispose of an alternate kstack, if it exists. 203 * XXX What if there are more than one thread in the proc? 204 * The first thread in the proc is special and not 205 * freed, so you gotta do this here. 206 */ 207 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 208 vm_thread_dispose_altkstack(td); 209 } 210 EVENTHANDLER_INVOKE(process_dtor, p); 211 if (p->p_ksi != NULL) 212 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 213 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 214 } 215 216 /* 217 * Initialize type-stable parts of a proc (when newly created). 218 */ 219 static int 220 proc_init(void *mem, int size, int flags) 221 { 222 struct proc *p; 223 224 p = (struct proc *)mem; 225 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 226 p->p_sched = (struct p_sched *)&p[1]; 227 bzero(&p->p_mtx, sizeof(struct mtx)); 228 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 229 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 230 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 231 EVENTHANDLER_INVOKE(process_init, p); 232 p->p_stats = pstats_alloc(); 233 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 234 return (0); 235 } 236 237 /* 238 * UMA should ensure that this function is never called. 239 * Freeing a proc structure would violate type stability. 240 */ 241 static void 242 proc_fini(void *mem, int size) 243 { 244 #ifdef notnow 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 EVENTHANDLER_INVOKE(process_fini, p); 249 pstats_free(p->p_stats); 250 thread_free(FIRST_THREAD_IN_PROC(p)); 251 mtx_destroy(&p->p_mtx); 252 if (p->p_ksi != NULL) 253 ksiginfo_free(p->p_ksi); 254 #else 255 panic("proc reclaimed"); 256 #endif 257 } 258 259 /* 260 * Is p an inferior of the current process? 261 */ 262 int 263 inferior(p) 264 register struct proc *p; 265 { 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 for (; p != curproc; p = p->p_pptr) 269 if (p->p_pid == 0) 270 return (0); 271 return (1); 272 } 273 274 /* 275 * Locate a process by number; return only "live" processes -- i.e., neither 276 * zombies nor newly born but incompletely initialized processes. By not 277 * returning processes in the PRS_NEW state, we allow callers to avoid 278 * testing for that condition to avoid dereferencing p_ucred, et al. 279 */ 280 struct proc * 281 pfind(pid) 282 register pid_t pid; 283 { 284 register struct proc *p; 285 286 sx_slock(&allproc_lock); 287 LIST_FOREACH(p, PIDHASH(pid), p_hash) 288 if (p->p_pid == pid) { 289 if (p->p_state == PRS_NEW) { 290 p = NULL; 291 break; 292 } 293 PROC_LOCK(p); 294 break; 295 } 296 sx_sunlock(&allproc_lock); 297 return (p); 298 } 299 300 /* 301 * Locate a process group by number. 302 * The caller must hold proctree_lock. 303 */ 304 struct pgrp * 305 pgfind(pgid) 306 register pid_t pgid; 307 { 308 register struct pgrp *pgrp; 309 310 sx_assert(&proctree_lock, SX_LOCKED); 311 312 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 313 if (pgrp->pg_id == pgid) { 314 PGRP_LOCK(pgrp); 315 return (pgrp); 316 } 317 } 318 return (NULL); 319 } 320 321 /* 322 * Create a new process group. 323 * pgid must be equal to the pid of p. 324 * Begin a new session if required. 325 */ 326 int 327 enterpgrp(p, pgid, pgrp, sess) 328 register struct proc *p; 329 pid_t pgid; 330 struct pgrp *pgrp; 331 struct session *sess; 332 { 333 struct pgrp *pgrp2; 334 335 sx_assert(&proctree_lock, SX_XLOCKED); 336 337 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 338 KASSERT(p->p_pid == pgid, 339 ("enterpgrp: new pgrp and pid != pgid")); 340 341 pgrp2 = pgfind(pgid); 342 343 KASSERT(pgrp2 == NULL, 344 ("enterpgrp: pgrp with pgid exists")); 345 KASSERT(!SESS_LEADER(p), 346 ("enterpgrp: session leader attempted setpgrp")); 347 348 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 349 350 if (sess != NULL) { 351 /* 352 * new session 353 */ 354 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 355 mtx_lock(&Giant); /* XXX TTY */ 356 PROC_LOCK(p); 357 p->p_flag &= ~P_CONTROLT; 358 PROC_UNLOCK(p); 359 PGRP_LOCK(pgrp); 360 sess->s_leader = p; 361 sess->s_sid = p->p_pid; 362 sess->s_count = 1; 363 sess->s_ttyvp = NULL; 364 sess->s_ttyp = NULL; 365 bcopy(p->p_session->s_login, sess->s_login, 366 sizeof(sess->s_login)); 367 pgrp->pg_session = sess; 368 KASSERT(p == curproc, 369 ("enterpgrp: mksession and p != curproc")); 370 } else { 371 mtx_lock(&Giant); /* XXX TTY */ 372 pgrp->pg_session = p->p_session; 373 SESS_LOCK(pgrp->pg_session); 374 pgrp->pg_session->s_count++; 375 SESS_UNLOCK(pgrp->pg_session); 376 PGRP_LOCK(pgrp); 377 } 378 pgrp->pg_id = pgid; 379 LIST_INIT(&pgrp->pg_members); 380 381 /* 382 * As we have an exclusive lock of proctree_lock, 383 * this should not deadlock. 