1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include <sys/cdefs.h> 38 __FBSDID("$FreeBSD$"); 39 40 #include "opt_ktrace.h" 41 #include "opt_kstack_pages.h" 42 43 #include <sys/param.h> 44 #include <sys/systm.h> 45 #include <sys/kernel.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/kse.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/sysctl.h> 54 #include <sys/filedesc.h> 55 #include <sys/tty.h> 56 #include <sys/signalvar.h> 57 #include <sys/sx.h> 58 #include <sys/user.h> 59 #include <sys/jail.h> 60 #ifdef KTRACE 61 #include <sys/uio.h> 62 #include <sys/ktrace.h> 63 #endif 64 65 #include <vm/vm.h> 66 #include <vm/vm_extern.h> 67 #include <vm/pmap.h> 68 #include <vm/vm_map.h> 69 #include <vm/uma.h> 70 #include <machine/critical.h> 71 72 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 73 MALLOC_DEFINE(M_SESSION, "session", "session header"); 74 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 75 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 76 77 static void doenterpgrp(struct proc *, struct pgrp *); 78 static void orphanpg(struct pgrp *pg); 79 static void pgadjustjobc(struct pgrp *pgrp, int entering); 80 static void pgdelete(struct pgrp *); 81 static void proc_ctor(void *mem, int size, void *arg); 82 static void proc_dtor(void *mem, int size, void *arg); 83 static void proc_init(void *mem, int size); 84 static void proc_fini(void *mem, int size); 85 86 /* 87 * Other process lists 88 */ 89 struct pidhashhead *pidhashtbl; 90 u_long pidhash; 91 struct pgrphashhead *pgrphashtbl; 92 u_long pgrphash; 93 struct proclist allproc; 94 struct proclist zombproc; 95 struct sx allproc_lock; 96 struct sx proctree_lock; 97 struct mtx pargs_ref_lock; 98 struct mtx ppeers_lock; 99 uma_zone_t proc_zone; 100 uma_zone_t ithread_zone; 101 102 int kstack_pages = KSTACK_PAGES; 103 int uarea_pages = UAREA_PAGES; 104 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 105 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 106 107 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 108 109 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 110 111 /* 112 * Initialize global process hashing structures. 113 */ 114 void 115 procinit() 116 { 117 118 sx_init(&allproc_lock, "allproc"); 119 sx_init(&proctree_lock, "proctree"); 120 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 121 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 122 LIST_INIT(&allproc); 123 LIST_INIT(&zombproc); 124 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 125 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 126 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 127 proc_ctor, proc_dtor, proc_init, proc_fini, 128 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 129 uihashinit(); 130 } 131 132 /* 133 * Prepare a proc for use. 134 */ 135 static void 136 proc_ctor(void *mem, int size, void *arg) 137 { 138 struct proc *p; 139 140 p = (struct proc *)mem; 141 } 142 143 /* 144 * Reclaim a proc after use. 145 */ 146 static void 147 proc_dtor(void *mem, int size, void *arg) 148 { 149 struct proc *p; 150 struct thread *td; 151 struct ksegrp *kg; 152 struct kse *ke; 153 154 /* INVARIANTS checks go here */ 155 p = (struct proc *)mem; 156 KASSERT((p->p_numthreads == 1), 157 ("bad number of threads in exiting process")); 158 td = FIRST_THREAD_IN_PROC(p); 159 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 160 kg = FIRST_KSEGRP_IN_PROC(p); 161 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 162 ke = FIRST_KSE_IN_KSEGRP(kg); 163 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 164 165 /* Dispose of an alternate kstack, if it exists. 