xref: /freebsd/sys/kern/kern_proc.c (revision c68159a6d8eede11766cf13896d0f7670dbd51aa)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
34  * $FreeBSD$
35  */
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/sysctl.h>
41 #include <sys/malloc.h>
42 #include <sys/proc.h>
43 #include <sys/filedesc.h>
44 #include <sys/tty.h>
45 #include <sys/signalvar.h>
46 #include <vm/vm.h>
47 #include <sys/lock.h>
48 #include <vm/pmap.h>
49 #include <vm/vm_map.h>
50 #include <sys/user.h>
51 #include <vm/vm_zone.h>
52 
53 static MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
54 MALLOC_DEFINE(M_SESSION, "session", "session header");
55 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
56 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
57 
58 int ps_showallprocs = 1;
59 SYSCTL_INT(_kern, OID_AUTO, ps_showallprocs, CTLFLAG_RW,
60     &ps_showallprocs, 0, "");
61 
62 static void pgdelete	__P((struct pgrp *));
63 
64 static void	orphanpg __P((struct pgrp *pg));
65 
66 /*
67  * Other process lists
68  */
69 struct pidhashhead *pidhashtbl;
70 u_long pidhash;
71 struct pgrphashhead *pgrphashtbl;
72 u_long pgrphash;
73 struct proclist allproc;
74 struct proclist zombproc;
75 struct lock allproc_lock;
76 struct lock proctree_lock;
77 vm_zone_t proc_zone;
78 vm_zone_t ithread_zone;
79 
80 /*
81  * Initialize global process hashing structures.
82  */
83 void
84 procinit()
85 {
86 
87 	lockinit(&allproc_lock, PZERO, "allproc", 0, 0);
88 	lockinit(&proctree_lock, PZERO, "proctree", 0, 0);
89 	LIST_INIT(&allproc);
90 	LIST_INIT(&zombproc);
91 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
92 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
93 	proc_zone = zinit("PROC", sizeof (struct proc), 0, 0, 5);
94 	uihashinit();
95 	/*
96 	 * This should really be a compile time warning, but I do
97 	 * not know of any way to do that...
98 	 */
99 	if (sizeof(struct kinfo_proc) != KINFO_PROC_SIZE)
100 		printf("WARNING: size of kinfo_proc (%d) should be %d!!!\n",
101 			sizeof(struct kinfo_proc), KINFO_PROC_SIZE);
102 }
103 
104 /*
105  * Is p an inferior of the current process?
106  */
107 int
108 inferior(p)
109 	register struct proc *p;
110 {
111 	int rval = 1;
112 
113 	PROCTREE_LOCK(PT_SHARED);
114 	for (; p != curproc; p = p->p_pptr)
115 		if (p->p_pid == 0) {
116 			rval = 0;
117 			break;
118 		}
119 	PROCTREE_LOCK(PT_RELEASE);
120 	return (rval);
121 }
122 
123 /*
124  * Locate a process by number
125  */
126 struct proc *
127 pfind(pid)
128 	register pid_t pid;
129 {
130 	register struct proc *p;
131 
132 	ALLPROC_LOCK(AP_SHARED);
133 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
134 		if (p->p_pid == pid)
135 			break;
136 	ALLPROC_LOCK(AP_RELEASE);
137 	return (p);
138 }
139 
140 /*
141  * Locate a process group by number
142  */
143 struct pgrp *
144 pgfind(pgid)
145 	register pid_t pgid;
146 {
147 	register struct pgrp *pgrp;
148 
149 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash)
150 		if (pgrp->pg_id == pgid)
151 			return (pgrp);
152 	return (NULL);
153 }
154 
155 /*
156  * Move p to a new or existing process group (and session)
157  */
158 int
159 enterpgrp(p, pgid, mksess)
160 	register struct proc *p;
161 	pid_t pgid;
162 	int mksess;
163 {
164 	register struct pgrp *pgrp = pgfind(pgid);
165 
166 	KASSERT(pgrp == NULL || !mksess,
167 	    ("enterpgrp: setsid into non-empty pgrp"));
168 	KASSERT(!SESS_LEADER(p),
169 	    ("enterpgrp: session leader attempted setpgrp"));
170 
171 	if (pgrp == NULL) {
172 		pid_t savepid = p->p_pid;
173 		struct proc *np;
174 		/*
175 		 * new process group
176 		 */
177 		KASSERT(p->p_pid == pgid,
178 		    ("enterpgrp: new pgrp and pid != pgid"));
179 		MALLOC(pgrp, struct pgrp *, sizeof(struct pgrp), M_PGRP,
