1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/refcount.h> 47 #include <sys/sysent.h> 48 #include <sys/sched.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/filedesc.h> 52 #include <sys/tty.h> 53 #include <sys/signalvar.h> 54 #include <sys/sx.h> 55 #include <sys/user.h> 56 #include <sys/jail.h> 57 #include <sys/vnode.h> 58 #ifdef KTRACE 59 #include <sys/uio.h> 60 #include <sys/ktrace.h> 61 #endif 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/uma.h> 68 69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 70 MALLOC_DEFINE(M_SESSION, "session", "session header"); 71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 73 74 static void doenterpgrp(struct proc *, struct pgrp *); 75 static void orphanpg(struct pgrp *pg); 76 static void pgadjustjobc(struct pgrp *pgrp, int entering); 77 static void pgdelete(struct pgrp *); 78 static int proc_ctor(void *mem, int size, void *arg, int flags); 79 static void proc_dtor(void *mem, int size, void *arg); 80 static int proc_init(void *mem, int size, int flags); 81 static void proc_fini(void *mem, int size); 82 83 /* 84 * Other process lists 85 */ 86 struct pidhashhead *pidhashtbl; 87 u_long pidhash; 88 struct pgrphashhead *pgrphashtbl; 89 u_long pgrphash; 90 struct proclist allproc; 91 struct proclist zombproc; 92 struct sx allproc_lock; 93 struct sx proctree_lock; 94 struct mtx ppeers_lock; 95 uma_zone_t proc_zone; 96 uma_zone_t ithread_zone; 97 98 int kstack_pages = KSTACK_PAGES; 99 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 100 101 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 102 103 /* 104 * Initialize global process hashing structures. 105 */ 106 void 107 procinit() 108 { 109 110 sx_init(&allproc_lock, "allproc"); 111 sx_init(&proctree_lock, "proctree"); 112 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 113 LIST_INIT(&allproc); 114 LIST_INIT(&zombproc); 115 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 116 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 117 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 118 proc_ctor, proc_dtor, proc_init, proc_fini, 119 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 120 uihashinit(); 121 } 122 123 /* 124 * Prepare a proc for use. 125 */ 126 static int 127 proc_ctor(void *mem, int size, void *arg, int flags) 128 { 129 struct proc *p; 130 131 p = (struct proc *)mem; 132 return (0); 133 } 134 135 /* 136 * Reclaim a proc after use. 137 */ 138 static void 139 proc_dtor(void *mem, int size, void *arg) 140 { 141 struct proc *p; 142 struct thread *td; 143 #ifdef INVARIANTS 144 struct ksegrp *kg; 145 #endif 146 147 /* INVARIANTS checks go here */ 148 p = (struct proc *)mem; 149 td = FIRST_THREAD_IN_PROC(p); 150 #ifdef INVARIANTS 151 KASSERT((p->p_numthreads == 1), 152 ("bad number of threads in exiting process")); 153 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 154 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 155 kg = FIRST_KSEGRP_IN_PROC(p); 156 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 157 #endif 158 159 /* Dispose of an alternate kstack, if it exists. 160 * XXX What if there are more than one thread in the proc? 161 * The first thread in the proc is special and not 162 * freed, so you gotta do this here. 163 */ 164 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 165 vm_thread_dispose_altkstack(td); 166 } 167 168 /* 169 * Initialize type-stable parts of a proc (when newly created). 170 */ 171 static int 172 proc_init(void *mem, int size, int flags) 173 { 174 struct proc *p; 175 struct thread *td; 176 struct ksegrp *kg; 177 178 p = (struct proc *)mem; 179 p->p_sched = (struct p_sched *)&p[1]; 180 td = thread_alloc(); 181 kg = ksegrp_alloc(); 182 bzero(&p->p_mtx, sizeof(struct mtx)); 183 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 184 p->p_stats = pstats_alloc(); 185 proc_linkup(p, kg, td); 186 sched_newproc(p, kg, td); 187 return (0); 188 } 189 190 /* 191 * UMA should ensure that this function is never called. 192 * Freeing a proc structure would violate type stability. 