1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #ifdef KTRACE 57 #include <sys/uio.h> 58 #include <sys/ktrace.h> 59 #endif 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/uma.h> 66 #include <machine/critical.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void pgadjustjobc(struct pgrp *pgrp, int entering); 76 static void pgdelete(struct pgrp *); 77 static int proc_ctor(void *mem, int size, void *arg, int flags); 78 static void proc_dtor(void *mem, int size, void *arg); 79 static int proc_init(void *mem, int size, int flags); 80 static void proc_fini(void *mem, int size); 81 82 /* 83 * Other process lists 84 */ 85 struct pidhashhead *pidhashtbl; 86 u_long pidhash; 87 struct pgrphashhead *pgrphashtbl; 88 u_long pgrphash; 89 struct proclist allproc; 90 struct proclist zombproc; 91 struct sx allproc_lock; 92 struct sx proctree_lock; 93 struct mtx pargs_ref_lock; 94 struct mtx ppeers_lock; 95 uma_zone_t proc_zone; 96 uma_zone_t ithread_zone; 97 98 int kstack_pages = KSTACK_PAGES; 99 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 100 101 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 102 103 /* 104 * Initialize global process hashing structures. 105 */ 106 void 107 procinit() 108 { 109 110 sx_init(&allproc_lock, "allproc"); 111 sx_init(&proctree_lock, "proctree"); 112 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 113 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 114 LIST_INIT(&allproc); 115 LIST_INIT(&zombproc); 116 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 117 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 118 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 119 proc_ctor, proc_dtor, proc_init, proc_fini, 120 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 121 uihashinit(); 122 } 123 124 /* 125 * Prepare a proc for use. 126 */ 127 static int 128 proc_ctor(void *mem, int size, void *arg, int flags) 129 { 130 struct proc *p; 131 132 p = (struct proc *)mem; 133 return (0); 134 } 135 136 /* 137 * Reclaim a proc after use. 138 */ 139 static void 140 proc_dtor(void *mem, int size, void *arg) 141 { 142 struct proc *p; 143 struct thread *td; 144 #ifdef INVARIANTS 145 struct ksegrp *kg; 146 #endif 147 148 /* INVARIANTS checks go here */ 149 p = (struct proc *)mem; 150 td = FIRST_THREAD_IN_PROC(p); 151 #ifdef INVARIANTS 152 KASSERT((p->p_numthreads == 1), 153 ("bad number of threads in exiting process")); 154 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 156 kg = FIRST_KSEGRP_IN_PROC(p); 157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 158 #endif 159 160 /* Dispose of an alternate kstack, if it exists. 161 * XXX What if there are more than one thread in the proc? 162 * The first thread in the proc is special and not 163 * freed, so you gotta do this here. 164 */ 165 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 166 vm_thread_dispose_altkstack(td); 167 } 168 169 /* 170 * Initialize type-stable parts of a proc (when newly created). 171 */ 172 static int 173 proc_init(void *mem, int size, int flags) 174 { 175 struct proc *p; 176 struct thread *td; 177 struct ksegrp *kg; 178 179 p = (struct proc *)mem; 180 p->p_sched = (struct p_sched *)&p[1]; 181 td = thread_alloc(); 182 kg = ksegrp_alloc(); 183 bzero(&p->p_mtx, sizeof(struct mtx)); 184 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 185 p->p_stats = pstats_alloc(); 186 proc_linkup(p, kg, td); 187 sched_newproc(p, kg, td); 188 return (0); 189 } 190 191 /* 192 * UMA should ensure that this function is never called. 193 * Freeing a proc structure would violate type stability. 194 */ 195 static void 196 proc_fini(void *mem, int size) 197 { 198 199 panic("proc reclaimed"); 200 } 201 202 /* 203 * Is p an inferior of the current process? 