166 * XXX What if there are more than one thread in the proc? 167 * The first thread in the proc is special and not 168 * freed, so you gotta do this here. 169 */ 170 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 171 vm_thread_dispose_altkstack(td); 172 173 /* 174 * We want to make sure we know the initial linkages. 175 * so for now tear them down and remake them. 176 * This is probably un-needed as we can probably rely 177 * on the state coming in here from wait4(). 178 */ 179 proc_linkup(p, kg, ke, td); 180 } 181 182 /* 183 * Initialize type-stable parts of a proc (when newly created). 184 */ 185 static void 186 proc_init(void *mem, int size) 187 { 188 struct proc *p; 189 struct thread *td; 190 struct ksegrp *kg; 191 struct kse *ke; 192 193 p = (struct proc *)mem; 194 p->p_sched = (struct p_sched *)&p[1]; 195 vm_proc_new(p); 196 td = thread_alloc(); 197 ke = kse_alloc(); 198 kg = ksegrp_alloc(); 199 proc_linkup(p, kg, ke, td); 200 bzero(&p->p_mtx, sizeof(struct mtx)); 201 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 202 } 203 204 /* 205 * Tear down type-stable parts of a proc (just before being discarded) 206 */ 207 static void 208 proc_fini(void *mem, int size) 209 { 210 struct proc *p; 211 struct thread *td; 212 struct ksegrp *kg; 213 struct kse *ke; 214 215 p = (struct proc *)mem; 216 KASSERT((p->p_numthreads == 1), 217 ("bad number of threads in freeing process")); 218 td = FIRST_THREAD_IN_PROC(p); 219 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 220 kg = FIRST_KSEGRP_IN_PROC(p); 221 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 222 ke = FIRST_KSE_IN_KSEGRP(kg); 223 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 224 vm_proc_dispose(p); 225 thread_free(td); 226 ksegrp_free(kg); 227 kse_free(ke); 228 mtx_destroy(&p->p_mtx); 229 } 230 231 /* 232 * Is p an inferior of the current process? 233 */ 234 int 235 inferior(p) 236 register struct proc *p; 237 { 238 239 sx_assert(&proctree_lock, SX_LOCKED); 240 for (; p != curproc; p = p->p_pptr) 241 if (p->p_pid == 0) 242 return (0); 243 return (1); 244 } 245 246 /* 247 * Locate a process by number 248 */ 249 struct proc * 250 pfind(pid) 251 register pid_t pid; 252 { 253 register struct proc *p; 254 255 sx_slock(&allproc_lock); 256 LIST_FOREACH(p, PIDHASH(pid), p_hash) 257 if (p->p_pid == pid) { 258 PROC_LOCK(p); 259 break; 260 } 261 sx_sunlock(&allproc_lock); 262 return (p); 263 } 264 265 /* 266 * Locate a process group by number. 267 * The caller must hold proctree_lock. 268 */ 269 struct pgrp * 270 pgfind(pgid) 271 register pid_t pgid; 272 { 273 register struct pgrp *pgrp; 274 275 sx_assert(&proctree_lock, SX_LOCKED); 276 277 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 278 if (pgrp->pg_id == pgid) { 279 PGRP_LOCK(pgrp); 280 return (pgrp); 281 } 282 } 283 return (NULL); 284 } 285 286 /* 287 * Create a new process group. 288 * pgid must be equal to the pid of p. 289 * Begin a new session if required. 290 */ 291 int 292 enterpgrp(p, pgid, pgrp, sess) 293 register struct proc *p; 294 pid_t pgid; 295 struct pgrp *pgrp; 296 struct session *sess; 297 { 298 struct pgrp *pgrp2; 299 300 sx_assert(&proctree_lock, SX_XLOCKED); 301 302 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 303 KASSERT(p->p_pid == pgid, 304 ("enterpgrp: new pgrp and pid != pgid")); 305 306 pgrp2 = pgfind(pgid); 307 308 KASSERT(pgrp2 == NULL, 309 ("enterpgrp: pgrp with pgid exists")); 310 KASSERT(!SESS_LEADER(p), 311 ("enterpgrp: session leader attempted