193 */ 194 static void 195 proc_fini(void *mem, int size) 196 { 197 198 panic("proc reclaimed"); 199 } 200 201 /* 202 * Is p an inferior of the current process? 203 */ 204 int 205 inferior(p) 206 register struct proc *p; 207 { 208 209 sx_assert(&proctree_lock, SX_LOCKED); 210 for (; p != curproc; p = p->p_pptr) 211 if (p->p_pid == 0) 212 return (0); 213 return (1); 214 } 215 216 /* 217 * Locate a process by number; return only "live" processes -- i.e., neither 218 * zombies nor newly born but incompletely initialized processes. By not 219 * returning processes in the PRS_NEW state, we allow callers to avoid 220 * testing for that condition to avoid dereferencing p_ucred, et al. 221 */ 222 struct proc * 223 pfind(pid) 224 register pid_t pid; 225 { 226 register struct proc *p; 227 228 sx_slock(&allproc_lock); 229 LIST_FOREACH(p, PIDHASH(pid), p_hash) 230 if (p->p_pid == pid) { 231 if (p->p_state == PRS_NEW) { 232 p = NULL; 233 break; 234 } 235 PROC_LOCK(p); 236 break; 237 } 238 sx_sunlock(&allproc_lock); 239 return (p); 240 } 241 242 /* 243 * Locate a process group by number. 244 * The caller must hold proctree_lock. 245 */ 246 struct pgrp * 247 pgfind(pgid) 248 register pid_t pgid; 249 { 250 register struct pgrp *pgrp; 251 252 sx_assert(&proctree_lock, SX_LOCKED); 253 254 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 255 if (pgrp->pg_id == pgid) { 256 PGRP_LOCK(pgrp); 257 return (pgrp); 258 } 259 } 260 return (NULL); 261 } 262 263 /* 264 * Create a new process group. 265 * pgid must be equal to the pid of p. 266 * Begin a new session if required. 267 */ 268 int 269 enterpgrp(p, pgid, pgrp, sess) 270 register struct proc *p; 271 pid_t pgid; 272 struct pgrp *pgrp; 273 struct session *sess; 274 { 275 struct pgrp *pgrp2; 276 277 sx_assert(&proctree_lock, SX_XLOCKED); 278 279 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 280 KASSERT(p->p_pid == pgid, 281 ("enterpgrp: new pgrp and pid != pgid")); 282 283 pgrp2 = pgfind(pgid); 284 285 KASSERT(pgrp2 == NULL, 286 ("enterpgrp: pgrp with pgid exists")); 287 KASSERT(!SESS_LEADER(p), 288 ("enterpgrp: session leader attempted setpgrp")); 289 290 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 291 292 if (sess != NULL) { 293 /* 294 * new session 295 */ 296 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 297 PROC_LOCK(p); 298 p->p_flag &= ~P_CONTROLT; 299 PROC_UNLOCK(p); 300 PGRP_LOCK(pgrp); 301 sess->s_leader = p; 302 sess->s_sid = p->p_pid; 303 sess->s_count = 1; 304 sess->s_ttyvp = NULL; 305 sess->s_ttyp = NULL; 306 bcopy(p->p_session->s_login, sess->s_login, 307 sizeof(sess->s_login)); 308 pgrp->pg_session = sess; 309 KASSERT(p == curproc, 310 ("enterpgrp: mksession and p != curproc")); 311 } else { 312 pgrp->pg_session = p->p_session; 313 SESS_LOCK(pgrp->pg_session); 314 pgrp->pg_session->s_count++; 315 SESS_UNLOCK(pgrp->pg_session); 316 PGRP_LOCK(pgrp); 317 } 318 pgrp->pg_id = pgid; 319 LIST_INIT(&pgrp->pg_members); 320 321 /* 322 * As we have an exclusive lock of proctree_lock, 323 * this should not deadlock. 324 */ 325 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 326 pgrp->pg_jobc = 0; 327 SLIST_INIT(&pgrp->pg_sigiolst); 328 PGRP_UNLOCK(pgrp); 329 330 doenterpgrp(p, pgrp); 331 332 return (0); 333 } 334 335 /* 336 * Move p to an existing process group 337 */ 338 int 339 enterthispgrp(p, pgrp) 340 register struct proc *p; 341 struct pgrp *pgrp; 342 { 343 344 sx_assert(&proctree_lock, SX_XLOCKED); 345 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 346 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 347 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 348 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 349 KASSERT(pgrp->pg_session == p->p_session, 350 ("%s: pgrp's session %p, p->p_session %p.