384 */ 385 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 386 pgrp->pg_jobc = 0; 387 SLIST_INIT(&pgrp->pg_sigiolst); 388 PGRP_UNLOCK(pgrp); 389 mtx_unlock(&Giant); /* XXX TTY */ 390 391 doenterpgrp(p, pgrp); 392 393 return (0); 394 } 395 396 /* 397 * Move p to an existing process group 398 */ 399 int 400 enterthispgrp(p, pgrp) 401 register struct proc *p; 402 struct pgrp *pgrp; 403 { 404 405 sx_assert(&proctree_lock, SX_XLOCKED); 406 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 407 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 408 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 409 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 410 KASSERT(pgrp->pg_session == p->p_session, 411 ("%s: pgrp's session %p, p->p_session %p.\n", 412 __func__, 413 pgrp->pg_session, 414 p->p_session)); 415 KASSERT(pgrp != p->p_pgrp, 416 ("%s: p belongs to pgrp.", __func__)); 417 418 doenterpgrp(p, pgrp); 419 420 return (0); 421 } 422 423 /* 424 * Move p to a process group 425 */ 426 static void 427 doenterpgrp(p, pgrp) 428 struct proc *p; 429 struct pgrp *pgrp; 430 { 431 struct pgrp *savepgrp; 432 433 sx_assert(&proctree_lock, SX_XLOCKED); 434 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 435 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 436 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 437 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 438 439 savepgrp = p->p_pgrp; 440 441 /* 442 * Adjust eligibility of affected pgrps to participate in job control. 443 * Increment eligibility counts before decrementing, otherwise we 444 * could reach 0 spuriously during the first call. 445 */ 446 fixjobc(p, pgrp, 1); 447 fixjobc(p, p->p_pgrp, 0); 448 449 mtx_lock(&Giant); /* XXX TTY */ 450 PGRP_LOCK(pgrp); 451 PGRP_LOCK(savepgrp); 452 PROC_LOCK(p); 453 LIST_REMOVE(p, p_pglist); 454 p->p_pgrp = pgrp; 455 PROC_UNLOCK(p); 456 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 457 PGRP_UNLOCK(savepgrp); 458 PGRP_UNLOCK(pgrp); 459 mtx_unlock(&Giant); /* XXX TTY */ 460 if (LIST_EMPTY(&savepgrp->pg_members)) 461 pgdelete(savepgrp); 462 } 463 464 /* 465 * remove process from process group 466 */ 467 int 468 leavepgrp(p) 469 register struct proc *p; 470 { 471 struct pgrp *savepgrp; 472 473 sx_assert(&proctree_lock, SX_XLOCKED); 474 savepgrp = p->p_pgrp; 475 mtx_lock(&Giant); /* XXX TTY */ 476 PGRP_LOCK(savepgrp); 477 PROC_LOCK(p); 478 LIST_REMOVE(p, p_pglist); 479 p->p_pgrp = NULL; 480 PROC_UNLOCK(p); 481 PGRP_UNLOCK(savepgrp); 482 mtx_unlock(&Giant); /* XXX TTY */ 483 if (LIST_EMPTY(&savepgrp->pg_members)) 484 pgdelete(savepgrp); 485 return (0); 486 } 487 488 /* 489 * delete a process group 490 */ 491 static void 492 pgdelete(pgrp) 493 register struct pgrp *pgrp; 494 { 495 struct session *savesess; 496 497 sx_assert(&proctree_lock, SX_XLOCKED); 498 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 499 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 500 501 /* 502 * Reset any sigio structures pointing to us as a result of 503 * F_SETOWN with our pgid. 504 */ 505 funsetownlst(&pgrp->pg_sigiolst); 506 507 mtx_lock(&Giant); /* XXX TTY */ 508 PGRP_LOCK(pgrp); 509 if (pgrp->pg_session->s_ttyp != NULL && 510 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 511 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 512 LIST_REMOVE(pgrp, pg_hash); 513 savesess = pgrp->pg_session; 514 SESSRELE(savesess); 515 PGRP_UNLOCK(pgrp); 516 mtx_destroy(&pgrp->pg_mtx); 517 FREE(pgrp, M_PGRP); 518 mtx_unlock(&Giant); /* XXX TTY */ 519 } 520 521 static void 522 pgadjustjobc(pgrp, entering) 523 struct pgrp *pgrp; 524 int entering; 525 { 526 527 PGRP_LOCK(pgrp); 528 if (entering) 529 pgrp->pg_jobc++; 530 else { 531 --pgrp->pg_jobc; 532 if (pgrp->pg_jobc == 0) 533 orphanpg(pgrp); 534 } 535 PGRP_UNLOCK(pgrp); 536 } 537 538 /* 539 * Adjust pgrp jobc counters when specified process changes process group. 540 * We count the number of processes in each process group that "qualify" 541 * the group for terminal job control (those with a parent in a different 542 * process group of the same session). If that count reaches zero, the 543 * process group becomes orphaned. Check both the specified process' 544 * process group and that of its children. 545 * entering == 0 => p is leaving specified group. 546 * entering == 1 => p is entering specified group. 547 */ 548 void 549 fixjobc(p, pgrp, entering) 550 register struct proc *p; 551 register struct pgrp *pgrp; 552 int entering; 553 { 554 register struct pgrp *hispgrp; 555 register struct session *mysession; 556 557 sx_assert(&proctree_lock, SX_LOCKED); 558 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 559 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 560 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 561 562 /* 563 * Check p's parent to see whether p qualifies its own process 564 * group; if so, adjust count for p's process group. 