setpgrp")); 312 313 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 314 315 if (sess != NULL) { 316 /* 317 * new session 318 */ 319 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 320 PROC_LOCK(p); 321 p->p_flag &= ~P_CONTROLT; 322 PROC_UNLOCK(p); 323 PGRP_LOCK(pgrp); 324 sess->s_leader = p; 325 sess->s_sid = p->p_pid; 326 sess->s_count = 1; 327 sess->s_ttyvp = NULL; 328 sess->s_ttyp = NULL; 329 bcopy(p->p_session->s_login, sess->s_login, 330 sizeof(sess->s_login)); 331 pgrp->pg_session = sess; 332 KASSERT(p == curproc, 333 ("enterpgrp: mksession and p != curproc")); 334 } else { 335 pgrp->pg_session = p->p_session; 336 SESS_LOCK(pgrp->pg_session); 337 pgrp->pg_session->s_count++; 338 SESS_UNLOCK(pgrp->pg_session); 339 PGRP_LOCK(pgrp); 340 } 341 pgrp->pg_id = pgid; 342 LIST_INIT(&pgrp->pg_members); 343 344 /* 345 * As we have an exclusive lock of proctree_lock, 346 * this should not deadlock. 347 */ 348 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 349 pgrp->pg_jobc = 0; 350 SLIST_INIT(&pgrp->pg_sigiolst); 351 PGRP_UNLOCK(pgrp); 352 353 doenterpgrp(p, pgrp); 354 355 return (0); 356 } 357 358 /* 359 * Move p to an existing process group 360 */ 361 int 362 enterthispgrp(p, pgrp) 363 register struct proc *p; 364 struct pgrp *pgrp; 365 { 366 367 sx_assert(&proctree_lock, SX_XLOCKED); 368 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 369 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 370 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 371 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 372 KASSERT(pgrp->pg_session == p->p_session, 373 ("%s: pgrp's session %p, p->p_session %p.\n", 374 __func__, 375 pgrp->pg_session, 376 p->p_session)); 377 KASSERT(pgrp != p->p_pgrp, 378 ("%s: p belongs to pgrp.", __func__)); 379 380 doenterpgrp(p, pgrp); 381 382 return (0); 383 } 384 385 /* 386 * Move p to a process group 387 */ 388 static void 389 doenterpgrp(p, pgrp) 390 struct proc *p; 391 struct pgrp *pgrp; 392 { 393 struct pgrp *savepgrp; 394 395 sx_assert(&proctree_lock, SX_XLOCKED); 396 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 397 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 398 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 399 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 400 401 savepgrp = p->p_pgrp; 402 403 /* 404 * Adjust eligibility of affected pgrps to participate in job control. 405 * Increment eligibility counts before decrementing, otherwise we 406 * could reach 0 spuriously during the first call. 407 */ 408 fixjobc(p, pgrp, 1); 409 fixjobc(p, p->p_pgrp, 0); 410 411 PGRP_LOCK(pgrp); 412 PGRP_LOCK(savepgrp); 413 PROC_LOCK(p); 414 LIST_REMOVE(p, p_pglist); 415 p->p_pgrp = pgrp; 416 PROC_UNLOCK(p); 417 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 418 PGRP_UNLOCK(savepgrp); 419 PGRP_UNLOCK(pgrp); 420 if (LIST_EMPTY(&savepgrp->pg_members)) 421 pgdelete(savepgrp); 422 } 423 424 /* 425 * remove process from process group 426 */ 427 int 428 leavepgrp(p) 429 register struct proc *p; 430 { 431 struct pgrp *savepgrp; 432 433 sx_assert(&proctree_lock, SX_XLOCKED); 434 savepgrp = p->p_pgrp; 435 PGRP_LOCK(savepgrp); 436 PROC_LOCK(p); 437 LIST_REMOVE(p, p_pglist); 438 p->p_pgrp = NULL; 439 PROC_UNLOCK(p); 440 PGRP_UNLOCK(savepgrp); 441 if (LIST_EMPTY(&savepgrp->pg_members)) 442 pgdelete(savepgrp); 443 return (0); 444 } 445 446 /* 447 * delete a process group 448 */ 449 static void 450 pgdelete(pgrp) 451 register struct pgrp *pgrp; 452 { 453 struct session *savesess; 454 455 sx_assert(&proctree_lock, SX_XLOCKED); 456 