1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/eventhandler.h> 46 #include <sys/exec.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/proc.h> 57 #include <sys/ptrace.h> 58 #include <sys/refcount.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysent.h> 63 #include <sys/sched.h> 64 #include <sys/smp.h> 65 #include <sys/stack.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_extern.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/uma.h> 89 90 #ifdef COMPAT_FREEBSD32 91 #include <compat/freebsd32/freebsd32.h> 92 #include <compat/freebsd32/freebsd32_util.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(proc); 96 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 97 "int"); 98 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 99 "int"); 100 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 101 "struct thread *"); 102 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 103 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 104 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 105 106 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 107 MALLOC_DEFINE(M_SESSION, "session", "session header"); 108 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 109 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 110 111 static void doenterpgrp(struct proc *, struct pgrp *); 112 static void orphanpg(struct pgrp *pg); 113 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 116 int preferthread); 117 static void pgadjustjobc(struct pgrp *pgrp, int entering); 118 static void pgdelete(struct pgrp *); 119 static int proc_ctor(void *mem, int size, void *arg, int flags); 120 static void proc_dtor(void *mem, int size, void *arg); 121 static int proc_init(void *mem, int size, int flags); 122 static void proc_fini(void *mem, int size); 123 static void pargs_free(struct pargs *pa); 124 static struct proc *zpfind_locked(pid_t pid); 125 126 /* 127 * Other process lists 128 */ 129 struct pidhashhead *pidhashtbl; 130 u_long pidhash; 131 struct pgrphashhead *pgrphashtbl; 132 u_long pgrphash; 133 struct proclist allproc; 134 struct proclist zombproc; 135 struct sx __exclusive_cache_line allproc_lock; 136 struct sx __exclusive_cache_line proctree_lock; 137 struct mtx __exclusive_cache_line ppeers_lock; 138 uma_zone_t proc_zone; 139 140 /* 141 * The offset of various fields in struct proc and struct thread. 142 * These are used by kernel debuggers to enumerate kernel threads and 143 * processes. 144 */ 145 const int proc_off_p_pid = offsetof(struct proc, p_pid); 146 const int proc_off_p_comm = offsetof(struct proc, p_comm); 147 const int proc_off_p_list = offsetof(struct proc, p_list); 148 const int proc_off_p_threads = offsetof(struct proc, p_threads); 149 const int thread_off_td_tid = offsetof(struct thread, td_tid); 150 const int thread_off_td_name = offsetof(struct thread, td_name); 151 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 152 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 153 const int thread_off_td_plist = offsetof(struct thread, td_plist); 154 155 EVENTHANDLER_LIST_DEFINE(process_ctor); 156 EVENTHANDLER_LIST_DEFINE(process_dtor); 157 EVENTHANDLER_LIST_DEFINE(process_init); 158 EVENTHANDLER_LIST_DEFINE(process_fini); 159 EVENTHANDLER_LIST_DEFINE(process_exit); 160 EVENTHANDLER_LIST_DEFINE(process_fork); 161 EVENTHANDLER_LIST_DEFINE(process_exec); 162 163 EVENTHANDLER_LIST_DECLARE(thread_ctor); 164 EVENTHANDLER_LIST_DECLARE(thread_dtor); 165 166 int kstack_pages = KSTACK_PAGES; 167 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 168 "Kernel stack size in pages"); 169 static int vmmap_skip_res_cnt = 0; 170 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 171 &vmmap_skip_res_cnt, 0, 172 "Skip calculation of the pages resident count in kern.proc.vmmap"); 173 174 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 175 #ifdef COMPAT_FREEBSD32 176 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 177 #endif 178 179 /* 180 * Initialize global process hashing structures. 181 */ 182 void 183 procinit(void) 184 { 185 186 sx_init(&allproc_lock, "allproc"); 187 sx_init(&proctree_lock, "proctree"); 188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 189 LIST_INIT(&allproc); 190 LIST_INIT(&zombproc); 191 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 192 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 193 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 194 proc_ctor, proc_dtor, proc_init, proc_fini, 195 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uihashinit(); 197 } 198 199 /* 200 * Prepare a proc for use. 201 */ 202 static int 203 proc_ctor(void *mem, int size, void *arg, int flags) 204 { 205 struct proc *p; 206 struct thread *td; 207 208 p = (struct proc *)mem; 209 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 210 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 211 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 212 td = FIRST_THREAD_IN_PROC(p); 213 if (td != NULL) { 214 /* Make sure all thread constructors are executed */ 215 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 216 } 217 return (0); 218 } 219 220 /* 221 * Reclaim a proc after use. 222 */ 223 static void 224 proc_dtor(void *mem, int size, void *arg) 225 { 226 struct proc *p; 227 struct thread *td; 228 229 /* INVARIANTS checks go here */ 230 p = (struct proc *)mem; 231 td = FIRST_THREAD_IN_PROC(p); 232 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 233 if (td != NULL) { 234 #ifdef INVARIANTS 235 KASSERT((p->p_numthreads == 1), 236 ("bad number of threads in exiting process")); 237 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 238 #endif 239 /* Free all OSD associated to this thread. */ 240 osd_thread_exit(td); 241 td_softdep_cleanup(td); 242 MPASS(td->td_su == NULL); 243 244 /* Make sure all thread destructors are executed */ 245 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 246 } 247 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 248 if (p->p_ksi != NULL) 249 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 250 SDT_PROBE3(proc, , dtor, return, p, size, arg); 251 } 252 253 /* 254 * Initialize type-stable parts of a proc (when newly created). 255 */ 256 static int 257 proc_init(void *mem, int size, int flags) 258 { 259 struct proc *p; 260 261 p = (struct proc *)mem; 262 SDT_PROBE3(proc, , init, entry, p, size, flags); 263 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 264 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 265 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 267 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 268 cv_init(&p->p_pwait, "ppwait"); 269 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 270 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 271 p->p_stats = pstats_alloc(); 272 p->p_pgrp = NULL; 273 SDT_PROBE3(proc, , init, return, p, size, flags); 274 return (0); 275 } 276 277 /* 278 * UMA should ensure that this function is never called. 279 * Freeing a proc structure would violate type stability. 280 */ 281 static void 282 proc_fini(void *mem, int size) 283 { 284 #ifdef notnow 285 struct proc *p; 286 287 p = (struct proc *)mem; 288 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 289 pstats_free(p->p_stats); 290 thread_free(FIRST_THREAD_IN_PROC(p)); 291 mtx_destroy(&p->p_mtx); 292 if (p->p_ksi != NULL) 293 ksiginfo_free(p->p_ksi); 294 #else 295 panic("proc reclaimed"); 296 #endif 297 } 298 299 /* 300 * Is p an inferior of the current process? 301 */ 302 int 303 inferior(struct proc *p) 304 { 305 306 sx_assert(&proctree_lock, SX_LOCKED); 307 PROC_LOCK_ASSERT(p, MA_OWNED); 308 for (; p != curproc; p = proc_realparent(p)) { 309 if (p->p_pid == 0) 310 return (0); 311 } 312 return (1); 313 } 314 315 struct proc * 316 pfind_locked(pid_t pid) 317 { 318 struct proc *p; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 322 if (p->p_pid == pid) { 323 PROC_LOCK(p); 324 if (p->p_state == PRS_NEW) { 325 PROC_UNLOCK(p); 326 p = NULL; 327 } 328 break; 329 } 330 } 331 return (p); 332 } 333 334 /* 335 * Locate a process by number; return only "live" processes -- i.e., neither 336 * zombies nor newly born but incompletely initialized processes. By not 337 * returning processes in the PRS_NEW state, we allow callers to avoid 338 * testing for that condition to avoid dereferencing p_ucred, et al. 339 */ 340 struct proc * 341 pfind(pid_t pid) 342 { 343 struct proc *p; 344 345 p = curproc; 346 if (p->p_pid == pid) { 347 PROC_LOCK(p); 348 return (p); 349 } 350 sx_slock(&allproc_lock); 351 p = pfind_locked(pid); 352 sx_sunlock(&allproc_lock); 353 return (p); 354 } 355 356 /* 357 * Same as pfind but allow zombies. 358 */ 359 struct proc * 360 pfind_any(pid_t pid) 361 { 362 struct proc *p; 363 364 sx_slock(&allproc_lock); 365 p = pfind_locked(pid); 366 if (p == NULL) 367 p = zpfind_locked(pid); 368 sx_sunlock(&allproc_lock); 369 370 return (p); 371 } 372 373 static struct proc * 374 pfind_tid_locked(pid_t tid) 375 { 376 struct proc *p; 377 struct thread *td; 378 379 sx_assert(&allproc_lock, SX_LOCKED); 380 FOREACH_PROC_IN_SYSTEM(p) { 381 PROC_LOCK(p); 382 if (p->p_state == PRS_NEW) { 383 PROC_UNLOCK(p); 384 continue; 385 } 386 FOREACH_THREAD_IN_PROC(p, td) { 387 if (td->td_tid == tid) 388 goto found; 389 } 390 PROC_UNLOCK(p); 391 } 392 found: 393 return (p); 394 } 395 396 /* 397 * Locate a process group by number. 398 * The caller must hold proctree_lock. 399 */ 400 struct pgrp * 401 pgfind(pid_t pgid) 402 { 403 struct pgrp *pgrp; 404 405 sx_assert(&proctree_lock, SX_LOCKED); 406 407 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 408 if (pgrp->pg_id == pgid) { 409 PGRP_LOCK(pgrp); 410 return (pgrp); 411 } 412 } 413 return (NULL); 414 } 415 416 /* 417 * Locate process and do additional manipulations, depending on flags. 418 */ 419 int 420 pget(pid_t pid, int flags, struct proc **pp) 421 { 422 struct proc *p; 423 int error; 424 425 p = curproc; 426 if (p->p_pid == pid) { 427 PROC_LOCK(p); 428 } else { 429 sx_slock(&allproc_lock); 430 if (pid <= PID_MAX) { 431 p = pfind_locked(pid); 432 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 433 p = zpfind_locked(pid); 434 } else if ((flags & PGET_NOTID) == 0) { 435 p = pfind_tid_locked(pid); 436 } else { 437 p = NULL; 438 } 439 sx_sunlock(&allproc_lock); 440 if (p == NULL) 441 return (ESRCH); 442 if ((flags & PGET_CANSEE) != 0) { 443 error = p_cansee(curthread, p); 444 if (error != 0) 445 goto errout; 446 } 447 } 448 if ((flags & PGET_CANDEBUG) != 0) { 449 error = p_candebug(curthread, p); 450 if (error != 0) 451 goto errout; 452 } 453 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 454 error = EPERM; 455 goto errout; 456 } 457 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 458 error = ESRCH; 459 goto errout; 460 } 461 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 462 /* 463 * XXXRW: Not clear ESRCH is the right error during proc 464 * execve(). 