180 		    M_WAITOK);
181 		if ((np = pfind(savepid)) == NULL || np != p)
182 			return (ESRCH);
183 		if (mksess) {
184 			register struct session *sess;
185 
186 			/*
187 			 * new session
188 			 */
189 			MALLOC(sess, struct session *, sizeof(struct session),
190 			    M_SESSION, M_WAITOK);
191 			sess->s_leader = p;
192 			sess->s_sid = p->p_pid;
193 			sess->s_count = 1;
194 			sess->s_ttyvp = NULL;
195 			sess->s_ttyp = NULL;
196 			bcopy(p->p_session->s_login, sess->s_login,
197 			    sizeof(sess->s_login));
198 			p->p_flag &= ~P_CONTROLT;
199 			pgrp->pg_session = sess;
200 			KASSERT(p == curproc,
201 			    ("enterpgrp: mksession and p != curproc"));
202 		} else {
203 			pgrp->pg_session = p->p_session;
204 			pgrp->pg_session->s_count++;
205 		}
206 		pgrp->pg_id = pgid;
207 		LIST_INIT(&pgrp->pg_members);
208 		LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
209 		pgrp->pg_jobc = 0;
210 		SLIST_INIT(&pgrp->pg_sigiolst);
211 	} else if (pgrp == p->p_pgrp)
212 		return (0);
213 
214 	/*
215 	 * Adjust eligibility of affected pgrps to participate in job control.
216 	 * Increment eligibility counts before decrementing, otherwise we
217 	 * could reach 0 spuriously during the first call.
218 	 */
219 	fixjobc(p, pgrp, 1);
220 	fixjobc(p, p->p_pgrp, 0);
221 
222 	LIST_REMOVE(p, p_pglist);
223 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
224 		pgdelete(p->p_pgrp);
225 	p->p_pgrp = pgrp;
226 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
227 	return (0);
228 }
229 
230 /*
231  * remove process from process group
232  */
233 int
234 leavepgrp(p)
235 	register struct proc *p;
236 {
237 
238 	LIST_REMOVE(p, p_pglist);
239 	if (LIST_EMPTY(&p->p_pgrp->pg_members))
240 		pgdelete(p->p_pgrp);
241 	p->p_pgrp = 0;
242 	return (0);
243 }
244 
245 /*
246  * delete a process group
247  */
248 static void
249 pgdelete(pgrp)
250 	register struct pgrp *pgrp;
251 {
252 
253 	/*
254 	 * Reset any sigio structures pointing to us as a result of
255 	 * F_SETOWN with our pgid.
256 	 */
257 	funsetownlst(&pgrp->pg_sigiolst);
258 
259 	if (pgrp->pg_session->s_ttyp != NULL &&
260 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
261 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
262 	LIST_REMOVE(pgrp, pg_hash);
263 	if (--pgrp->pg_session->s_count == 0)
264 		FREE(pgrp->pg_session, M_SESSION);
265 	FREE(pgrp, M_PGRP);
266 }
267 
268 /*
269  * Adjust pgrp jobc counters when specified process changes process group.
270  * We count the number of processes in each process group that "qualify"
271  * the group for terminal job control (those with a parent in a different
272  * process group of the same session).  If that count reaches zero, the
273  * process group becomes orphaned.  Check both the specified process'
274  * process group and that of its children.
275  * entering == 0 => p is leaving specified group.
276  * entering == 1 => p is entering specified group.
277  */
278 void
279 fixjobc(p, pgrp, entering)
280 	register struct proc *p;
281 	register struct pgrp *pgrp;
282 	int entering;
283 {
284 	register struct pgrp *hispgrp;
285 	register struct session *mysession = pgrp->pg_session;
286 
287 	/*
288 	 * Check p's parent to see whether p qualifies its own process
289 	 * group; if so, adjust count for p's process group.
290 	 */
291 	PROCTREE_LOCK(PT_SHARED);
292 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
293 	    hispgrp->pg_session == mysession) {
294 		if (entering)
295 			pgrp->pg_jobc++;
296 		else if (--pgrp->pg_jobc == 0)
297 			orphanpg(pgrp);
298 	}
299 
300 	/*
301 	 * Check this process' children to see whether they qualify
302 	 * their process groups; if so, adjust counts for children's
303 	 * process groups.
