1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx __exclusive_cache_line allproc_lock; 135 struct sx __exclusive_cache_line proctree_lock; 136 struct mtx __exclusive_cache_line ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 EVENTHANDLER_LIST_DEFINE(process_ctor); 155 EVENTHANDLER_LIST_DEFINE(process_dtor); 156 EVENTHANDLER_LIST_DEFINE(process_init); 157 EVENTHANDLER_LIST_DEFINE(process_fini); 158 EVENTHANDLER_LIST_DEFINE(process_exit); 159 EVENTHANDLER_LIST_DEFINE(process_fork); 160 EVENTHANDLER_LIST_DEFINE(process_exec); 161 162 EVENTHANDLER_LIST_DECLARE(thread_ctor); 163 EVENTHANDLER_LIST_DECLARE(thread_dtor); 164 165 int kstack_pages = KSTACK_PAGES; 166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 167 "Kernel stack size in pages"); 168 static int vmmap_skip_res_cnt = 0; 169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 170 &vmmap_skip_res_cnt, 0, 171 "Skip calculation of the pages resident count in kern.proc.vmmap"); 172 173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 174 #ifdef COMPAT_FREEBSD32 175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 176 #endif 177 178 /* 179 * Initialize global process hashing structures. 180 */ 181 void 182 procinit(void) 183 { 184 185 sx_init(&allproc_lock, "allproc"); 186 sx_init(&proctree_lock, "proctree"); 187 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 188 LIST_INIT(&allproc); 189 LIST_INIT(&zombproc); 190 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 191 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 192 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 193 proc_ctor, proc_dtor, proc_init, proc_fini, 194 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 195 uihashinit(); 196 } 197 198 /* 199 * Prepare a proc for use. 200 */ 201 static int 202 proc_ctor(void *mem, int size, void *arg, int flags) 203 { 204 struct proc *p; 205 struct thread *td; 206 207 p = (struct proc *)mem; 208 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 209 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 210 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 211 td = FIRST_THREAD_IN_PROC(p); 212 if (td != NULL) { 213 /* Make sure all thread constructors are executed */ 214 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 215 } 216 return (0); 217 } 218 219 /* 220 * Reclaim a proc after use. 221 */ 222 static void 223 proc_dtor(void *mem, int size, void *arg) 224 { 225 struct proc *p; 226 struct thread *td; 227 228 /* INVARIANTS checks go here */ 229 p = (struct proc *)mem; 230 td = FIRST_THREAD_IN_PROC(p); 231 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 232 if (td != NULL) { 233 #ifdef INVARIANTS 234 KASSERT((p->p_numthreads == 1), 235 ("bad number of threads in exiting process")); 236 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 237 #endif 238 /* Free all OSD associated to this thread. */ 239 osd_thread_exit(td); 240 td_softdep_cleanup(td); 241 MPASS(td->td_su == NULL); 242 243 /* Make sure all thread destructors are executed */ 244 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 245 } 246 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 247 if (p->p_ksi != NULL) 248 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 249 SDT_PROBE3(proc, , dtor, return, p, size, arg); 250 } 251 252 /* 253 * Initialize type-stable parts of a proc (when newly created). 254 */ 255 static int 256 proc_init(void *mem, int size, int flags) 257 { 258 struct proc *p; 259 260 p = (struct proc *)mem; 261 SDT_PROBE3(proc, , init, entry, p, size, flags); 262 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 263 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 264 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 265 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 266 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 267 cv_init(&p->p_pwait, "ppwait"); 268 cv_init(&p->p_dbgwait, "dbgwait"); 269 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 270 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 271 p->p_stats = pstats_alloc(); 272 p->p_pgrp = NULL; 273 SDT_PROBE3(proc, , init, return, p, size, flags); 274 return (0); 275 } 276 277 /* 278 * UMA should ensure that this function is never called. 279 * Freeing a proc structure would violate type stability. 280 */ 281 static void 282 proc_fini(void *mem, int size) 283 { 284 #ifdef notnow 285 struct proc *p; 286 287 p = (struct proc *)mem; 288 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 289 pstats_free(p->p_stats); 290 thread_free(FIRST_THREAD_IN_PROC(p)); 291 mtx_destroy(&p->p_mtx); 292 if (p->p_ksi != NULL) 293 ksiginfo_free(p->p_ksi); 294 #else 295 panic("proc reclaimed"); 296 #endif 297 } 298 299 /* 300 * Is p an inferior of the current process? 301 */ 302 int 303 inferior(struct proc *p) 304 { 305 306 sx_assert(&proctree_lock, SX_LOCKED); 307 PROC_LOCK_ASSERT(p, MA_OWNED); 308 for (; p != curproc; p = proc_realparent(p)) { 309 if (p->p_pid == 0) 310 return (0); 311 } 312 return (1); 313 } 314 315 struct proc * 316 pfind_locked(pid_t pid) 317 { 318 struct proc *p; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 322 if (p->p_pid == pid) { 323 PROC_LOCK(p); 324 if (p->p_state == PRS_NEW) { 325 PROC_UNLOCK(p); 326 p = NULL; 327 } 328 break; 329 } 330 } 331 return (p); 332 } 333 334 /* 335 * Locate a process by number; return only "live" processes -- i.e., neither 336 * zombies nor newly born but incompletely initialized processes. By not 337 * returning processes in the PRS_NEW state, we allow callers to avoid 338 * testing for that condition to avoid dereferencing p_ucred, et al. 339 */ 340 struct proc * 341 pfind(pid_t pid) 342 { 343 struct proc *p; 344 345 p = curproc; 346 if (p->p_pid == pid) { 347 PROC_LOCK(p); 348 return (p); 349 } 350 sx_slock(&allproc_lock); 351 p = pfind_locked(pid); 352 sx_sunlock(&allproc_lock); 353 return (p); 354 } 355 356 /* 357 * Same as pfind but allow zombies. 358 */ 359 struct proc * 360 pfind_any(pid_t pid) 361 { 362 struct proc *p; 363 364 sx_slock(&allproc_lock); 365 p = pfind_locked(pid); 366 if (p == NULL) 367 p = zpfind_locked(pid); 368 sx_sunlock(&allproc_lock); 369 370 return (p); 371 } 372 373 static struct proc * 374 pfind_tid_locked(pid_t tid) 375 { 376 struct proc *p; 377 struct thread *td; 378 379 sx_assert(&allproc_lock, SX_LOCKED); 380 FOREACH_PROC_IN_SYSTEM(p) { 381 PROC_LOCK(p); 382 if (p->p_state == PRS_NEW) { 383 PROC_UNLOCK(p); 384 continue; 385 } 386 FOREACH_THREAD_IN_PROC(p, td) { 387 if (td->td_tid == tid) 388 goto found; 389 } 390 PROC_UNLOCK(p); 391 } 392 found: 393 return (p); 394 } 395 396 /* 397 * Locate a process group by number. 398 * The caller must hold proctree_lock. 399 */ 400 struct pgrp * 401 pgfind(pid_t pgid) 402 { 403 struct pgrp *pgrp; 404 405 sx_assert(&proctree_lock, SX_LOCKED); 406 407 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 408 if (pgrp->pg_id == pgid) { 409 PGRP_LOCK(pgrp); 410 return (pgrp); 411 } 412 } 413 return (NULL); 414 } 415 416 /* 417 * Locate process and do additional manipulations, depending on flags. 418 */ 419 int 420 pget(pid_t pid, int flags, struct proc **pp) 421 { 422 struct proc *p; 423 int error; 424 425 p = curproc; 426 if (p->p_pid == pid) { 427 PROC_LOCK(p); 428 } else { 429 sx_slock(&allproc_lock); 430 if (pid <= PID_MAX) { 431 p = pfind_locked(pid); 432 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 433 p = zpfind_locked(pid); 434 } else if ((flags & PGET_NOTID) == 0) { 435 p = pfind_tid_locked(pid); 436 } else { 437 p = NULL; 438 } 439 sx_sunlock(&allproc_lock); 440 if (p == NULL) 441 return (ESRCH); 442 if ((flags & PGET_CANSEE) != 0) { 443 error = p_cansee(curthread, p); 444 if (error != 0) 445 goto errout; 446 } 447 } 448 if ((flags & PGET_CANDEBUG) != 0) { 449 error = p_candebug(curthread, p); 450 if (error != 0) 451 goto errout; 452 } 453 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 454 error = EPERM; 455 goto errout; 456 } 457 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 458 error = ESRCH; 459 goto errout; 460 } 461 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 462 /* 463 * XXXRW: Not clear ESRCH is the right error during proc 464 * execve(). 465 */ 466 error = ESRCH; 467 goto errout; 468 } 469 if ((flags & PGET_HOLD) != 0) { 470 _PHOLD(p); 471 PROC_UNLOCK(p); 472 } 473 *pp = p; 474 return (0); 475 errout: 476 PROC_UNLOCK(p); 477 return (error); 478 } 479 480 /* 481 * Create a new process group. 482 * pgid must be equal to the pid of p. 483 * Begin a new session if required. 484 */ 485 int 486 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 487 { 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 491 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 492 KASSERT(p->p_pid == pgid, 493 ("enterpgrp: new pgrp and pid != pgid")); 494 KASSERT(pgfind(pgid) == NULL, 495 ("enterpgrp: pgrp with pgid exists")); 496 KASSERT(!SESS_LEADER(p), 497 ("enterpgrp: session leader attempted setpgrp")); 498 499 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 500 501 if (sess != NULL) { 502 /* 503 * new session 504 */ 505 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 506 PROC_LOCK(p); 507 p->p_flag &= ~P_CONTROLT; 508 PROC_UNLOCK(p); 509 PGRP_LOCK(pgrp); 510 sess->s_leader = p; 511 sess->s_sid = p->p_pid; 512 refcount_init(&sess->s_count, 1); 513 sess->s_ttyvp = NULL; 514 sess->s_ttydp = NULL; 515 sess->s_ttyp = NULL; 516 bcopy(p->p_session->s_login, sess->s_login, 517 sizeof(sess->s_login)); 518 pgrp->pg_session = sess; 519 KASSERT(p == curproc, 520 ("enterpgrp: mksession and p != curproc")); 521 } else { 522 pgrp->pg_session = p->p_session; 523 sess_hold(pgrp->pg_session); 524 PGRP_LOCK(pgrp); 525 } 526 pgrp->pg_id = pgid; 527 LIST_INIT(&pgrp->pg_members); 528 529 /* 530 * As we have an exclusive lock of proctree_lock, 531 * this should not deadlock. 532 */ 533 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 534 pgrp->pg_jobc = 0; 535 SLIST_INIT(&pgrp->pg_sigiolst); 536 PGRP_UNLOCK(pgrp); 537 538 doenterpgrp(p, pgrp); 539 540 return (0); 541 } 542 543 /* 544 * Move p to an existing process group 545 */ 546 int 547 enterthispgrp(struct proc *p, struct pgrp *pgrp) 548 { 549 550 sx_assert(&proctree_lock, SX_XLOCKED); 551 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 552 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 553 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 554 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 555 KASSERT(pgrp->pg_session == p->p_session, 556 ("%s: pgrp's session %p, p->p_session %p.