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 457 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 458 459 /* 460 * Reset any sigio structures pointing to us as a result of 461 * F_SETOWN with our pgid. 462 */ 463 funsetownlst(&pgrp->pg_sigiolst); 464 465 PGRP_LOCK(pgrp); 466 if (pgrp->pg_session->s_ttyp != NULL && 467 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 468 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 469 LIST_REMOVE(pgrp, pg_hash); 470 savesess = pgrp->pg_session; 471 SESS_LOCK(savesess); 472 savesess->s_count--; 473 SESS_UNLOCK(savesess); 474 PGRP_UNLOCK(pgrp); 475 if (savesess->s_count == 0) { 476 mtx_destroy(&savesess->s_mtx); 477 FREE(pgrp->pg_session, M_SESSION); 478 } 479 mtx_destroy(&pgrp->pg_mtx); 480 FREE(pgrp, M_PGRP); 481 } 482 483 static void 484 pgadjustjobc(pgrp, entering) 485 struct pgrp *pgrp; 486 int entering; 487 { 488 489 PGRP_LOCK(pgrp); 490 if (entering) 491 pgrp->pg_jobc++; 492 else { 493 --pgrp->pg_jobc; 494 if (pgrp->pg_jobc == 0) 495 orphanpg(pgrp); 496 } 497 PGRP_UNLOCK(pgrp); 498 } 499 500 /* 501 * Adjust pgrp jobc counters when specified process changes process group. 502 * We count the number of processes in each process group that "qualify" 503 * the group for terminal job control (those with a parent in a different 504 * process group of the same session). If that count reaches zero, the 505 * process group becomes orphaned. Check both the specified process' 506 * process group and that of its children. 507 * entering == 0 => p is leaving specified group. 508 * entering == 1 => p is entering specified group. 509 */ 510 void 511 fixjobc(p, pgrp, entering) 512 register struct proc *p; 513 register struct pgrp *pgrp; 514 int entering; 515 { 516 register struct pgrp *hispgrp; 517 register struct session *mysession; 518 519 sx_assert(&proctree_lock, SX_LOCKED); 520 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 521 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 522 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 523 524 /* 525 * Check p's parent to see whether p qualifies its own process 526 * group; if so, adjust count for p's process group. 527 */ 528 mysession = pgrp->pg_session; 529 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 530 hispgrp->pg_session == mysession) 531 pgadjustjobc(pgrp, entering); 532 533 /* 534 * Check this process' children to see whether they qualify 535 * their process groups; if so, adjust counts for children's 536 * process groups. 537 */ 538 LIST_FOREACH(p, &p->p_children, p_sibling) { 539 hispgrp = p->p_pgrp; 540 if (hispgrp == pgrp || 541 hispgrp->pg_session != mysession) 542 continue; 543 PROC_LOCK(p); 544 if (p->p_state == PRS_ZOMBIE) { 545 PROC_UNLOCK(p); 546 continue; 547 } 548 PROC_UNLOCK(p); 549 pgadjustjobc(hispgrp, entering); 550 } 551 } 552 553 /* 554 * A process group has become orphaned; 555 * if there are any stopped processes in the group, 556 * hang-up all process in that group. 557 */ 558 static void 559 orphanpg(pg) 560 struct pgrp *pg; 561 { 562 register struct proc *p; 563 564 PGRP_LOCK_ASSERT(pg, MA_OWNED); 565 566 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 567 PROC_LOCK(p); 568 if (P_SHOULDSTOP(p)) { 569 PROC_UNLOCK(p); 570 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 571 PROC_LOCK(p); 572 psignal(p, SIGHUP); 573 psignal(p, SIGCONT); 574 PROC_UNLOCK(p); 575 } 576 return; 577 } 578 PROC_UNLOCK(p); 579 } 580 } 581 582 #include "opt_ddb.h" 583 #ifdef DDB 584 #include <ddb/ddb.h> 585 586 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 