204 */ 205 int 206 inferior(p) 207 register struct proc *p; 208 { 209 210 sx_assert(&proctree_lock, SX_LOCKED); 211 for (; p != curproc; p = p->p_pptr) 212 if (p->p_pid == 0) 213 return (0); 214 return (1); 215 } 216 217 /* 218 * Locate a process by number; return only "live" processes -- i.e., neither 219 * zombies nor newly born but incompletely initialized processes. By not 220 * returning processes in the PRS_NEW state, we allow callers to avoid 221 * testing for that condition to avoid dereferencing p_ucred, et al. 222 */ 223 struct proc * 224 pfind(pid) 225 register pid_t pid; 226 { 227 register struct proc *p; 228 229 sx_slock(&allproc_lock); 230 LIST_FOREACH(p, PIDHASH(pid), p_hash) 231 if (p->p_pid == pid) { 232 if (p->p_state == PRS_NEW) { 233 p = NULL; 234 break; 235 } 236 PROC_LOCK(p); 237 break; 238 } 239 sx_sunlock(&allproc_lock); 240 return (p); 241 } 242 243 /* 244 * Locate a process group by number. 245 * The caller must hold proctree_lock. 246 */ 247 struct pgrp * 248 pgfind(pgid) 249 register pid_t pgid; 250 { 251 register struct pgrp *pgrp; 252 253 sx_assert(&proctree_lock, SX_LOCKED); 254 255 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 256 if (pgrp->pg_id == pgid) { 257 PGRP_LOCK(pgrp); 258 return (pgrp); 259 } 260 } 261 return (NULL); 262 } 263 264 /* 265 * Create a new process group. 266 * pgid must be equal to the pid of p. 267 * Begin a new session if required. 268 */ 269 int 270 enterpgrp(p, pgid, pgrp, sess) 271 register struct proc *p; 272 pid_t pgid; 273 struct pgrp *pgrp; 274 struct session *sess; 275 { 276 struct pgrp *pgrp2; 277 278 sx_assert(&proctree_lock, SX_XLOCKED); 279 280 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 281 KASSERT(p->p_pid == pgid, 282 ("enterpgrp: new pgrp and pid != pgid")); 283 284 pgrp2 = pgfind(pgid); 285 286 KASSERT(pgrp2 == NULL, 287 ("enterpgrp: pgrp with pgid exists")); 288 KASSERT(!SESS_LEADER(p), 289 ("enterpgrp: session leader attempted setpgrp")); 290 291 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 292 293 if (sess != NULL) { 294 /* 295 * new session 296 */ 297 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 298 PROC_LOCK(p); 299 p->p_flag &= ~P_CONTROLT; 300 PROC_UNLOCK(p); 301 PGRP_LOCK(pgrp); 302 sess->s_leader = p; 303 sess->s_sid = p->p_pid; 304 sess->s_count = 1; 305 sess->s_ttyvp = NULL; 306 sess->s_ttyp = NULL; 307 bcopy(p->p_session->s_login, sess->s_login, 308 sizeof(sess->s_login)); 309 pgrp->pg_session = sess; 310 KASSERT(p == curproc, 311 ("enterpgrp: mksession and p != curproc")); 312 } else { 313 pgrp->pg_session = p->p_session; 314 SESS_LOCK(pgrp->pg_session); 315 pgrp->pg_session->s_count++; 316 SESS_UNLOCK(pgrp->pg_session); 317 PGRP_LOCK(pgrp); 318 } 319 pgrp->pg_id = pgid; 320 LIST_INIT(&pgrp->pg_members); 321 322 /* 323 * As we have an exclusive lock of proctree_lock, 324 * this should not deadlock. 325 */ 326 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 327 pgrp->pg_jobc = 0; 328 SLIST_INIT(&pgrp->pg_sigiolst); 329 PGRP_UNLOCK(pgrp); 330 331 doenterpgrp(p, pgrp); 332 333 return (0); 334 } 335 336 /* 337 * Move p to an existing process group 338 */ 339 int 340 enterthispgrp(p, pgrp) 341 register struct proc *p; 342 struct pgrp *pgrp; 343 { 344 345 sx_assert(&proctree_lock, SX_XLOCKED); 346 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 347 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 348 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 349 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 350 KASSERT(pgrp->pg_session == p->p_session, 351 ("%s: pgrp's session %p, p->p_session %p.