\n", 557 __func__, 558 pgrp->pg_session, 559 p->p_session)); 560 KASSERT(pgrp != p->p_pgrp, 561 ("%s: p belongs to pgrp.", __func__)); 562 563 doenterpgrp(p, pgrp); 564 565 return (0); 566 } 567 568 /* 569 * Move p to a process group 570 */ 571 static void 572 doenterpgrp(struct proc *p, struct pgrp *pgrp) 573 { 574 struct pgrp *savepgrp; 575 576 sx_assert(&proctree_lock, SX_XLOCKED); 577 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 578 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 579 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 580 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 581 582 savepgrp = p->p_pgrp; 583 584 /* 585 * Adjust eligibility of affected pgrps to participate in job control. 586 * Increment eligibility counts before decrementing, otherwise we 587 * could reach 0 spuriously during the first call. 588 */ 589 fixjobc(p, pgrp, 1); 590 fixjobc(p, p->p_pgrp, 0); 591 592 PGRP_LOCK(pgrp); 593 PGRP_LOCK(savepgrp); 594 PROC_LOCK(p); 595 LIST_REMOVE(p, p_pglist); 596 p->p_pgrp = pgrp; 597 PROC_UNLOCK(p); 598 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 599 PGRP_UNLOCK(savepgrp); 600 PGRP_UNLOCK(pgrp); 601 if (LIST_EMPTY(&savepgrp->pg_members)) 602 pgdelete(savepgrp); 603 } 604 605 /* 606 * remove process from process group 607 */ 608 int 609 leavepgrp(struct proc *p) 610 { 611 struct pgrp *savepgrp; 612 613 sx_assert(&proctree_lock, SX_XLOCKED); 614 savepgrp = p->p_pgrp; 615 PGRP_LOCK(savepgrp); 616 PROC_LOCK(p); 617 LIST_REMOVE(p, p_pglist); 618 p->p_pgrp = NULL; 619 PROC_UNLOCK(p); 620 PGRP_UNLOCK(savepgrp); 621 if (LIST_EMPTY(&savepgrp->pg_members)) 622 pgdelete(savepgrp); 623 return (0); 624 } 625 626 /* 627 * delete a process group 628 */ 629 static void 630 pgdelete(struct pgrp *pgrp) 631 { 632 struct session *savesess; 633 struct tty *tp; 634 635 sx_assert(&proctree_lock, SX_XLOCKED); 636 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 637 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 638 639 /* 640 * Reset any sigio structures pointing to us as a result of 641 * F_SETOWN with our pgid. 642 */ 643 funsetownlst(&pgrp->pg_sigiolst); 644 645 PGRP_LOCK(pgrp); 646 tp = pgrp->pg_session->s_ttyp; 647 LIST_REMOVE(pgrp, pg_hash); 648 savesess = pgrp->pg_session; 649 PGRP_UNLOCK(pgrp); 650 651 /* Remove the reference to the pgrp before deallocating it. */ 652 if (tp != NULL) { 653 tty_lock(tp); 654 tty_rel_pgrp(tp, pgrp); 655 } 656 657 mtx_destroy(&pgrp->pg_mtx); 658 free(pgrp, M_PGRP); 659 sess_release(savesess); 660 } 661 662 static void 663 pgadjustjobc(struct pgrp *pgrp, int entering) 664 { 665 666 PGRP_LOCK(pgrp); 667 if (entering) 668 pgrp->pg_jobc++; 669 else { 670 --pgrp->pg_jobc; 671 if (pgrp->pg_jobc == 0) 672 orphanpg(pgrp); 673 } 674 PGRP_UNLOCK(pgrp); 675 } 676 677 /* 678 * Adjust pgrp jobc counters when specified process changes process group. 679 * We count the number of processes in each process group that "qualify" 680 * the group for terminal job control (those with a parent in a different 681 * process group of the same session). If that count reaches zero, the 682 * process group becomes orphaned. Check both the specified process' 683 * process group and that of its children. 684 * entering == 0 => p is leaving specified group. 685 * entering == 1 => p is entering specified group. 686 */ 687 void 688 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 689 { 690 struct pgrp *hispgrp; 691 struct session *mysession; 692 struct proc *q; 693 694 sx_assert(&proctree_lock, SX_LOCKED); 695 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 696 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 697 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 698 699 /* 700 * Check p's parent to see whether p qualifies its own process 701 * group; if so, adjust count for p's process group. 702 */ 703 mysession = pgrp->pg_session; 704 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 705 hispgrp->pg_session == mysession) 706 pgadjustjobc(pgrp, entering); 707 708 /* 709 * Check this process' children to see whether they qualify 710 * their process groups; if so, adjust counts for children's 711 * process groups. 712 */ 713 LIST_FOREACH(q, &p->p_children, p_sibling) { 714 hispgrp = q->p_pgrp; 715 if (hispgrp == pgrp || 716 hispgrp->pg_session != mysession) 717 continue; 718 if (q->p_state == PRS_ZOMBIE) 719 continue; 720 pgadjustjobc(hispgrp, entering); 721 } 722 } 723 724 void 725 killjobc(void) 726 { 727 struct session *sp; 728 struct tty *tp; 729 struct proc *p; 730 struct vnode *ttyvp; 731 732 p = curproc; 733 MPASS(p->p_flag & P_WEXIT); 734 /* 735 * Do a quick check to see if there is anything to do with the 736 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 737 */ 738 PROC_LOCK(p); 739 if (!SESS_LEADER(p) && 740 (p->p_pgrp == p->p_pptr->p_pgrp) && 741 LIST_EMPTY(&p->p_children)) { 742 PROC_UNLOCK(p); 743 return; 744 } 745 PROC_UNLOCK(p); 746 747 sx_xlock(&proctree_lock); 748 if (SESS_LEADER(p)) { 749 sp = p->p_session; 750 751 /* 752 * s_ttyp is not zero'd; we use this to indicate that 753 * the session once had a controlling terminal. (for 754 * logging and informational purposes) 755 */ 756 SESS_LOCK(sp); 757 ttyvp = sp->s_ttyvp; 758 tp = sp->s_ttyp; 759 sp->s_ttyvp = NULL; 760 sp->s_ttydp = NULL; 761 sp->s_leader = NULL; 762 SESS_UNLOCK(sp); 763 764 /* 765 * Signal foreground pgrp and revoke access to 766 * controlling terminal if it has not been revoked 767 * already. 768 * 769 * Because the TTY may have been revoked in the mean 770 * time and could already have a new session associated 771 * with it, make sure we don't send a SIGHUP to a 772 * foreground process group that does not belong to this 773 * session. 774 */ 775 776 if (tp != NULL) { 777 tty_lock(tp); 778 if (tp->t_session == sp) 779 tty_signal_pgrp(tp, SIGHUP); 780 tty_unlock(tp); 781 } 782 783 if (ttyvp != NULL) { 784 sx_xunlock(&proctree_lock); 785 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 786 VOP_REVOKE(ttyvp, REVOKEALL); 787 VOP_UNLOCK(ttyvp, 0); 788 } 789 vrele(ttyvp); 790 sx_xlock(&proctree_lock); 791 } 792 } 793 fixjobc(p, p->p_pgrp, 0); 794 sx_xunlock(&proctree_lock); 795 } 796 797 /* 798 * A process group has become orphaned; 799 * if there are any stopped processes in the group, 800 * hang-up all process in that group. 801 */ 802 static void 803 orphanpg(struct pgrp *pg) 804 { 805 struct proc *p; 806 807 PGRP_LOCK_ASSERT(pg, MA_OWNED); 808 809 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 810 PROC_LOCK(p); 811 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 812 PROC_UNLOCK(p); 813 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 814 PROC_LOCK(p); 815 kern_psignal(p, SIGHUP); 816 kern_psignal(p, SIGCONT); 817 PROC_UNLOCK(p); 818 } 819 return; 820 } 821 PROC_UNLOCK(p); 822 } 823 } 824 825 void 826 sess_hold(struct session *s) 827 { 828 829 refcount_acquire(&s->s_count); 830 } 831 832 void 833 sess_release(struct session *s) 834 { 835 836 if (refcount_release(&s->s_count)) { 837 if (s->s_ttyp != NULL) { 838 tty_lock(s->s_ttyp); 839 tty_rel_sess(s->s_ttyp, s); 840 } 841 mtx_destroy(&s->s_mtx); 842 free(s, M_SESSION); 843 } 844 } 845 846 #ifdef DDB 847 848 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 849 { 850 struct pgrp *pgrp; 851 struct proc *p; 852 int i; 853 854 for (i = 0; i <= pgrphash; i++) { 855 if (!LIST_EMPTY(&pgrphashtbl[i])) { 856 printf("\tindx %d\n", i); 857 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 858 printf( 859 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 860 (void *)pgrp, (long)pgrp->pg_id, 861 (void *)pgrp->pg_session, 862 pgrp->pg_session->s_count, 863 (void *)LIST_FIRST(&pgrp->pg_members)); 864 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 865 printf("\t\tpid %ld addr %p pgrp %p\n", 866 (long)p->p_pid, (void *)p, 867 (void *)p->p_pgrp); 868 } 869 } 870 } 871 } 872 } 873 #endif /* DDB */ 874 875 /* 876 * Calculate the kinfo_proc members which contain process-wide 877 * informations. 878 * Must be called with the target process locked. 879 */ 880 static void 881 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 882 { 883 struct thread *td; 884 885 PROC_LOCK_ASSERT(p, MA_OWNED); 886 887 kp->ki_estcpu = 0; 888 kp->ki_pctcpu = 0; 889 FOREACH_THREAD_IN_PROC(p, td) { 890 thread_lock(td); 891 kp->ki_pctcpu += sched_pctcpu(td); 892 kp->ki_estcpu += sched_estcpu(td); 893 thread_unlock(td); 894 } 895 } 896 897 /* 898 * Clear kinfo_proc and fill in any information that is common 899 * to all threads in the process. 900 * Must be called with the target process locked. 