465 */ 466 error = ESRCH; 467 goto errout; 468 } 469 if ((flags & PGET_HOLD) != 0) { 470 _PHOLD(p); 471 PROC_UNLOCK(p); 472 } 473 *pp = p; 474 return (0); 475 errout: 476 PROC_UNLOCK(p); 477 return (error); 478 } 479 480 /* 481 * Create a new process group. 482 * pgid must be equal to the pid of p. 483 * Begin a new session if required. 484 */ 485 int 486 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 487 { 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 491 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 492 KASSERT(p->p_pid == pgid, 493 ("enterpgrp: new pgrp and pid != pgid")); 494 KASSERT(pgfind(pgid) == NULL, 495 ("enterpgrp: pgrp with pgid exists")); 496 KASSERT(!SESS_LEADER(p), 497 ("enterpgrp: session leader attempted setpgrp")); 498 499 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 500 501 if (sess != NULL) { 502 /* 503 * new session 504 */ 505 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 506 PROC_LOCK(p); 507 p->p_flag &= ~P_CONTROLT; 508 PROC_UNLOCK(p); 509 PGRP_LOCK(pgrp); 510 sess->s_leader = p; 511 sess->s_sid = p->p_pid; 512 refcount_init(&sess->s_count, 1); 513 sess->s_ttyvp = NULL; 514 sess->s_ttydp = NULL; 515 sess->s_ttyp = NULL; 516 bcopy(p->p_session->s_login, sess->s_login, 517 sizeof(sess->s_login)); 518 pgrp->pg_session = sess; 519 KASSERT(p == curproc, 520 ("enterpgrp: mksession and p != curproc")); 521 } else { 522 pgrp->pg_session = p->p_session; 523 sess_hold(pgrp->pg_session); 524 PGRP_LOCK(pgrp); 525 } 526 pgrp->pg_id = pgid; 527 LIST_INIT(&pgrp->pg_members); 528 529 /* 530 * As we have an exclusive lock of proctree_lock, 531 * this should not deadlock. 532 */ 533 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 534 pgrp->pg_jobc = 0; 535 SLIST_INIT(&pgrp->pg_sigiolst); 536 PGRP_UNLOCK(pgrp); 537 538 doenterpgrp(p, pgrp); 539 540 return (0); 541 } 542 543 /* 544 * Move p to an existing process group 545 */ 546 int 547 enterthispgrp(struct proc *p, struct pgrp *pgrp) 548 { 549 550 sx_assert(&proctree_lock, SX_XLOCKED); 551 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 552 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 553 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 554 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 555 KASSERT(pgrp->pg_session == p->p_session, 556 ("%s: pgrp's session %p, p->p_session %p.\n", 557 __func__, 558 pgrp->pg_session, 559 p->p_session)); 560 KASSERT(pgrp != p->p_pgrp, 561 ("%s: p belongs to pgrp.", __func__)); 562 563 doenterpgrp(p, pgrp); 564 565 return (0); 566 } 567 568 /* 569 * Move p to a process group 570 */ 571 static void 572 doenterpgrp(struct proc *p, struct pgrp *pgrp) 573 { 574 struct pgrp *savepgrp; 575 576 sx_assert(&proctree_lock, SX_XLOCKED); 577 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 578 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 579 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 580 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 581 582 savepgrp = p->p_pgrp; 583 584 /* 585 * Adjust eligibility of affected pgrps to participate in job control. 586 * Increment eligibility counts before decrementing, otherwise we 587 * could reach 0 spuriously during the first call. 588 */ 589 fixjobc(p, pgrp, 1); 590 fixjobc(p, p->p_pgrp, 0); 591 592 PGRP_LOCK(pgrp); 593 PGRP_LOCK(savepgrp); 594 PROC_LOCK(p); 595 LIST_REMOVE(p, p_pglist); 596 p->p_pgrp = pgrp; 597 PROC_UNLOCK(p); 598 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 599 PGRP_UNLOCK(savepgrp); 600 PGRP_UNLOCK(pgrp); 601 if (LIST_EMPTY(&savepgrp->pg_members)) 602 pgdelete(savepgrp); 603 } 604 605 /* 606 * remove process from process group 607 */ 608 int 609 leavepgrp(struct proc *p) 610 { 611 struct pgrp *savepgrp; 612 613 sx_assert(&proctree_lock, SX_XLOCKED); 614 savepgrp = p->p_pgrp; 615 PGRP_LOCK(savepgrp); 616 PROC_LOCK(p); 617 LIST_REMOVE(p, p_pglist); 618 p->p_pgrp = NULL; 619 PROC_UNLOCK(p); 620 PGRP_UNLOCK(savepgrp); 621 if (LIST_EMPTY(&savepgrp->pg_members)) 622 pgdelete(savepgrp); 623 return (0); 624 } 625 626 /* 627 * delete a process group 628 */ 629 static void 630 pgdelete(struct pgrp *pgrp) 631 { 632 struct session *savesess; 633 struct tty *tp; 634 635 sx_assert(&proctree_lock, SX_XLOCKED); 636 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 637 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 638 639 /* 640 * Reset any sigio structures pointing to us as a result of 641 * F_SETOWN with our pgid. 642 */ 643 funsetownlst(&pgrp->pg_sigiolst); 644 645 PGRP_LOCK(pgrp); 646 tp = pgrp->pg_session->s_ttyp; 647 LIST_REMOVE(pgrp, pg_hash); 648 savesess = pgrp->pg_session; 649 PGRP_UNLOCK(pgrp); 650 651 /* Remove the reference to the pgrp before deallocating it. */ 652 if (tp != NULL) { 653 tty_lock(tp); 654 tty_rel_pgrp(tp, pgrp); 655 } 656 657 mtx_destroy(&pgrp->pg_mtx); 658 free(pgrp, M_PGRP); 659 sess_release(savesess); 660 } 661 662 static void 663 pgadjustjobc(struct pgrp *pgrp, int entering) 664 { 665 666 PGRP_LOCK(pgrp); 667 if (entering) 668 pgrp->pg_jobc++; 669 else { 670 --pgrp->pg_jobc; 671 if (pgrp->pg_jobc == 0) 672 orphanpg(pgrp); 673 } 674 PGRP_UNLOCK(pgrp); 675 } 676 677 /* 678 * Adjust pgrp jobc counters when specified process changes process group. 679 * We count the number of processes in each process group that "qualify" 680 * the group for terminal job control (those with a parent in a different 681 * process group of the same session). If that count reaches zero, the 682 * process group becomes orphaned. Check both the specified process' 683 * process group and that of its children. 684 * entering == 0 => p is leaving specified group. 685 * entering == 1 => p is entering specified group. 686 */ 687 void 688 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 689 { 690 struct pgrp *hispgrp; 691 struct session *mysession; 692 struct proc *q; 693 694 sx_assert(&proctree_lock, SX_LOCKED); 695 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 696 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 697 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 698 699 /* 700 * Check p's parent to see whether p qualifies its own process 701 * group; if so, adjust count for p's process group. 702 */ 703 mysession = pgrp->pg_session; 704 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 705 hispgrp->pg_session == mysession) 706 pgadjustjobc(pgrp, entering); 707 708 /* 709 * Check this process' children to see whether they qualify 710 * their process groups; if so, adjust counts for children's 711 * process groups. 712 */ 713 LIST_FOREACH(q, &p->p_children, p_sibling) { 714 hispgrp = q->p_pgrp; 715 if (hispgrp == pgrp || 716 hispgrp->pg_session != mysession) 717 continue; 718 if (q->p_state == PRS_ZOMBIE) 719 continue; 720 pgadjustjobc(hispgrp, entering); 721 } 722 } 723 724 void 725 killjobc(void) 726 { 727 struct session *sp; 728 struct tty *tp; 729 struct proc *p; 730 struct vnode *ttyvp; 731 732 p = curproc; 733 MPASS(p->p_flag & P_WEXIT); 734 /* 735 * Do a quick check to see if there is anything to do with the 736 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 737 */ 738 PROC_LOCK(p); 739 if (!SESS_LEADER(p) && 740 (p->p_pgrp == p->p_pptr->p_pgrp) && 741 LIST_EMPTY(&p->p_children)) { 742 PROC_UNLOCK(p); 743 return; 744 } 745 PROC_UNLOCK(p); 746 747 sx_xlock(&proctree_lock); 748 if (SESS_LEADER(p)) { 749 sp = p->p_session; 750 751 /* 752 * s_ttyp is not zero'd; we use this to indicate that 753 * the session once had a controlling terminal. (for 754 * logging and informational purposes) 755 */ 756 SESS_LOCK(sp); 757 ttyvp = sp->s_ttyvp; 758 tp = sp->s_ttyp; 759 sp->s_ttyvp = NULL; 760 sp->s_ttydp = NULL; 761 sp->s_leader = NULL; 762 SESS_UNLOCK(sp); 763 764 /* 765 * Signal foreground pgrp and revoke access to 766 * controlling terminal if it has not been revoked 767 * already. 768 * 769 * Because the TTY may have been revoked in the mean 770 * time and could already have a new session associated 771 * with it, make sure we don't send a SIGHUP to a 772 * foreground process group that does not belong to this 773 * session. 774 */ 775 776 if (tp != NULL) { 777 tty_lock(tp); 778 if (tp->t_session == sp) 779 tty_signal_pgrp(tp, SIGHUP); 780 tty_unlock(tp); 781 } 782 783 if (ttyvp != NULL) { 784 sx_xunlock(&proctree_lock); 785 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 786 VOP_REVOKE(ttyvp, REVOKEALL); 787 VOP_UNLOCK(ttyvp, 0); 788 } 789 vrele(ttyvp); 790 sx_xlock(&proctree_lock); 791 } 792 } 793 fixjobc(p, p->p_pgrp, 0); 794 sx_xunlock(&proctree_lock); 795 } 796 797 /* 798 * A process group has become orphaned; 799 * if there are any stopped processes in the group, 800 * hang-up all process in that group. 801 */ 802 static void 803 orphanpg(struct pgrp *pg) 804 { 805 struct proc *p; 806 807 PGRP_LOCK_ASSERT(pg, MA_OWNED); 808 809 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 810 PROC_LOCK(p); 811 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 812 PROC_UNLOCK(p); 813 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 814 PROC_LOCK(p); 815 kern_psignal(p, SIGHUP); 816 kern_psignal(p, SIGCONT); 817 PROC_UNLOCK(p); 818 } 819 return; 820 } 821 PROC_UNLOCK(p); 822 } 823 } 824 825 void 826 sess_hold(struct session *s) 827 { 828 829 refcount_acquire(&s->s_count); 830 } 831 832 void 833 sess_release(struct session *s) 834 { 835 836 if (refcount_release(&s->s_count)) { 837 if (s->s_ttyp != NULL) { 838 tty_lock(s->s_ttyp); 839 tty_rel_sess(s->s_ttyp, s); 840 } 841 mtx_destroy(&s->s_mtx); 842 free(s, M_SESSION); 843 } 844 } 845 846 #ifdef DDB 847 848 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 849 { 850 struct pgrp *pgrp; 851 struct proc *p; 852 int i; 853 854 for (i = 0; i <= pgrphash; i++) { 855 if (!LIST_EMPTY(&pgrphashtbl[i])) { 856 printf("\tindx %d\n", i); 857 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 858 printf( 859 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 860 (void *)pgrp, (long)pgrp->pg_id, 861 (void *)pgrp->pg_session, 862 pgrp->pg_session->s_count, 863 (void *)LIST_FIRST(&pgrp->pg_members)); 864 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 865 printf("\t\tpid %ld addr %p pgrp %p\n", 866 (long)p->p_pid, (void *)p, 867 (void *)p->p_pgrp); 868 } 869 } 870 } 871 } 872 } 873 #endif /* DDB */ 874 875 /* 876 * Calculate the kinfo_proc members which contain process-wide 877 * informations. 878 * Must be called with the target process locked. 