565 */ 566 mysession = pgrp->pg_session; 567 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 568 hispgrp->pg_session == mysession) 569 pgadjustjobc(pgrp, entering); 570 571 /* 572 * Check this process' children to see whether they qualify 573 * their process groups; if so, adjust counts for children's 574 * process groups. 575 */ 576 LIST_FOREACH(p, &p->p_children, p_sibling) { 577 hispgrp = p->p_pgrp; 578 if (hispgrp == pgrp || 579 hispgrp->pg_session != mysession) 580 continue; 581 PROC_LOCK(p); 582 if (p->p_state == PRS_ZOMBIE) { 583 PROC_UNLOCK(p); 584 continue; 585 } 586 PROC_UNLOCK(p); 587 pgadjustjobc(hispgrp, entering); 588 } 589 } 590 591 /* 592 * A process group has become orphaned; 593 * if there are any stopped processes in the group, 594 * hang-up all process in that group. 595 */ 596 static void 597 orphanpg(pg) 598 struct pgrp *pg; 599 { 600 register struct proc *p; 601 602 PGRP_LOCK_ASSERT(pg, MA_OWNED); 603 604 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 605 PROC_LOCK(p); 606 if (P_SHOULDSTOP(p)) { 607 PROC_UNLOCK(p); 608 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 609 PROC_LOCK(p); 610 psignal(p, SIGHUP); 611 psignal(p, SIGCONT); 612 PROC_UNLOCK(p); 613 } 614 return; 615 } 616 PROC_UNLOCK(p); 617 } 618 } 619 620 void 621 sessrele(struct session *s) 622 { 623 int i; 624 625 SESS_LOCK(s); 626 i = --s->s_count; 627 SESS_UNLOCK(s); 628 if (i == 0) { 629 if (s->s_ttyp != NULL) 630 ttyrel(s->s_ttyp); 631 mtx_destroy(&s->s_mtx); 632 FREE(s, M_SESSION); 633 } 634 } 635 636 #include "opt_ddb.h" 637 #ifdef DDB 638 #include <ddb/ddb.h> 639 640 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 641 { 642 register struct pgrp *pgrp; 643 register struct proc *p; 644 register int i; 645 646 for (i = 0; i <= pgrphash; i++) { 647 if (!LIST_EMPTY(&pgrphashtbl[i])) { 648 printf("\tindx %d\n", i); 649 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 650 printf( 651 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 652 (void *)pgrp, (long)pgrp->pg_id, 653 (void *)pgrp->pg_session, 654 pgrp->pg_session->s_count, 655 (void *)LIST_FIRST(&pgrp->pg_members)); 656 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 657 printf("\t\tpid %ld addr %p pgrp %p\n", 658 (long)p->p_pid, (void *)p, 659 (void *)p->p_pgrp); 660 } 661 } 662 } 663 } 664 } 665 #endif /* DDB */ 666 667 /* 668 * Clear kinfo_proc and fill in any information that is common 669 * to all threads in the process. 670 * Must be called with the target process locked. 671 */ 672 static void 673 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 674 { 675 struct thread *td0; 676 struct tty *tp; 677 struct session *sp; 678 struct ucred *cred; 679 struct sigacts *ps; 680 681 PROC_LOCK_ASSERT(p, MA_OWNED); 682 bzero(kp, sizeof(*kp)); 683 684 kp->ki_structsize = sizeof(*kp); 685 kp->ki_paddr = p; 686 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 687 kp->ki_args = p->p_args; 688 kp->ki_textvp = p->p_textvp; 689 #ifdef KTRACE 690 kp->ki_tracep = p->p_tracevp; 691 mtx_lock(&ktrace_mtx); 692 kp->ki_traceflag = p->p_traceflag; 693 mtx_unlock(&ktrace_mtx); 694 #endif 695 kp->ki_fd = p->p_fd; 696 kp->ki_vmspace = p->p_vmspace; 697 kp->ki_flag = p->p_flag; 698 cred = p->p_ucred; 699 if (cred) { 700 kp->ki_uid = cred->cr_uid; 701 kp->ki_ruid = cred->cr_ruid; 702 kp->ki_svuid = cred->cr_svuid; 703 /* XXX bde doesn't like KI_NGROUPS */ 704 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 705 bcopy(cred->cr_groups, kp->ki_groups, 706 kp->ki_ngroups * sizeof(gid_t)); 707 kp->ki_rgid = cred->cr_rgid; 708 kp->ki_svgid = cred->cr_svgid; 709 /* If jailed(cred), emulate the old P_JAILED flag. */ 710 if (jailed(cred)) { 711 kp->ki_flag |= P_JAILED; 712 /* If inside a jail, use 0 as a jail ID. */ 713 if (!jailed(curthread->td_ucred)) 714 kp->ki_jid = cred->cr_prison->pr_id; 715 } 716 } 717 ps = p->p_sigacts; 718 if (ps) { 719 mtx_lock(&ps->ps_mtx); 720 kp->ki_sigignore = ps->ps_sigignore; 721 kp->ki_sigcatch = ps->ps_sigcatch; 722 mtx_unlock(&ps->ps_mtx); 723 } 724 PROC_SLOCK(p); 725 if (p->p_state != PRS_NEW && 726 p->p_state != PRS_ZOMBIE && 727 p->p_vmspace != NULL) { 728 struct vmspace *vm = p->p_vmspace; 729 730 kp->ki_size = vm->vm_map.size; 731 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 732 FOREACH_THREAD_IN_PROC(p, td0) { 733 if (!TD_IS_SWAPPED(td0)) 734 kp->ki_rssize += td0->td_kstack_pages; 735 if (td0->td_altkstack_obj != NULL) 736 kp->ki_rssize += td0->td_altkstack_pages; 737 } 738 kp->ki_swrss = vm->vm_swrss; 739 kp->ki_tsize = vm->vm_tsize; 740 kp->ki_dsize = vm->vm_dsize; 741 kp->ki_ssize = vm->vm_ssize; 742 } else if (p->p_state == PRS_ZOMBIE) 743 kp->ki_stat = SZOMB; 744 if (kp->ki_flag & P_INMEM) 745 kp->ki_sflag = PS_INMEM; 746 else 747 kp->ki_sflag = 0; 748 /* Calculate legacy swtime as seconds since 'swtick'. */ 749 kp->ki_swtime = (ticks - p->p_swtick) / hz; 750 kp->ki_pid = p->p_pid; 751 kp->ki_nice = p->p_nice; 752 rufetch(p, &kp->ki_rusage); 753 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 754 PROC_SUNLOCK(p); 755 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 756 kp->ki_start = p->p_stats->p_start; 757 timevaladd(&kp->ki_start, &boottime); 758 PROC_SLOCK(p); 759 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 760 PROC_SUNLOCK(p); 761 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 762 763 /* Some callers want child-times in a single value */ 764 kp->ki_childtime = kp->ki_childstime; 765 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 766 } 767 tp = NULL; 768 if (p->p_pgrp) { 769 kp->ki_pgid = p->p_pgrp->pg_id; 770 kp->ki_jobc = p->p_pgrp->pg_jobc; 771 sp = p->p_pgrp->pg_session; 772 773 if (sp != NULL) { 774 kp->ki_sid = sp->s_sid; 775 SESS_LOCK(sp); 776 strlcpy(kp->ki_login, sp->s_login, 777 sizeof(kp->ki_login)); 778 if (sp->s_ttyvp) 779 kp->ki_kiflag |= KI_CTTY; 780 if (SESS_LEADER(p)) 781 kp->ki_kiflag |= KI_SLEADER; 782 tp = sp->s_ttyp; 783 SESS_UNLOCK(sp); 784 } 785 } 786 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 787 kp->ki_tdev = dev2udev(tp->t_dev); 788 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 789 if (tp->t_session) 790 kp->ki_tsid = tp->t_session->s_sid; 791 } else 792 kp->ki_tdev = NODEV; 793 if (p->p_comm[0] != '\0') 794 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 795 if (p->p_sysent && p->p_sysent->sv_name != NULL && 796 p->p_sysent->sv_name[0] != '\0') 797 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 798 kp->ki_siglist = p->p_siglist; 799 kp->ki_xstat = p->p_xstat; 800 kp->ki_acflag = p->p_acflag; 801 kp->ki_lock = p->p_lock; 802 if (p->p_pptr) 803 kp->ki_ppid = p->p_pptr->p_pid; 804 } 805 806 /* 807 * Fill in information that is thread specific. Must be called with p_slock 808 * locked. If 'preferthread' is set, overwrite certain process-related 809 * fields that are maintained for both threads and processes. 810 */ 811 static void 812 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 813 { 814 struct proc *p; 815 816 p = td->td_proc; 817 PROC_LOCK_ASSERT(p, MA_OWNED); 818 819 thread_lock(td); 820 if (td->td_wmesg != NULL) 821 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 822 else 823 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 824 if (td->td_name[0] != '\0') 825 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 826 if (TD_ON_LOCK(td)) { 827 kp->ki_kiflag |= KI_LOCKBLOCK; 828 strlcpy(kp->ki_lockname, td->td_lockname, 829 sizeof(kp->ki_lockname)); 830 } else { 831 kp->ki_kiflag &= ~KI_LOCKBLOCK; 832 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 833 } 834 835 if (p->p_state == PRS_NORMAL) { /* approximate. */ 836 if (TD_ON_RUNQ(td) || 837 TD_CAN_RUN(td) || 838 TD_IS_RUNNING(td)) { 839 kp->ki_stat = SRUN; 840 } else if (P_SHOULDSTOP(p)) { 841 kp->ki_stat = SSTOP; 842 } else if (TD_IS_SLEEPING(td)) { 843 kp->ki_stat = SSLEEP; 844 } else if (TD_ON_LOCK(td)) { 845 kp->ki_stat = SLOCK; 846 } else { 847 kp->ki_stat = SWAIT; 848 } 849 } else if (p->p_state == PRS_ZOMBIE) { 850 kp->ki_stat = SZOMB; 851 } else { 852 kp->ki_stat = SIDL; 853 } 854 855 /* Things in the thread */ 856 kp->ki_wchan = td->td_wchan; 857 kp->ki_pri.pri_level = td->td_priority; 858 kp->ki_pri.pri_native = td->td_base_pri; 859 kp->ki_lastcpu = td->td_lastcpu; 860 kp->ki_oncpu = td->td_oncpu; 861 kp->ki_tdflags = td->td_flags; 862 kp->ki_tid = td->td_tid; 863 kp->ki_numthreads = p->p_numthreads; 864 kp->ki_pcb = td->td_pcb; 865 kp->ki_kstack = (void *)td->td_kstack; 866 kp->ki_pctcpu = sched_pctcpu(td); 867 kp->ki_estcpu = td->td_estcpu; 868 kp->ki_slptime = (ticks - td->td_slptick) / hz; 869 kp->ki_pri.pri_class = td->td_pri_class; 870 kp->ki_pri.pri_user = td->td_user_pri; 871 872 if (preferthread) 873 kp->ki_runtime = cputick2usec(td->td_runtime); 874 875 /* We can't get this anymore but ps etc never used it anyway. */ 876 kp->ki_rqindex = 0; 877 878 SIGSETOR(kp->ki_siglist, td->td_siglist); 879 kp->ki_sigmask = td->td_sigmask; 880 thread_unlock(td); 881 } 882 883 /* 884 * Fill in a kinfo_proc structure for the specified process. 885 * Must be called with the target process locked. 886 */ 887 void 888 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 889 { 890 891 fill_kinfo_proc_only(p, kp); 892 if (FIRST_THREAD_IN_PROC(p) != NULL) 893 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 894 } 895 896 struct pstats * 897 pstats_alloc(void) 898 { 899 900 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 901 } 902 903 /* 904 * Copy parts of p_stats; zero the rest of p_stats (statistics). 