304 	 */
305 	LIST_FOREACH(p, &p->p_children, p_sibling)
306 		if ((hispgrp = p->p_pgrp) != pgrp &&
307 		    hispgrp->pg_session == mysession &&
308 		    p->p_stat != SZOMB) {
309 			if (entering)
310 				hispgrp->pg_jobc++;
311 			else if (--hispgrp->pg_jobc == 0)
312 				orphanpg(hispgrp);
313 		}
314 	PROCTREE_LOCK(PT_RELEASE);
315 }
316 
317 /*
318  * A process group has become orphaned;
319  * if there are any stopped processes in the group,
320  * hang-up all process in that group.
321  */
322 static void
323 orphanpg(pg)
324 	struct pgrp *pg;
325 {
326 	register struct proc *p;
327 
328 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
329 		if (p->p_stat == SSTOP) {
330 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
331 				psignal(p, SIGHUP);
332 				psignal(p, SIGCONT);
333 			}
334 			return;
335 		}
336 	}
337 }
338 
339 #include "opt_ddb.h"
340 #ifdef DDB
341 #include <ddb/ddb.h>
342 
343 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
344 {
345 	register struct pgrp *pgrp;
346 	register struct proc *p;
347 	register int i;
348 
349 	for (i = 0; i <= pgrphash; i++) {
350 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
351 			printf("\tindx %d\n", i);
352 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
353 				printf(
354 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
355 				    (void *)pgrp, (long)pgrp->pg_id,
356 				    (void *)pgrp->pg_session,
357 				    pgrp->pg_session->s_count,
358 				    (void *)LIST_FIRST(&pgrp->pg_members));
359 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
360 					printf("\t\tpid %ld addr %p pgrp %p\n",
361 					    (long)p->p_pid, (void *)p,
362 					    (void *)p->p_pgrp);
363 				}
364 			}
365 		}
366 	}
367 }
368 #endif /* DDB */
369 
370 /*
371  * Fill in an kinfo_proc structure for the specified process.
372  */
373 void
374 fill_kinfo_proc(p, kp)
375 	struct proc *p;
376 	struct kinfo_proc *kp;
377 {
378 	struct tty *tp;
379 	struct session *sp;
380 
381 	bzero(kp, sizeof(*kp));
382 
383 	kp->ki_structsize = sizeof(*kp);
384 	kp->ki_paddr = p;
385 	kp->ki_addr = p->p_addr;
386 	kp->ki_args = p->p_args;
387 	kp->ki_tracep = p->p_tracep;
388 	kp->ki_textvp = p->p_textvp;
389 	kp->ki_fd = p->p_fd;
390 	kp->ki_vmspace = p->p_vmspace;
391 	if (p->p_cred) {
392 		kp->ki_uid = p->p_cred->pc_ucred->cr_uid;
393 		kp->ki_ruid = p->p_cred->p_ruid;
394 		kp->ki_svuid = p->p_cred->p_svuid;
395 		kp->ki_ngroups = p->p_cred->pc_ucred->cr_ngroups;
396 		bcopy(p->p_cred->pc_ucred->cr_groups, kp->ki_groups,
397 		    NGROUPS * sizeof(gid_t));
398 		kp->ki_rgid = p->p_cred->p_rgid;
399 		kp->ki_svgid = p->p_cred->p_svgid;
400 	}
401 	if (p->p_procsig) {
402 		kp->ki_sigignore = p->p_procsig->ps_sigignore;
403 		kp->ki_sigcatch = p->p_procsig->ps_sigcatch;
404 	}
405 	if (p->p_stat != SIDL && p->p_stat != SZOMB && p->p_vmspace != NULL) {
406 		struct vmspace *vm = p->p_vmspace;
407 
408 		kp->ki_size = vm->vm_map.size;
409 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
410 		kp->ki_swrss = vm->vm_swrss;
411 		kp->ki_tsize = vm->vm_tsize;
412 		kp->ki_dsize = vm->vm_dsize;
413 		kp->ki_ssize = vm->vm_ssize;
414 	}
415 	if ((p->p_flag & P_INMEM) && p->p_stats) {
416 		kp->ki_start = p->p_stats->p_start;
417 		kp->ki_rusage = p->p_stats->p_ru;
418 		kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec +
419 		    p->p_stats->p_cru.ru_stime.tv_sec;
420 		kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec +
421 		    p->p_stats->p_cru.ru_stime.tv_usec;
422 	}
423 	kp->ki_rtprio = p->p_rtprio;
424 	kp->ki_runtime = p->p_runtime;
425 	kp->ki_pid = p->p_pid;
426 	PROCTREE_LOCK(PT_SHARED);
427 	if (p->p_pptr)
428 		kp->ki_ppid = p->p_pptr->p_pid;