\n", 351 __func__, 352 pgrp->pg_session, 353 p->p_session)); 354 KASSERT(pgrp != p->p_pgrp, 355 ("%s: p belongs to pgrp.", __func__)); 356 357 doenterpgrp(p, pgrp); 358 359 return (0); 360 } 361 362 /* 363 * Move p to a process group 364 */ 365 static void 366 doenterpgrp(p, pgrp) 367 struct proc *p; 368 struct pgrp *pgrp; 369 { 370 struct pgrp *savepgrp; 371 372 sx_assert(&proctree_lock, SX_XLOCKED); 373 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 374 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 375 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 376 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 377 378 savepgrp = p->p_pgrp; 379 380 /* 381 * Adjust eligibility of affected pgrps to participate in job control. 382 * Increment eligibility counts before decrementing, otherwise we 383 * could reach 0 spuriously during the first call. 384 */ 385 fixjobc(p, pgrp, 1); 386 fixjobc(p, p->p_pgrp, 0); 387 388 PGRP_LOCK(pgrp); 389 PGRP_LOCK(savepgrp); 390 PROC_LOCK(p); 391 LIST_REMOVE(p, p_pglist); 392 p->p_pgrp = pgrp; 393 PROC_UNLOCK(p); 394 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 395 PGRP_UNLOCK(savepgrp); 396 PGRP_UNLOCK(pgrp); 397 if (LIST_EMPTY(&savepgrp->pg_members)) 398 pgdelete(savepgrp); 399 } 400 401 /* 402 * remove process from process group 403 */ 404 int 405 leavepgrp(p) 406 register struct proc *p; 407 { 408 struct pgrp *savepgrp; 409 410 sx_assert(&proctree_lock, SX_XLOCKED); 411 savepgrp = p->p_pgrp; 412 PGRP_LOCK(savepgrp); 413 PROC_LOCK(p); 414 LIST_REMOVE(p, p_pglist); 415 p->p_pgrp = NULL; 416 PROC_UNLOCK(p); 417 PGRP_UNLOCK(savepgrp); 418 if (LIST_EMPTY(&savepgrp->pg_members)) 419 pgdelete(savepgrp); 420 return (0); 421 } 422 423 /* 424 * delete a process group 425 */ 426 static void 427 pgdelete(pgrp) 428 register struct pgrp *pgrp; 429 { 430 struct session *savesess; 431 432 sx_assert(&proctree_lock, SX_XLOCKED); 433 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 434 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 435 436 /* 437 * Reset any sigio structures pointing to us as a result of 438 * F_SETOWN with our pgid. 439 */ 440 funsetownlst(&pgrp->pg_sigiolst); 441 442 PGRP_LOCK(pgrp); 443 if (pgrp->pg_session->s_ttyp != NULL && 444 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 445 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 446 LIST_REMOVE(pgrp, pg_hash); 447 savesess = pgrp->pg_session; 448 SESSRELE(savesess); 449 PGRP_UNLOCK(pgrp); 450 mtx_destroy(&pgrp->pg_mtx); 451 FREE(pgrp, M_PGRP); 452 } 453 454 static void 455 pgadjustjobc(pgrp, entering) 456 struct pgrp *pgrp; 457 int entering; 458 { 459 460 PGRP_LOCK(pgrp); 461 if (entering) 462 pgrp->pg_jobc++; 463 else { 464 --pgrp->pg_jobc; 465 if (pgrp->pg_jobc == 0) 466 orphanpg(pgrp); 467 } 468 PGRP_UNLOCK(pgrp); 469 } 470 471 /* 472 * Adjust pgrp jobc counters when specified process changes process group. 473 * We count the number of processes in each process group that "qualify" 474 * the group for terminal job control (those with a parent in a different 475 * process group of the same session). If that count reaches zero, the 476 * process group becomes orphaned. Check both the specified process' 477 * process group and that of its children. 478 * entering == 0 => p is leaving specified group. 479 * entering == 1 => p is entering specified group. 480 */ 481 void 482 fixjobc(p, pgrp, entering) 483 register struct proc *p; 484 register struct pgrp *pgrp; 485 int entering; 486 { 487 register struct pgrp *hispgrp; 488 register struct session *mysession; 489 490 sx_assert(&proctree_lock, SX_LOCKED); 491 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 492 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 493 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 494 495 /* 496 * Check p's parent to see whether p qualifies its own process 497 * group; if so, adjust count for p's process group. 498 */ 499 mysession = pgrp->pg_session; 500 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 501 hispgrp->pg_session == mysession) 502 pgadjustjobc(pgrp, entering); 503 504 /* 505 * Check this process' children to see whether they qualify 506 * their process groups; if so, adjust counts for children's 507 * process groups. 