901 */ 902 static void 903 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 904 { 905 struct thread *td0; 906 struct tty *tp; 907 struct session *sp; 908 struct ucred *cred; 909 struct sigacts *ps; 910 struct timeval boottime; 911 912 /* For proc_realparent. */ 913 sx_assert(&proctree_lock, SX_LOCKED); 914 PROC_LOCK_ASSERT(p, MA_OWNED); 915 bzero(kp, sizeof(*kp)); 916 917 kp->ki_structsize = sizeof(*kp); 918 kp->ki_paddr = p; 919 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 920 kp->ki_args = p->p_args; 921 kp->ki_textvp = p->p_textvp; 922 #ifdef KTRACE 923 kp->ki_tracep = p->p_tracevp; 924 kp->ki_traceflag = p->p_traceflag; 925 #endif 926 kp->ki_fd = p->p_fd; 927 kp->ki_vmspace = p->p_vmspace; 928 kp->ki_flag = p->p_flag; 929 kp->ki_flag2 = p->p_flag2; 930 cred = p->p_ucred; 931 if (cred) { 932 kp->ki_uid = cred->cr_uid; 933 kp->ki_ruid = cred->cr_ruid; 934 kp->ki_svuid = cred->cr_svuid; 935 kp->ki_cr_flags = 0; 936 if (cred->cr_flags & CRED_FLAG_CAPMODE) 937 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 938 /* XXX bde doesn't like KI_NGROUPS */ 939 if (cred->cr_ngroups > KI_NGROUPS) { 940 kp->ki_ngroups = KI_NGROUPS; 941 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 942 } else 943 kp->ki_ngroups = cred->cr_ngroups; 944 bcopy(cred->cr_groups, kp->ki_groups, 945 kp->ki_ngroups * sizeof(gid_t)); 946 kp->ki_rgid = cred->cr_rgid; 947 kp->ki_svgid = cred->cr_svgid; 948 /* If jailed(cred), emulate the old P_JAILED flag. */ 949 if (jailed(cred)) { 950 kp->ki_flag |= P_JAILED; 951 /* If inside the jail, use 0 as a jail ID. */ 952 if (cred->cr_prison != curthread->td_ucred->cr_prison) 953 kp->ki_jid = cred->cr_prison->pr_id; 954 } 955 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 956 sizeof(kp->ki_loginclass)); 957 } 958 ps = p->p_sigacts; 959 if (ps) { 960 mtx_lock(&ps->ps_mtx); 961 kp->ki_sigignore = ps->ps_sigignore; 962 kp->ki_sigcatch = ps->ps_sigcatch; 963 mtx_unlock(&ps->ps_mtx); 964 } 965 if (p->p_state != PRS_NEW && 966 p->p_state != PRS_ZOMBIE && 967 p->p_vmspace != NULL) { 968 struct vmspace *vm = p->p_vmspace; 969 970 kp->ki_size = vm->vm_map.size; 971 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 972 FOREACH_THREAD_IN_PROC(p, td0) { 973 if (!TD_IS_SWAPPED(td0)) 974 kp->ki_rssize += td0->td_kstack_pages; 975 } 976 kp->ki_swrss = vm->vm_swrss; 977 kp->ki_tsize = vm->vm_tsize; 978 kp->ki_dsize = vm->vm_dsize; 979 kp->ki_ssize = vm->vm_ssize; 980 } else if (p->p_state == PRS_ZOMBIE) 981 kp->ki_stat = SZOMB; 982 if (kp->ki_flag & P_INMEM) 983 kp->ki_sflag = PS_INMEM; 984 else 985 kp->ki_sflag = 0; 986 /* Calculate legacy swtime as seconds since 'swtick'. */ 987 kp->ki_swtime = (ticks - p->p_swtick) / hz; 988 kp->ki_pid = p->p_pid; 989 kp->ki_nice = p->p_nice; 990 kp->ki_fibnum = p->p_fibnum; 991 kp->ki_start = p->p_stats->p_start; 992 getboottime(&boottime); 993 timevaladd(&kp->ki_start, &boottime); 994 PROC_STATLOCK(p); 995 rufetch(p, &kp->ki_rusage); 996 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 997 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 998 PROC_STATUNLOCK(p); 999 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1000 /* Some callers want child times in a single value. */ 1001 kp->ki_childtime = kp->ki_childstime; 1002 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1003 1004 FOREACH_THREAD_IN_PROC(p, td0) 1005 kp->ki_cow += td0->td_cow; 1006 1007 tp = NULL; 1008 if (p->p_pgrp) { 1009 kp->ki_pgid = p->p_pgrp->pg_id; 1010 kp->ki_jobc = p->p_pgrp->pg_jobc; 1011 sp = p->p_pgrp->pg_session; 1012 1013 if (sp != NULL) { 1014 kp->ki_sid = sp->s_sid; 1015 SESS_LOCK(sp); 1016 strlcpy(kp->ki_login, sp->s_login, 1017 sizeof(kp->ki_login)); 1018 if (sp->s_ttyvp) 1019 kp->ki_kiflag |= KI_CTTY; 1020 if (SESS_LEADER(p)) 1021 kp->ki_kiflag |= KI_SLEADER; 1022 /* XXX proctree_lock */ 1023 tp = sp->s_ttyp; 1024 SESS_UNLOCK(sp); 1025 } 1026 } 1027 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1028 kp->ki_tdev = tty_udev(tp); 1029 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1030 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1031 if (tp->t_session) 1032 kp->ki_tsid = tp->t_session->s_sid; 1033 } else { 1034 kp->ki_tdev = NODEV; 1035 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1036 } 1037 if (p->p_comm[0] != '\0') 1038 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1039 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1040 p->p_sysent->sv_name[0] != '\0') 1041 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1042 kp->ki_siglist = p->p_siglist; 1043 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1044 kp->ki_acflag = p->p_acflag; 1045 kp->ki_lock = p->p_lock; 1046 if (p->p_pptr) { 1047 kp->ki_ppid = proc_realparent(p)->p_pid; 1048 if (p->p_flag & P_TRACED) 1049 kp->ki_tracer = p->p_pptr->p_pid; 1050 } 1051 } 1052 1053 /* 1054 * Fill in information that is thread specific. Must be called with 1055 * target process locked. If 'preferthread' is set, overwrite certain 1056 * process-related fields that are maintained for both threads and 1057 * processes. 1058 */ 1059 static void 1060 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1061 { 1062 struct proc *p; 1063 1064 p = td->td_proc; 1065 kp->ki_tdaddr = td; 1066 PROC_LOCK_ASSERT(p, MA_OWNED); 1067 1068 if (preferthread) 1069 PROC_STATLOCK(p); 1070 thread_lock(td); 1071 if (td->td_wmesg != NULL) 1072 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1073 else 1074 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1075 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1076 sizeof(kp->ki_tdname)) { 1077 strlcpy(kp->ki_moretdname, 1078 td->td_name + sizeof(kp->ki_tdname) - 1, 1079 sizeof(kp->ki_moretdname)); 1080 } else { 1081 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1082 } 1083 if (TD_ON_LOCK(td)) { 1084 kp->ki_kiflag |= KI_LOCKBLOCK; 1085 strlcpy(kp->ki_lockname, td->td_lockname, 1086 sizeof(kp->ki_lockname)); 1087 } else { 1088 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1089 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1090 } 1091 1092 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1093 if (TD_ON_RUNQ(td) || 1094 TD_CAN_RUN(td) || 1095 TD_IS_RUNNING(td)) { 1096 kp->ki_stat = SRUN; 1097 } else if (P_SHOULDSTOP(p)) { 1098 kp->ki_stat = SSTOP; 1099 } else if (TD_IS_SLEEPING(td)) { 1100 kp->ki_stat = SSLEEP; 1101 } else if (TD_ON_LOCK(td)) { 1102 kp->ki_stat = SLOCK; 1103 } else { 1104 kp->ki_stat = SWAIT; 1105 } 1106 } else if (p->p_state == PRS_ZOMBIE) { 1107 kp->ki_stat = SZOMB; 1108 } else { 1109 kp->ki_stat = SIDL; 1110 } 1111 1112 /* Things in the thread */ 1113 kp->ki_wchan = td->td_wchan; 1114 kp->ki_pri.pri_level = td->td_priority; 1115 kp->ki_pri.pri_native = td->td_base_pri; 1116 1117 /* 1118 * Note: legacy fields; clamp at the old NOCPU value and/or 1119 * the maximum u_char CPU value. 1120 */ 1121 if (td->td_lastcpu == NOCPU) 1122 kp->ki_lastcpu_old = NOCPU_OLD; 1123 else if (td->td_lastcpu > MAXCPU_OLD) 1124 kp->ki_lastcpu_old = MAXCPU_OLD; 1125 else 1126 kp->ki_lastcpu_old = td->td_lastcpu; 1127 1128 if (td->td_oncpu == NOCPU) 1129 kp->ki_oncpu_old = NOCPU_OLD; 1130 else if (td->td_oncpu > MAXCPU_OLD) 1131 kp->ki_oncpu_old = MAXCPU_OLD; 1132 else 1133 kp->ki_oncpu_old = td->td_oncpu; 1134 1135 kp->ki_lastcpu = td->td_lastcpu; 1136 kp->ki_oncpu = td->td_oncpu; 1137 kp->ki_tdflags = td->td_flags; 1138 kp->ki_tid = td->td_tid; 1139 kp->ki_numthreads = p->p_numthreads; 1140 kp->ki_pcb = td->td_pcb; 1141 kp->ki_kstack = (void *)td->td_kstack; 1142 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1143 kp->ki_pri.pri_class = td->td_pri_class; 1144 kp->ki_pri.pri_user = td->td_user_pri; 1145 1146 if (preferthread) { 1147 rufetchtd(td, &kp->ki_rusage); 1148 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1149 kp->ki_pctcpu = sched_pctcpu(td); 1150 kp->ki_estcpu = sched_estcpu(td); 1151 kp->ki_cow = td->td_cow; 1152 } 1153 1154 /* We can't get this anymore but ps etc never used it anyway. */ 1155 kp->ki_rqindex = 0; 1156 1157 if (preferthread) 1158 kp->ki_siglist = td->td_siglist; 1159 kp->ki_sigmask = td->td_sigmask; 1160 thread_unlock(td); 1161 if (preferthread) 1162 PROC_STATUNLOCK(p); 1163 } 1164 1165 /* 1166 * Fill in a kinfo_proc structure for the specified process. 1167 * Must be called with the target process locked. 1168 */ 1169 void 1170 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1171 { 1172 1173 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1174 1175 fill_kinfo_proc_only(p, kp); 1176 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1177 fill_kinfo_aggregate(p, kp); 1178 } 1179 1180 struct pstats * 1181 pstats_alloc(void) 1182 { 1183 1184 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1185 } 1186 1187 /* 1188 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1189 */ 1190 void 1191 pstats_fork(struct pstats *src, struct pstats *dst) 1192 { 1193 1194 bzero(&dst->pstat_startzero, 1195 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1196 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1197 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1198 } 1199 1200 void 1201 pstats_free(struct pstats *ps) 1202 { 1203 1204 free(ps, M_SUBPROC); 1205 } 1206 1207 static struct proc * 1208 zpfind_locked(pid_t pid) 1209 { 1210 struct proc *p; 1211 1212 sx_assert(&allproc_lock, SX_LOCKED); 1213 LIST_FOREACH(p, &zombproc, p_list) { 1214 if (p->p_pid == pid) { 1215 PROC_LOCK(p); 1216 break; 1217 } 1218 } 1219 return (p); 1220 } 1221 1222 /* 1223 * Locate a zombie process by number 1224 */ 1225 struct proc * 1226 zpfind(pid_t pid) 1227 { 1228 struct proc *p; 1229 1230 sx_slock(&allproc_lock); 1231 p = zpfind_locked(pid); 1232 sx_sunlock(&allproc_lock); 1233 return (p); 1234 } 1235 1236 #ifdef COMPAT_FREEBSD32 1237 1238 /* 1239 * This function is typically used to copy out the kernel address, so 1240 * it can be replaced by assignment of zero. 1241 */ 1242 static inline uint32_t 1243 ptr32_trim(void *ptr) 1244 { 1245 uintptr_t uptr; 1246 1247 uptr = (uintptr_t)ptr; 1248 return ((uptr > UINT_MAX) ? 