587 { 588 register struct pgrp *pgrp; 589 register struct proc *p; 590 register int i; 591 592 for (i = 0; i <= pgrphash; i++) { 593 if (!LIST_EMPTY(&pgrphashtbl[i])) { 594 printf("\tindx %d\n", i); 595 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 596 printf( 597 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 598 (void *)pgrp, (long)pgrp->pg_id, 599 (void *)pgrp->pg_session, 600 pgrp->pg_session->s_count, 601 (void *)LIST_FIRST(&pgrp->pg_members)); 602 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 603 printf("\t\tpid %ld addr %p pgrp %p\n", 604 (long)p->p_pid, (void *)p, 605 (void *)p->p_pgrp); 606 } 607 } 608 } 609 } 610 } 611 #endif /* DDB */ 612 void 613 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 614 615 /* 616 * Fill in a kinfo_proc structure for the specified process. 617 * Must be called with the target process locked. 618 */ 619 void 620 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 621 { 622 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 623 } 624 625 void 626 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 627 { 628 struct proc *p; 629 struct thread *td0; 630 struct kse *ke; 631 struct ksegrp *kg; 632 struct tty *tp; 633 struct session *sp; 634 struct timeval tv; 635 struct sigacts *ps; 636 637 p = td->td_proc; 638 639 bzero(kp, sizeof(*kp)); 640 641 kp->ki_structsize = sizeof(*kp); 642 kp->ki_paddr = p; 643 PROC_LOCK_ASSERT(p, MA_OWNED); 644 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 645 kp->ki_args = p->p_args; 646 kp->ki_textvp = p->p_textvp; 647 #ifdef KTRACE 648 kp->ki_tracep = p->p_tracevp; 649 mtx_lock(&ktrace_mtx); 650 kp->ki_traceflag = p->p_traceflag; 651 mtx_unlock(&ktrace_mtx); 652 #endif 653 kp->ki_fd = p->p_fd; 654 kp->ki_vmspace = p->p_vmspace; 655 if (p->p_ucred) { 656 kp->ki_uid = p->p_ucred->cr_uid; 657 kp->ki_ruid = p->p_ucred->cr_ruid; 658 kp->ki_svuid = p->p_ucred->cr_svuid; 659 /* XXX bde doesn't like KI_NGROUPS */ 660 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 661 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 662 kp->ki_ngroups * sizeof(gid_t)); 663 kp->ki_rgid = p->p_ucred->cr_rgid; 664 kp->ki_svgid = p->p_ucred->cr_svgid; 665 } 666 if (p->p_sigacts) { 667 ps = p->p_sigacts; 668 mtx_lock(&ps->ps_mtx); 669 kp->ki_sigignore = ps->ps_sigignore; 670 kp->ki_sigcatch = ps->ps_sigcatch; 671 mtx_unlock(&ps->ps_mtx); 672 } 673 mtx_lock_spin(&sched_lock); 674 if (p->p_state != PRS_NEW && 675 p->p_state != PRS_ZOMBIE && 676 p->p_vmspace != NULL) { 677 struct vmspace *vm = p->p_vmspace; 678 679 kp->ki_size = vm->vm_map.size; 680 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 681 if (p->p_sflag & PS_INMEM) 682 kp->ki_rssize += UAREA_PAGES; 683 FOREACH_THREAD_IN_PROC(p, td0) { 684 if (!TD_IS_SWAPPED(td0)) 685 kp->ki_rssize += td0->td_kstack_pages; 686 if (td0->td_altkstack_obj != NULL) 687 kp->ki_rssize += td0->td_altkstack_pages; 688 } 689 kp->ki_swrss = vm->vm_swrss; 690 kp->ki_tsize = vm->vm_tsize; 691 kp->ki_dsize = vm->vm_dsize; 692 kp->ki_ssize = vm->vm_ssize; 693 } 694 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 695 kp->ki_start = p->p_stats->p_start; 696 timevaladd(&kp->ki_start, &boottime); 697 kp->ki_rusage = p->p_stats->p_ru; 698 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 699 p->p_stats->p_cru.ru_stime.tv_sec; 700 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 701 p->p_stats->p_cru.ru_stime.tv_usec; 702 } 703 if (p->p_state != PRS_ZOMBIE) { 704 #if 0 705 if (td == NULL) { 706 /* XXXKSE: This should never happen. */ 707 printf("fill_kinfo_proc(): pid %d has no threads!