905 */ 906 void 907 pstats_fork(struct pstats *src, struct pstats *dst) 908 { 909 910 bzero(&dst->pstat_startzero, 911 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 912 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 913 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 914 } 915 916 void 917 pstats_free(struct pstats *ps) 918 { 919 920 free(ps, M_SUBPROC); 921 } 922 923 /* 924 * Locate a zombie process by number 925 */ 926 struct proc * 927 zpfind(pid_t pid) 928 { 929 struct proc *p; 930 931 sx_slock(&allproc_lock); 932 LIST_FOREACH(p, &zombproc, p_list) 933 if (p->p_pid == pid) { 934 PROC_LOCK(p); 935 break; 936 } 937 sx_sunlock(&allproc_lock); 938 return (p); 939 } 940 941 #define KERN_PROC_ZOMBMASK 0x3 942 #define KERN_PROC_NOTHREADS 0x4 943 944 /* 945 * Must be called with the process locked and will return with it unlocked. 946 */ 947 static int 948 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 949 { 950 struct thread *td; 951 struct kinfo_proc kinfo_proc; 952 int error = 0; 953 struct proc *np; 954 pid_t pid = p->p_pid; 955 956 PROC_LOCK_ASSERT(p, MA_OWNED); 957 958 fill_kinfo_proc_only(p, &kinfo_proc); 959 if (flags & KERN_PROC_NOTHREADS) { 960 if (FIRST_THREAD_IN_PROC(p) != NULL) 961 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), 962 &kinfo_proc, 0); 963 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 964 sizeof(kinfo_proc)); 965 } else { 966 if (FIRST_THREAD_IN_PROC(p) != NULL) 967 FOREACH_THREAD_IN_PROC(p, td) { 968 fill_kinfo_thread(td, &kinfo_proc, 1); 969 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 970 sizeof(kinfo_proc)); 971 if (error) 972 break; 973 } 974 else 975 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 976 sizeof(kinfo_proc)); 977 } 978 PROC_UNLOCK(p); 979 if (error) 980 return (error); 981 if (flags & KERN_PROC_ZOMBMASK) 982 np = zpfind(pid); 983 else { 984 if (pid == 0) 985 return (0); 986 np = pfind(pid); 987 } 988 if (np == NULL) 989 return EAGAIN; 990 if (np != p) { 991 PROC_UNLOCK(np); 992 return EAGAIN; 993 } 994 PROC_UNLOCK(np); 995 return (0); 996 } 997 998 static int 999 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1000 { 1001 int *name = (int*) arg1; 1002 u_int namelen = arg2; 1003 struct proc *p; 1004 int flags, doingzomb, oid_number; 1005 int error = 0; 1006 1007 oid_number = oidp->oid_number; 1008 if (oid_number != KERN_PROC_ALL && 1009 (oid_number & KERN_PROC_INC_THREAD) == 0) 1010 flags = KERN_PROC_NOTHREADS; 1011 else { 1012 flags = 0; 1013 oid_number &= ~KERN_PROC_INC_THREAD; 1014 } 1015 if (oid_number == KERN_PROC_PID) { 1016 if (namelen != 1) 1017 return (EINVAL); 1018 error = sysctl_wire_old_buffer(req, 0); 1019 if (error) 1020 return (error); 1021 p = pfind((pid_t)name[0]); 1022 if (!p) 1023 return (ESRCH); 1024 if ((error = p_cansee(curthread, p))) { 1025 PROC_UNLOCK(p); 1026 return (error); 1027 } 1028 error = sysctl_out_proc(p, req, flags); 1029 return (error); 1030 } 1031 1032 switch (oid_number) { 1033 case KERN_PROC_ALL: 1034 if (namelen != 0) 1035 return (EINVAL); 1036 break; 1037 case KERN_PROC_PROC: 1038 if (namelen != 0 && namelen != 1) 1039 return (EINVAL); 1040 break; 1041 default: 1042 if (namelen != 1) 1043 return (EINVAL); 1044 break; 1045 } 1046 1047 if (!req->oldptr) { 1048 /* overestimate by 5 procs */ 1049 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1050 if (error) 1051 return (error); 1052 } 1053 error = sysctl_wire_old_buffer(req, 0); 1054 if (error != 0) 1055 return (error); 1056 sx_slock(&allproc_lock); 1057 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1058 if (!doingzomb) 1059 p = LIST_FIRST(&allproc); 1060 else 1061 p = LIST_FIRST(&zombproc); 1062 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1063 /* 1064 * Skip embryonic processes. 1065 */ 1066 PROC_SLOCK(p); 1067 if (p->p_state == PRS_NEW) { 1068 PROC_SUNLOCK(p); 1069 continue; 1070 } 1071 PROC_SUNLOCK(p); 1072 PROC_LOCK(p); 1073 KASSERT(p->p_ucred != NULL, 1074 ("process credential is NULL for non-NEW proc")); 1075 /* 1076 * Show a user only appropriate processes. 1077 */ 1078 if (p_cansee(curthread, p)) { 1079 PROC_UNLOCK(p); 1080 continue; 1081 } 1082 /* 1083 * TODO - make more efficient (see notes below). 1084 * do by session. 1085 */ 1086 switch (oid_number) { 1087 1088 case KERN_PROC_GID: 1089 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1090 PROC_UNLOCK(p); 1091 continue; 1092 } 1093 break; 1094 1095 case KERN_PROC_PGRP: 1096 /* could do this by traversing pgrp */ 1097 if (p->p_pgrp == NULL || 1098 p->p_pgrp->pg_id != (pid_t)name[0]) { 1099 PROC_UNLOCK(p); 1100 continue; 1101 } 1102 break; 1103 1104 case KERN_PROC_RGID: 1105 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1106 PROC_UNLOCK(p); 1107 continue; 1108 } 1109 break; 1110 1111 case KERN_PROC_SESSION: 1112 if (p->p_session == NULL || 1113 p->p_session->s_sid != (pid_t)name[0]) { 1114 PROC_UNLOCK(p); 1115 continue; 1116 } 1117 break; 1118 1119 case KERN_PROC_TTY: 1120 if ((p->p_flag & P_CONTROLT) == 0 || 1121 