0 : uptr); 1249 } 1250 1251 #define PTRTRIM_CP(src,dst,fld) \ 1252 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1253 1254 static void 1255 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1256 { 1257 int i; 1258 1259 bzero(ki32, sizeof(struct kinfo_proc32)); 1260 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1261 CP(*ki, *ki32, ki_layout); 1262 PTRTRIM_CP(*ki, *ki32, ki_args); 1263 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1264 PTRTRIM_CP(*ki, *ki32, ki_addr); 1265 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1266 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1267 PTRTRIM_CP(*ki, *ki32, ki_fd); 1268 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1269 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1270 CP(*ki, *ki32, ki_pid); 1271 CP(*ki, *ki32, ki_ppid); 1272 CP(*ki, *ki32, ki_pgid); 1273 CP(*ki, *ki32, ki_tpgid); 1274 CP(*ki, *ki32, ki_sid); 1275 CP(*ki, *ki32, ki_tsid); 1276 CP(*ki, *ki32, ki_jobc); 1277 CP(*ki, *ki32, ki_tdev); 1278 CP(*ki, *ki32, ki_tdev_freebsd11); 1279 CP(*ki, *ki32, ki_siglist); 1280 CP(*ki, *ki32, ki_sigmask); 1281 CP(*ki, *ki32, ki_sigignore); 1282 CP(*ki, *ki32, ki_sigcatch); 1283 CP(*ki, *ki32, ki_uid); 1284 CP(*ki, *ki32, ki_ruid); 1285 CP(*ki, *ki32, ki_svuid); 1286 CP(*ki, *ki32, ki_rgid); 1287 CP(*ki, *ki32, ki_svgid); 1288 CP(*ki, *ki32, ki_ngroups); 1289 for (i = 0; i < KI_NGROUPS; i++) 1290 CP(*ki, *ki32, ki_groups[i]); 1291 CP(*ki, *ki32, ki_size); 1292 CP(*ki, *ki32, ki_rssize); 1293 CP(*ki, *ki32, ki_swrss); 1294 CP(*ki, *ki32, ki_tsize); 1295 CP(*ki, *ki32, ki_dsize); 1296 CP(*ki, *ki32, ki_ssize); 1297 CP(*ki, *ki32, ki_xstat); 1298 CP(*ki, *ki32, ki_acflag); 1299 CP(*ki, *ki32, ki_pctcpu); 1300 CP(*ki, *ki32, ki_estcpu); 1301 CP(*ki, *ki32, ki_slptime); 1302 CP(*ki, *ki32, ki_swtime); 1303 CP(*ki, *ki32, ki_cow); 1304 CP(*ki, *ki32, ki_runtime); 1305 TV_CP(*ki, *ki32, ki_start); 1306 TV_CP(*ki, *ki32, ki_childtime); 1307 CP(*ki, *ki32, ki_flag); 1308 CP(*ki, *ki32, ki_kiflag); 1309 CP(*ki, *ki32, ki_traceflag); 1310 CP(*ki, *ki32, ki_stat); 1311 CP(*ki, *ki32, ki_nice); 1312 CP(*ki, *ki32, ki_lock); 1313 CP(*ki, *ki32, ki_rqindex); 1314 CP(*ki, *ki32, ki_oncpu); 1315 CP(*ki, *ki32, ki_lastcpu); 1316 1317 /* XXX TODO: wrap cpu value as appropriate */ 1318 CP(*ki, *ki32, ki_oncpu_old); 1319 CP(*ki, *ki32, ki_lastcpu_old); 1320 1321 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1322 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1323 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1324 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1325 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1326 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1327 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1328 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1329 CP(*ki, *ki32, ki_tracer); 1330 CP(*ki, *ki32, ki_flag2); 1331 CP(*ki, *ki32, ki_fibnum); 1332 CP(*ki, *ki32, ki_cr_flags); 1333 CP(*ki, *ki32, ki_jid); 1334 CP(*ki, *ki32, ki_numthreads); 1335 CP(*ki, *ki32, ki_tid); 1336 CP(*ki, *ki32, ki_pri); 1337 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1338 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1339 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1340 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1341 PTRTRIM_CP(*ki, *ki32, ki_udata); 1342 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1343 CP(*ki, *ki32, ki_sflag); 1344 CP(*ki, *ki32, ki_tdflags); 1345 } 1346 #endif 1347 1348 int 1349 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1350 { 1351 struct thread *td; 1352 struct kinfo_proc ki; 1353 #ifdef COMPAT_FREEBSD32 1354 struct kinfo_proc32 ki32; 1355 #endif 1356 int error; 1357 1358 PROC_LOCK_ASSERT(p, MA_OWNED); 1359 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1360 1361 error = 0; 1362 fill_kinfo_proc(p, &ki); 1363 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1364 #ifdef COMPAT_FREEBSD32 1365 if ((flags & KERN_PROC_MASK32) != 0) { 1366 freebsd32_kinfo_proc_out(&ki, &ki32); 1367 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1368 error = ENOMEM; 1369 } else 1370 #endif 1371 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1372 error = ENOMEM; 1373 } else { 1374 FOREACH_THREAD_IN_PROC(p, td) { 1375 fill_kinfo_thread(td, &ki, 1); 1376 #ifdef COMPAT_FREEBSD32 1377 if ((flags & KERN_PROC_MASK32) != 0) { 1378 freebsd32_kinfo_proc_out(&ki, &ki32); 1379 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1380 error = ENOMEM; 1381 } else 1382 #endif 1383 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1384 error = ENOMEM; 1385 if (error != 0) 1386 break; 1387 } 1388 } 1389 PROC_UNLOCK(p); 1390 return (error); 1391 } 1392 1393 static int 1394 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1395 { 1396 struct sbuf sb; 1397 struct kinfo_proc ki; 1398 int error, error2; 1399 1400 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1401 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1402 error = kern_proc_out(p, &sb, flags); 1403 error2 = sbuf_finish(&sb); 1404 sbuf_delete(&sb); 1405 if (error != 0) 1406 return (error); 1407 else if (error2 != 0) 1408 return (error2); 1409 return (0); 1410 } 1411 1412 static int 1413 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1414 { 1415 int *name = (int *)arg1; 1416 u_int namelen = arg2; 1417 struct proc *p; 1418 int flags, doingzomb, oid_number; 1419 int error = 0; 1420 1421 oid_number = oidp->oid_number; 1422 if (oid_number != KERN_PROC_ALL && 1423 (oid_number & KERN_PROC_INC_THREAD) == 0) 1424 flags = KERN_PROC_NOTHREADS; 1425 else { 1426 flags = 0; 1427 oid_number &= ~KERN_PROC_INC_THREAD; 1428 } 1429 #ifdef COMPAT_FREEBSD32 1430 if (req->flags & SCTL_MASK32) 1431 flags |= KERN_PROC_MASK32; 1432 #endif 1433 if (oid_number == KERN_PROC_PID) { 1434 if (namelen != 1) 1435 return (EINVAL); 1436 error = sysctl_wire_old_buffer(req, 0); 1437 if (error) 1438 return (error); 1439 sx_slock(&proctree_lock); 1440 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1441 if (error == 0) 1442 error = sysctl_out_proc(p, req, flags); 1443 sx_sunlock(&proctree_lock); 1444 return (error); 1445 } 1446 1447 switch (oid_number) { 1448 case KERN_PROC_ALL: 1449 if (namelen != 0) 1450 return (EINVAL); 1451 break; 1452 case KERN_PROC_PROC: 1453 if (namelen != 0 && namelen != 1) 1454 return (EINVAL); 1455 break; 1456 default: 1457 if (namelen != 1) 1458 return (EINVAL); 1459 break; 1460 } 1461 1462 if (!req->oldptr) { 1463 /* overestimate by 5 procs */ 1464 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1465 if (error) 1466 return (error); 1467 } 1468 error = sysctl_wire_old_buffer(req, 0); 1469 if (error != 0) 1470 return (error); 1471 sx_slock(&proctree_lock); 1472 sx_slock(&allproc_lock); 1473 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1474 if (!doingzomb) 1475 p = LIST_FIRST(&allproc); 1476 else 1477 p = LIST_FIRST(&zombproc); 1478 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1479 /* 1480 * Skip embryonic processes. 1481 */ 1482 if (p->p_state == PRS_NEW) 1483 continue; 1484 PROC_LOCK(p); 1485 KASSERT(p->p_ucred != NULL, 1486 ("process credential is NULL for non-NEW proc")); 1487 /* 1488 * Show a user only appropriate processes. 1489 */ 1490 if (p_cansee(curthread, p)) { 1491 PROC_UNLOCK(p); 1492 continue; 1493 } 1494 /* 1495 * TODO - make more efficient (see notes below). 1496 * do by session. 1497 */ 1498 switch (oid_number) { 1499 1500 case KERN_PROC_GID: 1501 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1502 PROC_UNLOCK(p); 1503 continue; 1504 } 1505 break; 1506 1507 case KERN_PROC_PGRP: 1508 /* could do this by traversing pgrp */ 1509 if (p->p_pgrp == NULL || 1510 p->p_pgrp->pg_id != (pid_t)name[0]) { 1511 PROC_UNLOCK(p); 1512 continue; 1513 } 1514 break; 1515 1516 case KERN_PROC_RGID: 1517 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1518 PROC_UNLOCK(p); 1519 continue; 1520 } 1521 break; 1522 1523 case KERN_PROC_SESSION: 1524 if (p->p_session == NULL || 1525 p->p_session->s_sid != (pid_t)name[0]) { 1526 PROC_UNLOCK(p); 1527 continue; 1528 } 1529 break; 1530 1531 case KERN_PROC_TTY: 1532 if ((p->p_flag & P_CONTROLT) == 0 || 1533 p->p_session == NULL) { 1534 PROC_UNLOCK(p); 1535 continue; 1536 } 1537 /* XXX proctree_lock */ 1538 SESS_LOCK(p->p_session); 1539 if (p->p_session->s_ttyp == NULL || 1540 tty_udev(p->p_session->s_ttyp) != 1541 (dev_t)name[0]) { 1542 SESS_UNLOCK(p->p_session); 1543 PROC_UNLOCK(p); 1544 continue; 1545 } 1546 SESS_UNLOCK(p->p_session); 1547 break; 1548 1549 case KERN_PROC_UID: 1550 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1551 PROC_UNLOCK(p); 1552 continue; 1553 } 1554 break; 1555 1556 case KERN_PROC_RUID: 1557 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1558 PROC_UNLOCK(p); 1559 continue; 1560 } 1561 break; 1562 1563 case KERN_PROC_PROC: 1564 break; 1565 1566 default: 1567 break; 1568 1569 } 1570 1571 error = sysctl_out_proc(p, req, flags); 1572 if (error) { 1573 sx_sunlock(&allproc_lock); 1574 sx_sunlock(&proctree_lock); 1575 return (error); 1576 } 1577 } 1578 } 1579 sx_sunlock(&allproc_lock); 1580 sx_sunlock(&proctree_lock); 1581 return (0); 1582 } 1583 1584 struct pargs * 1585 pargs_alloc(int len) 1586 { 1587 struct pargs *pa; 1588 1589 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1590 M_WAITOK); 1591 refcount_init(&pa->ar_ref, 1); 1592 pa->ar_length = len; 1593 return (pa); 1594 } 1595 1596 static void 1597 pargs_free(struct pargs *pa) 1598 { 1599 1600 free(pa, M_PARGS); 1601 } 1602 1603 void 1604 pargs_hold(struct pargs *pa) 1605 { 1606 1607 if (pa == NULL) 1608 return; 1609 refcount_acquire(&pa->ar_ref); 1610 } 1611 1612 void 1613 pargs_drop(struct pargs *pa) 1614 { 1615 1616 if (pa == NULL) 1617 return; 1618 if (refcount_release(&pa->ar_ref)) 1619 pargs_free(pa); 1620 } 1621 1622 static int 1623 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1624 size_t len) 1625 { 1626 ssize_t n; 1627 1628 /* 1629 * This may return a short read if the string is shorter than the chunk 1630 * and is aligned at the end of the page, and the following page is not 1631 * mapped. 1632 */ 1633 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1634 if (n <= 0) 1635 return (ENOMEM); 1636 return (0); 1637 } 1638 1639 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1640 1641 enum proc_vector_type { 1642 PROC_ARG, 1643 PROC_ENV, 1644 PROC_AUX, 1645 }; 1646 1647 #ifdef COMPAT_FREEBSD32 1648 static int 1649 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1650 size_t *vsizep, enum proc_vector_type type) 1651 { 1652 struct freebsd32_ps_strings pss; 1653 Elf32_Auxinfo aux; 1654 vm_offset_t vptr, ptr; 1655 uint32_t *proc_vector32; 1656 char **proc_vector; 1657 size_t vsize, size; 1658 int i, error; 1659 1660 error = 0; 1661 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1662 sizeof(pss)) != sizeof(pss)) 1663 return (ENOMEM); 1664 switch (type) { 1665 case PROC_ARG: 1666 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1667 vsize = pss.ps_nargvstr; 1668 if (vsize > ARG_MAX) 1669 return (ENOEXEC); 1670 size = vsize * sizeof(int32_t); 1671 break; 1672 case PROC_ENV: 1673 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1674 vsize = pss.ps_nenvstr; 1675 if (vsize > ARG_MAX) 1676 return (ENOEXEC); 1677 size = vsize * sizeof(int32_t); 1678 break; 1679 case PROC_AUX: 1680 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1681 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1682 if (vptr % 4 != 0) 1683 return (ENOEXEC); 1684 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1685 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1686 sizeof(aux)) 1687 return (ENOMEM); 1688 if (aux.a_type == AT_NULL) 1689 break; 1690 ptr += sizeof(aux); 