879 */ 880 static void 881 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 882 { 883 struct thread *td; 884 885 PROC_LOCK_ASSERT(p, MA_OWNED); 886 887 kp->ki_estcpu = 0; 888 kp->ki_pctcpu = 0; 889 FOREACH_THREAD_IN_PROC(p, td) { 890 thread_lock(td); 891 kp->ki_pctcpu += sched_pctcpu(td); 892 kp->ki_estcpu += sched_estcpu(td); 893 thread_unlock(td); 894 } 895 } 896 897 /* 898 * Clear kinfo_proc and fill in any information that is common 899 * to all threads in the process. 900 * Must be called with the target process locked. 901 */ 902 static void 903 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 904 { 905 struct thread *td0; 906 struct tty *tp; 907 struct session *sp; 908 struct ucred *cred; 909 struct sigacts *ps; 910 struct timeval boottime; 911 912 /* For proc_realparent. */ 913 sx_assert(&proctree_lock, SX_LOCKED); 914 PROC_LOCK_ASSERT(p, MA_OWNED); 915 bzero(kp, sizeof(*kp)); 916 917 kp->ki_structsize = sizeof(*kp); 918 kp->ki_paddr = p; 919 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 920 kp->ki_args = p->p_args; 921 kp->ki_textvp = p->p_textvp; 922 #ifdef KTRACE 923 kp->ki_tracep = p->p_tracevp; 924 kp->ki_traceflag = p->p_traceflag; 925 #endif 926 kp->ki_fd = p->p_fd; 927 kp->ki_vmspace = p->p_vmspace; 928 kp->ki_flag = p->p_flag; 929 kp->ki_flag2 = p->p_flag2; 930 cred = p->p_ucred; 931 if (cred) { 932 kp->ki_uid = cred->cr_uid; 933 kp->ki_ruid = cred->cr_ruid; 934 kp->ki_svuid = cred->cr_svuid; 935 kp->ki_cr_flags = 0; 936 if (cred->cr_flags & CRED_FLAG_CAPMODE) 937 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 938 /* XXX bde doesn't like KI_NGROUPS */ 939 if (cred->cr_ngroups > KI_NGROUPS) { 940 kp->ki_ngroups = KI_NGROUPS; 941 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 942 } else 943 kp->ki_ngroups = cred->cr_ngroups; 944 bcopy(cred->cr_groups, kp->ki_groups, 945 kp->ki_ngroups * sizeof(gid_t)); 946 kp->ki_rgid = cred->cr_rgid; 947 kp->ki_svgid = cred->cr_svgid; 948 /* If jailed(cred), emulate the old P_JAILED flag. */ 949 if (jailed(cred)) { 950 kp->ki_flag |= P_JAILED; 951 /* If inside the jail, use 0 as a jail ID. */ 952 if (cred->cr_prison != curthread->td_ucred->cr_prison) 953 kp->ki_jid = cred->cr_prison->pr_id; 954 } 955 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 956 sizeof(kp->ki_loginclass)); 957 } 958 ps = p->p_sigacts; 959 if (ps) { 960 mtx_lock(&ps->ps_mtx); 961 kp->ki_sigignore = ps->ps_sigignore; 962 kp->ki_sigcatch = ps->ps_sigcatch; 963 mtx_unlock(&ps->ps_mtx); 964 } 965 if (p->p_state != PRS_NEW && 966 p->p_state != PRS_ZOMBIE && 967 p->p_vmspace != NULL) { 968 struct vmspace *vm = p->p_vmspace; 969 970 kp->ki_size = vm->vm_map.size; 971 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 972 FOREACH_THREAD_IN_PROC(p, td0) { 973 if (!TD_IS_SWAPPED(td0)) 974 kp->ki_rssize += td0->td_kstack_pages; 975 } 976 kp->ki_swrss = vm->vm_swrss; 977 kp->ki_tsize = vm->vm_tsize; 978 kp->ki_dsize = vm->vm_dsize; 979 kp->ki_ssize = vm->vm_ssize; 980 } else if (p->p_state == PRS_ZOMBIE) 981 kp->ki_stat = SZOMB; 982 if (kp->ki_flag & P_INMEM) 983 kp->ki_sflag = PS_INMEM; 984 else 985 kp->ki_sflag = 0; 986 /* Calculate legacy swtime as seconds since 'swtick'. */ 987 kp->ki_swtime = (ticks - p->p_swtick) / hz; 988 kp->ki_pid = p->p_pid; 989 kp->ki_nice = p->p_nice; 990 kp->ki_fibnum = p->p_fibnum; 991 kp->ki_start = p->p_stats->p_start; 992 getboottime(&boottime); 993 timevaladd(&kp->ki_start, &boottime); 994 PROC_STATLOCK(p); 995 rufetch(p, &kp->ki_rusage); 996 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 997 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 998 PROC_STATUNLOCK(p); 999 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1000 /* Some callers want child times in a single value. */ 1001 kp->ki_childtime = kp->ki_childstime; 1002 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1003 1004 FOREACH_THREAD_IN_PROC(p, td0) 1005 kp->ki_cow += td0->td_cow; 1006 1007 tp = NULL; 1008 if (p->p_pgrp) { 1009 kp->ki_pgid = p->p_pgrp->pg_id; 1010 kp->ki_jobc = p->p_pgrp->pg_jobc; 1011 sp = p->p_pgrp->pg_session; 1012 1013 if (sp != NULL) { 1014 kp->ki_sid = sp->s_sid; 1015 SESS_LOCK(sp); 1016 strlcpy(kp->ki_login, sp->s_login, 1017 sizeof(kp->ki_login)); 1018 if (sp->s_ttyvp) 1019 kp->ki_kiflag |= KI_CTTY; 1020 if (SESS_LEADER(p)) 1021 kp->ki_kiflag |= KI_SLEADER; 1022 /* XXX proctree_lock */ 1023 tp = sp->s_ttyp; 1024 SESS_UNLOCK(sp); 1025 } 1026 } 1027 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1028 kp->ki_tdev = tty_udev(tp); 1029 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1030 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1031 if (tp->t_session) 1032 kp->ki_tsid = tp->t_session->s_sid; 1033 } else { 1034 kp->ki_tdev = NODEV; 1035 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1036 } 1037 if (p->p_comm[0] != '\0') 1038 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1039 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1040 p->p_sysent->sv_name[0] != '\0') 1041 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1042 kp->ki_siglist = p->p_siglist; 1043 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1044 kp->ki_acflag = p->p_acflag; 1045 kp->ki_lock = p->p_lock; 1046 if (p->p_pptr) { 1047 kp->ki_ppid = proc_realparent(p)->p_pid; 1048 if (p->p_flag & P_TRACED) 1049 kp->ki_tracer = p->p_pptr->p_pid; 1050 } 1051 } 1052 1053 /* 1054 * Fill in information that is thread specific. Must be called with 1055 * target process locked. If 'preferthread' is set, overwrite certain 1056 * process-related fields that are maintained for both threads and 1057 * processes. 1058 */ 1059 static void 1060 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1061 { 1062 struct proc *p; 1063 1064 p = td->td_proc; 1065 kp->ki_tdaddr = td; 1066 PROC_LOCK_ASSERT(p, MA_OWNED); 1067 1068 if (preferthread) 1069 PROC_STATLOCK(p); 1070 thread_lock(td); 1071 if (td->td_wmesg != NULL) 1072 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1073 else 1074 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1075 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1076 sizeof(kp->ki_tdname)) { 1077 strlcpy(kp->ki_moretdname, 1078 td->td_name + sizeof(kp->ki_tdname) - 1, 1079 sizeof(kp->ki_moretdname)); 1080 } else { 1081 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1082 } 1083 if (TD_ON_LOCK(td)) { 1084 kp->ki_kiflag |= KI_LOCKBLOCK; 1085 strlcpy(kp->ki_lockname, td->td_lockname, 1086 sizeof(kp->ki_lockname)); 1087 } else { 1088 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1089 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1090 } 1091 1092 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1093 if (TD_ON_RUNQ(td) || 1094 TD_CAN_RUN(td) || 1095 TD_IS_RUNNING(td)) { 1096 kp->ki_stat = SRUN; 1097 } else if (P_SHOULDSTOP(p)) { 1098 kp->ki_stat = SSTOP; 1099 } else if (TD_IS_SLEEPING(td)) { 1100 kp->ki_stat = SSLEEP; 1101 } else if (TD_ON_LOCK(td)) { 1102 kp->ki_stat = SLOCK; 1103 } else { 1104 kp->ki_stat = SWAIT; 1105 } 1106 } else if (p->p_state == PRS_ZOMBIE) { 1107 kp->ki_stat = SZOMB; 1108 } else { 1109 kp->ki_stat = SIDL; 1110 } 1111 1112 /* Things in the thread */ 1113 kp->ki_wchan = td->td_wchan; 1114 kp->ki_pri.pri_level = td->td_priority; 1115 kp->ki_pri.pri_native = td->td_base_pri; 1116 1117 /* 1118 * Note: legacy fields; clamp at the old NOCPU value and/or 1119 * the maximum u_char CPU value. 1120 */ 1121 if (td->td_lastcpu == NOCPU) 1122 kp->ki_lastcpu_old = NOCPU_OLD; 1123 else if (td->td_lastcpu > MAXCPU_OLD) 1124 kp->ki_lastcpu_old = MAXCPU_OLD; 1125 else 1126 kp->ki_lastcpu_old = td->td_lastcpu; 1127 1128 if (td->td_oncpu == NOCPU) 1129 kp->ki_oncpu_old = NOCPU_OLD; 1130 else if (td->td_oncpu > MAXCPU_OLD) 1131 kp->ki_oncpu_old = MAXCPU_OLD; 1132 else 1133 kp->ki_oncpu_old = td->td_oncpu; 1134 1135 kp->ki_lastcpu = td->td_lastcpu; 1136 kp->ki_oncpu = td->td_oncpu; 1137 kp->ki_tdflags = td->td_flags; 1138 kp->ki_tid = td->td_tid; 1139 kp->ki_numthreads = p->p_numthreads; 1140 kp->ki_pcb = td->td_pcb; 1141 kp->ki_kstack = (void *)td->td_kstack; 1142 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1143 kp->ki_pri.pri_class = td->td_pri_class; 1144 kp->ki_pri.pri_user = td->td_user_pri; 1145 1146 if (preferthread) { 1147 rufetchtd(td, &kp->ki_rusage); 1148 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1149 kp->ki_pctcpu = sched_pctcpu(td); 1150 kp->ki_estcpu = sched_estcpu(td); 1151 kp->ki_cow = td->td_cow; 1152 } 1153 1154 /* We can't get this anymore but ps etc never used it anyway. */ 1155 kp->ki_rqindex = 0; 1156 1157 if (preferthread) 1158 kp->ki_siglist = td->td_siglist; 1159 kp->ki_sigmask = td->td_sigmask; 1160 thread_unlock(td); 1161 if (preferthread) 1162 PROC_STATUNLOCK(p); 1163 } 1164 1165 /* 1166 * Fill in a kinfo_proc structure for the specified process. 1167 * Must be called with the target process locked. 1168 */ 1169 void 1170 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1171 { 1172 1173 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1174 1175 fill_kinfo_proc_only(p, kp); 1176 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1177 fill_kinfo_aggregate(p, kp); 1178 } 1179 1180 struct pstats * 1181 pstats_alloc(void) 1182 { 1183 1184 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1185 } 1186 1187 /* 1188 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1189 */ 1190 void 1191 pstats_fork(struct pstats *src, struct pstats *dst) 1192 { 1193 1194 bzero(&dst->pstat_startzero, 1195 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1196 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1197 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1198 } 1199 1200 void 1201 pstats_free(struct pstats *ps) 1202 { 1203 1204 free(ps, M_SUBPROC); 1205 } 1206 1207 static struct proc * 1208 zpfind_locked(pid_t pid) 1209 { 1210 struct proc *p; 1211 1212 sx_assert(&allproc_lock, SX_LOCKED); 1213 LIST_FOREACH(p, &zombproc, p_list) { 1214 if (p->p_pid == pid) { 1215 PROC_LOCK(p); 1216 break; 1217 } 1218 } 1219 return (p); 1220 } 1221 1222 /* 1223 * Locate a zombie process by number 1224 */ 1225 struct proc * 1226 zpfind(pid_t pid) 1227 { 1228 struct proc *p; 1229 1230 sx_slock(&allproc_lock); 1231 p = zpfind_locked(pid); 1232 sx_sunlock(&allproc_lock); 1233 return (p); 1234 } 1235 1236 #ifdef COMPAT_FREEBSD32 1237 1238 /* 1239 * This function is typically used to copy out the kernel address, so 1240 * it can be replaced by assignment of zero. 1241 */ 1242 static inline uint32_t 1243 ptr32_trim(void *ptr) 1244 { 1245 uintptr_t uptr; 1246 1247 uptr = (uintptr_t)ptr; 1248 return ((uptr > UINT_MAX) ? 