p->p_session == NULL) { 1122 PROC_UNLOCK(p); 1123 continue; 1124 } 1125 SESS_LOCK(p->p_session); 1126 if (p->p_session->s_ttyp == NULL || 1127 dev2udev(p->p_session->s_ttyp->t_dev) != 1128 (dev_t)name[0]) { 1129 SESS_UNLOCK(p->p_session); 1130 PROC_UNLOCK(p); 1131 continue; 1132 } 1133 SESS_UNLOCK(p->p_session); 1134 break; 1135 1136 case KERN_PROC_UID: 1137 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1138 PROC_UNLOCK(p); 1139 continue; 1140 } 1141 break; 1142 1143 case KERN_PROC_RUID: 1144 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1145 PROC_UNLOCK(p); 1146 continue; 1147 } 1148 break; 1149 1150 case KERN_PROC_PROC: 1151 break; 1152 1153 default: 1154 break; 1155 1156 } 1157 1158 error = sysctl_out_proc(p, req, flags | doingzomb); 1159 if (error) { 1160 sx_sunlock(&allproc_lock); 1161 return (error); 1162 } 1163 } 1164 } 1165 sx_sunlock(&allproc_lock); 1166 return (0); 1167 } 1168 1169 struct pargs * 1170 pargs_alloc(int len) 1171 { 1172 struct pargs *pa; 1173 1174 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1175 M_WAITOK); 1176 refcount_init(&pa->ar_ref, 1); 1177 pa->ar_length = len; 1178 return (pa); 1179 } 1180 1181 static void 1182 pargs_free(struct pargs *pa) 1183 { 1184 1185 FREE(pa, M_PARGS); 1186 } 1187 1188 void 1189 pargs_hold(struct pargs *pa) 1190 { 1191 1192 if (pa == NULL) 1193 return; 1194 refcount_acquire(&pa->ar_ref); 1195 } 1196 1197 void 1198 pargs_drop(struct pargs *pa) 1199 { 1200 1201 if (pa == NULL) 1202 return; 1203 if (refcount_release(&pa->ar_ref)) 1204 pargs_free(pa); 1205 } 1206 1207 /* 1208 * This sysctl allows a process to retrieve the argument list or process 1209 * title for another process without groping around in the address space 1210 * of the other process. It also allow a process to set its own "process 1211 * title to a string of its own choice. 1212 */ 1213 static int 1214 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1215 { 1216 int *name = (int*) arg1; 1217 u_int namelen = arg2; 1218 struct pargs *newpa, *pa; 1219 struct proc *p; 1220 int error = 0; 1221 1222 if (namelen != 1) 1223 return (EINVAL); 1224 1225 p = pfind((pid_t)name[0]); 1226 if (!p) 1227 return (ESRCH); 1228 1229 if ((error = p_cansee(curthread, p)) != 0) { 1230 PROC_UNLOCK(p); 1231 return (error); 1232 } 1233 1234 if (req->newptr && curproc != p) { 1235 PROC_UNLOCK(p); 1236 return (EPERM); 1237 } 1238 1239 pa = p->p_args; 1240 pargs_hold(pa); 1241 PROC_UNLOCK(p); 1242 if (req->oldptr != NULL && pa != NULL) 1243 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1244 pargs_drop(pa); 1245 if (error != 0 || req->newptr == NULL) 1246 return (error); 1247 1248 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1249 return (ENOMEM); 1250 newpa = pargs_alloc(req->newlen); 1251 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1252 if (error != 0) { 1253 pargs_free(newpa); 1254 return (error); 1255 } 1256 PROC_LOCK(p); 1257 pa = p->p_args; 1258 p->p_args = newpa; 1259 PROC_UNLOCK(p); 1260 pargs_drop(pa); 1261 return (0); 1262 } 1263 1264 /* 1265 * This sysctl allows a process to retrieve the path of the executable for 1266 * itself or another process. 1267 */ 1268 static int 1269 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1270 { 1271 pid_t *pidp = (pid_t *)arg1; 1272 unsigned int arglen = arg2; 1273 struct proc *p; 1274 struct vnode *vp; 1275 char *retbuf, *freebuf; 1276 int error; 1277 1278 if (arglen != 1) 1279 return (EINVAL); 1280 if (*pidp == -1) { /* -1 means this process */ 1281 p = req->td->td_proc; 1282 } else { 1283 p = pfind(*pidp); 1284 if (p == NULL) 1285 return (ESRCH); 1286 if ((error = p_cansee(curthread, p)) != 0) { 1287 PROC_UNLOCK(p); 1288 return (error); 1289 } 1290 } 1291 1292 vp = p->p_textvp; 1293 if (vp == NULL) { 1294 if (*pidp != -1) 1295 PROC_UNLOCK(p); 1296 return (0); 1297 } 1298 vref(vp); 1299 if (*pidp != -1) 1300 PROC_UNLOCK(p); 1301 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1302 vrele(vp); 1303 if (error) 1304 return (error); 1305 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1306 free(freebuf, M_TEMP); 1307 return (error); 1308 } 1309 1310 static int 1311 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1312 { 1313 struct proc *p; 1314 char *sv_name; 1315 int *name; 1316 int namelen; 1317 int error; 1318 1319 namelen = arg2; 1320 if (namelen != 1) 1321 return (EINVAL); 1322 1323 name = (int *)arg1; 1324 if ((p = pfind((pid_t)name[0])) == NULL) 1325 return (ESRCH); 1326 if ((error = p_cansee(curthread, p))) { 1327 PROC_UNLOCK(p); 1328 return (error); 1329 } 1330 sv_name = p->p_sysent->sv_name; 1331 PROC_UNLOCK(p); 1332 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1333 } 1334 1335 static int 1336 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1337 { 1338 vm_map_entry_t entry, tmp_entry; 1339 unsigned int