1691 } 1692 if (aux.a_type != AT_NULL) 1693 return (ENOEXEC); 1694 vsize = i + 1; 1695 size = vsize * sizeof(aux); 1696 break; 1697 default: 1698 KASSERT(0, ("Wrong proc vector type: %d", type)); 1699 return (EINVAL); 1700 } 1701 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1702 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1703 error = ENOMEM; 1704 goto done; 1705 } 1706 if (type == PROC_AUX) { 1707 *proc_vectorp = (char **)proc_vector32; 1708 *vsizep = vsize; 1709 return (0); 1710 } 1711 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1712 for (i = 0; i < (int)vsize; i++) 1713 proc_vector[i] = PTRIN(proc_vector32[i]); 1714 *proc_vectorp = proc_vector; 1715 *vsizep = vsize; 1716 done: 1717 free(proc_vector32, M_TEMP); 1718 return (error); 1719 } 1720 #endif 1721 1722 static int 1723 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1724 size_t *vsizep, enum proc_vector_type type) 1725 { 1726 struct ps_strings pss; 1727 Elf_Auxinfo aux; 1728 vm_offset_t vptr, ptr; 1729 char **proc_vector; 1730 size_t vsize, size; 1731 int i; 1732 1733 #ifdef COMPAT_FREEBSD32 1734 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1735 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1736 #endif 1737 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1738 sizeof(pss)) != sizeof(pss)) 1739 return (ENOMEM); 1740 switch (type) { 1741 case PROC_ARG: 1742 vptr = (vm_offset_t)pss.ps_argvstr; 1743 vsize = pss.ps_nargvstr; 1744 if (vsize > ARG_MAX) 1745 return (ENOEXEC); 1746 size = vsize * sizeof(char *); 1747 break; 1748 case PROC_ENV: 1749 vptr = (vm_offset_t)pss.ps_envstr; 1750 vsize = pss.ps_nenvstr; 1751 if (vsize > ARG_MAX) 1752 return (ENOEXEC); 1753 size = vsize * sizeof(char *); 1754 break; 1755 case PROC_AUX: 1756 /* 1757 * The aux array is just above env array on the stack. Check 1758 * that the address is naturally aligned. 1759 */ 1760 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1761 * sizeof(char *); 1762 #if __ELF_WORD_SIZE == 64 1763 if (vptr % sizeof(uint64_t) != 0) 1764 #else 1765 if (vptr % sizeof(uint32_t) != 0) 1766 #endif 1767 return (ENOEXEC); 1768 /* 1769 * We count the array size reading the aux vectors from the 1770 * stack until AT_NULL vector is returned. So (to keep the code 1771 * simple) we read the process stack twice: the first time here 1772 * to find the size and the second time when copying the vectors 1773 * to the allocated proc_vector. 1774 */ 1775 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1776 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1777 sizeof(aux)) 1778 return (ENOMEM); 1779 if (aux.a_type == AT_NULL) 1780 break; 1781 ptr += sizeof(aux); 1782 } 1783 /* 1784 * If the PROC_AUXV_MAX entries are iterated over, and we have 1785 * not reached AT_NULL, it is most likely we are reading wrong 1786 * data: either the process doesn't have auxv array or data has 1787 * been modified. Return the error in this case. 1788 */ 1789 if (aux.a_type != AT_NULL) 1790 return (ENOEXEC); 1791 vsize = i + 1; 1792 size = vsize * sizeof(aux); 1793 break; 1794 default: 1795 KASSERT(0, ("Wrong proc vector type: %d", type)); 1796 return (EINVAL); /* In case we are built without INVARIANTS. */ 1797 } 1798 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1799 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1800 free(proc_vector, M_TEMP); 1801 return (ENOMEM); 1802 } 1803 *proc_vectorp = proc_vector; 1804 *vsizep = vsize; 1805 1806 return (0); 1807 } 1808 1809 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1810 1811 static int 1812 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1813 enum proc_vector_type type) 1814 { 1815 size_t done, len, nchr, vsize; 1816 int error, i; 1817 char **proc_vector, *sptr; 1818 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1819 1820 PROC_ASSERT_HELD(p); 1821 1822 /* 1823 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1824 */ 1825 nchr = 2 * (PATH_MAX + ARG_MAX); 1826 1827 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1828 if (error != 0) 1829 return (error); 1830 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1831 /* 1832 * The program may have scribbled into its argv array, e.g. to 1833 * remove some arguments. If that has happened, break out 1834 * before trying to read from NULL. 1835 */ 1836 if (proc_vector[i] == NULL) 1837 break; 1838 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1839 error = proc_read_string(td, p, sptr, pss_string, 1840 sizeof(pss_string)); 1841 if (error != 0) 1842 goto done; 1843 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1844 if (done + len >= nchr) 1845 len = nchr - done - 1; 1846 sbuf_bcat(sb, pss_string, len); 1847 if (len != GET_PS_STRINGS_CHUNK_SZ) 1848 break; 1849 done += GET_PS_STRINGS_CHUNK_SZ; 1850 } 1851 sbuf_bcat(sb, "", 1); 1852 done += len + 1; 1853 } 1854 done: 1855 free(proc_vector, M_TEMP); 1856 return (error); 1857 } 1858 1859 int 1860 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1861 { 1862 1863 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1864 } 1865 1866 int 1867 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1868 { 1869 1870 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1871 } 1872 1873 int 1874 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1875 { 1876 size_t vsize, size; 1877 char **auxv; 1878 int error; 1879 1880 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1881 if (error == 0) { 1882 #ifdef COMPAT_FREEBSD32 1883 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1884 size = vsize * sizeof(Elf32_Auxinfo); 1885 else 1886 #endif 1887 size = vsize * sizeof(Elf_Auxinfo); 1888 if (sbuf_bcat(sb, auxv, size) != 0) 1889 error = ENOMEM; 1890 free(auxv, M_TEMP); 1891 } 1892 return (error); 1893 } 1894 1895 /* 1896 * This sysctl allows a process to retrieve the argument list or process 1897 * title for another process without groping around in the address space 1898 * of the other process. It also allow a process to set its own "process 1899 * title to a string of its own choice. 1900 */ 1901 static int 1902 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1903 { 1904 int *name = (int *)arg1; 1905 u_int namelen = arg2; 1906 struct pargs *newpa, *pa; 1907 struct proc *p; 1908 struct sbuf sb; 1909 int flags, error = 0, error2; 1910 pid_t pid; 1911 1912 if (namelen != 1) 1913 return (EINVAL); 1914 1915 pid = (pid_t)name[0]; 1916 /* 1917 * If the query is for this process and it is single-threaded, there 1918 * is nobody to modify pargs, thus we can just read. 1919 */ 1920 p = curproc; 1921 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL) { 1922 if ((pa = p->p_args) != NULL) 1923 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1924 return (error); 1925 } 1926 1927 flags = PGET_CANSEE; 1928 if (req->newptr != NULL) 1929 flags |= PGET_ISCURRENT; 1930 error = pget(pid, flags, &p); 1931 if (error) 1932 return (error); 1933 1934 pa = p->p_args; 1935 if (pa != NULL) { 1936 pargs_hold(pa); 1937 PROC_UNLOCK(p); 1938 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1939 pargs_drop(pa); 1940 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1941 _PHOLD(p); 1942 PROC_UNLOCK(p); 1943 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1944 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1945 error = proc_getargv(curthread, p, &sb); 1946 error2 = sbuf_finish(&sb); 1947 PRELE(p); 1948 sbuf_delete(&sb); 1949 if (error == 0 && error2 != 0) 1950 error = error2; 1951 } else { 1952 PROC_UNLOCK(p); 1953 } 1954 if (error != 0 || req->newptr == NULL) 1955 return (error); 1956 1957 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1958 return (ENOMEM); 1959 newpa = pargs_alloc(req->newlen); 1960 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1961 if (error != 0) { 1962 pargs_free(newpa); 1963 return (error); 1964 } 1965 PROC_LOCK(p); 1966 pa = p->p_args; 1967 p->p_args = newpa; 1968 PROC_UNLOCK(p); 1969 pargs_drop(pa); 1970 return (0); 1971 } 1972 1973 /* 1974 * This sysctl allows a process to retrieve environment of another process. 1975 */ 1976 static int 1977 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1978 { 1979 int *name = (int *)arg1; 1980 u_int namelen = arg2; 1981 struct proc *p; 1982 struct sbuf sb; 1983 int error, error2; 1984 1985 if (namelen != 1) 1986 return (EINVAL); 1987 1988 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1989 if (error != 0) 1990 return (error); 1991 if ((p->p_flag & P_SYSTEM) != 0) { 1992 PRELE(p); 1993 return (0); 1994 } 1995 1996 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1997 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1998 error = proc_getenvv(curthread, p, &sb); 1999 error2 = sbuf_finish(&sb); 2000 PRELE(p); 2001 sbuf_delete(&sb); 2002 return (error != 0 ? error : error2); 2003 } 2004 2005 /* 2006 * This sysctl allows a process to retrieve ELF auxiliary vector of 2007 * another process. 2008 */ 2009 static int 2010 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2011 { 2012 int *name = (int *)arg1; 2013 u_int namelen = arg2; 2014 struct proc *p; 2015 struct sbuf sb; 2016 int error, error2; 2017 2018 if (namelen != 1) 2019 return (EINVAL); 2020 2021 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2022 if (error != 0) 2023 return (error); 2024 if ((p->p_flag & P_SYSTEM) != 0) { 2025 PRELE(p); 2026 return (0); 2027 } 2028 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2029 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2030 error = proc_getauxv(curthread, p, &sb); 2031 error2 = sbuf_finish(&sb); 2032 PRELE(p); 2033 sbuf_delete(&sb); 2034 return (error != 0 ? error : error2); 2035 } 2036 2037 /* 2038 * This sysctl allows a process to retrieve the path of the executable for 2039 * itself or another process. 