0 : uptr); 1249 } 1250 1251 #define PTRTRIM_CP(src,dst,fld) \ 1252 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1253 1254 static void 1255 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1256 { 1257 int i; 1258 1259 bzero(ki32, sizeof(struct kinfo_proc32)); 1260 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1261 CP(*ki, *ki32, ki_layout); 1262 PTRTRIM_CP(*ki, *ki32, ki_args); 1263 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1264 PTRTRIM_CP(*ki, *ki32, ki_addr); 1265 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1266 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1267 PTRTRIM_CP(*ki, *ki32, ki_fd); 1268 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1269 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1270 CP(*ki, *ki32, ki_pid); 1271 CP(*ki, *ki32, ki_ppid); 1272 CP(*ki, *ki32, ki_pgid); 1273 CP(*ki, *ki32, ki_tpgid); 1274 CP(*ki, *ki32, ki_sid); 1275 CP(*ki, *ki32, ki_tsid); 1276 CP(*ki, *ki32, ki_jobc); 1277 CP(*ki, *ki32, ki_tdev); 1278 CP(*ki, *ki32, ki_tdev_freebsd11); 1279 CP(*ki, *ki32, ki_siglist); 1280 CP(*ki, *ki32, ki_sigmask); 1281 CP(*ki, *ki32, ki_sigignore); 1282 CP(*ki, *ki32, ki_sigcatch); 1283 CP(*ki, *ki32, ki_uid); 1284 CP(*ki, *ki32, ki_ruid); 1285 CP(*ki, *ki32, ki_svuid); 1286 CP(*ki, *ki32, ki_rgid); 1287 CP(*ki, *ki32, ki_svgid); 1288 CP(*ki, *ki32, ki_ngroups); 1289 for (i = 0; i < KI_NGROUPS; i++) 1290 CP(*ki, *ki32, ki_groups[i]); 1291 CP(*ki, *ki32, ki_size); 1292 CP(*ki, *ki32, ki_rssize); 1293 CP(*ki, *ki32, ki_swrss); 1294 CP(*ki, *ki32, ki_tsize); 1295 CP(*ki, *ki32, ki_dsize); 1296 CP(*ki, *ki32, ki_ssize); 1297 CP(*ki, *ki32, ki_xstat); 1298 CP(*ki, *ki32, ki_acflag); 1299 CP(*ki, *ki32, ki_pctcpu); 1300 CP(*ki, *ki32, ki_estcpu); 1301 CP(*ki, *ki32, ki_slptime); 1302 CP(*ki, *ki32, ki_swtime); 1303 CP(*ki, *ki32, ki_cow); 1304 CP(*ki, *ki32, ki_runtime); 1305 TV_CP(*ki, *ki32, ki_start); 1306 TV_CP(*ki, *ki32, ki_childtime); 1307 CP(*ki, *ki32, ki_flag); 1308 CP(*ki, *ki32, ki_kiflag); 1309 CP(*ki, *ki32, ki_traceflag); 1310 CP(*ki, *ki32, ki_stat); 1311 CP(*ki, *ki32, ki_nice); 1312 CP(*ki, *ki32, ki_lock); 1313 CP(*ki, *ki32, ki_rqindex); 1314 CP(*ki, *ki32, ki_oncpu); 1315 CP(*ki, *ki32, ki_lastcpu); 1316 1317 /* XXX TODO: wrap cpu value as appropriate */ 1318 CP(*ki, *ki32, ki_oncpu_old); 1319 CP(*ki, *ki32, ki_lastcpu_old); 1320 1321 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1322 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1323 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1324 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1325 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1326 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1327 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1328 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1329 CP(*ki, *ki32, ki_tracer); 1330 CP(*ki, *ki32, ki_flag2); 1331 CP(*ki, *ki32, ki_fibnum); 1332 CP(*ki, *ki32, ki_cr_flags); 1333 CP(*ki, *ki32, ki_jid); 1334 CP(*ki, *ki32, ki_numthreads); 1335 CP(*ki, *ki32, ki_tid); 1336 CP(*ki, *ki32, ki_pri); 1337 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1338 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1339 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1340 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1341 PTRTRIM_CP(*ki, *ki32, ki_udata); 1342 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1343 CP(*ki, *ki32, ki_sflag); 1344 CP(*ki, *ki32, ki_tdflags); 1345 } 1346 #endif 1347 1348 static ssize_t 1349 kern_proc_out_size(struct proc *p, int flags) 1350 { 1351 ssize_t size = 0; 1352 1353 PROC_LOCK_ASSERT(p, MA_OWNED); 1354 1355 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1356 #ifdef COMPAT_FREEBSD32 1357 if ((flags & KERN_PROC_MASK32) != 0) { 1358 size += sizeof(struct kinfo_proc32); 1359 } else 1360 #endif 1361 size += sizeof(struct kinfo_proc); 1362 } else { 1363 #ifdef COMPAT_FREEBSD32 1364 if ((flags & KERN_PROC_MASK32) != 0) 1365 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1366 else 1367 #endif 1368 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1369 } 1370 PROC_UNLOCK(p); 1371 return (size); 1372 } 1373 1374 int 1375 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1376 { 1377 struct thread *td; 1378 struct kinfo_proc ki; 1379 #ifdef COMPAT_FREEBSD32 1380 struct kinfo_proc32 ki32; 1381 #endif 1382 int error; 1383 1384 PROC_LOCK_ASSERT(p, MA_OWNED); 1385 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1386 1387 error = 0; 1388 fill_kinfo_proc(p, &ki); 1389 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1390 #ifdef COMPAT_FREEBSD32 1391 if ((flags & KERN_PROC_MASK32) != 0) { 1392 freebsd32_kinfo_proc_out(&ki, &ki32); 1393 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1394 error = ENOMEM; 1395 } else 1396 #endif 1397 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1398 error = ENOMEM; 1399 } else { 1400 FOREACH_THREAD_IN_PROC(p, td) { 1401 fill_kinfo_thread(td, &ki, 1); 1402 #ifdef COMPAT_FREEBSD32 1403 if ((flags & KERN_PROC_MASK32) != 0) { 1404 freebsd32_kinfo_proc_out(&ki, &ki32); 1405 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1406 error = ENOMEM; 1407 } else 1408 #endif 1409 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1410 error = ENOMEM; 1411 if (error != 0) 1412 break; 1413 } 1414 } 1415 PROC_UNLOCK(p); 1416 return (error); 1417 } 1418 1419 static int 1420 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1421 { 1422 struct sbuf sb; 1423 struct kinfo_proc ki; 1424 int error, error2; 1425 1426 if (req->oldptr == NULL) 1427 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1428 1429 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1430 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1431 error = kern_proc_out(p, &sb, flags); 1432 error2 = sbuf_finish(&sb); 1433 sbuf_delete(&sb); 1434 if (error != 0) 1435 return (error); 1436 else if (error2 != 0) 1437 return (error2); 1438 return (0); 1439 } 1440 1441 static int 1442 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1443 { 1444 int *name = (int *)arg1; 1445 u_int namelen = arg2; 1446 struct proc *p; 1447 int flags, doingzomb, oid_number; 1448 int error = 0; 1449 1450 oid_number = oidp->oid_number; 1451 if (oid_number != KERN_PROC_ALL && 1452 (oid_number & KERN_PROC_INC_THREAD) == 0) 1453 flags = KERN_PROC_NOTHREADS; 1454 else { 1455 flags = 0; 1456 oid_number &= ~KERN_PROC_INC_THREAD; 1457 } 1458 #ifdef COMPAT_FREEBSD32 1459 if (req->flags & SCTL_MASK32) 1460 flags |= KERN_PROC_MASK32; 1461 #endif 1462 if (oid_number == KERN_PROC_PID) { 1463 if (namelen != 1) 1464 return (EINVAL); 1465 error = sysctl_wire_old_buffer(req, 0); 1466 if (error) 1467 return (error); 1468 sx_slock(&proctree_lock); 1469 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1470 if (error == 0) 1471 error = sysctl_out_proc(p, req, flags); 1472 sx_sunlock(&proctree_lock); 1473 return (error); 1474 } 1475 1476 switch (oid_number) { 1477 case KERN_PROC_ALL: 1478 if (namelen != 0) 1479 return (EINVAL); 1480 break; 1481 case KERN_PROC_PROC: 1482 if (namelen != 0 && namelen != 1) 1483 return (EINVAL); 1484 break; 1485 default: 1486 if (namelen != 1) 1487 return (EINVAL); 1488 break; 1489 } 1490 1491 if (req->oldptr == NULL) { 1492 /* overestimate by 5 procs */ 1493 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1494 if (error) 1495 return (error); 1496 } else { 1497 error = sysctl_wire_old_buffer(req, 0); 1498 if (error != 0) 1499 return (error); 1500 /* 1501 * This lock is only needed to safely grab the parent of a 1502 * traced process. Only grab it if we are producing any 1503 * data to begin with. 1504 */ 1505 sx_slock(&proctree_lock); 1506 } 1507 sx_slock(&allproc_lock); 1508 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1509 if (!doingzomb) 1510 p = LIST_FIRST(&allproc); 1511 else 1512 p = LIST_FIRST(&zombproc); 1513 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1514 /* 1515 * Skip embryonic processes. 1516 */ 1517 if (p->p_state == PRS_NEW) 1518 continue; 1519 PROC_LOCK(p); 1520 KASSERT(p->p_ucred != NULL, 1521 ("process credential is NULL for non-NEW proc")); 1522 /* 1523 * Show a user only appropriate processes. 1524 */ 1525 if (p_cansee(curthread, p)) { 1526 PROC_UNLOCK(p); 1527 continue; 1528 } 1529 /* 1530 * TODO - make more efficient (see notes below). 1531 * do by session. 1532 */ 1533 switch (oid_number) { 1534 1535 case KERN_PROC_GID: 1536 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1537 PROC_UNLOCK(p); 1538 continue; 1539 } 1540 break; 1541 1542 case KERN_PROC_PGRP: 1543 /* could do this by traversing pgrp */ 1544 if (p->p_pgrp == NULL || 1545 p->p_pgrp->pg_id != (pid_t)name[0]) { 1546 PROC_UNLOCK(p); 1547 continue; 1548 } 1549 break; 1550 1551 case KERN_PROC_RGID: 1552 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1553 PROC_UNLOCK(p); 1554 continue; 1555 } 1556 break; 1557 1558 case KERN_PROC_SESSION: 1559 if (p->p_session == NULL || 1560 p->p_session->s_sid != (pid_t)name[0]) { 1561 PROC_UNLOCK(p); 1562 continue; 1563 } 1564 break; 1565 1566 case KERN_PROC_TTY: 1567 if ((p->p_flag & P_CONTROLT) == 0 || 1568 p->p_session == NULL) { 1569 PROC_UNLOCK(p); 1570 continue; 1571 } 1572 /* XXX proctree_lock */ 1573 SESS_LOCK(p->p_session); 1574 if (p->p_session->s_ttyp == NULL || 1575 tty_udev(p->p_session->s_ttyp) != 1576 (dev_t)name[0]) { 1577 SESS_UNLOCK(p->p_session); 1578 PROC_UNLOCK(p); 1579 continue; 1580 } 1581 SESS_UNLOCK(p->p_session); 1582 break; 1583 1584 case KERN_PROC_UID: 1585 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1586 PROC_UNLOCK(p); 1587 continue; 1588 } 1589 break; 1590 1591 case KERN_PROC_RUID: 1592 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1593 PROC_UNLOCK(p); 1594 continue; 1595 } 1596 break; 1597 1598 case KERN_PROC_PROC: 1599 break; 1600 1601 default: 1602 break; 1603 1604 } 1605 1606 error = sysctl_out_proc(p, req, flags); 1607 if (error) 1608 goto out; 1609 } 1610 } 1611 out: 1612 sx_sunlock(&allproc_lock); 1613 if (req->oldptr != NULL) 1614 sx_sunlock(&proctree_lock); 1615 return (error); 1616 } 1617 1618 struct pargs * 1619 pargs_alloc(int len) 1620 { 1621 struct pargs *pa; 1622 1623 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1624 M_WAITOK); 1625 refcount_init(&pa->ar_ref, 1); 1626 pa->ar_length = len; 1627 return (pa); 1628 } 1629 1630 static void 1631 pargs_free(struct pargs *pa) 1632 { 1633 1634 free(pa, M_PARGS); 1635 } 1636 1637 void 1638 pargs_hold(struct pargs *pa) 1639 { 1640 1641 if (pa == NULL) 1642 return; 1643 refcount_acquire(&pa->ar_ref); 1644 } 1645 1646 void 1647 pargs_drop(struct pargs *pa) 1648 { 1649 1650 if (pa == NULL) 1651 return; 1652 if (refcount_release(&pa->ar_ref)) 1653 pargs_free(pa); 1654 } 1655 1656 static int 1657 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1658 size_t len) 1659 { 1660 ssize_t n; 1661 1662 /* 1663 * This may return a short read if the string is shorter than the chunk 1664 * and is aligned at the end of the page, and the following page is not 1665 * mapped. 