\n", 352 __func__, 353 pgrp->pg_session, 354 p->p_session)); 355 KASSERT(pgrp != p->p_pgrp, 356 ("%s: p belongs to pgrp.", __func__)); 357 358 doenterpgrp(p, pgrp); 359 360 return (0); 361 } 362 363 /* 364 * Move p to a process group 365 */ 366 static void 367 doenterpgrp(p, pgrp) 368 struct proc *p; 369 struct pgrp *pgrp; 370 { 371 struct pgrp *savepgrp; 372 373 sx_assert(&proctree_lock, SX_XLOCKED); 374 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 375 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 376 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 377 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 378 379 savepgrp = p->p_pgrp; 380 381 /* 382 * Adjust eligibility of affected pgrps to participate in job control. 383 * Increment eligibility counts before decrementing, otherwise we 384 * could reach 0 spuriously during the first call. 385 */ 386 fixjobc(p, pgrp, 1); 387 fixjobc(p, p->p_pgrp, 0); 388 389 PGRP_LOCK(pgrp); 390 PGRP_LOCK(savepgrp); 391 PROC_LOCK(p); 392 LIST_REMOVE(p, p_pglist); 393 p->p_pgrp = pgrp; 394 PROC_UNLOCK(p); 395 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 396 PGRP_UNLOCK(savepgrp); 397 PGRP_UNLOCK(pgrp); 398 if (LIST_EMPTY(&savepgrp->pg_members)) 399 pgdelete(savepgrp); 400 } 401 402 /* 403 * remove process from process group 404 */ 405 int 406 leavepgrp(p) 407 register struct proc *p; 408 { 409 struct pgrp *savepgrp; 410 411 sx_assert(&proctree_lock, SX_XLOCKED); 412 savepgrp = p->p_pgrp; 413 PGRP_LOCK(savepgrp); 414 PROC_LOCK(p); 415 LIST_REMOVE(p, p_pglist); 416 p->p_pgrp = NULL; 417 PROC_UNLOCK(p); 418 PGRP_UNLOCK(savepgrp); 419 if (LIST_EMPTY(&savepgrp->pg_members)) 420 pgdelete(savepgrp); 421 return (0); 422 } 423 424 /* 425 * delete a process group 426 */ 427 static void 428 pgdelete(pgrp) 429 register struct pgrp *pgrp; 430 { 431 struct session *savesess; 432 433 sx_assert(&proctree_lock, SX_XLOCKED); 434 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 435 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 436 437 /* 438 * Reset any sigio structures pointing to us as a result of 439 * F_SETOWN with our pgid. 440 */ 441 funsetownlst(&pgrp->pg_sigiolst); 442 443 PGRP_LOCK(pgrp); 444 if (pgrp->pg_session->s_ttyp != NULL && 445 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 446 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 447 LIST_REMOVE(pgrp, pg_hash); 448 savesess = pgrp->pg_session; 449 SESSRELE(savesess); 450 PGRP_UNLOCK(pgrp); 451 mtx_destroy(&pgrp->pg_mtx); 452 FREE(pgrp, M_PGRP); 453 } 454 455 static void 456 pgadjustjobc(pgrp, entering) 457 struct pgrp *pgrp; 458 int entering; 459 { 460 461 PGRP_LOCK(pgrp); 462 if (entering) 463 pgrp->pg_jobc++; 464 else { 465 --pgrp->pg_jobc; 466 if (pgrp->pg_jobc == 0) 467 orphanpg(pgrp); 468 } 469 PGRP_UNLOCK(pgrp); 470 } 471 472 /* 473 * Adjust pgrp jobc counters when specified process changes process group. 474 * We count the number of processes in each process group that "qualify" 475 * the group for terminal job control (those with a parent in a different 476 * process group of the same session). If that count reaches zero, the 477 * process group becomes orphaned. Check both the specified process' 478 * process group and that of its children. 479 * entering == 0 => p is leaving specified group. 480 * entering == 1 => p is entering specified group. 481 */ 482 void 483 fixjobc(p, pgrp, entering) 484 register struct proc *p; 485 register struct pgrp *pgrp; 486 int entering; 487 { 488 register struct pgrp *hispgrp; 489 register struct session *mysession; 490 491 sx_assert(&proctree_lock, SX_LOCKED); 492 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 495 496 /* 497 * Check p's parent to see whether p qualifies its own process 498 * group; if so, adjust count for p's process group. 499 */ 500 mysession = pgrp->pg_session; 501 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 502 hispgrp->pg_session == mysession) 503 pgadjustjobc(pgrp, entering); 504 505 /* 506 * Check this process' children to see whether they qualify 507 * their process groups; if so, adjust counts for children's 508 * process groups. 