2040 */ 2041 static int 2042 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2043 { 2044 pid_t *pidp = (pid_t *)arg1; 2045 unsigned int arglen = arg2; 2046 struct proc *p; 2047 struct vnode *vp; 2048 char *retbuf, *freebuf; 2049 int error; 2050 2051 if (arglen != 1) 2052 return (EINVAL); 2053 if (*pidp == -1) { /* -1 means this process */ 2054 p = req->td->td_proc; 2055 } else { 2056 error = pget(*pidp, PGET_CANSEE, &p); 2057 if (error != 0) 2058 return (error); 2059 } 2060 2061 vp = p->p_textvp; 2062 if (vp == NULL) { 2063 if (*pidp != -1) 2064 PROC_UNLOCK(p); 2065 return (0); 2066 } 2067 vref(vp); 2068 if (*pidp != -1) 2069 PROC_UNLOCK(p); 2070 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2071 vrele(vp); 2072 if (error) 2073 return (error); 2074 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2075 free(freebuf, M_TEMP); 2076 return (error); 2077 } 2078 2079 static int 2080 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2081 { 2082 struct proc *p; 2083 char *sv_name; 2084 int *name; 2085 int namelen; 2086 int error; 2087 2088 namelen = arg2; 2089 if (namelen != 1) 2090 return (EINVAL); 2091 2092 name = (int *)arg1; 2093 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2094 if (error != 0) 2095 return (error); 2096 sv_name = p->p_sysent->sv_name; 2097 PROC_UNLOCK(p); 2098 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2099 } 2100 2101 #ifdef KINFO_OVMENTRY_SIZE 2102 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2103 #endif 2104 2105 #ifdef COMPAT_FREEBSD7 2106 static int 2107 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2108 { 2109 vm_map_entry_t entry, tmp_entry; 2110 unsigned int last_timestamp; 2111 char *fullpath, *freepath; 2112 struct kinfo_ovmentry *kve; 2113 struct vattr va; 2114 struct ucred *cred; 2115 int error, *name; 2116 struct vnode *vp; 2117 struct proc *p; 2118 vm_map_t map; 2119 struct vmspace *vm; 2120 2121 name = (int *)arg1; 2122 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2123 if (error != 0) 2124 return (error); 2125 vm = vmspace_acquire_ref(p); 2126 if (vm == NULL) { 2127 PRELE(p); 2128 return (ESRCH); 2129 } 2130 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2131 2132 map = &vm->vm_map; 2133 vm_map_lock_read(map); 2134 for (entry = map->header.next; entry != &map->header; 2135 entry = entry->next) { 2136 vm_object_t obj, tobj, lobj; 2137 vm_offset_t addr; 2138 2139 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2140 continue; 2141 2142 bzero(kve, sizeof(*kve)); 2143 kve->kve_structsize = sizeof(*kve); 2144 2145 kve->kve_private_resident = 0; 2146 obj = entry->object.vm_object; 2147 if (obj != NULL) { 2148 VM_OBJECT_RLOCK(obj); 2149 if (obj->shadow_count == 1) 2150 kve->kve_private_resident = 2151 obj->resident_page_count; 2152 } 2153 kve->kve_resident = 0; 2154 addr = entry->start; 2155 while (addr < entry->end) { 2156 if (pmap_extract(map->pmap, addr)) 2157 kve->kve_resident++; 2158 addr += PAGE_SIZE; 2159 } 2160 2161 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2162 if (tobj != obj) 2163 VM_OBJECT_RLOCK(tobj); 2164 if (lobj != obj) 2165 VM_OBJECT_RUNLOCK(lobj); 2166 lobj = tobj; 2167 } 2168 2169 kve->kve_start = (void*)entry->start; 2170 kve->kve_end = (void*)entry->end; 2171 kve->kve_offset = (off_t)entry->offset; 2172 2173 if (entry->protection & VM_PROT_READ) 2174 kve->kve_protection |= KVME_PROT_READ; 2175 if (entry->protection & VM_PROT_WRITE) 2176 kve->kve_protection |= KVME_PROT_WRITE; 2177 if (entry->protection & VM_PROT_EXECUTE) 2178 kve->kve_protection |= KVME_PROT_EXEC; 2179 2180 if (entry->eflags & MAP_ENTRY_COW) 2181 kve->kve_flags |= KVME_FLAG_COW; 2182 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2183 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2184 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2185 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2186 2187 last_timestamp = map->timestamp; 2188 vm_map_unlock_read(map); 2189 2190 kve->kve_fileid = 0; 2191 kve->kve_fsid = 0; 2192 freepath = NULL; 2193 fullpath = ""; 2194 if (lobj) { 2195 vp = NULL; 2196 switch (lobj->type) { 2197 case OBJT_DEFAULT: 2198 kve->kve_type = KVME_TYPE_DEFAULT; 2199 break; 2200 case OBJT_VNODE: 2201 kve->kve_type = KVME_TYPE_VNODE; 2202 vp = lobj->handle; 2203 vref(vp); 2204 break; 2205 case OBJT_SWAP: 2206 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2207 kve->kve_type = KVME_TYPE_VNODE; 2208 if ((lobj->flags & OBJ_TMPFS) != 0) { 2209 vp = lobj->un_pager.swp.swp_tmpfs; 2210 vref(vp); 2211 } 2212 } else { 2213 kve->kve_type = KVME_TYPE_SWAP; 2214 } 2215 break; 2216 case OBJT_DEVICE: 2217 kve->kve_type = KVME_TYPE_DEVICE; 2218 break; 2219 case OBJT_PHYS: 2220 kve->kve_type = KVME_TYPE_PHYS; 2221 break; 2222 case OBJT_DEAD: 2223 kve->kve_type = KVME_TYPE_DEAD; 2224 break; 2225 case OBJT_SG: 2226 kve->kve_type = KVME_TYPE_SG; 2227 break; 2228 default: 2229 kve->kve_type = KVME_TYPE_UNKNOWN; 2230 break; 2231 } 2232 if (lobj != obj) 2233 VM_OBJECT_RUNLOCK(lobj); 2234 2235 kve->kve_ref_count = obj->ref_count; 2236 kve->kve_shadow_count = obj->shadow_count; 2237 VM_OBJECT_RUNLOCK(obj); 2238 if (vp != NULL) { 2239 vn_fullpath(curthread, vp, &fullpath, 2240 &freepath); 2241 cred = curthread->td_ucred; 2242 vn_lock(vp, LK_SHARED | LK_RETRY); 2243 if (VOP_GETATTR(vp, &va, cred) == 0) { 2244 kve->kve_fileid = va.va_fileid; 2245 /* truncate */ 2246 kve->kve_fsid = va.va_fsid; 2247 } 2248 vput(vp); 2249 } 2250 } else { 2251 kve->kve_type = KVME_TYPE_NONE; 2252 kve->kve_ref_count = 0; 2253 kve->kve_shadow_count = 0; 2254 } 2255 2256 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2257 if (freepath != NULL) 2258 free(freepath, M_TEMP); 2259 2260 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2261 vm_map_lock_read(map); 2262 if (error) 2263 break; 2264 if (last_timestamp != map->timestamp) { 2265 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2266 entry = tmp_entry; 2267 } 2268 } 2269 vm_map_unlock_read(map); 2270 vmspace_free(vm); 2271 PRELE(p); 2272 free(kve, M_TEMP); 2273 return (error); 2274 } 2275 #endif /* COMPAT_FREEBSD7 */ 2276 2277 #ifdef KINFO_VMENTRY_SIZE 2278 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2279 #endif 2280 2281 static void 2282 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2283 struct kinfo_vmentry *kve) 2284 { 2285 vm_object_t obj, tobj; 2286 vm_page_t m, m_adv; 2287 vm_offset_t addr; 2288 vm_paddr_t locked_pa; 2289 vm_pindex_t pi, pi_adv, pindex; 2290 2291 locked_pa = 0; 2292 obj = entry->object.vm_object; 2293 addr = entry->start; 2294 m_adv = NULL; 2295 pi = OFF_TO_IDX(entry->offset); 2296 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2297 if (m_adv != NULL) { 2298 m = m_adv; 2299 } else { 2300 pi_adv = atop(entry->end - addr); 2301 pindex = pi; 2302 for (tobj = obj;; tobj = tobj->backing_object) { 2303 m = vm_page_find_least(tobj, pindex); 2304 if (m != NULL) { 2305 if (m->pindex == pindex) 2306 break; 2307 if (pi_adv > m->pindex - pindex) { 2308 pi_adv = m->pindex - pindex; 2309 m_adv = m; 2310 } 2311 } 2312 if (tobj->backing_object == NULL) 2313 goto next; 2314 pindex += OFF_TO_IDX(tobj-> 2315 backing_object_offset); 2316 } 2317 } 2318 m_adv = NULL; 2319 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2320 (addr & (pagesizes[1] - 1)) == 0 && 2321 (pmap_mincore(map->pmap, addr, &locked_pa) & 2322 MINCORE_SUPER) != 0) { 2323 kve->kve_flags |= KVME_FLAG_SUPER; 2324 pi_adv = atop(pagesizes[1]); 2325 } else { 2326 /* 2327 * We do not test the found page on validity. 2328 * Either the page is busy and being paged in, 2329 * or it was invalidated. The first case 2330 * should be counted as resident, the second 2331 * is not so clear; we do account both. 2332 */ 2333 pi_adv = 1; 2334 } 2335 kve->kve_resident += pi_adv; 2336 next:; 2337 } 2338 PA_UNLOCK_COND(locked_pa); 2339 } 2340 2341 /* 2342 * Must be called with the process locked and will return unlocked. 2343 */ 2344 int 2345 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2346 { 2347 vm_map_entry_t entry, tmp_entry; 2348 struct vattr va; 2349 vm_map_t map; 2350 vm_object_t obj, tobj, lobj; 2351 char *fullpath, *freepath; 2352 struct kinfo_vmentry *kve; 2353 struct ucred *cred; 2354 struct vnode *vp; 2355 struct vmspace *vm; 2356 vm_offset_t addr; 2357 unsigned int last_timestamp; 2358 int error; 2359 2360 PROC_LOCK_ASSERT(p, MA_OWNED); 2361 2362 _PHOLD(p); 2363 PROC_UNLOCK(p); 2364 vm = vmspace_acquire_ref(p); 2365 if (vm == NULL) { 2366 PRELE(p); 2367 return (ESRCH); 2368 } 2369 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2370 2371 error = 0; 2372 map = &vm->vm_map; 2373 vm_map_lock_read(map); 2374 for (entry = map->header.next; entry != &map->header; 2375 entry = entry->next) { 2376 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2377 continue; 2378 2379 addr = entry->end; 2380 bzero(kve, sizeof(*kve)); 2381 obj = entry->object.vm_object; 2382 if (obj != NULL) { 2383 for (tobj = obj; tobj != NULL; 2384 tobj = tobj->backing_object) { 2385 VM_OBJECT_RLOCK(tobj); 2386 lobj = tobj; 2387 } 2388 if (obj->backing_object == NULL) 2389 kve->kve_private_resident = 2390 obj->resident_page_count; 2391 if (!vmmap_skip_res_cnt) 2392 kern_proc_vmmap_resident(map, entry, kve); 2393 for (tobj = obj; tobj != NULL; 2394 tobj = tobj->backing_object) { 2395 if (tobj != obj && tobj != lobj) 2396 VM_OBJECT_RUNLOCK(tobj); 2397 } 2398 } else { 2399 lobj = NULL; 2400 } 2401 2402 kve->kve_start = entry->start; 2403 kve->kve_end = entry->end; 2404 kve->kve_offset = entry->offset; 2405 2406 if (entry->protection & VM_PROT_READ) 2407 kve->kve_protection |= KVME_PROT_READ; 2408 if (entry->protection & VM_PROT_WRITE) 2409 kve->kve_protection |= KVME_PROT_WRITE; 2410 if (entry->protection & VM_PROT_EXECUTE) 2411 kve->kve_protection |= KVME_PROT_EXEC; 2412 2413 if (entry->eflags & MAP_ENTRY_COW) 2414 kve->kve_flags |= KVME_FLAG_COW; 2415 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2416 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2417 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2418 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2419 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2420 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2421 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2422 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2423 2424 last_timestamp = map->timestamp; 2425 vm_map_unlock_read(map); 2426 2427 freepath = NULL; 2428 fullpath = ""; 2429 if (lobj != NULL) { 2430 vp = NULL; 2431 switch (lobj->type) { 2432 case OBJT_DEFAULT: 2433 kve->kve_type = KVME_TYPE_DEFAULT; 2434 break; 2435 case OBJT_VNODE: 2436 kve->kve_type = KVME_TYPE_VNODE; 2437 vp = lobj->handle; 2438 vref(vp); 