1666 */ 1667 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1668 if (n <= 0) 1669 return (ENOMEM); 1670 return (0); 1671 } 1672 1673 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1674 1675 enum proc_vector_type { 1676 PROC_ARG, 1677 PROC_ENV, 1678 PROC_AUX, 1679 }; 1680 1681 #ifdef COMPAT_FREEBSD32 1682 static int 1683 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1684 size_t *vsizep, enum proc_vector_type type) 1685 { 1686 struct freebsd32_ps_strings pss; 1687 Elf32_Auxinfo aux; 1688 vm_offset_t vptr, ptr; 1689 uint32_t *proc_vector32; 1690 char **proc_vector; 1691 size_t vsize, size; 1692 int i, error; 1693 1694 error = 0; 1695 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1696 sizeof(pss)) != sizeof(pss)) 1697 return (ENOMEM); 1698 switch (type) { 1699 case PROC_ARG: 1700 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1701 vsize = pss.ps_nargvstr; 1702 if (vsize > ARG_MAX) 1703 return (ENOEXEC); 1704 size = vsize * sizeof(int32_t); 1705 break; 1706 case PROC_ENV: 1707 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1708 vsize = pss.ps_nenvstr; 1709 if (vsize > ARG_MAX) 1710 return (ENOEXEC); 1711 size = vsize * sizeof(int32_t); 1712 break; 1713 case PROC_AUX: 1714 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1715 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1716 if (vptr % 4 != 0) 1717 return (ENOEXEC); 1718 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1719 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1720 sizeof(aux)) 1721 return (ENOMEM); 1722 if (aux.a_type == AT_NULL) 1723 break; 1724 ptr += sizeof(aux); 1725 } 1726 if (aux.a_type != AT_NULL) 1727 return (ENOEXEC); 1728 vsize = i + 1; 1729 size = vsize * sizeof(aux); 1730 break; 1731 default: 1732 KASSERT(0, ("Wrong proc vector type: %d", type)); 1733 return (EINVAL); 1734 } 1735 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1736 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1737 error = ENOMEM; 1738 goto done; 1739 } 1740 if (type == PROC_AUX) { 1741 *proc_vectorp = (char **)proc_vector32; 1742 *vsizep = vsize; 1743 return (0); 1744 } 1745 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1746 for (i = 0; i < (int)vsize; i++) 1747 proc_vector[i] = PTRIN(proc_vector32[i]); 1748 *proc_vectorp = proc_vector; 1749 *vsizep = vsize; 1750 done: 1751 free(proc_vector32, M_TEMP); 1752 return (error); 1753 } 1754 #endif 1755 1756 static int 1757 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1758 size_t *vsizep, enum proc_vector_type type) 1759 { 1760 struct ps_strings pss; 1761 Elf_Auxinfo aux; 1762 vm_offset_t vptr, ptr; 1763 char **proc_vector; 1764 size_t vsize, size; 1765 int i; 1766 1767 #ifdef COMPAT_FREEBSD32 1768 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1769 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1770 #endif 1771 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1772 sizeof(pss)) != sizeof(pss)) 1773 return (ENOMEM); 1774 switch (type) { 1775 case PROC_ARG: 1776 vptr = (vm_offset_t)pss.ps_argvstr; 1777 vsize = pss.ps_nargvstr; 1778 if (vsize > ARG_MAX) 1779 return (ENOEXEC); 1780 size = vsize * sizeof(char *); 1781 break; 1782 case PROC_ENV: 1783 vptr = (vm_offset_t)pss.ps_envstr; 1784 vsize = pss.ps_nenvstr; 1785 if (vsize > ARG_MAX) 1786 return (ENOEXEC); 1787 size = vsize * sizeof(char *); 1788 break; 1789 case PROC_AUX: 1790 /* 1791 * The aux array is just above env array on the stack. Check 1792 * that the address is naturally aligned. 1793 */ 1794 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1795 * sizeof(char *); 1796 #if __ELF_WORD_SIZE == 64 1797 if (vptr % sizeof(uint64_t) != 0) 1798 #else 1799 if (vptr % sizeof(uint32_t) != 0) 1800 #endif 1801 return (ENOEXEC); 1802 /* 1803 * We count the array size reading the aux vectors from the 1804 * stack until AT_NULL vector is returned. So (to keep the code 1805 * simple) we read the process stack twice: the first time here 1806 * to find the size and the second time when copying the vectors 1807 * to the allocated proc_vector. 1808 */ 1809 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1810 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1811 sizeof(aux)) 1812 return (ENOMEM); 1813 if (aux.a_type == AT_NULL) 1814 break; 1815 ptr += sizeof(aux); 1816 } 1817 /* 1818 * If the PROC_AUXV_MAX entries are iterated over, and we have 1819 * not reached AT_NULL, it is most likely we are reading wrong 1820 * data: either the process doesn't have auxv array or data has 1821 * been modified. Return the error in this case. 1822 */ 1823 if (aux.a_type != AT_NULL) 1824 return (ENOEXEC); 1825 vsize = i + 1; 1826 size = vsize * sizeof(aux); 1827 break; 1828 default: 1829 KASSERT(0, ("Wrong proc vector type: %d", type)); 1830 return (EINVAL); /* In case we are built without INVARIANTS. */ 1831 } 1832 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1833 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1834 free(proc_vector, M_TEMP); 1835 return (ENOMEM); 1836 } 1837 *proc_vectorp = proc_vector; 1838 *vsizep = vsize; 1839 1840 return (0); 1841 } 1842 1843 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1844 1845 static int 1846 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1847 enum proc_vector_type type) 1848 { 1849 size_t done, len, nchr, vsize; 1850 int error, i; 1851 char **proc_vector, *sptr; 1852 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1853 1854 PROC_ASSERT_HELD(p); 1855 1856 /* 1857 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1858 */ 1859 nchr = 2 * (PATH_MAX + ARG_MAX); 1860 1861 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1862 if (error != 0) 1863 return (error); 1864 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1865 /* 1866 * The program may have scribbled into its argv array, e.g. to 1867 * remove some arguments. If that has happened, break out 1868 * before trying to read from NULL. 1869 */ 1870 if (proc_vector[i] == NULL) 1871 break; 1872 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1873 error = proc_read_string(td, p, sptr, pss_string, 1874 sizeof(pss_string)); 1875 if (error != 0) 1876 goto done; 1877 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1878 if (done + len >= nchr) 1879 len = nchr - done - 1; 1880 sbuf_bcat(sb, pss_string, len); 1881 if (len != GET_PS_STRINGS_CHUNK_SZ) 1882 break; 1883 done += GET_PS_STRINGS_CHUNK_SZ; 1884 } 1885 sbuf_bcat(sb, "", 1); 1886 done += len + 1; 1887 } 1888 done: 1889 free(proc_vector, M_TEMP); 1890 return (error); 1891 } 1892 1893 int 1894 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1895 { 1896 1897 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1898 } 1899 1900 int 1901 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1902 { 1903 1904 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1905 } 1906 1907 int 1908 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1909 { 1910 size_t vsize, size; 1911 char **auxv; 1912 int error; 1913 1914 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1915 if (error == 0) { 1916 #ifdef COMPAT_FREEBSD32 1917 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1918 size = vsize * sizeof(Elf32_Auxinfo); 1919 else 1920 #endif 1921 size = vsize * sizeof(Elf_Auxinfo); 1922 if (sbuf_bcat(sb, auxv, size) != 0) 1923 error = ENOMEM; 1924 free(auxv, M_TEMP); 1925 } 1926 return (error); 1927 } 1928 1929 /* 1930 * This sysctl allows a process to retrieve the argument list or process 1931 * title for another process without groping around in the address space 1932 * of the other process. It also allow a process to set its own "process 1933 * title to a string of its own choice. 1934 */ 1935 static int 1936 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1937 { 1938 int *name = (int *)arg1; 1939 u_int namelen = arg2; 1940 struct pargs *newpa, *pa; 1941 struct proc *p; 1942 struct sbuf sb; 1943 int flags, error = 0, error2; 1944 pid_t pid; 1945 1946 if (namelen != 1) 1947 return (EINVAL); 1948 1949 pid = (pid_t)name[0]; 1950 /* 1951 * If the query is for this process and it is single-threaded, there 1952 * is nobody to modify pargs, thus we can just read. 1953 */ 1954 p = curproc; 1955 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 1956 (pa = p->p_args) != NULL) 1957 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 1958 1959 flags = PGET_CANSEE; 1960 if (req->newptr != NULL) 1961 flags |= PGET_ISCURRENT; 1962 error = pget(pid, flags, &p); 1963 if (error) 1964 return (error); 1965 1966 pa = p->p_args; 1967 if (pa != NULL) { 1968 pargs_hold(pa); 1969 PROC_UNLOCK(p); 1970 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1971 pargs_drop(pa); 1972 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1973 _PHOLD(p); 1974 PROC_UNLOCK(p); 1975 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1976 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1977 error = proc_getargv(curthread, p, &sb); 1978 error2 = sbuf_finish(&sb); 1979 PRELE(p); 1980 sbuf_delete(&sb); 1981 if (error == 0 && error2 != 0) 1982 error = error2; 1983 } else { 1984 PROC_UNLOCK(p); 1985 } 1986 if (error != 0 || req->newptr == NULL) 1987 return (error); 1988 1989 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1990 return (ENOMEM); 1991 1992 if (req->newlen == 0) { 1993 /* 1994 * Clear the argument pointer, so that we'll fetch arguments 1995 * with proc_getargv() until further notice. 1996 */ 1997 newpa = NULL; 1998 } else { 1999 newpa = pargs_alloc(req->newlen); 2000 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2001 if (error != 0) { 2002 pargs_free(newpa); 2003 return (error); 2004 } 2005 } 2006 PROC_LOCK(p); 2007 pa = p->p_args; 2008 p->p_args = newpa; 2009 PROC_UNLOCK(p); 2010 pargs_drop(pa); 2011 return (0); 2012 } 2013 2014 /* 2015 * This sysctl allows a process to retrieve environment of another process. 2016 */ 2017 static int 2018 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2019 { 2020 int *name = (int *)arg1; 2021 u_int namelen = arg2; 2022 struct proc *p; 2023 struct sbuf sb; 2024 int error, error2; 2025 2026 if (namelen != 1) 2027 return (EINVAL); 2028 2029 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2030 if (error != 0) 2031 return (error); 2032 if ((p->p_flag & P_SYSTEM) != 0) { 2033 PRELE(p); 2034 return (0); 2035 } 2036 2037 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2038 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2039 error = proc_getenvv(curthread, p, &sb); 2040 error2 = sbuf_finish(&sb); 2041 PRELE(p); 2042 sbuf_delete(&sb); 2043 return (error != 0 ? error : error2); 2044 } 2045 2046 /* 2047 * This sysctl allows a process to retrieve ELF auxiliary vector of 2048 * another process. 