509 */ 510 LIST_FOREACH(p, &p->p_children, p_sibling) { 511 hispgrp = p->p_pgrp; 512 if (hispgrp == pgrp || 513 hispgrp->pg_session != mysession) 514 continue; 515 PROC_LOCK(p); 516 if (p->p_state == PRS_ZOMBIE) { 517 PROC_UNLOCK(p); 518 continue; 519 } 520 PROC_UNLOCK(p); 521 pgadjustjobc(hispgrp, entering); 522 } 523 } 524 525 /* 526 * A process group has become orphaned; 527 * if there are any stopped processes in the group, 528 * hang-up all process in that group. 529 */ 530 static void 531 orphanpg(pg) 532 struct pgrp *pg; 533 { 534 register struct proc *p; 535 536 PGRP_LOCK_ASSERT(pg, MA_OWNED); 537 538 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 539 PROC_LOCK(p); 540 if (P_SHOULDSTOP(p)) { 541 PROC_UNLOCK(p); 542 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 543 PROC_LOCK(p); 544 psignal(p, SIGHUP); 545 psignal(p, SIGCONT); 546 PROC_UNLOCK(p); 547 } 548 return; 549 } 550 PROC_UNLOCK(p); 551 } 552 } 553 554 void 555 sessrele(struct session *s) 556 { 557 int i; 558 559 SESS_LOCK(s); 560 i = --s->s_count; 561 SESS_UNLOCK(s); 562 if (i == 0) { 563 if (s->s_ttyp != NULL) 564 ttyrel(s->s_ttyp); 565 mtx_destroy(&s->s_mtx); 566 FREE(s, M_SESSION); 567 } 568 } 569 570 #include "opt_ddb.h" 571 #ifdef DDB 572 #include <ddb/ddb.h> 573 574 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 575 { 576 register struct pgrp *pgrp; 577 register struct proc *p; 578 register int i; 579 580 for (i = 0; i <= pgrphash; i++) { 581 if (!LIST_EMPTY(&pgrphashtbl[i])) { 582 printf("\tindx %d\n", i); 583 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 584 printf( 585 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 586 (void *)pgrp, (long)pgrp->pg_id, 587 (void *)pgrp->pg_session, 588 pgrp->pg_session->s_count, 589 (void *)LIST_FIRST(&pgrp->pg_members)); 590 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 591 printf("\t\tpid %ld addr %p pgrp %p\n", 592 (long)p->p_pid, (void *)p, 593 (void *)p->p_pgrp); 594 } 595 } 596 } 597 } 598 } 599 #endif /* DDB */ 600 void 601 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 602 603 /* 604 * Fill in a kinfo_proc structure for the specified process. 605 * Must be called with the target process locked. 606 */ 607 void 608 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 609 { 610 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 611 } 612 613 void 614 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 615 { 616 struct proc *p; 617 struct thread *td0; 618 struct ksegrp *kg; 619 struct tty *tp; 620 struct session *sp; 621 struct timeval tv; 622 struct ucred *cred; 623 struct sigacts *ps; 624 625 p = td->td_proc; 626 627 bzero(kp, sizeof(*kp)); 628 629 kp->ki_structsize = sizeof(*kp); 630 kp->ki_paddr = p; 631 PROC_LOCK_ASSERT(p, MA_OWNED); 632 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 633 kp->ki_args = p->p_args; 634 kp->ki_textvp = p->p_textvp; 635 #ifdef KTRACE 636 kp->ki_tracep = p->p_tracevp; 637 mtx_lock(&ktrace_mtx); 638 kp->ki_traceflag = p->p_traceflag; 639 mtx_unlock(&ktrace_mtx); 640 #endif 641 kp->ki_fd = p->p_fd; 642 kp->ki_vmspace = p->p_vmspace; 643 kp->ki_flag = p->p_flag; 644 cred = p->p_ucred; 645 if (cred) { 646 kp->ki_uid = cred->cr_uid; 647 kp->ki_ruid = cred->cr_ruid; 648 kp->ki_svuid = cred->cr_svuid; 649 /* XXX bde doesn't like KI_NGROUPS */ 650 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 651 bcopy(cred->cr_groups, kp->ki_groups, 652 kp->ki_ngroups * sizeof(gid_t)); 653 kp->ki_rgid = cred->cr_rgid; 654 kp->ki_svgid = cred->cr_svgid; 655 /* If jailed(cred), emulate the old P_JAILED flag. */ 656 if (jailed(cred)) 657 kp->ki_flag |= P_JAILED; 658 } 659 ps = p->p_sigacts; 660 if (ps) { 661 mtx_lock(&ps->ps_mtx); 662 kp->ki_sigignore = ps->ps_sigignore; 663 kp->ki_sigcatch = ps->ps_sigcatch; 664 mtx_unlock(&ps->ps_mtx); 665 } 666 mtx_lock_spin(&sched_lock); 667 if (p->p_state != PRS_NEW && 668 