508 */ 509 LIST_FOREACH(p, &p->p_children, p_sibling) { 510 hispgrp = p->p_pgrp; 511 if (hispgrp == pgrp || 512 hispgrp->pg_session != mysession) 513 continue; 514 PROC_LOCK(p); 515 if (p->p_state == PRS_ZOMBIE) { 516 PROC_UNLOCK(p); 517 continue; 518 } 519 PROC_UNLOCK(p); 520 pgadjustjobc(hispgrp, entering); 521 } 522 } 523 524 /* 525 * A process group has become orphaned; 526 * if there are any stopped processes in the group, 527 * hang-up all process in that group. 528 */ 529 static void 530 orphanpg(pg) 531 struct pgrp *pg; 532 { 533 register struct proc *p; 534 535 PGRP_LOCK_ASSERT(pg, MA_OWNED); 536 537 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 538 PROC_LOCK(p); 539 if (P_SHOULDSTOP(p)) { 540 PROC_UNLOCK(p); 541 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 542 PROC_LOCK(p); 543 psignal(p, SIGHUP); 544 psignal(p, SIGCONT); 545 PROC_UNLOCK(p); 546 } 547 return; 548 } 549 PROC_UNLOCK(p); 550 } 551 } 552 553 void 554 sessrele(struct session *s) 555 { 556 int i; 557 558 SESS_LOCK(s); 559 i = --s->s_count; 560 SESS_UNLOCK(s); 561 if (i == 0) { 562 if (s->s_ttyp != NULL) 563 ttyrel(s->s_ttyp); 564 mtx_destroy(&s->s_mtx); 565 FREE(s, M_SESSION); 566 } 567 } 568 569 #include "opt_ddb.h" 570 #ifdef DDB 571 #include <ddb/ddb.h> 572 573 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 574 { 575 register struct pgrp *pgrp; 576 register struct proc *p; 577 register int i; 578 579 for (i = 0; i <= pgrphash; i++) { 580 if (!LIST_EMPTY(&pgrphashtbl[i])) { 581 printf("\tindx %d\n", i); 582 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 583 printf( 584 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 585 (void *)pgrp, (long)pgrp->pg_id, 586 (void *)pgrp->pg_session, 587 pgrp->pg_session->s_count, 588 (void *)LIST_FIRST(&pgrp->pg_members)); 589 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 590 printf("\t\tpid %ld addr %p pgrp %p\n", 591 (long)p->p_pid, (void *)p, 592 (void *)p->p_pgrp); 593 } 594 } 595 } 596 } 597 } 598 #endif /* DDB */ 599 void 600 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 601 602 /* 603 * Fill in a kinfo_proc structure for the specified process. 604 * Must be called with the target process locked. 605 */ 606 void 607 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 608 { 609 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 610 } 611 612 void 613 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 614 { 615 struct proc *p; 616 struct thread *td0; 617 struct ksegrp *kg; 618 struct tty *tp; 619 struct session *sp; 620 struct timeval tv; 621 struct ucred *cred; 622 struct sigacts *ps; 623 624 p = td->td_proc; 625 626 bzero(kp, sizeof(*kp)); 627 628 kp->ki_structsize = sizeof(*kp); 629 kp->ki_paddr = p; 630 PROC_LOCK_ASSERT(p, MA_OWNED); 631 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 632 kp->ki_args = p->p_args; 633 kp->ki_textvp = p->p_textvp; 634 #ifdef KTRACE 635 kp->ki_tracep = p->p_tracevp; 636 mtx_lock(&ktrace_mtx); 637 kp->ki_traceflag = p->p_traceflag; 638 mtx_unlock(&ktrace_mtx); 639 #endif 640 kp->ki_fd = p->p_fd; 641 kp->ki_vmspace = p->p_vmspace; 642 kp->ki_flag = p->p_flag; 643 cred = p->p_ucred; 644 if (cred) { 645 kp->ki_uid = cred->cr_uid; 646 kp->ki_ruid = cred->cr_ruid; 647 kp->ki_svuid = cred->cr_svuid; 648 /* XXX bde doesn't like KI_NGROUPS */ 649 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 650 bcopy(cred->cr_groups, kp->ki_groups, 651 kp->ki_ngroups * sizeof(gid_t)); 652 kp->ki_rgid = cred->cr_rgid; 653 kp->ki_svgid = cred->cr_svgid; 654 /* If jailed(cred), emulate the old P_JAILED flag. */ 655 if (jailed(cred)) { 656 kp->ki_flag |= P_JAILED; 657 /* If inside a jail, use 0 as a jail ID. */ 658 if (!jailed(curthread->td_ucred)) 659 kp->ki_jid = cred->cr_prison->pr_id; 660 } 661 } 662 ps = p->p_sigacts; 663 if (ps) { 664 mtx_lock(&ps->ps_mtx); 665 kp->ki_sigignore = ps->ps_sigignore; 666 kp->ki_sigcatch = ps->ps_sigcatch; 667 mtx_unlock(&ps->ps_mtx); 668 } 669 mtx_lock_spin(&sched_lock); 670 if (p->p_state != PRS_NEW && 671 p->p_state != PRS_ZOMBIE && 672 p->p_vmspace != NULL) { 673 struct vmspace *vm = p->p_vmspace; 674 675 kp->ki_size = vm->vm_map.size; 676 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 