\n", 708 p->p_pid); 709 mtx_unlock_spin(&sched_lock); 710 return; 711 } 712 #endif 713 if (td->td_wmesg != NULL) { 714 strlcpy(kp->ki_wmesg, td->td_wmesg, 715 sizeof(kp->ki_wmesg)); 716 } 717 if (TD_ON_LOCK(td)) { 718 kp->ki_kiflag |= KI_LOCKBLOCK; 719 strlcpy(kp->ki_lockname, td->td_lockname, 720 sizeof(kp->ki_lockname)); 721 } 722 723 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 724 if (TD_ON_RUNQ(td) || 725 TD_CAN_RUN(td) || 726 TD_IS_RUNNING(td)) { 727 kp->ki_stat = SRUN; 728 } else if (P_SHOULDSTOP(p)) { 729 kp->ki_stat = SSTOP; 730 } else if (TD_IS_SLEEPING(td)) { 731 kp->ki_stat = SSLEEP; 732 } else if (TD_ON_LOCK(td)) { 733 kp->ki_stat = SLOCK; 734 } else { 735 kp->ki_stat = SWAIT; 736 } 737 } else { 738 kp->ki_stat = SIDL; 739 } 740 741 kp->ki_sflag = p->p_sflag; 742 kp->ki_swtime = p->p_swtime; 743 kp->ki_pid = p->p_pid; 744 kg = td->td_ksegrp; 745 ke = td->td_kse; 746 bintime2timeval(&p->p_runtime, &tv); 747 kp->ki_runtime = 748 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 749 750 /* things in the KSE GROUP */ 751 kp->ki_estcpu = kg->kg_estcpu; 752 kp->ki_slptime = kg->kg_slptime; 753 kp->ki_pri.pri_user = kg->kg_user_pri; 754 kp->ki_pri.pri_class = kg->kg_pri_class; 755 kp->ki_nice = kg->kg_nice; 756 757 /* Things in the thread */ 758 kp->ki_wchan = td->td_wchan; 759 kp->ki_pri.pri_level = td->td_priority; 760 kp->ki_pri.pri_native = td->td_base_pri; 761 kp->ki_lastcpu = td->td_lastcpu; 762 kp->ki_oncpu = td->td_oncpu; 763 kp->ki_tdflags = td->td_flags; 764 kp->ki_pcb = td->td_pcb; 765 kp->ki_kstack = (void *)td->td_kstack; 766 767 /* Things in the kse */ 768 769 if (ke) { 770 kp->ki_rqindex = ke->ke_rqindex; 771 kp->ki_pctcpu = sched_pctcpu(ke); 772 } else { 773 kp->ki_rqindex = 0; 774 kp->ki_pctcpu = 0; 775 } 776 777 } else { 778 kp->ki_stat = SZOMB; 779 } 780 mtx_unlock_spin(&sched_lock); 781 sp = NULL; 782 tp = NULL; 783 if (p->p_pgrp) { 784 kp->ki_pgid = p->p_pgrp->pg_id; 785 kp->ki_jobc = p->p_pgrp->pg_jobc; 786 sp = p->p_pgrp->pg_session; 787 788 if (sp != NULL) { 789 kp->ki_sid = sp->s_sid; 790 SESS_LOCK(sp); 791 strlcpy(kp->ki_login, sp->s_login, 792 sizeof(kp->ki_login)); 793 if (sp->s_ttyvp) 794 kp->ki_kiflag |= KI_CTTY; 795 if (SESS_LEADER(p)) 796 kp->ki_kiflag |= KI_SLEADER; 797 tp = sp->s_ttyp; 798 SESS_UNLOCK(sp); 799 } 800 } 801 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 802 kp->ki_tdev = dev2udev(tp->t_dev); 803 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 804 if (tp->t_session) 805 kp->ki_tsid = tp->t_session->s_sid; 806 } else 807 kp->ki_tdev = NOUDEV; 808 if (p->p_comm[0] != '\0') { 809 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 810 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 811 } 812 kp->ki_siglist = p->p_siglist; 813 SIGSETOR(kp->ki_siglist, td->td_siglist); 814 kp->ki_sigmask = td->td_sigmask; 815 kp->ki_xstat = p->p_xstat; 816 kp->ki_acflag = p->p_acflag; 817 kp->ki_flag = p->p_flag; 818 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 819 if (jailed(p->p_ucred)) 820 kp->ki_flag |= P_JAILED; 821 kp->ki_lock = p->p_lock; 822 if (p->p_pptr) 823 kp->ki_ppid = p->p_pptr->p_pid; 824 } 825 826 /* 827 * Locate a zombie process by number 828 */ 829 struct proc * 830 zpfind(pid_t pid) 831 { 832 struct proc *p; 833 834 sx_slock(&allproc_lock); 835 LIST_FOREACH(p, &zombproc, p_list) 836 if (p->p_pid == pid) { 837 PROC_LOCK(p); 838 break; 839 } 840 sx_sunlock(&allproc_lock); 841 return (p); 842 } 843 844 #define KERN_PROC_ZOMBMASK 0x3 845 #define KERN_PROC_NOTHREADS 0x4 846 847 /* 848 * Must be called with the process locked and will return with it unlocked. 