2439 break; 2440 case OBJT_SWAP: 2441 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2442 kve->kve_type = KVME_TYPE_VNODE; 2443 if ((lobj->flags & OBJ_TMPFS) != 0) { 2444 vp = lobj->un_pager.swp.swp_tmpfs; 2445 vref(vp); 2446 } 2447 } else { 2448 kve->kve_type = KVME_TYPE_SWAP; 2449 } 2450 break; 2451 case OBJT_DEVICE: 2452 kve->kve_type = KVME_TYPE_DEVICE; 2453 break; 2454 case OBJT_PHYS: 2455 kve->kve_type = KVME_TYPE_PHYS; 2456 break; 2457 case OBJT_DEAD: 2458 kve->kve_type = KVME_TYPE_DEAD; 2459 break; 2460 case OBJT_SG: 2461 kve->kve_type = KVME_TYPE_SG; 2462 break; 2463 case OBJT_MGTDEVICE: 2464 kve->kve_type = KVME_TYPE_MGTDEVICE; 2465 break; 2466 default: 2467 kve->kve_type = KVME_TYPE_UNKNOWN; 2468 break; 2469 } 2470 if (lobj != obj) 2471 VM_OBJECT_RUNLOCK(lobj); 2472 2473 kve->kve_ref_count = obj->ref_count; 2474 kve->kve_shadow_count = obj->shadow_count; 2475 VM_OBJECT_RUNLOCK(obj); 2476 if (vp != NULL) { 2477 vn_fullpath(curthread, vp, &fullpath, 2478 &freepath); 2479 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2480 cred = curthread->td_ucred; 2481 vn_lock(vp, LK_SHARED | LK_RETRY); 2482 if (VOP_GETATTR(vp, &va, cred) == 0) { 2483 kve->kve_vn_fileid = va.va_fileid; 2484 kve->kve_vn_fsid = va.va_fsid; 2485 kve->kve_vn_fsid_freebsd11 = 2486 kve->kve_vn_fsid; /* truncate */ 2487 kve->kve_vn_mode = 2488 MAKEIMODE(va.va_type, va.va_mode); 2489 kve->kve_vn_size = va.va_size; 2490 kve->kve_vn_rdev = va.va_rdev; 2491 kve->kve_vn_rdev_freebsd11 = 2492 kve->kve_vn_rdev; /* truncate */ 2493 kve->kve_status = KF_ATTR_VALID; 2494 } 2495 vput(vp); 2496 } 2497 } else { 2498 kve->kve_type = KVME_TYPE_NONE; 2499 kve->kve_ref_count = 0; 2500 kve->kve_shadow_count = 0; 2501 } 2502 2503 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2504 if (freepath != NULL) 2505 free(freepath, M_TEMP); 2506 2507 /* Pack record size down */ 2508 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2509 kve->kve_structsize = 2510 offsetof(struct kinfo_vmentry, kve_path) + 2511 strlen(kve->kve_path) + 1; 2512 else 2513 kve->kve_structsize = sizeof(*kve); 2514 kve->kve_structsize = roundup(kve->kve_structsize, 2515 sizeof(uint64_t)); 2516 2517 /* Halt filling and truncate rather than exceeding maxlen */ 2518 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2519 error = 0; 2520 vm_map_lock_read(map); 2521 break; 2522 } else if (maxlen != -1) 2523 maxlen -= kve->kve_structsize; 2524 2525 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2526 error = ENOMEM; 2527 vm_map_lock_read(map); 2528 if (error != 0) 2529 break; 2530 if (last_timestamp != map->timestamp) { 2531 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2532 entry = tmp_entry; 2533 } 2534 } 2535 vm_map_unlock_read(map); 2536 vmspace_free(vm); 2537 PRELE(p); 2538 free(kve, M_TEMP); 2539 return (error); 2540 } 2541 2542 static int 2543 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2544 { 2545 struct proc *p; 2546 struct sbuf sb; 2547 int error, error2, *name; 2548 2549 name = (int *)arg1; 2550 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2551 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2552 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2553 if (error != 0) { 2554 sbuf_delete(&sb); 2555 return (error); 2556 } 2557 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2558 error2 = sbuf_finish(&sb); 2559 sbuf_delete(&sb); 2560 return (error != 0 ? error : error2); 2561 } 2562 2563 #if defined(STACK) || defined(DDB) 2564 static int 2565 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2566 { 2567 struct kinfo_kstack *kkstp; 2568 int error, i, *name, numthreads; 2569 lwpid_t *lwpidarray; 2570 struct thread *td; 2571 struct stack *st; 2572 struct sbuf sb; 2573 struct proc *p; 2574 2575 name = (int *)arg1; 2576 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2577 if (error != 0) 2578 return (error); 2579 2580 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2581 st = stack_create(M_WAITOK); 2582 2583 lwpidarray = NULL; 2584 PROC_LOCK(p); 2585 do { 2586 if (lwpidarray != NULL) { 2587 free(lwpidarray, M_TEMP); 2588 lwpidarray = NULL; 2589 } 2590 numthreads = p->p_numthreads; 2591 PROC_UNLOCK(p); 2592 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2593 M_WAITOK | M_ZERO); 2594 PROC_LOCK(p); 2595 } while (numthreads < p->p_numthreads); 2596 2597 /* 2598 * XXXRW: During the below loop, execve(2) and countless other sorts 2599 * of changes could have taken place. Should we check to see if the 2600 * vmspace has been replaced, or the like, in order to prevent 2601 * giving a snapshot that spans, say, execve(2), with some threads 2602 * before and some after? Among other things, the credentials could 2603 * have changed, in which case the right to extract debug info might 2604 * no longer be assured. 2605 */ 2606 i = 0; 2607 FOREACH_THREAD_IN_PROC(p, td) { 2608 KASSERT(i < numthreads, 2609 ("sysctl_kern_proc_kstack: numthreads")); 2610 lwpidarray[i] = td->td_tid; 2611 i++; 2612 } 2613 numthreads = i; 2614 for (i = 0; i < numthreads; i++) { 2615 td = thread_find(p, lwpidarray[i]); 2616 if (td == NULL) { 2617 continue; 2618 } 2619 bzero(kkstp, sizeof(*kkstp)); 2620 (void)sbuf_new(&sb, kkstp->kkst_trace, 2621 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2622 thread_lock(td); 2623 kkstp->kkst_tid = td->td_tid; 2624 if (TD_IS_SWAPPED(td)) { 2625 kkstp->kkst_state = KKST_STATE_SWAPPED; 2626 } else if (TD_IS_RUNNING(td)) { 2627 if (stack_save_td_running(st, td) == 0) 2628 kkstp->kkst_state = KKST_STATE_STACKOK; 2629 else 2630 kkstp->kkst_state = KKST_STATE_RUNNING; 2631 } else { 2632 kkstp->kkst_state = KKST_STATE_STACKOK; 2633 stack_save_td(st, td); 2634 } 2635 thread_unlock(td); 2636 PROC_UNLOCK(p); 2637 stack_sbuf_print(&sb, st); 2638 sbuf_finish(&sb); 2639 sbuf_delete(&sb); 2640 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2641 PROC_LOCK(p); 2642 if (error) 2643 break; 2644 } 2645 _PRELE(p); 2646 PROC_UNLOCK(p); 2647 if (lwpidarray != NULL) 2648 free(lwpidarray, M_TEMP); 2649 stack_destroy(st); 2650 free(kkstp, M_TEMP); 2651 return (error); 2652 } 2653 #endif 2654 2655 /* 2656 * This sysctl allows a process to retrieve the full list of groups from 2657 * itself or another process. 2658 */ 2659 static int 2660 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2661 { 2662 pid_t *pidp = (pid_t *)arg1; 2663 unsigned int arglen = arg2; 2664 struct proc *p; 2665 struct ucred *cred; 2666 int error; 2667 2668 if (arglen != 1) 2669 return (EINVAL); 2670 if (*pidp == -1) { /* -1 means this process */ 2671 p = req->td->td_proc; 2672 PROC_LOCK(p); 2673 } else { 2674 error = pget(*pidp, PGET_CANSEE, &p); 2675 if (error != 0) 2676 return (error); 2677 } 2678 2679 cred = crhold(p->p_ucred); 2680 PROC_UNLOCK(p); 2681 2682 error = SYSCTL_OUT(req, cred->cr_groups, 2683 cred->cr_ngroups * sizeof(gid_t)); 2684 crfree(cred); 2685 return (error); 2686 } 2687 2688 /* 2689 * This sysctl allows a process to retrieve or/and set the resource limit for 2690 * another process. 2691 */ 2692 static int 2693 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2694 { 2695 int *name = (int *)arg1; 2696 u_int namelen = arg2; 2697 struct rlimit rlim; 2698 struct proc *p; 2699 u_int which; 2700 int flags, error; 2701 2702 if (namelen != 2) 2703 return (EINVAL); 2704 2705 which = (u_int)name[1]; 2706 if (which >= RLIM_NLIMITS) 2707 return (EINVAL); 2708 2709 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2710 return (EINVAL); 2711 2712 flags = PGET_HOLD | PGET_NOTWEXIT; 2713 if (req->newptr != NULL) 2714 flags |= PGET_CANDEBUG; 2715 else 2716 flags |= PGET_CANSEE; 2717 error = pget((pid_t)name[0], flags, &p); 2718 if (error != 0) 2719 return (error); 2720 2721 /* 2722 * Retrieve limit. 2723 */ 2724 if (req->oldptr != NULL) { 2725 PROC_LOCK(p); 2726 lim_rlimit_proc(p, which, &rlim); 2727 PROC_UNLOCK(p); 2728 } 2729 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2730 if (error != 0) 2731 goto errout; 2732 2733 /* 2734 * Set limit. 2735 */ 2736 if (req->newptr != NULL) { 2737 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2738 if (error == 0) 2739 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2740 } 2741 2742 errout: 2743 PRELE(p); 2744 return (error); 2745 } 2746 2747 /* 2748 * This sysctl allows a process to retrieve ps_strings structure location of 2749 * another process. 2750 */ 2751 static int 2752 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2753 { 2754 int *name = (int *)arg1; 2755 u_int namelen = arg2; 2756 struct proc *p; 2757 vm_offset_t ps_strings; 2758 int error; 2759 #ifdef COMPAT_FREEBSD32 2760 uint32_t ps_strings32; 2761 #endif 2762 2763 if (namelen != 1) 2764 return (EINVAL); 2765 2766 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2767 if (error != 0) 2768 return (error); 2769 #ifdef COMPAT_FREEBSD32 2770 if ((req->flags & SCTL_MASK32) != 0) { 2771 /* 2772 * We return 0 if the 32 bit emulation request is for a 64 bit 2773 * process. 2774 */ 2775 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2776 PTROUT(p->p_sysent->sv_psstrings) : 0; 2777 PROC_UNLOCK(p); 2778 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2779 return (error); 2780 } 2781 #endif 2782 ps_strings = p->p_sysent->sv_psstrings; 2783 PROC_UNLOCK(p); 2784 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2785 return (error); 2786 } 2787 2788 /* 2789 * This sysctl allows a process to retrieve umask of another process. 2790 */ 2791 static int 2792 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2793 { 2794 int *name = (int *)arg1; 2795 u_int namelen = arg2; 2796 struct proc *p; 2797 int error; 2798 u_short fd_cmask; 2799 pid_t pid; 2800 2801 if (namelen != 1) 2802 return (EINVAL); 2803 2804 pid = (pid_t)name[0]; 2805 p = curproc; 2806 if (pid == p->p_pid || pid == 0) { 2807 fd_cmask = p->p_fd->fd_cmask; 2808 goto out; 2809 } 2810 2811 error = pget(pid, PGET_WANTREAD, &p); 2812 if (error != 0) 2813 return (error); 2814 2815 fd_cmask = p->p_fd->fd_cmask; 2816 PRELE(p); 2817 out: 2818 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2819 return (error); 2820 } 2821 2822 /* 2823 * This sysctl allows a process to set and retrieve binary osreldate of 2824 * another process. 