p->p_state != PRS_ZOMBIE && 669 p->p_vmspace != NULL) { 670 struct vmspace *vm = p->p_vmspace; 671 672 kp->ki_size = vm->vm_map.size; 673 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 674 FOREACH_THREAD_IN_PROC(p, td0) { 675 if (!TD_IS_SWAPPED(td0)) 676 kp->ki_rssize += td0->td_kstack_pages; 677 if (td0->td_altkstack_obj != NULL) 678 kp->ki_rssize += td0->td_altkstack_pages; 679 } 680 kp->ki_swrss = vm->vm_swrss; 681 kp->ki_tsize = vm->vm_tsize; 682 kp->ki_dsize = vm->vm_dsize; 683 kp->ki_ssize = vm->vm_ssize; 684 } 685 kp->ki_sflag = p->p_sflag; 686 kp->ki_swtime = p->p_swtime; 687 kp->ki_pid = p->p_pid; 688 kp->ki_nice = p->p_nice; 689 bintime2timeval(&p->p_rux.rux_runtime, &tv); 690 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 691 if (p->p_state != PRS_ZOMBIE) { 692 #if 0 693 if (td == NULL) { 694 /* XXXKSE: This should never happen. */ 695 printf("fill_kinfo_proc(): pid %d has no threads!\n", 696 p->p_pid); 697 mtx_unlock_spin(&sched_lock); 698 return; 699 } 700 #endif 701 if (td->td_wmesg != NULL) { 702 strlcpy(kp->ki_wmesg, td->td_wmesg, 703 sizeof(kp->ki_wmesg)); 704 } 705 if (TD_ON_LOCK(td)) { 706 kp->ki_kiflag |= KI_LOCKBLOCK; 707 strlcpy(kp->ki_lockname, td->td_lockname, 708 sizeof(kp->ki_lockname)); 709 } 710 711 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 712 if (TD_ON_RUNQ(td) || 713 TD_CAN_RUN(td) || 714 TD_IS_RUNNING(td)) { 715 kp->ki_stat = SRUN; 716 } else if (P_SHOULDSTOP(p)) { 717 kp->ki_stat = SSTOP; 718 } else if (TD_IS_SLEEPING(td)) { 719 kp->ki_stat = SSLEEP; 720 } else if (TD_ON_LOCK(td)) { 721 kp->ki_stat = SLOCK; 722 } else { 723 kp->ki_stat = SWAIT; 724 } 725 } else { 726 kp->ki_stat = SIDL; 727 } 728 729 kg = td->td_ksegrp; 730 731 /* things in the KSE GROUP */ 732 kp->ki_estcpu = kg->kg_estcpu; 733 kp->ki_slptime = kg->kg_slptime; 734 kp->ki_pri.pri_user = kg->kg_user_pri; 735 kp->ki_pri.pri_class = kg->kg_pri_class; 736 737 /* Things in the thread */ 738 kp->ki_wchan = td->td_wchan; 739 kp->ki_pri.pri_level = td->td_priority; 740 kp->ki_pri.pri_native = td->td_base_pri; 741 kp->ki_lastcpu = td->td_lastcpu; 742 kp->ki_oncpu = td->td_oncpu; 743 kp->ki_tdflags = td->td_flags; 744 kp->ki_tid = td->td_tid; 745 kp->ki_numthreads = p->p_numthreads; 746 kp->ki_pcb = td->td_pcb; 747 kp->ki_kstack = (void *)td->td_kstack; 748 kp->ki_pctcpu = sched_pctcpu(td); 749 750 /* We can't get this anymore but ps etc never used it anyway. */ 751 kp->ki_rqindex = 0; 752 753 } else { 754 kp->ki_stat = SZOMB; 755 } 756 mtx_unlock_spin(&sched_lock); 757 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 758 kp->ki_start = p->p_stats->p_start; 759 timevaladd(&kp->ki_start, &boottime); 760 kp->ki_rusage = p->p_stats->p_ru; 761 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 762 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 763 764 /* Some callers want child-times in a single value */ 765 kp->ki_childtime = kp->ki_childstime; 766 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 767 } 768 tp = NULL; 769 if (p->p_pgrp) { 770 kp->ki_pgid = p->p_pgrp->pg_id; 771 kp->ki_jobc = p->p_pgrp->pg_jobc; 772 sp = p->p_pgrp->pg_session; 773 774 if (sp != NULL) { 775 kp->ki_sid = sp->s_sid; 776 SESS_LOCK(sp); 777 strlcpy(kp->ki_login, sp->s_login, 778 sizeof(kp->ki_login)); 779 if (sp->s_ttyvp) 780 kp->ki_kiflag |= KI_CTTY; 781 if (SESS_LEADER(p)) 782 kp->ki_kiflag |= KI_SLEADER; 783 tp = sp->s_ttyp; 784 SESS_UNLOCK(sp); 785 } 786 } 787 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 788 kp->ki_tdev = dev2udev(tp->t_dev); 789 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 790 if (tp->t_session) 791 kp->ki_tsid = tp->t_session->s_sid; 792 } else 793 kp->ki_tdev = NODEV; 794 if (p->p_comm[0] != '\0') { 795 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 796 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 797 } 798 if (p->p_sysent && p->p_sysent->sv_name != NULL && 799 p->p_sysent->sv_name[0] != '\0') 800 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 801 kp->ki_siglist = p->p_siglist; 802 SIGSETOR(kp->ki_siglist, td->td_siglist); 803 kp->ki_sigmask = td->td_sigmask; 804 kp->ki_xstat = p->p_xstat; 805 kp->ki_acflag = p->p_acflag; 806 kp->ki_lock = p->p_lock; 807 if (p->p_pptr) 808 kp->ki_ppid = p->p_pptr->p_pid; 809 } 810 811 struct pstats * 812 pstats_alloc(void) 813 { 814 815 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 816 } 817 818 /* 819 * Copy parts of p_stats; zero the rest of p_stats (statistics). 820 */ 821 void 822 pstats_fork(struct pstats *src, struct pstats *dst) 823 { 824 825 bzero(&dst->pstat_startzero, 826 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 827 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 828 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 829 } 830 831 void 832 pstats_free(struct pstats *ps) 833 { 834 835 free(ps, M_SUBPROC); 836 } 837 838 /* 839 * Locate a zombie process by number 840 */ 841 struct proc * 842 zpfind(pid_t pid) 843 { 844 struct proc *p; 845 846 sx_slock(&allproc_lock); 847 LIST_FOREACH(p, &zombproc, p_list) 848 if (p->p_pid == pid) { 849 PROC_LOCK(p); 850 break; 851 } 852 sx_sunlock(&allproc_lock); 853 return (p); 854 } 855 856 #define KERN_PROC_ZOMBMASK 0x3 857 #define KERN_PROC_NOTHREADS 0x4 858 859 /* 860 * Must be called with the process locked and will return with it unlocked. 861 */ 862 static int 863 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 864 { 865 struct thread *td; 866 struct kinfo_proc kinfo_proc; 867 int error = 0; 868 struct proc *np; 869 pid_t pid = p->p_pid; 870 871 PROC_LOCK_ASSERT(p, MA_OWNED); 872 873 if (flags & KERN_PROC_NOTHREADS) { 874 fill_kinfo_proc(p, &kinfo_proc); 875 PROC_UNLOCK(p); 876 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 877 sizeof(kinfo_proc)); 878 PROC_LOCK(p); 879 } else { 880 _PHOLD(p); 881 FOREACH_THREAD_IN_PROC(p, td) { 882 fill_kinfo_thread(td, &kinfo_proc); 883 PROC_UNLOCK(p); 884 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 885 sizeof(kinfo_proc)); 886 PROC_LOCK(p); 887 if (error) 888 break; 889 } 890 _PRELE(p); 891 } 892 PROC_UNLOCK(p); 893 if (error) 894 return (error); 895 if (flags & KERN_PROC_ZOMBMASK) 896 np = zpfind(pid); 897 else { 898 if (pid == 0) 899 return (0); 900 np = pfind(pid); 901 } 902 if (np == NULL) 903 return EAGAIN; 904 if (np != p) { 905 PROC_UNLOCK(np); 906 return EAGAIN; 907 } 908 PROC_UNLOCK(np); 909 return (0); 910 } 911 912 static int 913 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 914 { 915 int *name = (int*) arg1; 916 u_int namelen = arg2; 917 struct proc *p; 918 int flags, doingzomb, oid_number; 919 int error = 0; 920 921 oid_number = oidp->oid_number; 922 if (oid_number != KERN_PROC_ALL && 923 (oid_number & KERN_PROC_INC_THREAD) == 0) 924 flags = KERN_PROC_NOTHREADS; 925 else { 926 flags = 0; 927 oid_number &= ~KERN_PROC_INC_THREAD; 928 } 929 if (oid_number == KERN_PROC_PID) { 930 if (namelen != 1) 931 return (EINVAL); 932 p = pfind((pid_t)name[0]); 933 if (!p) 934 return (ESRCH); 935 if ((error = p_cansee(curthread, p))) { 936 PROC_UNLOCK(p); 937 return (error); 938 } 939 error = sysctl_out_proc(p, req, flags); 940 return (error); 941 } 942 943 switch (oid_number) { 944 case KERN_PROC_ALL: 945 if (namelen != 0) 946 return (EINVAL); 947 break; 948 case KERN_PROC_PROC: 949 if (namelen != 0 && namelen != 1) 950 return (EINVAL); 951 break; 952 default: 953 if (namelen != 1) 954 return (EINVAL); 955 break; 956 } 957 958 if (!req->oldptr) { 959 /* overestimate by 5 procs */ 960 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 961 if (error) 962 return (error); 963 } 964 error = sysctl_wire_old_buffer(req, 0); 965 if (error != 0) 966 return (error); 967 sx_slock(&allproc_lock); 968 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 969 if (!doingzomb) 970 p = LIST_FIRST(&allproc); 971 else 972 p = LIST_FIRST(&zombproc); 973 for (; p != 0; p = LIST_NEXT(p, p_list)) { 974 /* 975 * Skip embryonic processes. 