677 FOREACH_THREAD_IN_PROC(p, td0) { 678 if (!TD_IS_SWAPPED(td0)) 679 kp->ki_rssize += td0->td_kstack_pages; 680 if (td0->td_altkstack_obj != NULL) 681 kp->ki_rssize += td0->td_altkstack_pages; 682 } 683 kp->ki_swrss = vm->vm_swrss; 684 kp->ki_tsize = vm->vm_tsize; 685 kp->ki_dsize = vm->vm_dsize; 686 kp->ki_ssize = vm->vm_ssize; 687 } 688 kp->ki_sflag = p->p_sflag; 689 kp->ki_swtime = p->p_swtime; 690 kp->ki_pid = p->p_pid; 691 kp->ki_nice = p->p_nice; 692 bintime2timeval(&p->p_rux.rux_runtime, &tv); 693 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 694 if (p->p_state != PRS_ZOMBIE) { 695 #if 0 696 if (td == NULL) { 697 /* XXXKSE: This should never happen. */ 698 printf("fill_kinfo_proc(): pid %d has no threads!\n", 699 p->p_pid); 700 mtx_unlock_spin(&sched_lock); 701 return; 702 } 703 #endif 704 if (td->td_wmesg != NULL) { 705 strlcpy(kp->ki_wmesg, td->td_wmesg, 706 sizeof(kp->ki_wmesg)); 707 } 708 if (TD_ON_LOCK(td)) { 709 kp->ki_kiflag |= KI_LOCKBLOCK; 710 strlcpy(kp->ki_lockname, td->td_lockname, 711 sizeof(kp->ki_lockname)); 712 } 713 714 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 715 if (TD_ON_RUNQ(td) || 716 TD_CAN_RUN(td) || 717 TD_IS_RUNNING(td)) { 718 kp->ki_stat = SRUN; 719 } else if (P_SHOULDSTOP(p)) { 720 kp->ki_stat = SSTOP; 721 } else if (TD_IS_SLEEPING(td)) { 722 kp->ki_stat = SSLEEP; 723 } else if (TD_ON_LOCK(td)) { 724 kp->ki_stat = SLOCK; 725 } else { 726 kp->ki_stat = SWAIT; 727 } 728 } else { 729 kp->ki_stat = SIDL; 730 } 731 732 kg = td->td_ksegrp; 733 734 /* things in the KSE GROUP */ 735 kp->ki_estcpu = kg->kg_estcpu; 736 kp->ki_slptime = kg->kg_slptime; 737 kp->ki_pri.pri_user = kg->kg_user_pri; 738 kp->ki_pri.pri_class = kg->kg_pri_class; 739 740 /* Things in the thread */ 741 kp->ki_wchan = td->td_wchan; 742 kp->ki_pri.pri_level = td->td_priority; 743 kp->ki_pri.pri_native = td->td_base_pri; 744 kp->ki_lastcpu = td->td_lastcpu; 745 kp->ki_oncpu = td->td_oncpu; 746 kp->ki_tdflags = td->td_flags; 747 kp->ki_tid = td->td_tid; 748 kp->ki_numthreads = p->p_numthreads; 749 kp->ki_pcb = td->td_pcb; 750 kp->ki_kstack = (void *)td->td_kstack; 751 kp->ki_pctcpu = sched_pctcpu(td); 752 753 /* We can't get this anymore but ps etc never used it anyway. */ 754 kp->ki_rqindex = 0; 755 756 } else { 757 kp->ki_stat = SZOMB; 758 } 759 mtx_unlock_spin(&sched_lock); 760 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 761 kp->ki_start = p->p_stats->p_start; 762 timevaladd(&kp->ki_start, &boottime); 763 kp->ki_rusage = p->p_stats->p_ru; 764 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 765 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 766 767 /* Some callers want child-times in a single value */ 768 kp->ki_childtime = kp->ki_childstime; 769 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 770 } 771 tp = NULL; 772 if (p->p_pgrp) { 773 kp->ki_pgid = p->p_pgrp->pg_id; 774 kp->ki_jobc = p->p_pgrp->pg_jobc; 775 sp = p->p_pgrp->pg_session; 776 777 if (sp != NULL) { 778 kp->ki_sid = sp->s_sid; 779 SESS_LOCK(sp); 780 strlcpy(kp->ki_login, sp->s_login, 781 sizeof(kp->ki_login)); 782 if (sp->s_ttyvp) 783 kp->ki_kiflag |= KI_CTTY; 784 if (SESS_LEADER(p)) 785 kp->ki_kiflag |= KI_SLEADER; 786 tp = sp->s_ttyp; 787 SESS_UNLOCK(sp); 788 } 789 } 790 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 791 kp->ki_tdev = dev2udev(tp->t_dev); 792 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 793 if (tp->t_session) 794 kp->ki_tsid = tp->t_session->s_sid; 795 } else 796 kp->ki_tdev = NODEV; 797 if (p->p_comm[0] != '\0') { 798 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 799 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 800 } 801 if (p->p_sysent && p->p_sysent->sv_name != NULL && 802 p->p_sysent->sv_name[0] != '\0') 803 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 804 kp->ki_siglist = p->p_siglist; 805 SIGSETOR(kp->ki_siglist, td->td_siglist); 806 kp->ki_sigmask = td->td_sigmask; 807 kp->ki_xstat = p->p_xstat; 808 kp->ki_acflag = p->p_acflag; 809 kp->ki_lock = p->p_lock; 810 if (p->p_pptr) 811 kp->ki_ppid = p->p_pptr->p_pid; 812 } 813 814 struct pstats * 815 pstats_alloc(void) 816 { 817 818 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 819 } 820 821 /* 822 * Copy parts of p_stats; zero the rest of p_stats (statistics). 