2049 */ 2050 static int 2051 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2052 { 2053 int *name = (int *)arg1; 2054 u_int namelen = arg2; 2055 struct proc *p; 2056 struct sbuf sb; 2057 int error, error2; 2058 2059 if (namelen != 1) 2060 return (EINVAL); 2061 2062 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2063 if (error != 0) 2064 return (error); 2065 if ((p->p_flag & P_SYSTEM) != 0) { 2066 PRELE(p); 2067 return (0); 2068 } 2069 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2070 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2071 error = proc_getauxv(curthread, p, &sb); 2072 error2 = sbuf_finish(&sb); 2073 PRELE(p); 2074 sbuf_delete(&sb); 2075 return (error != 0 ? error : error2); 2076 } 2077 2078 /* 2079 * This sysctl allows a process to retrieve the path of the executable for 2080 * itself or another process. 2081 */ 2082 static int 2083 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2084 { 2085 pid_t *pidp = (pid_t *)arg1; 2086 unsigned int arglen = arg2; 2087 struct proc *p; 2088 struct vnode *vp; 2089 char *retbuf, *freebuf; 2090 int error; 2091 2092 if (arglen != 1) 2093 return (EINVAL); 2094 if (*pidp == -1) { /* -1 means this process */ 2095 p = req->td->td_proc; 2096 } else { 2097 error = pget(*pidp, PGET_CANSEE, &p); 2098 if (error != 0) 2099 return (error); 2100 } 2101 2102 vp = p->p_textvp; 2103 if (vp == NULL) { 2104 if (*pidp != -1) 2105 PROC_UNLOCK(p); 2106 return (0); 2107 } 2108 vref(vp); 2109 if (*pidp != -1) 2110 PROC_UNLOCK(p); 2111 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2112 vrele(vp); 2113 if (error) 2114 return (error); 2115 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2116 free(freebuf, M_TEMP); 2117 return (error); 2118 } 2119 2120 static int 2121 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2122 { 2123 struct proc *p; 2124 char *sv_name; 2125 int *name; 2126 int namelen; 2127 int error; 2128 2129 namelen = arg2; 2130 if (namelen != 1) 2131 return (EINVAL); 2132 2133 name = (int *)arg1; 2134 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2135 if (error != 0) 2136 return (error); 2137 sv_name = p->p_sysent->sv_name; 2138 PROC_UNLOCK(p); 2139 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2140 } 2141 2142 #ifdef KINFO_OVMENTRY_SIZE 2143 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2144 #endif 2145 2146 #ifdef COMPAT_FREEBSD7 2147 static int 2148 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2149 { 2150 vm_map_entry_t entry, tmp_entry; 2151 unsigned int last_timestamp; 2152 char *fullpath, *freepath; 2153 struct kinfo_ovmentry *kve; 2154 struct vattr va; 2155 struct ucred *cred; 2156 int error, *name; 2157 struct vnode *vp; 2158 struct proc *p; 2159 vm_map_t map; 2160 struct vmspace *vm; 2161 2162 name = (int *)arg1; 2163 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2164 if (error != 0) 2165 return (error); 2166 vm = vmspace_acquire_ref(p); 2167 if (vm == NULL) { 2168 PRELE(p); 2169 return (ESRCH); 2170 } 2171 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2172 2173 map = &vm->vm_map; 2174 vm_map_lock_read(map); 2175 for (entry = map->header.next; entry != &map->header; 2176 entry = entry->next) { 2177 vm_object_t obj, tobj, lobj; 2178 vm_offset_t addr; 2179 2180 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2181 continue; 2182 2183 bzero(kve, sizeof(*kve)); 2184 kve->kve_structsize = sizeof(*kve); 2185 2186 kve->kve_private_resident = 0; 2187 obj = entry->object.vm_object; 2188 if (obj != NULL) { 2189 VM_OBJECT_RLOCK(obj); 2190 if (obj->shadow_count == 1) 2191 kve->kve_private_resident = 2192 obj->resident_page_count; 2193 } 2194 kve->kve_resident = 0; 2195 addr = entry->start; 2196 while (addr < entry->end) { 2197 if (pmap_extract(map->pmap, addr)) 2198 kve->kve_resident++; 2199 addr += PAGE_SIZE; 2200 } 2201 2202 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2203 if (tobj != obj) { 2204 VM_OBJECT_RLOCK(tobj); 2205 kve->kve_offset += tobj->backing_object_offset; 2206 } 2207 if (lobj != obj) 2208 VM_OBJECT_RUNLOCK(lobj); 2209 lobj = tobj; 2210 } 2211 2212 kve->kve_start = (void*)entry->start; 2213 kve->kve_end = (void*)entry->end; 2214 kve->kve_offset += (off_t)entry->offset; 2215 2216 if (entry->protection & VM_PROT_READ) 2217 kve->kve_protection |= KVME_PROT_READ; 2218 if (entry->protection & VM_PROT_WRITE) 2219 kve->kve_protection |= KVME_PROT_WRITE; 2220 if (entry->protection & VM_PROT_EXECUTE) 2221 kve->kve_protection |= KVME_PROT_EXEC; 2222 2223 if (entry->eflags & MAP_ENTRY_COW) 2224 kve->kve_flags |= KVME_FLAG_COW; 2225 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2226 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2227 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2228 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2229 2230 last_timestamp = map->timestamp; 2231 vm_map_unlock_read(map); 2232 2233 kve->kve_fileid = 0; 2234 kve->kve_fsid = 0; 2235 freepath = NULL; 2236 fullpath = ""; 2237 if (lobj) { 2238 vp = NULL; 2239 switch (lobj->type) { 2240 case OBJT_DEFAULT: 2241 kve->kve_type = KVME_TYPE_DEFAULT; 2242 break; 2243 case OBJT_VNODE: 2244 kve->kve_type = KVME_TYPE_VNODE; 2245 vp = lobj->handle; 2246 vref(vp); 2247 break; 2248 case OBJT_SWAP: 2249 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2250 kve->kve_type = KVME_TYPE_VNODE; 2251 if ((lobj->flags & OBJ_TMPFS) != 0) { 2252 vp = lobj->un_pager.swp.swp_tmpfs; 2253 vref(vp); 2254 } 2255 } else { 2256 kve->kve_type = KVME_TYPE_SWAP; 2257 } 2258 break; 2259 case OBJT_DEVICE: 2260 kve->kve_type = KVME_TYPE_DEVICE; 2261 break; 2262 case OBJT_PHYS: 2263 kve->kve_type = KVME_TYPE_PHYS; 2264 break; 2265 case OBJT_DEAD: 2266 kve->kve_type = KVME_TYPE_DEAD; 2267 break; 2268 case OBJT_SG: 2269 kve->kve_type = KVME_TYPE_SG; 2270 break; 2271 default: 2272 kve->kve_type = KVME_TYPE_UNKNOWN; 2273 break; 2274 } 2275 if (lobj != obj) 2276 VM_OBJECT_RUNLOCK(lobj); 2277 2278 kve->kve_ref_count = obj->ref_count; 2279 kve->kve_shadow_count = obj->shadow_count; 2280 VM_OBJECT_RUNLOCK(obj); 2281 if (vp != NULL) { 2282 vn_fullpath(curthread, vp, &fullpath, 2283 &freepath); 2284 cred = curthread->td_ucred; 2285 vn_lock(vp, LK_SHARED | LK_RETRY); 2286 if (VOP_GETATTR(vp, &va, cred) == 0) { 2287 kve->kve_fileid = va.va_fileid; 2288 /* truncate */ 2289 kve->kve_fsid = va.va_fsid; 2290 } 2291 vput(vp); 2292 } 2293 } else { 2294 kve->kve_type = KVME_TYPE_NONE; 2295 kve->kve_ref_count = 0; 2296 kve->kve_shadow_count = 0; 2297 } 2298 2299 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2300 if (freepath != NULL) 2301 free(freepath, M_TEMP); 2302 2303 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2304 vm_map_lock_read(map); 2305 if (error) 2306 break; 2307 if (last_timestamp != map->timestamp) { 2308 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2309 entry = tmp_entry; 2310 } 2311 } 2312 vm_map_unlock_read(map); 2313 vmspace_free(vm); 2314 PRELE(p); 2315 free(kve, M_TEMP); 2316 return (error); 2317 } 2318 #endif /* COMPAT_FREEBSD7 */ 2319 2320 #ifdef KINFO_VMENTRY_SIZE 2321 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2322 #endif 2323 2324 void 2325 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2326 int *resident_count, bool *super) 2327 { 2328 vm_object_t obj, tobj; 2329 vm_page_t m, m_adv; 2330 vm_offset_t addr; 2331 vm_paddr_t locked_pa; 2332 vm_pindex_t pi, pi_adv, pindex; 2333 2334 *super = false; 2335 *resident_count = 0; 2336 if (vmmap_skip_res_cnt) 2337 return; 2338 2339 locked_pa = 0; 2340 obj = entry->object.vm_object; 2341 addr = entry->start; 2342 m_adv = NULL; 2343 pi = OFF_TO_IDX(entry->offset); 2344 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2345 if (m_adv != NULL) { 2346 m = m_adv; 2347 } else { 2348 pi_adv = atop(entry->end - addr); 2349 pindex = pi; 2350 for (tobj = obj;; tobj = tobj->backing_object) { 2351 m = vm_page_find_least(tobj, pindex); 2352 if (m != NULL) { 2353 if (m->pindex == pindex) 2354 break; 2355 if (pi_adv > m->pindex - pindex) { 2356 pi_adv = m->pindex - pindex; 2357 m_adv = m; 2358 } 2359 } 2360 if (tobj->backing_object == NULL) 2361 goto next; 2362 pindex += OFF_TO_IDX(tobj-> 2363 backing_object_offset); 2364 } 2365 } 2366 m_adv = NULL; 2367 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2368 (addr & (pagesizes[1] - 1)) == 0 && 2369 (pmap_mincore(map->pmap, addr, &locked_pa) & 2370 MINCORE_SUPER) != 0) { 2371 *super = true; 2372 pi_adv = atop(pagesizes[1]); 2373 } else { 2374 /* 2375 * We do not test the found page on validity. 2376 * Either the page is busy and being paged in, 2377 * or it was invalidated. The first case 2378 * should be counted as resident, the second 2379 * is not so clear; we do account both. 2380 */ 2381 pi_adv = 1; 2382 } 2383 *resident_count += pi_adv; 2384 next:; 2385 } 2386 PA_UNLOCK_COND(locked_pa); 2387 } 2388 2389 /* 2390 * Must be called with the process locked and will return unlocked. 2391 */ 2392 int 2393 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2394 { 2395 vm_map_entry_t entry, tmp_entry; 2396 struct vattr va; 2397 vm_map_t map; 2398 vm_object_t obj, tobj, lobj; 2399 char *fullpath, *freepath; 2400 struct kinfo_vmentry *kve; 2401 struct ucred *cred; 2402 struct vnode *vp; 2403 struct vmspace *vm; 2404 vm_offset_t addr; 2405 unsigned int last_timestamp; 2406 int error; 2407 bool super; 2408 2409 PROC_LOCK_ASSERT(p, MA_OWNED); 2410 2411 _PHOLD(p); 2412 PROC_UNLOCK(p); 2413 vm = vmspace_acquire_ref(p); 2414 if (vm == NULL) { 2415 PRELE(p); 2416 return (ESRCH); 2417 } 2418 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2419 2420 error = 0; 2421 map = &vm->vm_map; 2422 vm_map_lock_read(map); 2423 for (entry = map->header.next; entry != &map->header; 2424 entry = entry->next) { 2425 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2426 continue; 2427 2428 addr = entry->end; 2429 bzero(kve, sizeof(*kve)); 2430 obj = entry->object.vm_object; 2431 if (obj != NULL) { 2432 for (tobj = obj; tobj != NULL; 2433 tobj = tobj->backing_object) { 2434 VM_OBJECT_RLOCK(tobj); 2435 kve->kve_offset += tobj->backing_object_offset; 2436 lobj = tobj; 2437 } 2438 if (obj->backing_object == NULL) 2439 kve->kve_private_resident = 2440 obj->resident_page_count; 2441 kern_proc_vmmap_resident(map, entry, 2442 &kve->kve_resident, &super); 2443 if (super) 2444 kve->kve_flags |= KVME_FLAG_SUPER; 2445 for (tobj = obj; tobj != NULL; 2446 tobj = tobj->backing_object) { 2447 if (tobj != obj && tobj != lobj) 2448 VM_OBJECT_RUNLOCK(tobj); 2449 } 2450 } else { 2451 lobj = NULL; 2452 } 2453 2454 kve->kve_start = entry->start; 2455 kve->kve_end = entry->end; 2456 kve->kve_offset += entry->offset; 2457 2458 if (entry->protection & VM_PROT_READ) 2459 kve->kve_protection |= KVME_PROT_READ; 2460 if (entry->protection & VM_PROT_WRITE) 2461 kve->kve_protection |= KVME_PROT_WRITE; 2462 if (entry->protection & VM_PROT_EXECUTE) 2463 kve->kve_protection |= KVME_PROT_EXEC; 2464 2465 if (entry->eflags & MAP_ENTRY_COW) 2466 