last_timestamp; 1340 char *fullpath, *freepath; 1341 struct kinfo_vmentry *kve; 1342 int error, *name; 1343 struct vnode *vp; 1344 struct proc *p; 1345 vm_map_t map; 1346 1347 name = (int *)arg1; 1348 if ((p = pfind((pid_t)name[0])) == NULL) 1349 return (ESRCH); 1350 if (p->p_flag & P_WEXIT) { 1351 PROC_UNLOCK(p); 1352 return (ESRCH); 1353 } 1354 if ((error = p_candebug(curthread, p))) { 1355 PROC_UNLOCK(p); 1356 return (error); 1357 } 1358 _PHOLD(p); 1359 PROC_UNLOCK(p); 1360 1361 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1362 1363 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1364 vm_map_lock_read(map); 1365 for (entry = map->header.next; entry != &map->header; 1366 entry = entry->next) { 1367 vm_object_t obj, tobj, lobj; 1368 vm_offset_t addr; 1369 int vfslocked; 1370 1371 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1372 continue; 1373 1374 bzero(kve, sizeof(*kve)); 1375 kve->kve_structsize = sizeof(*kve); 1376 1377 kve->kve_private_resident = 0; 1378 obj = entry->object.vm_object; 1379 if (obj != NULL) { 1380 VM_OBJECT_LOCK(obj); 1381 if (obj->shadow_count == 1) 1382 kve->kve_private_resident = 1383 obj->resident_page_count; 1384 } 1385 kve->kve_resident = 0; 1386 addr = entry->start; 1387 while (addr < entry->end) { 1388 if (pmap_extract(map->pmap, addr)) 1389 kve->kve_resident++; 1390 addr += PAGE_SIZE; 1391 } 1392 1393 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1394 if (tobj != obj) 1395 VM_OBJECT_LOCK(tobj); 1396 if (lobj != obj) 1397 VM_OBJECT_UNLOCK(lobj); 1398 lobj = tobj; 1399 } 1400 1401 freepath = NULL; 1402 fullpath = ""; 1403 if (lobj) { 1404 vp = NULL; 1405 switch(lobj->type) { 1406 case OBJT_DEFAULT: 1407 kve->kve_type = KVME_TYPE_DEFAULT; 1408 break; 1409 case OBJT_VNODE: 1410 kve->kve_type = KVME_TYPE_VNODE; 1411 vp = lobj->handle; 1412 vref(vp); 1413 break; 1414 case OBJT_SWAP: 1415 kve->kve_type = KVME_TYPE_SWAP; 1416 break; 1417 case OBJT_DEVICE: 1418 kve->kve_type = KVME_TYPE_DEVICE; 1419 break; 1420 case OBJT_PHYS: 1421 kve->kve_type = KVME_TYPE_PHYS; 1422 break; 1423 case OBJT_DEAD: 1424 kve->kve_type = KVME_TYPE_DEAD; 1425 break; 1426 default: 1427 kve->kve_type = KVME_TYPE_UNKNOWN; 1428 break; 1429 } 1430 if (lobj != obj) 1431 VM_OBJECT_UNLOCK(lobj); 1432 1433 kve->kve_ref_count = obj->ref_count; 1434 kve->kve_shadow_count = obj->shadow_count; 1435 VM_OBJECT_UNLOCK(obj); 1436 if (vp != NULL) { 1437 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1438 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1439 vn_fullpath(curthread, vp, &fullpath, 1440 &freepath); 1441 vput(vp); 1442 VFS_UNLOCK_GIANT(vfslocked); 1443 } 1444 } else { 1445 kve->kve_type = KVME_TYPE_NONE; 1446 kve->kve_ref_count = 0; 1447 kve->kve_shadow_count = 0; 1448 } 1449 1450 kve->kve_start = (void*)entry->start; 1451 kve->kve_end = (void*)entry->end; 1452 1453 if (entry->protection & VM_PROT_READ) 1454 kve->kve_protection |= KVME_PROT_READ; 1455 if (entry->protection & VM_PROT_WRITE) 1456 kve->kve_protection |= KVME_PROT_WRITE; 1457 if (entry->protection & VM_PROT_EXECUTE) 1458 kve->kve_protection |= KVME_PROT_EXEC; 1459 1460 if (entry->eflags & MAP_ENTRY_COW) 1461 kve->kve_flags |= KVME_FLAG_COW; 1462 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1463 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1464 1465 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1466 if (freepath != NULL) 1467 free(freepath, M_TEMP); 1468 1469 last_timestamp = map->timestamp; 1470 vm_map_unlock_read(map); 1471 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1472 vm_map_lock_read(map); 1473 if (error) 1474 break; 1475 if (last_timestamp + 1 != map->timestamp) { 1476 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1477 entry = tmp_entry; 1478 } 1479 } 1480 vm_map_unlock_read(map); 1481 PRELE(p); 1482 free(kve, M_TEMP); 1483 return (error); 1484 } 1485 1486 #if defined(STACK) || defined(DDB) 1487 static int 1488 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1489 { 1490 struct kinfo_kstack *kkstp; 1491 int error, i, *name, numthreads; 1492 lwpid_t *lwpidarray; 1493 struct thread *td; 1494 struct stack *st; 1495 struct sbuf sb; 1496 struct proc *p; 1497 1498 name = (int *)arg1; 1499 if ((p = pfind((pid_t)name[0])) == NULL) 1500 return (ESRCH); 1501 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1502 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1503 PROC_UNLOCK(p); 1504 return (ESRCH); 1505 } 1506 if ((error = p_candebug(curthread, p))) { 1507 PROC_UNLOCK(p); 1508 return (error); 1509 } 1510 _PHOLD(p); 1511 PROC_UNLOCK(p); 1512 1513 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1514 st = stack_create(); 1515 1516 lwpidarray = NULL; 1517 numthreads = 0; 1518 PROC_LOCK(p); 1519 repeat: 1520 if (numthreads < p->p_numthreads) { 1521 if (lwpidarray != NULL) { 1522 free(lwpidarray, M_TEMP); 1523 lwpidarray = NULL; 1524 } 1525 numthreads = p->p_numthreads; 1526 PROC_UNLOCK(p); 1527 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1528 M_WAITOK | M_ZERO); 1529 PROC_LOCK(p); 1530 goto repeat; 1531 } 1532 i = 0; 1533 1534 /* 1535 * XXXRW: During the below loop, execve(2) and countless other sorts 1536 * of changes could have taken place. Should we check to see if the 1537 * vmspace has been replaced, or the like, in order to prevent 1538 * giving a snapshot that spans, say, execve(2), with some threads 1539 * before and some after? Among other things, the credentials could 1540 * have changed, in which case the right to extract debug info might 1541 * no longer be assured. 