429 	PROCTREE_LOCK(PT_RELEASE);
430 	sp = NULL;
431 	if (p->p_pgrp) {
432 		kp->ki_pgid = p->p_pgrp->pg_id;
433 		kp->ki_jobc = p->p_pgrp->pg_jobc;
434 		sp = p->p_pgrp->pg_session;
435 
436 		if (sp != NULL) {
437 			kp->ki_sid = sp->s_sid;
438 			bcopy(sp->s_login, kp->ki_login, sizeof(kp->ki_login));
439 			if (sp->s_ttyvp)
440 				kp->ki_kiflag = KI_CTTY;
441 			if (SESS_LEADER(p))
442 				kp->ki_kiflag |= KI_SLEADER;
443 		}
444 	}
445 	if ((p->p_flag & P_CONTROLT) && sp && ((tp = sp->s_ttyp) != NULL)) {
446 		kp->ki_tdev = dev2udev(tp->t_dev);
447 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
448 		if (tp->t_session)
449 			kp->ki_tsid = tp->t_session->s_sid;
450 	} else
451 		kp->ki_tdev = NOUDEV;
452 	if (p->p_wmesg) {
453 		strncpy(kp->ki_wmesg, p->p_wmesg, WMESGLEN);
454 		kp->ki_wmesg[WMESGLEN] = 0;
455 	}
456 	if (p->p_comm[0] != 0) {
457 		strncpy(kp->ki_comm, p->p_comm, MAXCOMLEN);
458 		kp->ki_comm[MAXCOMLEN] = 0;
459 	}
460 	if (p->p_blocked != 0) {
461 		kp->ki_kiflag |= KI_MTXBLOCK;
462 		strncpy(kp->ki_mtxname, p->p_mtxname, MTXNAMELEN);
463 		kp->ki_wmesg[MTXNAMELEN] = 0;
464 	}
465 	kp->ki_siglist = p->p_siglist;
466 	kp->ki_sigmask = p->p_sigmask;
467 	kp->ki_xstat = p->p_xstat;
468 	kp->ki_acflag = p->p_acflag;
469 	kp->ki_pctcpu = p->p_pctcpu;
470 	kp->ki_estcpu = p->p_estcpu;
471 	kp->ki_slptime = p->p_slptime;
472 	kp->ki_swtime = p->p_swtime;
473 	kp->ki_flag = p->p_flag;
474 	kp->ki_wchan = p->p_wchan;
475 	kp->ki_traceflag = p->p_traceflag;
476 	kp->ki_priority = p->p_priority;
477 	kp->ki_usrpri = p->p_usrpri;
478 	kp->ki_nativepri = p->p_nativepri;
479 	kp->ki_stat = p->p_stat;
480 	kp->ki_nice = p->p_nice;
481 	kp->ki_lock = p->p_lock;
482 	kp->ki_rqindex = p->p_rqindex;
483 	kp->ki_oncpu = p->p_oncpu;
484 	kp->ki_lastcpu = p->p_lastcpu;
485 }
486 
487 static struct proc *
488 zpfind(pid_t pid)
489 {
490 	struct proc *p;
491 
492 	ALLPROC_LOCK(AP_SHARED);
493 	LIST_FOREACH(p, &zombproc, p_list)
494 		if (p->p_pid == pid)
495 			break;
496 	ALLPROC_LOCK(AP_RELEASE);
497 	return (p);
498 }
499 
500 
501 static int
502 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb)
503 {
504 	struct kinfo_proc kinfo_proc;
505 	int error;
506 	pid_t pid = p->p_pid;
507 
508 	fill_kinfo_proc(p, &kinfo_proc);
509 	error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc));
510 	if (error)
511 		return (error);
512 	if (!doingzomb && pid && (pfind(pid) != p))
513 		return EAGAIN;
514 	if (doingzomb && zpfind(pid) != p)
515 		return EAGAIN;
516 	return (0);
517 }
518 
519 static int
520 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
521 {
522 	int *name = (int*) arg1;
523 	u_int namelen = arg2;
524 	struct proc *p;
525 	int doingzomb;
526 	int error = 0;
527 
528 	if (oidp->oid_number == KERN_PROC_PID) {
529 		if (namelen != 1)
530 			return (EINVAL);
531 		p = pfind((pid_t)name[0]);
532 		if (!p)
533 			return (0);
534 		if (p_can(curproc, p, P_CAN_SEE, NULL))
535 			return (0);
536 		error = sysctl_out_proc(p, req, 0);
537 		return (error);
538 	}
539 	if (oidp->oid_number == KERN_PROC_ALL && !namelen)
540 		;
541 	else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1)
542 		;
543 	else
544 		return (EINVAL);
545 
546 	if (!req->oldptr) {
547 		/* overestimate by 5 procs */
548 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
549 		if (error)
550 			return (error);
551 	}
552 	ALLPROC_LOCK(AP_SHARED);
553 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
554 		if (!doingzomb)
555 			p = LIST_FIRST(&allproc);
556 		else
557 			p = LIST_FIRST(&zombproc);
558 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
559 			/*
560 			 * Show a user only appropriate processes.