kve->kve_flags |= KVME_FLAG_COW; 2467 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2468 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2469 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2470 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2471 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2472 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2473 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2474 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2475 2476 last_timestamp = map->timestamp; 2477 vm_map_unlock_read(map); 2478 2479 freepath = NULL; 2480 fullpath = ""; 2481 if (lobj != NULL) { 2482 vp = NULL; 2483 switch (lobj->type) { 2484 case OBJT_DEFAULT: 2485 kve->kve_type = KVME_TYPE_DEFAULT; 2486 break; 2487 case OBJT_VNODE: 2488 kve->kve_type = KVME_TYPE_VNODE; 2489 vp = lobj->handle; 2490 vref(vp); 2491 break; 2492 case OBJT_SWAP: 2493 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2494 kve->kve_type = KVME_TYPE_VNODE; 2495 if ((lobj->flags & OBJ_TMPFS) != 0) { 2496 vp = lobj->un_pager.swp.swp_tmpfs; 2497 vref(vp); 2498 } 2499 } else { 2500 kve->kve_type = KVME_TYPE_SWAP; 2501 } 2502 break; 2503 case OBJT_DEVICE: 2504 kve->kve_type = KVME_TYPE_DEVICE; 2505 break; 2506 case OBJT_PHYS: 2507 kve->kve_type = KVME_TYPE_PHYS; 2508 break; 2509 case OBJT_DEAD: 2510 kve->kve_type = KVME_TYPE_DEAD; 2511 break; 2512 case OBJT_SG: 2513 kve->kve_type = KVME_TYPE_SG; 2514 break; 2515 case OBJT_MGTDEVICE: 2516 kve->kve_type = KVME_TYPE_MGTDEVICE; 2517 break; 2518 default: 2519 kve->kve_type = KVME_TYPE_UNKNOWN; 2520 break; 2521 } 2522 if (lobj != obj) 2523 VM_OBJECT_RUNLOCK(lobj); 2524 2525 kve->kve_ref_count = obj->ref_count; 2526 kve->kve_shadow_count = obj->shadow_count; 2527 VM_OBJECT_RUNLOCK(obj); 2528 if (vp != NULL) { 2529 vn_fullpath(curthread, vp, &fullpath, 2530 &freepath); 2531 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2532 cred = curthread->td_ucred; 2533 vn_lock(vp, LK_SHARED | LK_RETRY); 2534 if (VOP_GETATTR(vp, &va, cred) == 0) { 2535 kve->kve_vn_fileid = va.va_fileid; 2536 kve->kve_vn_fsid = va.va_fsid; 2537 kve->kve_vn_fsid_freebsd11 = 2538 kve->kve_vn_fsid; /* truncate */ 2539 kve->kve_vn_mode = 2540 MAKEIMODE(va.va_type, va.va_mode); 2541 kve->kve_vn_size = va.va_size; 2542 kve->kve_vn_rdev = va.va_rdev; 2543 kve->kve_vn_rdev_freebsd11 = 2544 kve->kve_vn_rdev; /* truncate */ 2545 kve->kve_status = KF_ATTR_VALID; 2546 } 2547 vput(vp); 2548 } 2549 } else { 2550 kve->kve_type = KVME_TYPE_NONE; 2551 kve->kve_ref_count = 0; 2552 kve->kve_shadow_count = 0; 2553 } 2554 2555 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2556 if (freepath != NULL) 2557 free(freepath, M_TEMP); 2558 2559 /* Pack record size down */ 2560 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2561 kve->kve_structsize = 2562 offsetof(struct kinfo_vmentry, kve_path) + 2563 strlen(kve->kve_path) + 1; 2564 else 2565 kve->kve_structsize = sizeof(*kve); 2566 kve->kve_structsize = roundup(kve->kve_structsize, 2567 sizeof(uint64_t)); 2568 2569 /* Halt filling and truncate rather than exceeding maxlen */ 2570 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2571 error = 0; 2572 vm_map_lock_read(map); 2573 break; 2574 } else if (maxlen != -1) 2575 maxlen -= kve->kve_structsize; 2576 2577 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2578 error = ENOMEM; 2579 vm_map_lock_read(map); 2580 if (error != 0) 2581 break; 2582 if (last_timestamp != map->timestamp) { 2583 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2584 entry = tmp_entry; 2585 } 2586 } 2587 vm_map_unlock_read(map); 2588 vmspace_free(vm); 2589 PRELE(p); 2590 free(kve, M_TEMP); 2591 return (error); 2592 } 2593 2594 static int 2595 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2596 { 2597 struct proc *p; 2598 struct sbuf sb; 2599 int error, error2, *name; 2600 2601 name = (int *)arg1; 2602 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2603 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2604 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2605 if (error != 0) { 2606 sbuf_delete(&sb); 2607 return (error); 2608 } 2609 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2610 error2 = sbuf_finish(&sb); 2611 sbuf_delete(&sb); 2612 return (error != 0 ? error : error2); 2613 } 2614 2615 #if defined(STACK) || defined(DDB) 2616 static int 2617 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2618 { 2619 struct kinfo_kstack *kkstp; 2620 int error, i, *name, numthreads; 2621 lwpid_t *lwpidarray; 2622 struct thread *td; 2623 struct stack *st; 2624 struct sbuf sb; 2625 struct proc *p; 2626 2627 name = (int *)arg1; 2628 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2629 if (error != 0) 2630 return (error); 2631 2632 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2633 st = stack_create(M_WAITOK); 2634 2635 lwpidarray = NULL; 2636 PROC_LOCK(p); 2637 do { 2638 if (lwpidarray != NULL) { 2639 free(lwpidarray, M_TEMP); 2640 lwpidarray = NULL; 2641 } 2642 numthreads = p->p_numthreads; 2643 PROC_UNLOCK(p); 2644 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2645 M_WAITOK | M_ZERO); 2646 PROC_LOCK(p); 2647 } while (numthreads < p->p_numthreads); 2648 2649 /* 2650 * XXXRW: During the below loop, execve(2) and countless other sorts 2651 * of changes could have taken place. Should we check to see if the 2652 * vmspace has been replaced, or the like, in order to prevent 2653 * giving a snapshot that spans, say, execve(2), with some threads 2654 * before and some after? Among other things, the credentials could 2655 * have changed, in which case the right to extract debug info might 2656 * no longer be assured. 2657 */ 2658 i = 0; 2659 FOREACH_THREAD_IN_PROC(p, td) { 2660 KASSERT(i < numthreads, 2661 ("sysctl_kern_proc_kstack: numthreads")); 2662 lwpidarray[i] = td->td_tid; 2663 i++; 2664 } 2665 numthreads = i; 2666 for (i = 0; i < numthreads; i++) { 2667 td = thread_find(p, lwpidarray[i]); 2668 if (td == NULL) { 2669 continue; 2670 } 2671 bzero(kkstp, sizeof(*kkstp)); 2672 (void)sbuf_new(&sb, kkstp->kkst_trace, 2673 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2674 thread_lock(td); 2675 kkstp->kkst_tid = td->td_tid; 2676 if (TD_IS_SWAPPED(td)) { 2677 kkstp->kkst_state = KKST_STATE_SWAPPED; 2678 } else if (TD_IS_RUNNING(td)) { 2679 if (stack_save_td_running(st, td) == 0) 2680 kkstp->kkst_state = KKST_STATE_STACKOK; 2681 else 2682 kkstp->kkst_state = KKST_STATE_RUNNING; 2683 } else { 2684 kkstp->kkst_state = KKST_STATE_STACKOK; 2685 stack_save_td(st, td); 2686 } 2687 thread_unlock(td); 2688 PROC_UNLOCK(p); 2689 stack_sbuf_print(&sb, st); 2690 sbuf_finish(&sb); 2691 sbuf_delete(&sb); 2692 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2693 PROC_LOCK(p); 2694 if (error) 2695 break; 2696 } 2697 _PRELE(p); 2698 PROC_UNLOCK(p); 2699 if (lwpidarray != NULL) 2700 free(lwpidarray, M_TEMP); 2701 stack_destroy(st); 2702 free(kkstp, M_TEMP); 2703 return (error); 2704 } 2705 #endif 2706 2707 /* 2708 * This sysctl allows a process to retrieve the full list of groups from 2709 * itself or another process. 2710 */ 2711 static int 2712 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2713 { 2714 pid_t *pidp = (pid_t *)arg1; 2715 unsigned int arglen = arg2; 2716 struct proc *p; 2717 struct ucred *cred; 2718 int error; 2719 2720 if (arglen != 1) 2721 return (EINVAL); 2722 if (*pidp == -1) { /* -1 means this process */ 2723 p = req->td->td_proc; 2724 PROC_LOCK(p); 2725 } else { 2726 error = pget(*pidp, PGET_CANSEE, &p); 2727 if (error != 0) 2728 return (error); 2729 } 2730 2731 cred = crhold(p->p_ucred); 2732 PROC_UNLOCK(p); 2733 2734 error = SYSCTL_OUT(req, cred->cr_groups, 2735 cred->cr_ngroups * sizeof(gid_t)); 2736 crfree(cred); 2737 return (error); 2738 } 2739 2740 /* 2741 * This sysctl allows a process to retrieve or/and set the resource limit for 2742 * another process. 2743 */ 2744 static int 2745 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2746 { 2747 int *name = (int *)arg1; 2748 u_int namelen = arg2; 2749 struct rlimit rlim; 2750 struct proc *p; 2751 u_int which; 2752 int flags, error; 2753 2754 if (namelen != 2) 2755 return (EINVAL); 2756 2757 which = (u_int)name[1]; 2758 if (which >= RLIM_NLIMITS) 2759 return (EINVAL); 2760 2761 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2762 return (EINVAL); 2763 2764 flags = PGET_HOLD | PGET_NOTWEXIT; 2765 if (req->newptr != NULL) 2766 flags |= PGET_CANDEBUG; 2767 else 2768 flags |= PGET_CANSEE; 2769 error = pget((pid_t)name[0], flags, &p); 2770 if (error != 0) 2771 return (error); 2772 2773 /* 2774 * Retrieve limit. 2775 */ 2776 if (req->oldptr != NULL) { 2777 PROC_LOCK(p); 2778 lim_rlimit_proc(p, which, &rlim); 2779 PROC_UNLOCK(p); 2780 } 2781 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2782 if (error != 0) 2783 goto errout; 2784 2785 /* 2786 * Set limit. 2787 */ 2788 if (req->newptr != NULL) { 2789 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2790 if (error == 0) 2791 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2792 } 2793 2794 errout: 2795 PRELE(p); 2796 return (error); 2797 } 2798 2799 /* 2800 * This sysctl allows a process to retrieve ps_strings structure location of 2801 * another process. 2802 */ 2803 static int 2804 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2805 { 2806 int *name = (int *)arg1; 2807 u_int namelen = arg2; 2808 struct proc *p; 2809 vm_offset_t ps_strings; 2810 int error; 2811 #ifdef COMPAT_FREEBSD32 2812 uint32_t ps_strings32; 2813 #endif 2814 2815 if (namelen != 1) 2816 return (EINVAL); 2817 2818 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2819 if (error != 0) 2820 return (error); 2821 #ifdef COMPAT_FREEBSD32 2822 if ((req->flags & SCTL_MASK32) != 0) { 2823 /* 2824 * We return 0 if the 32 bit emulation request is for a 64 bit 2825 * process. 2826 */ 2827 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2828 PTROUT(p->p_sysent->sv_psstrings) : 0; 2829 PROC_UNLOCK(p); 2830 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2831 return (error); 2832 } 2833 #endif 2834 ps_strings = p->p_sysent->sv_psstrings; 2835 PROC_UNLOCK(p); 2836 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2837 return (error); 2838 } 2839 2840 /* 2841 * This sysctl allows a process to retrieve umask of another process. 2842 */ 2843 static int 2844 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2845 { 2846 int *name = (int *)arg1; 2847 u_int namelen = arg2; 2848 struct proc *p; 2849 int error; 2850 u_short fd_cmask; 2851 pid_t pid; 2852 2853 if (namelen != 1) 2854 return (EINVAL); 2855 2856 pid = (pid_t)name[0]; 2857 p = curproc; 2858 if (pid == p->p_pid || pid == 0) { 2859 fd_cmask = p->p_fd->fd_cmask; 2860 goto out; 2861 } 2862 2863 error = pget(pid, PGET_WANTREAD, &p); 2864 if (error != 0) 2865 return (error); 2866 2867 fd_cmask = p->p_fd->fd_cmask; 2868 PRELE(p); 2869 out: 2870 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2871 return (error); 2872 } 2873 2874 /* 2875 * This sysctl allows a process to set and retrieve binary osreldate of 2876 * another process. 