976 */ 977 mtx_lock_spin(&sched_lock); 978 if (p->p_state == PRS_NEW) { 979 mtx_unlock_spin(&sched_lock); 980 continue; 981 } 982 mtx_unlock_spin(&sched_lock); 983 PROC_LOCK(p); 984 /* 985 * Show a user only appropriate processes. 986 */ 987 if (p_cansee(curthread, p)) { 988 PROC_UNLOCK(p); 989 continue; 990 } 991 /* 992 * TODO - make more efficient (see notes below). 993 * do by session. 994 */ 995 switch (oid_number) { 996 997 case KERN_PROC_GID: 998 if (p->p_ucred == NULL || 999 p->p_ucred->cr_gid != (gid_t)name[0]) { 1000 PROC_UNLOCK(p); 1001 continue; 1002 } 1003 break; 1004 1005 case KERN_PROC_PGRP: 1006 /* could do this by traversing pgrp */ 1007 if (p->p_pgrp == NULL || 1008 p->p_pgrp->pg_id != (pid_t)name[0]) { 1009 PROC_UNLOCK(p); 1010 continue; 1011 } 1012 break; 1013 1014 case KERN_PROC_RGID: 1015 if (p->p_ucred == NULL || 1016 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1017 PROC_UNLOCK(p); 1018 continue; 1019 } 1020 break; 1021 1022 case KERN_PROC_SESSION: 1023 if (p->p_session == NULL || 1024 p->p_session->s_sid != (pid_t)name[0]) { 1025 PROC_UNLOCK(p); 1026 continue; 1027 } 1028 break; 1029 1030 case KERN_PROC_TTY: 1031 if ((p->p_flag & P_CONTROLT) == 0 || 1032 p->p_session == NULL) { 1033 PROC_UNLOCK(p); 1034 continue; 1035 } 1036 SESS_LOCK(p->p_session); 1037 if (p->p_session->s_ttyp == NULL || 1038 dev2udev(p->p_session->s_ttyp->t_dev) != 1039 (dev_t)name[0]) { 1040 SESS_UNLOCK(p->p_session); 1041 PROC_UNLOCK(p); 1042 continue; 1043 } 1044 SESS_UNLOCK(p->p_session); 1045 break; 1046 1047 case KERN_PROC_UID: 1048 if (p->p_ucred == NULL || 1049 p->p_ucred->cr_uid != (uid_t)name[0]) { 1050 PROC_UNLOCK(p); 1051 continue; 1052 } 1053 break; 1054 1055 case KERN_PROC_RUID: 1056 if (p->p_ucred == NULL || 1057 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1058 PROC_UNLOCK(p); 1059 continue; 1060 } 1061 break; 1062 1063 case KERN_PROC_PROC: 1064 break; 1065 1066 default: 1067 break; 1068 1069 } 1070 1071 error = sysctl_out_proc(p, req, flags | doingzomb); 1072 if (error) { 1073 sx_sunlock(&allproc_lock); 1074 return (error); 1075 } 1076 } 1077 } 1078 sx_sunlock(&allproc_lock); 1079 return (0); 1080 } 1081 1082 struct pargs * 1083 pargs_alloc(int len) 1084 { 1085 struct pargs *pa; 1086 1087 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1088 M_WAITOK); 1089 pa->ar_ref = 1; 1090 pa->ar_length = len; 1091 return (pa); 1092 } 1093 1094 void 1095 pargs_free(struct pargs *pa) 1096 { 1097 1098 FREE(pa, M_PARGS); 1099 } 1100 1101 void 1102 pargs_hold(struct pargs *pa) 1103 { 1104 1105 if (pa == NULL) 1106 return; 1107 PARGS_LOCK(pa); 1108 pa->ar_ref++; 1109 PARGS_UNLOCK(pa); 1110 } 1111 1112 void 1113 pargs_drop(struct pargs *pa) 1114 { 1115 1116 if (pa == NULL) 1117 return; 1118 PARGS_LOCK(pa); 1119 if (--pa->ar_ref == 0) { 1120 PARGS_UNLOCK(pa); 1121 pargs_free(pa); 1122 } else 1123 PARGS_UNLOCK(pa); 1124 } 1125 1126 /* 1127 * This sysctl allows a process to retrieve the argument list or process 1128 * title for another process without groping around in the address space 1129 * of the other process. It also allow a process to set its own "process 1130 * title to a string of its own choice. 