561 			 */
562 			if (p_can(curproc, p, P_CAN_SEE, NULL))
563 				continue;
564 			/*
565 			 * Skip embryonic processes.
566 			 */
567 			if (p->p_stat == SIDL)
568 				continue;
569 			/*
570 			 * TODO - make more efficient (see notes below).
571 			 * do by session.
572 			 */
573 			switch (oidp->oid_number) {
574 
575 			case KERN_PROC_PGRP:
576 				/* could do this by traversing pgrp */
577 				if (p->p_pgrp == NULL ||
578 				    p->p_pgrp->pg_id != (pid_t)name[0])
579 					continue;
580 				break;
581 
582 			case KERN_PROC_TTY:
583 				if ((p->p_flag & P_CONTROLT) == 0 ||
584 				    p->p_session == NULL ||
585 				    p->p_session->s_ttyp == NULL ||
586 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
587 					(udev_t)name[0])
588 					continue;
589 				break;
590 
591 			case KERN_PROC_UID:
592 				if (p->p_ucred == NULL ||
593 				    p->p_ucred->cr_uid != (uid_t)name[0])
594 					continue;
595 				break;
596 
597 			case KERN_PROC_RUID:
598 				if (p->p_ucred == NULL ||
599 				    p->p_cred->p_ruid != (uid_t)name[0])
600 					continue;
601 				break;
602 			}
603 
604 			if (p_can(curproc, p, P_CAN_SEE, NULL))
605 				continue;
606 
607 			error = sysctl_out_proc(p, req, doingzomb);
608 			if (error) {
609 				ALLPROC_LOCK(AP_RELEASE);
610 				return (error);
611 			}
612 		}
613 	}
614 	ALLPROC_LOCK(AP_RELEASE);
615 	return (0);
616 }
617 
618 /*
619  * This sysctl allows a process to retrieve the argument list or process
620  * title for another process without groping around in the address space
621  * of the other process.  It also allow a process to set its own "process
622  * title to a string of its own choice.
623  */
624 static int
625 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
626 {
627 	int *name = (int*) arg1;
628 	u_int namelen = arg2;
629 	struct proc *p;
630 	struct pargs *pa;
631 	int error = 0;
632 
633 	if (namelen != 1)
634 		return (EINVAL);
635 
636 	p = pfind((pid_t)name[0]);
637 	if (!p)
638 		return (0);
639 
640 	if ((!ps_argsopen) && p_can(curproc, p, P_CAN_SEE, NULL))
641 		return (0);
642 
643 	if (req->newptr && curproc != p)
644 		return (EPERM);
645 
646 	if (req->oldptr && p->p_args != NULL)
647 		error = SYSCTL_OUT(req, p->p_args->ar_args, p->p_args->ar_length);
648 	if (req->newptr == NULL)
649 		return (error);
650 
651 	if (p->p_args && --p->p_args->ar_ref == 0)
652 		FREE(p->p_args, M_PARGS);
653 	p->p_args = NULL;
654 
655 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
656 		return (error);
657 
658 	MALLOC(pa, struct pargs *, sizeof(struct pargs) + req->newlen,
659 	    M_PARGS, M_WAITOK);
660 	pa->ar_ref = 1;
661 	pa->ar_length = req->newlen;
662 	error = SYSCTL_IN(req, pa->ar_args, req->newlen);
663 	if (!error)
664 		p->p_args = pa;
665 	else
666 		FREE(pa, M_PARGS);
667 	return (error);
668 }
669 
670 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
671 
672 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
673 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
674 
675 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
676 	sysctl_kern_proc, "Process table");
677 
678 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
679 	sysctl_kern_proc, "Process table");
680 
681 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
682 	sysctl_kern_proc, "Process table");
683 
684 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
685 	sysctl_kern_proc, "Process table");
686 
687 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
688 	sysctl_kern_proc, "Process table");
689 
690 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
691 	sysctl_kern_proc_args, "Process argument list");
692