2877 */ 2878 static int 2879 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2880 { 2881 int *name = (int *)arg1; 2882 u_int namelen = arg2; 2883 struct proc *p; 2884 int flags, error, osrel; 2885 2886 if (namelen != 1) 2887 return (EINVAL); 2888 2889 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2890 return (EINVAL); 2891 2892 flags = PGET_HOLD | PGET_NOTWEXIT; 2893 if (req->newptr != NULL) 2894 flags |= PGET_CANDEBUG; 2895 else 2896 flags |= PGET_CANSEE; 2897 error = pget((pid_t)name[0], flags, &p); 2898 if (error != 0) 2899 return (error); 2900 2901 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2902 if (error != 0) 2903 goto errout; 2904 2905 if (req->newptr != NULL) { 2906 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2907 if (error != 0) 2908 goto errout; 2909 if (osrel < 0) { 2910 error = EINVAL; 2911 goto errout; 2912 } 2913 p->p_osrel = osrel; 2914 } 2915 errout: 2916 PRELE(p); 2917 return (error); 2918 } 2919 2920 static int 2921 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2922 { 2923 int *name = (int *)arg1; 2924 u_int namelen = arg2; 2925 struct proc *p; 2926 struct kinfo_sigtramp kst; 2927 const struct sysentvec *sv; 2928 int error; 2929 #ifdef COMPAT_FREEBSD32 2930 struct kinfo_sigtramp32 kst32; 2931 #endif 2932 2933 if (namelen != 1) 2934 return (EINVAL); 2935 2936 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2937 if (error != 0) 2938 return (error); 2939 sv = p->p_sysent; 2940 #ifdef COMPAT_FREEBSD32 2941 if ((req->flags & SCTL_MASK32) != 0) { 2942 bzero(&kst32, sizeof(kst32)); 2943 if (SV_PROC_FLAG(p, SV_ILP32)) { 2944 if (sv->sv_sigcode_base != 0) { 2945 kst32.ksigtramp_start = sv->sv_sigcode_base; 2946 kst32.ksigtramp_end = sv->sv_sigcode_base + 2947 *sv->sv_szsigcode; 2948 } else { 2949 kst32.ksigtramp_start = sv->sv_psstrings - 2950 *sv->sv_szsigcode; 2951 kst32.ksigtramp_end = sv->sv_psstrings; 2952 } 2953 } 2954 PROC_UNLOCK(p); 2955 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2956 return (error); 2957 } 2958 #endif 2959 bzero(&kst, sizeof(kst)); 2960 if (sv->sv_sigcode_base != 0) { 2961 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2962 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2963 *sv->sv_szsigcode; 2964 } else { 2965 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2966 *sv->sv_szsigcode; 2967 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2968 } 2969 PROC_UNLOCK(p); 2970 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2971 return (error); 2972 } 2973 2974 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2975 2976 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2977 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2978 "Return entire process table"); 2979 2980 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2981 sysctl_kern_proc, "Process table"); 2982 2983 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2984 sysctl_kern_proc, "Process table"); 2985 2986 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2987 sysctl_kern_proc, "Process table"); 2988 2989 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2990 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2991 2992 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2993 sysctl_kern_proc, "Process table"); 2994 2995 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2996 sysctl_kern_proc, "Process table"); 2997 2998 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2999 sysctl_kern_proc, "Process table"); 3000 3001 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3002 sysctl_kern_proc, "Process table"); 3003 3004 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3005 sysctl_kern_proc, "Return process table, no threads"); 3006 3007 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3008 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3009 sysctl_kern_proc_args, "Process argument list"); 3010 3011 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3012 sysctl_kern_proc_env, "Process environment"); 3013 3014 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3015 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3016 3017 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3018 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3019 3020 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3021 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3022 "Process syscall vector name (ABI type)"); 3023 3024 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3025 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3026 3027 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3028 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3029 3030 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3031 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3032 3033 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3034 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3035 3036 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3037 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3038 3039 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3040 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3041 3042 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3043 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3044 3045 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3046 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3047 3048 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3049 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3050 "Return process table, no threads"); 3051 3052 #ifdef COMPAT_FREEBSD7 3053 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3054 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3055 #endif 3056 3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3058 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3059 3060 #if defined(STACK) || defined(DDB) 3061 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3062 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3063 #endif 3064 3065 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3066 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3067 3068 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3069 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3070 "Process resource limits"); 3071 3072 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3073 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3074 "Process ps_strings location"); 3075 3076 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3077 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3078 3079 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3080 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3081 "Process binary osreldate"); 3082 3083 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3084 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3085 "Process signal trampoline location"); 3086 3087 int allproc_gen; 3088 3089 /* 3090 * stop_all_proc() purpose is to stop all process which have usermode, 3091 * except current process for obvious reasons. This makes it somewhat 3092 * unreliable when invoked from multithreaded process. The service 3093 * must not be user-callable anyway. 3094 */ 3095 void 3096 stop_all_proc(void) 3097 { 3098 struct proc *cp, *p; 3099 int r, gen; 3100 bool restart, seen_stopped, seen_exiting, stopped_some; 3101 3102 cp = curproc; 3103 allproc_loop: 3104 sx_xlock(&allproc_lock); 3105 gen = allproc_gen; 3106 seen_exiting = seen_stopped = stopped_some = restart = false; 3107 LIST_REMOVE(cp, p_list); 3108 LIST_INSERT_HEAD(&allproc, cp, p_list); 3109 for (;;) { 3110 p = LIST_NEXT(cp, p_list); 3111 if (p == NULL) 3112 break; 3113 LIST_REMOVE(cp, p_list); 3114 LIST_INSERT_AFTER(p, cp, p_list); 3115 PROC_LOCK(p); 3116 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3117 PROC_UNLOCK(p); 3118 continue; 3119 } 3120 if ((p->p_flag & P_WEXIT) != 0) { 3121 seen_exiting = true; 3122 PROC_UNLOCK(p); 3123 continue; 3124 } 3125 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3126 /* 3127 * Stopped processes are tolerated when there 3128 * are no other processes which might continue 3129 * them. P_STOPPED_SINGLE but not 3130 * P_TOTAL_STOP process still has at least one 3131 * thread running. 3132 */ 3133 seen_stopped = true; 3134 PROC_UNLOCK(p); 3135 continue; 3136 } 3137 _PHOLD(p); 3138 sx_xunlock(&allproc_lock); 3139 r = thread_single(p, SINGLE_ALLPROC); 3140 if (r != 0) 3141 restart = true; 3142 else 3143 stopped_some = true; 3144 _PRELE(p); 3145 PROC_UNLOCK(p); 3146 sx_xlock(&allproc_lock); 3147 } 3148 /* Catch forked children we did not see in iteration. */ 3149 if (gen != allproc_gen) 3150 restart = true; 3151 sx_xunlock(&allproc_lock); 3152 if (restart || stopped_some || seen_exiting || seen_stopped) { 3153 kern_yield(PRI_USER); 3154 goto allproc_loop; 3155 } 3156 } 3157 3158 void 3159 resume_all_proc(void) 3160 { 3161 struct proc *cp, *p; 3162 3163 cp = curproc; 3164 sx_xlock(&allproc_lock); 3165 again: 3166 LIST_REMOVE(cp, p_list); 3167 LIST_INSERT_HEAD(&allproc, cp, p_list); 3168 for (;;) { 3169 p = LIST_NEXT(cp, p_list); 3170 if (p == NULL) 3171 break; 3172 LIST_REMOVE(cp, p_list); 3173 LIST_INSERT_AFTER(p, cp, p_list); 3174 PROC_LOCK(p); 3175 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3176 sx_xunlock(&allproc_lock); 3177 _PHOLD(p); 3178 thread_single_end(p, SINGLE_ALLPROC); 3179 _PRELE(p); 3180 PROC_UNLOCK(p); 3181 sx_xlock(&allproc_lock); 3182 } else { 3183 PROC_UNLOCK(p); 3184 } 3185 } 3186 /* Did the loop above missed any stopped process ? */ 3187 FOREACH_PROC_IN_SYSTEM(p) { 3188 /* No need for proc lock. */ 3189 if ((p->p_flag & P_TOTAL_STOP) != 0) 3190 goto again; 3191 } 3192 sx_xunlock(&allproc_lock); 3193 } 3194 3195 /* #define TOTAL_STOP_DEBUG 1 */ 3196 #ifdef TOTAL_STOP_DEBUG 3197 volatile static int ap_resume; 3198 #include <sys/mount.h> 3199 3200 static int 3201 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3202 { 3203 int error, val; 3204 3205 val = 0; 3206 ap_resume = 0; 3207 error = sysctl_handle_int(oidp, &val, 0, req); 3208 if (error != 0 || req->newptr == NULL) 3209 return (error); 3210 if (val != 0) { 3211 stop_all_proc(); 3212 syncer_suspend(); 3213 while (ap_resume == 0) 3214 ; 3215 syncer_resume(); 3216 resume_all_proc(); 3217 } 3218 return (0); 3219 } 3220 3221 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3222 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3223 sysctl_debug_stop_all_proc, "I", 3224 ""); 3225 #endif 3226