849 */ 850 static int 851 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 852 { 853 struct thread *td; 854 struct kinfo_proc kinfo_proc; 855 int error = 0; 856 struct proc *np; 857 pid_t pid = p->p_pid; 858 859 PROC_LOCK_ASSERT(p, MA_OWNED); 860 861 if (flags & KERN_PROC_NOTHREADS) { 862 fill_kinfo_proc(p, &kinfo_proc); 863 PROC_UNLOCK(p); 864 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 865 sizeof(kinfo_proc)); 866 PROC_LOCK(p); 867 } else { 868 _PHOLD(p); 869 FOREACH_THREAD_IN_PROC(p, td) { 870 fill_kinfo_thread(td, &kinfo_proc); 871 PROC_UNLOCK(p); 872 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 873 sizeof(kinfo_proc)); 874 PROC_LOCK(p); 875 if (error) 876 break; 877 } 878 _PRELE(p); 879 } 880 PROC_UNLOCK(p); 881 if (error) 882 return (error); 883 if (flags & KERN_PROC_ZOMBMASK) 884 np = zpfind(pid); 885 else { 886 if (pid == 0) 887 return (0); 888 np = pfind(pid); 889 } 890 if (np == NULL) 891 return EAGAIN; 892 if (np != p) { 893 PROC_UNLOCK(np); 894 return EAGAIN; 895 } 896 PROC_UNLOCK(np); 897 return (0); 898 } 899 900 static int 901 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 902 { 903 int *name = (int*) arg1; 904 u_int namelen = arg2; 905 struct proc *p; 906 int flags, doingzomb; 907 int error = 0; 908 909 if (oidp->oid_number == KERN_PROC_PID) { 910 if (namelen != 1) 911 return (EINVAL); 912 p = pfind((pid_t)name[0]); 913 if (!p) 914 return (0); 915 if (p_cansee(curthread, p)) { 916 PROC_UNLOCK(p); 917 return (0); 918 } 919 error = sysctl_out_proc(p, req, KERN_PROC_NOTHREADS); 920 return (error); 921 } 922 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 923 ; 924 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 925 ; 926 else 927 return (EINVAL); 928 929 if (!req->oldptr) { 930 /* overestimate by 5 procs */ 931 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 932 if (error) 933 return (error); 934 } 935 sysctl_wire_old_buffer(req, 0); 936 sx_slock(&allproc_lock); 937 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 938 if (!doingzomb) 939 p = LIST_FIRST(&allproc); 940 else 941 p = LIST_FIRST(&zombproc); 942 for (; p != 0; p = LIST_NEXT(p, p_list)) { 943 /* 944 * Skip embryonic processes. 945 */ 946 mtx_lock_spin(&sched_lock); 947 if (p->p_state == PRS_NEW) { 948 mtx_unlock_spin(&sched_lock); 949 continue; 950 } 951 mtx_unlock_spin(&sched_lock); 952 PROC_LOCK(p); 953 /* 954 * Show a user only appropriate processes. 955 */ 956 if (p_cansee(curthread, p)) { 957 PROC_UNLOCK(p); 958 continue; 959 } 960 flags = 0; 961 /* 962 * TODO - make more efficient (see notes below). 963 * do by session. 964 */ 965 switch (oidp->oid_number) { 966 967 case KERN_PROC_PGRP: 968 /* could do this by traversing pgrp */ 969 if (p->p_pgrp == NULL || 970 p->p_pgrp->pg_id != (pid_t)name[0]) { 971 PROC_UNLOCK(p); 972 continue; 973 } 974 break; 975 976 case KERN_PROC_TTY: 977 if ((p->p_flag & P_CONTROLT) == 0 || 978 p->p_session == NULL) { 979 PROC_UNLOCK(p); 980 continue; 981 } 982 SESS_LOCK(p->p_session); 983 if (p->p_session->s_ttyp == NULL || 984 dev2udev(p->p_session->s_ttyp->t_dev) != 985 (udev_t)name[0]) { 986 SESS_UNLOCK(p->p_session); 987 PROC_UNLOCK(p); 988 continue; 989 } 990 SESS_UNLOCK(p->p_session); 991 break; 992 993 case KERN_PROC_UID: 994 if (p->p_ucred == NULL || 995 p->p_ucred->cr_uid != (uid_t)name[0]) { 996 PROC_UNLOCK(p); 997 continue; 998 } 999 break; 1000 1001 case KERN_PROC_RUID: 1002 if (p->p_ucred == NULL || 1003 