2825 */ 2826 static int 2827 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2828 { 2829 int *name = (int *)arg1; 2830 u_int namelen = arg2; 2831 struct proc *p; 2832 int flags, error, osrel; 2833 2834 if (namelen != 1) 2835 return (EINVAL); 2836 2837 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2838 return (EINVAL); 2839 2840 flags = PGET_HOLD | PGET_NOTWEXIT; 2841 if (req->newptr != NULL) 2842 flags |= PGET_CANDEBUG; 2843 else 2844 flags |= PGET_CANSEE; 2845 error = pget((pid_t)name[0], flags, &p); 2846 if (error != 0) 2847 return (error); 2848 2849 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2850 if (error != 0) 2851 goto errout; 2852 2853 if (req->newptr != NULL) { 2854 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2855 if (error != 0) 2856 goto errout; 2857 if (osrel < 0) { 2858 error = EINVAL; 2859 goto errout; 2860 } 2861 p->p_osrel = osrel; 2862 } 2863 errout: 2864 PRELE(p); 2865 return (error); 2866 } 2867 2868 static int 2869 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2870 { 2871 int *name = (int *)arg1; 2872 u_int namelen = arg2; 2873 struct proc *p; 2874 struct kinfo_sigtramp kst; 2875 const struct sysentvec *sv; 2876 int error; 2877 #ifdef COMPAT_FREEBSD32 2878 struct kinfo_sigtramp32 kst32; 2879 #endif 2880 2881 if (namelen != 1) 2882 return (EINVAL); 2883 2884 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2885 if (error != 0) 2886 return (error); 2887 sv = p->p_sysent; 2888 #ifdef COMPAT_FREEBSD32 2889 if ((req->flags & SCTL_MASK32) != 0) { 2890 bzero(&kst32, sizeof(kst32)); 2891 if (SV_PROC_FLAG(p, SV_ILP32)) { 2892 if (sv->sv_sigcode_base != 0) { 2893 kst32.ksigtramp_start = sv->sv_sigcode_base; 2894 kst32.ksigtramp_end = sv->sv_sigcode_base + 2895 *sv->sv_szsigcode; 2896 } else { 2897 kst32.ksigtramp_start = sv->sv_psstrings - 2898 *sv->sv_szsigcode; 2899 kst32.ksigtramp_end = sv->sv_psstrings; 2900 } 2901 } 2902 PROC_UNLOCK(p); 2903 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2904 return (error); 2905 } 2906 #endif 2907 bzero(&kst, sizeof(kst)); 2908 if (sv->sv_sigcode_base != 0) { 2909 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2910 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2911 *sv->sv_szsigcode; 2912 } else { 2913 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2914 *sv->sv_szsigcode; 2915 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2916 } 2917 PROC_UNLOCK(p); 2918 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2919 return (error); 2920 } 2921 2922 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2923 2924 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2925 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2926 "Return entire process table"); 2927 2928 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2929 sysctl_kern_proc, "Process table"); 2930 2931 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2932 sysctl_kern_proc, "Process table"); 2933 2934 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2935 sysctl_kern_proc, "Process table"); 2936 2937 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2938 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2939 2940 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2941 sysctl_kern_proc, "Process table"); 2942 2943 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2944 sysctl_kern_proc, "Process table"); 2945 2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2947 sysctl_kern_proc, "Process table"); 2948 2949 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2950 sysctl_kern_proc, "Process table"); 2951 2952 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2953 sysctl_kern_proc, "Return process table, no threads"); 2954 2955 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2956 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2957 sysctl_kern_proc_args, "Process argument list"); 2958 2959 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2960 sysctl_kern_proc_env, "Process environment"); 2961 2962 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2963 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2964 2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2966 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2967 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2969 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2970 "Process syscall vector name (ABI type)"); 2971 2972 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2973 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2974 2975 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2976 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2977 2978 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2979 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2980 2981 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2982 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2983 2984 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2985 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2986 2987 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2988 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2989 2990 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2991 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2992 2993 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2994 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2995 2996 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2997 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2998 "Return process table, no threads"); 2999 3000 #ifdef COMPAT_FREEBSD7 3001 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3002 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3003 #endif 3004 3005 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3006 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3007 3008 #if defined(STACK) || defined(DDB) 3009 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3010 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3011 #endif 3012 3013 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3014 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3015 3016 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3017 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3018 "Process resource limits"); 3019 3020 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3021 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3022 "Process ps_strings location"); 3023 3024 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3025 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3026 3027 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3028 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3029 "Process binary osreldate"); 3030 3031 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3032 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3033 "Process signal trampoline location"); 3034 3035 int allproc_gen; 3036 3037 /* 3038 * stop_all_proc() purpose is to stop all process which have usermode, 3039 * except current process for obvious reasons. This makes it somewhat 3040 * unreliable when invoked from multithreaded process. The service 3041 * must not be user-callable anyway. 3042 */ 3043 void 3044 stop_all_proc(void) 3045 { 3046 struct proc *cp, *p; 3047 int r, gen; 3048 bool restart, seen_stopped, seen_exiting, stopped_some; 3049 3050 cp = curproc; 3051 allproc_loop: 3052 sx_xlock(&allproc_lock); 3053 gen = allproc_gen; 3054 seen_exiting = seen_stopped = stopped_some = restart = false; 3055 LIST_REMOVE(cp, p_list); 3056 LIST_INSERT_HEAD(&allproc, cp, p_list); 3057 for (;;) { 3058 p = LIST_NEXT(cp, p_list); 3059 if (p == NULL) 3060 break; 3061 LIST_REMOVE(cp, p_list); 3062 LIST_INSERT_AFTER(p, cp, p_list); 3063 PROC_LOCK(p); 3064 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3065 PROC_UNLOCK(p); 3066 continue; 3067 } 3068 if ((p->p_flag & P_WEXIT) != 0) { 3069 seen_exiting = true; 3070 PROC_UNLOCK(p); 3071 continue; 3072 } 3073 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3074 /* 3075 * Stopped processes are tolerated when there 3076 * are no other processes which might continue 3077 * them. P_STOPPED_SINGLE but not 3078 * P_TOTAL_STOP process still has at least one 3079 * thread running. 3080 */ 3081 seen_stopped = true; 3082 PROC_UNLOCK(p); 3083 continue; 3084 } 3085 _PHOLD(p); 3086 sx_xunlock(&allproc_lock); 3087 r = thread_single(p, SINGLE_ALLPROC); 3088 if (r != 0) 3089 restart = true; 3090 else 3091 stopped_some = true; 3092 _PRELE(p); 3093 PROC_UNLOCK(p); 3094 sx_xlock(&allproc_lock); 3095 } 3096 /* Catch forked children we did not see in iteration. */ 3097 if (gen != allproc_gen) 3098 restart = true; 3099 sx_xunlock(&allproc_lock); 3100 if (restart || stopped_some || seen_exiting || seen_stopped) { 3101 kern_yield(PRI_USER); 3102 goto allproc_loop; 3103 } 3104 } 3105 3106 void 3107 resume_all_proc(void) 3108 { 3109 struct proc *cp, *p; 3110 3111 cp = curproc; 3112 sx_xlock(&allproc_lock); 3113 LIST_REMOVE(cp, p_list); 3114 LIST_INSERT_HEAD(&allproc, cp, p_list); 3115 for (;;) { 3116 p = LIST_NEXT(cp, p_list); 3117 if (p == NULL) 3118 break; 3119 LIST_REMOVE(cp, p_list); 3120 LIST_INSERT_AFTER(p, cp, p_list); 3121 PROC_LOCK(p); 3122 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3123 sx_xunlock(&allproc_lock); 3124 _PHOLD(p); 3125 thread_single_end(p, SINGLE_ALLPROC); 3126 _PRELE(p); 3127 PROC_UNLOCK(p); 3128 sx_xlock(&allproc_lock); 3129 } else { 3130 PROC_UNLOCK(p); 3131 } 3132 } 3133 sx_xunlock(&allproc_lock); 3134 } 3135 3136 /* #define TOTAL_STOP_DEBUG 1 */ 3137 #ifdef TOTAL_STOP_DEBUG 3138 volatile static int ap_resume; 3139 #include <sys/mount.h> 3140 3141 static int 3142 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3143 { 3144 int error, val; 3145 3146 val = 0; 3147 ap_resume = 0; 3148 error = sysctl_handle_int(oidp, &val, 0, req); 3149 if (error != 0 || req->newptr == NULL) 3150 return (error); 3151 if (val != 0) { 3152 stop_all_proc(); 3153 syncer_suspend(); 3154 while (ap_resume == 0) 3155 ; 3156 syncer_resume(); 3157 resume_all_proc(); 3158 } 3159 return (0); 3160 } 3161 3162 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3163 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3164 sysctl_debug_stop_all_proc, "I", 3165 ""); 3166 #endif 3167