823 */ 824 void 825 pstats_fork(struct pstats *src, struct pstats *dst) 826 { 827 828 bzero(&dst->pstat_startzero, 829 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 830 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 831 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 832 } 833 834 void 835 pstats_free(struct pstats *ps) 836 { 837 838 free(ps, M_SUBPROC); 839 } 840 841 /* 842 * Locate a zombie process by number 843 */ 844 struct proc * 845 zpfind(pid_t pid) 846 { 847 struct proc *p; 848 849 sx_slock(&allproc_lock); 850 LIST_FOREACH(p, &zombproc, p_list) 851 if (p->p_pid == pid) { 852 PROC_LOCK(p); 853 break; 854 } 855 sx_sunlock(&allproc_lock); 856 return (p); 857 } 858 859 #define KERN_PROC_ZOMBMASK 0x3 860 #define KERN_PROC_NOTHREADS 0x4 861 862 /* 863 * Must be called with the process locked and will return with it unlocked. 864 */ 865 static int 866 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 867 { 868 struct thread *td; 869 struct kinfo_proc kinfo_proc; 870 int error = 0; 871 struct proc *np; 872 pid_t pid = p->p_pid; 873 874 PROC_LOCK_ASSERT(p, MA_OWNED); 875 876 if (flags & KERN_PROC_NOTHREADS) { 877 fill_kinfo_proc(p, &kinfo_proc); 878 PROC_UNLOCK(p); 879 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 880 sizeof(kinfo_proc)); 881 PROC_LOCK(p); 882 } else { 883 _PHOLD(p); 884 FOREACH_THREAD_IN_PROC(p, td) { 885 fill_kinfo_thread(td, &kinfo_proc); 886 PROC_UNLOCK(p); 887 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 888 sizeof(kinfo_proc)); 889 PROC_LOCK(p); 890 if (error) 891 break; 892 } 893 _PRELE(p); 894 } 895 PROC_UNLOCK(p); 896 if (error) 897 return (error); 898 if (flags & KERN_PROC_ZOMBMASK) 899 np = zpfind(pid); 900 else { 901 if (pid == 0) 902 return (0); 903 np = pfind(pid); 904 } 905 if (np == NULL) 906 return EAGAIN; 907 if (np != p) { 908 PROC_UNLOCK(np); 909 return EAGAIN; 910 } 911 PROC_UNLOCK(np); 912 return (0); 913 } 914 915 static int 916 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 917 { 918 int *name = (int*) arg1; 919 u_int namelen = arg2; 920 struct proc *p; 921 int flags, doingzomb, oid_number; 922 int error = 0; 923 924 oid_number = oidp->oid_number; 925 if (oid_number != KERN_PROC_ALL && 926 (oid_number & KERN_PROC_INC_THREAD) == 0) 927 flags = KERN_PROC_NOTHREADS; 928 else { 929 flags = 0; 930 oid_number &= ~KERN_PROC_INC_THREAD; 931 } 932 if (oid_number == KERN_PROC_PID) { 933 if (namelen != 1) 934 return (EINVAL); 935 p = pfind((pid_t)name[0]); 936 if (!p) 937 return (ESRCH); 938 if ((error = p_cansee(curthread, p))) { 939 PROC_UNLOCK(p); 940 return (error); 941 } 942 error = sysctl_out_proc(p, req, flags); 943 return (error); 944 } 945 946 switch (oid_number) { 947 case KERN_PROC_ALL: 948 if (namelen != 0) 949 return (EINVAL); 950 break; 951 case KERN_PROC_PROC: 952 if (namelen != 0 && namelen != 1) 953 return (EINVAL); 954 break; 955 default: 956 if (namelen != 1) 957 return (EINVAL); 958 break; 959 } 960 961 if (!req->oldptr) { 962 /* overestimate by 5 procs */ 963 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 964 if (error) 965 return (error); 966 } 967 error = sysctl_wire_old_buffer(req, 0); 968 if (error != 0) 969 return (error); 970 sx_slock(&allproc_lock); 971 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 972 if (!doingzomb) 973 p = LIST_FIRST(&allproc); 974 else 975 p = LIST_FIRST(&zombproc); 976 for (; p != 0; p = LIST_NEXT(p, p_list)) { 977 /* 978 * Skip embryonic processes. 979 */ 980 mtx_lock_spin(&sched_lock); 981 if (p->p_state == PRS_NEW) { 982 mtx_unlock_spin(&sched_lock); 983 continue; 984 } 985 mtx_unlock_spin(&sched_lock); 986 PROC_LOCK(p); 987 /* 988 * Show a user only appropriate processes. 989 */ 990 if (p_cansee(curthread, p)) { 991 PROC_UNLOCK(p); 992 continue; 993 } 994 /* 995 * TODO - make more efficient (see notes below). 