1542 */ 1543 FOREACH_THREAD_IN_PROC(p, td) { 1544 KASSERT(i < numthreads, 1545 ("sysctl_kern_proc_kstack: numthreads")); 1546 lwpidarray[i] = td->td_tid; 1547 i++; 1548 } 1549 numthreads = i; 1550 for (i = 0; i < numthreads; i++) { 1551 td = thread_find(p, lwpidarray[i]); 1552 if (td == NULL) { 1553 continue; 1554 } 1555 bzero(kkstp, sizeof(*kkstp)); 1556 (void)sbuf_new(&sb, kkstp->kkst_trace, 1557 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1558 thread_lock(td); 1559 kkstp->kkst_tid = td->td_tid; 1560 if (TD_IS_SWAPPED(td)) 1561 kkstp->kkst_state = KKST_STATE_SWAPPED; 1562 else if (TD_IS_RUNNING(td)) 1563 kkstp->kkst_state = KKST_STATE_RUNNING; 1564 else { 1565 kkstp->kkst_state = KKST_STATE_STACKOK; 1566 stack_save_td(st, td); 1567 } 1568 thread_unlock(td); 1569 PROC_UNLOCK(p); 1570 stack_sbuf_print(&sb, st); 1571 sbuf_finish(&sb); 1572 sbuf_delete(&sb); 1573 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1574 PROC_LOCK(p); 1575 if (error) 1576 break; 1577 } 1578 _PRELE(p); 1579 PROC_UNLOCK(p); 1580 if (lwpidarray != NULL) 1581 free(lwpidarray, M_TEMP); 1582 stack_destroy(st); 1583 free(kkstp, M_TEMP); 1584 return (error); 1585 } 1586 #endif 1587 1588 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1589 1590 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1591 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1592 1593 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1594 sysctl_kern_proc, "Process table"); 1595 1596 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1597 sysctl_kern_proc, "Process table"); 1598 1599 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1600 sysctl_kern_proc, "Process table"); 1601 1602 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1603 sysctl_kern_proc, "Process table"); 1604 1605 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1606 sysctl_kern_proc, "Process table"); 1607 1608 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1609 sysctl_kern_proc, "Process table"); 1610 1611 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1612 sysctl_kern_proc, "Process table"); 1613 1614 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1615 sysctl_kern_proc, "Process table"); 1616 1617 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1618 sysctl_kern_proc, "Return process table, no threads"); 1619 1620 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1621 CTLFLAG_RW | CTLFLAG_ANYBODY, 1622 sysctl_kern_proc_args, "Process argument list"); 1623 1624 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1625 sysctl_kern_proc_pathname, "Process executable path"); 1626 1627 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1628 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1629 1630 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1631 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1632 1633 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1634 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1635 1636 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1637 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1638 1639 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1640 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1641 1642 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1643 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1644 1645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1646 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1647 1648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1649 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1650 1651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1652 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1653 1654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1655 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1656 1657 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1658 sysctl_kern_proc_vmmap, "Process vm map entries"); 1659 1660 #if defined(STACK) || defined(DDB) 1661 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1662 sysctl_kern_proc_kstack, "Process kernel stacks"); 1663 #endif 1664