1131 */ 1132 static int 1133 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1134 { 1135 int *name = (int*) arg1; 1136 u_int namelen = arg2; 1137 struct pargs *newpa, *pa; 1138 struct proc *p; 1139 int error = 0; 1140 1141 if (namelen != 1) 1142 return (EINVAL); 1143 1144 p = pfind((pid_t)name[0]); 1145 if (!p) 1146 return (ESRCH); 1147 1148 if ((error = p_cansee(curthread, p)) != 0) { 1149 PROC_UNLOCK(p); 1150 return (error); 1151 } 1152 1153 if (req->newptr && curproc != p) { 1154 PROC_UNLOCK(p); 1155 return (EPERM); 1156 } 1157 1158 pa = p->p_args; 1159 pargs_hold(pa); 1160 PROC_UNLOCK(p); 1161 if (req->oldptr != NULL && pa != NULL) 1162 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1163 pargs_drop(pa); 1164 if (error != 0 || req->newptr == NULL) 1165 return (error); 1166 1167 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1168 return (ENOMEM); 1169 newpa = pargs_alloc(req->newlen); 1170 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1171 if (error != 0) { 1172 pargs_free(newpa); 1173 return (error); 1174 } 1175 PROC_LOCK(p); 1176 pa = p->p_args; 1177 p->p_args = newpa; 1178 PROC_UNLOCK(p); 1179 pargs_drop(pa); 1180 return (0); 1181 } 1182 1183 static int 1184 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1185 { 1186 struct proc *p; 1187 char *sv_name; 1188 int *name; 1189 int namelen; 1190 int error; 1191 1192 namelen = arg2; 1193 if (namelen != 1) 1194 return (EINVAL); 1195 1196 name = (int *)arg1; 1197 if ((p = pfind((pid_t)name[0])) == NULL) 1198 return (ESRCH); 1199 if ((error = p_cansee(curthread, p))) { 1200 PROC_UNLOCK(p); 1201 return (error); 1202 } 1203 sv_name = p->p_sysent->sv_name; 1204 PROC_UNLOCK(p); 1205 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1206 } 1207 1208 1209 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1210 1211 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1212 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1213 1214 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1215 sysctl_kern_proc, "Process table"); 1216 1217 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1218 sysctl_kern_proc, "Process table"); 1219 1220 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1221 sysctl_kern_proc, "Process table"); 1222 1223 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1224 sysctl_kern_proc, "Process table"); 1225 1226 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1227 sysctl_kern_proc, "Process table"); 1228 1229 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1230 sysctl_kern_proc, "Process table"); 1231 1232 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1233 sysctl_kern_proc, "Process table"); 1234 1235 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1236 sysctl_kern_proc, "Process table"); 1237 1238 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1239 sysctl_kern_proc, "Return process table, no threads"); 1240 1241 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1242 CTLFLAG_RW | CTLFLAG_ANYBODY, 1243 sysctl_kern_proc_args, "Process argument list"); 1244 1245 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1246 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1247 1248 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1249 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1250 1251 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1252 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1253 1254 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1255 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1256 1257 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1258 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1259 1260 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1261 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1262 1263 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1264 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1265 1266 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1267 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1268 1269 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1270 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1271 1272 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1273 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1274