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1004 PROC_UNLOCK(p); 1005 continue; 1006 } 1007 break; 1008 1009 case KERN_PROC_PROC: 1010 flags |= KERN_PROC_NOTHREADS; 1011 break; 1012 1013 default: 1014 break; 1015 1016 } 1017 1018 error = sysctl_out_proc(p, req, flags | doingzomb); 1019 if (error) { 1020 sx_sunlock(&allproc_lock); 1021 return (error); 1022 } 1023 } 1024 } 1025 sx_sunlock(&allproc_lock); 1026 return (0); 1027 } 1028 1029 struct pargs * 1030 pargs_alloc(int len) 1031 { 1032 struct pargs *pa; 1033 1034 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1035 M_WAITOK); 1036 pa->ar_ref = 1; 1037 pa->ar_length = len; 1038 return (pa); 1039 } 1040 1041 void 1042 pargs_free(struct pargs *pa) 1043 { 1044 1045 FREE(pa, M_PARGS); 1046 } 1047 1048 void 1049 pargs_hold(struct pargs *pa) 1050 { 1051 1052 if (pa == NULL) 1053 return; 1054 PARGS_LOCK(pa); 1055 pa->ar_ref++; 1056 PARGS_UNLOCK(pa); 1057 } 1058 1059 void 1060 pargs_drop(struct pargs *pa) 1061 { 1062 1063 if (pa == NULL) 1064 return; 1065 PARGS_LOCK(pa); 1066 if (--pa->ar_ref == 0) { 1067 PARGS_UNLOCK(pa); 1068 pargs_free(pa); 1069 } else 1070 PARGS_UNLOCK(pa); 1071 } 1072 1073 /* 1074 * This sysctl allows a process to retrieve the argument list or process 1075 * title for another process without groping around in the address space 1076 * of the other process. It also allow a process to set its own "process 1077 * title to a string of its own choice. 1078 */ 1079 static int 1080 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1081 { 1082 int *name = (int*) arg1; 1083 u_int namelen = arg2; 1084 struct pargs *newpa, *pa; 1085 struct proc *p; 1086 int error = 0; 1087 1088 if (namelen != 1) 1089 return (EINVAL); 1090 1091 p = pfind((pid_t)name[0]); 1092 if (!p) 1093 return (0); 1094 1095 if ((!ps_argsopen) && p_cansee(curthread, p)) { 1096 PROC_UNLOCK(p); 1097 return (0); 1098 } 1099 1100 if (req->newptr && curproc != p) { 1101 PROC_UNLOCK(p); 1102 return (EPERM); 1103 } 1104 1105 pa = p->p_args; 1106 pargs_hold(pa); 1107 PROC_UNLOCK(p); 1108 if (req->oldptr != NULL && pa != NULL) 1109 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1110 pargs_drop(pa); 1111 if (error != 0 || req->newptr == NULL) 1112 return (error); 1113 1114 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1115 return (ENOMEM); 1116 newpa = pargs_alloc(req->newlen); 1117 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1118 if (error != 0) { 1119 pargs_free(newpa); 1120 return (error); 1121 } 1122 PROC_LOCK(p); 1123 pa = p->p_args; 1124 p->p_args = newpa; 1125 PROC_UNLOCK(p); 1126 pargs_drop(pa); 1127 return (0); 1128 } 1129 1130 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1131 1132 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1133 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1134 1135 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1136 sysctl_kern_proc, "Process table"); 1137 1138 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1139 sysctl_kern_proc, "Process table"); 1140 1141 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1142 sysctl_kern_proc, "Process table"); 1143 1144 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1145 sysctl_kern_proc, "Process table"); 1146 1147 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1148 sysctl_kern_proc, "Process table"); 1149 1150 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1151 sysctl_kern_proc, "Return process table, no threads"); 1152 1153 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1154 sysctl_kern_proc_args, "Process argument list"); 1155