996 * do by session. 997 */ 998 switch (oid_number) { 999 1000 case KERN_PROC_GID: 1001 if (p->p_ucred == NULL || 1002 p->p_ucred->cr_gid != (gid_t)name[0]) { 1003 PROC_UNLOCK(p); 1004 continue; 1005 } 1006 break; 1007 1008 case KERN_PROC_PGRP: 1009 /* could do this by traversing pgrp */ 1010 if (p->p_pgrp == NULL || 1011 p->p_pgrp->pg_id != (pid_t)name[0]) { 1012 PROC_UNLOCK(p); 1013 continue; 1014 } 1015 break; 1016 1017 case KERN_PROC_RGID: 1018 if (p->p_ucred == NULL || 1019 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1020 PROC_UNLOCK(p); 1021 continue; 1022 } 1023 break; 1024 1025 case KERN_PROC_SESSION: 1026 if (p->p_session == NULL || 1027 p->p_session->s_sid != (pid_t)name[0]) { 1028 PROC_UNLOCK(p); 1029 continue; 1030 } 1031 break; 1032 1033 case KERN_PROC_TTY: 1034 if ((p->p_flag & P_CONTROLT) == 0 || 1035 p->p_session == NULL) { 1036 PROC_UNLOCK(p); 1037 continue; 1038 } 1039 SESS_LOCK(p->p_session); 1040 if (p->p_session->s_ttyp == NULL || 1041 dev2udev(p->p_session->s_ttyp->t_dev) != 1042 (dev_t)name[0]) { 1043 SESS_UNLOCK(p->p_session); 1044 PROC_UNLOCK(p); 1045 continue; 1046 } 1047 SESS_UNLOCK(p->p_session); 1048 break; 1049 1050 case KERN_PROC_UID: 1051 if (p->p_ucred == NULL || 1052 p->p_ucred->cr_uid != (uid_t)name[0]) { 1053 PROC_UNLOCK(p); 1054 continue; 1055 } 1056 break; 1057 1058 case KERN_PROC_RUID: 1059 if (p->p_ucred == NULL || 1060 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1061 PROC_UNLOCK(p); 1062 continue; 1063 } 1064 break; 1065 1066 case KERN_PROC_PROC: 1067 break; 1068 1069 default: 1070 break; 1071 1072 } 1073 1074 error = sysctl_out_proc(p, req, flags | doingzomb); 1075 if (error) { 1076 sx_sunlock(&allproc_lock); 1077 return (error); 1078 } 1079 } 1080 } 1081 sx_sunlock(&allproc_lock); 1082 return (0); 1083 } 1084 1085 struct pargs * 1086 pargs_alloc(int len) 1087 { 1088 struct pargs *pa; 1089 1090 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1091 M_WAITOK); 1092 refcount_init(&pa->ar_ref, 1); 1093 pa->ar_length = len; 1094 return (pa); 1095 } 1096 1097 void 1098 pargs_free(struct pargs *pa) 1099 { 1100 1101 FREE(pa, M_PARGS); 1102 } 1103 1104 void 1105 pargs_hold(struct pargs *pa) 1106 { 1107 1108 if (pa == NULL) 1109 return; 1110 refcount_acquire(&pa->ar_ref); 1111 } 1112 1113 void 1114 pargs_drop(struct pargs *pa) 1115 { 1116 1117 if (pa == NULL) 1118 return; 1119 if (refcount_release(&pa->ar_ref)) 1120 pargs_free(pa); 1121 } 1122 1123 /* 1124 * This sysctl allows a process to retrieve the argument list or process 1125 * title for another process without groping around in the address space 1126 * of the other process. It also allow a process to set its own "process 1127 * title to a string of its own choice. 1128 */ 1129 static int 1130 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1131 { 1132 int *name = (int*) arg1; 1133 u_int namelen = arg2; 1134 struct pargs *newpa, *pa; 1135 struct proc *p; 1136 int error = 0; 1137 1138 if (namelen != 1) 1139 return (EINVAL); 1140 1141 p = pfind((pid_t)name[0]); 1142 if (!p) 1143 return (ESRCH); 1144 1145 if ((error = p_cansee(curthread, p)) != 0) { 1146 PROC_UNLOCK(p); 1147 return (error); 1148 } 1149 1150 if (req->newptr && curproc != p) { 1151 PROC_UNLOCK(p); 1152 return (EPERM); 1153 } 1154 1155 pa = p->p_args; 1156 pargs_hold(pa); 1157 PROC_UNLOCK(p); 1158 if (req->oldptr != NULL && pa != NULL) 1159 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1160 pargs_drop(pa); 1161 if (error != 0 || req->newptr == NULL) 1162 return (error); 1163 1164 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1165 return (ENOMEM); 1166 newpa = pargs_alloc(req->newlen); 1167 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1168 if (error != 0) { 1169 pargs_free(newpa); 1170 return (error); 1171 } 1172 PROC_LOCK(p); 1173 pa = p->p_args; 1174 p->p_args = newpa; 1175 PROC_UNLOCK(p); 1176 pargs_drop(pa); 1177 return (0); 1178 } 1179 1180 /* 1181 * This sysctl allows a process to retrieve the path of the executable for 1182 * itself or another process. 1183 */ 1184 static int 1185 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1186 { 1187 pid_t *pidp = (pid_t *)arg1; 1188 unsigned int arglen = arg2; 1189 struct proc *p; 1190 struct vnode *vp; 1191 char *retbuf, *freebuf; 1192 int error; 1193 1194 if (arglen != 1) 1195 return (EINVAL); 1196 if (*pidp == -1) { /* -1 means this process */ 1197 p = req->td->td_proc; 1198 } else { 1199 p = pfind(*pidp); 1200 if (p == NULL) 1201 return (ESRCH); 1202 if ((error = p_cansee(curthread, p)) != 0) { 1203 PROC_UNLOCK(p); 1204 return (error); 1205 } 1206 } 1207 1208 vp = p->p_textvp; 1209 vref(vp); 1210 if (*pidp != -1) 1211 PROC_UNLOCK(p); 1212 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1213 vrele(vp); 1214 if (error) 1215 return (error); 1216 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1217 free(freebuf, M_TEMP); 1218 return (error); 1219 } 1220 1221 static int 1222 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1223 { 1224 struct proc *p; 1225 char *sv_name; 1226 int *name; 1227 int namelen; 1228 int error; 1229 1230 namelen = arg2; 1231 if (namelen != 1) 1232 return (EINVAL); 1233 1234 name = (int *)arg1; 1235 if ((p = pfind((pid_t)name[0])) == NULL) 1236 return (ESRCH); 1237 if ((error = p_cansee(curthread, p))) { 1238 PROC_UNLOCK(p); 1239 return (error); 1240 } 1241 sv_name = p->p_sysent->sv_name; 1242 PROC_UNLOCK(p); 1243 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1244 } 1245 1246 1247 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1248 1249 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1250 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1251 1252 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1253 sysctl_kern_proc, "Process table"); 1254 1255 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1256 sysctl_kern_proc, "Process table"); 1257 1258 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1259 sysctl_kern_proc, "Process table"); 1260 1261 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1262 sysctl_kern_proc, "Process table"); 1263 1264 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1265 sysctl_kern_proc, "Process table"); 1266 1267 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1268 sysctl_kern_proc, "Process table"); 1269 1270 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1271 sysctl_kern_proc, "Process table"); 1272 1273 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1274 sysctl_kern_proc, "Process table"); 1275 1276 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1277 sysctl_kern_proc, "Return process table, no threads"); 1278 1279 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1280 CTLFLAG_RW | CTLFLAG_ANYBODY, 1281 sysctl_kern_proc_args, "Process argument list"); 1282 1283 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1284 sysctl_kern_proc_pathname, "Process executable path"); 1285 1286 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1287 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1288 1289 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1290 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1291 1292 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1293 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1294 1295 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1296 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1297 1298 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1299 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1300 1301 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1302 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1303 1304 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1305 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1306 1307 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1308 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1309 1310 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1311 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1312 1313 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1314 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1315