1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mount.h> 49 #include <sys/mutex.h> 50 #include <sys/proc.h> 51 #include <sys/refcount.h> 52 #include <sys/sbuf.h> 53 #include <sys/sysent.h> 54 #include <sys/sched.h> 55 #include <sys/smp.h> 56 #include <sys/stack.h> 57 #include <sys/sysctl.h> 58 #include <sys/filedesc.h> 59 #include <sys/tty.h> 60 #include <sys/signalvar.h> 61 #include <sys/sdt.h> 62 #include <sys/sx.h> 63 #include <sys/user.h> 64 #include <sys/jail.h> 65 #include <sys/vnode.h> 66 #include <sys/eventhandler.h> 67 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/uma.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <compat/freebsd32/freebsd32.h> 81 #include <compat/freebsd32/freebsd32_util.h> 82 #endif 83 84 SDT_PROVIDER_DEFINE(proc); 85 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 90 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 95 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 100 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 104 SDT_PROBE_DEFINE(proc, kernel, init, entry); 105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 108 SDT_PROBE_DEFINE(proc, kernel, init, return); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 112 113 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 114 MALLOC_DEFINE(M_SESSION, "session", "session header"); 115 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 116 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 117 118 static void doenterpgrp(struct proc *, struct pgrp *); 119 static void orphanpg(struct pgrp *pg); 120 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 121 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 122 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 123 int preferthread); 124 static void pgadjustjobc(struct pgrp *pgrp, int entering); 125 static void pgdelete(struct pgrp *); 126 static int proc_ctor(void *mem, int size, void *arg, int flags); 127 static void proc_dtor(void *mem, int size, void *arg); 128 static int proc_init(void *mem, int size, int flags); 129 static void proc_fini(void *mem, int size); 130 static void pargs_free(struct pargs *pa); 131 132 /* 133 * Other process lists 134 */ 135 struct pidhashhead *pidhashtbl; 136 u_long pidhash; 137 struct pgrphashhead *pgrphashtbl; 138 u_long pgrphash; 139 struct proclist allproc; 140 struct proclist zombproc; 141 struct sx allproc_lock; 142 struct sx proctree_lock; 143 struct mtx ppeers_lock; 144 uma_zone_t proc_zone; 145 146 int kstack_pages = KSTACK_PAGES; 147 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 233 EVENTHANDLER_INVOKE(process_init, p); 234 p->p_stats = pstats_alloc(); 235 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 236 return (0); 237 } 238 239 /* 240 * UMA should ensure that this function is never called. 241 * Freeing a proc structure would violate type stability. 242 */ 243 static void 244 proc_fini(void *mem, int size) 245 { 246 #ifdef notnow 247 struct proc *p; 248 249 p = (struct proc *)mem; 250 EVENTHANDLER_INVOKE(process_fini, p); 251 pstats_free(p->p_stats); 252 thread_free(FIRST_THREAD_IN_PROC(p)); 253 mtx_destroy(&p->p_mtx); 254 if (p->p_ksi != NULL) 255 ksiginfo_free(p->p_ksi); 256 #else 257 panic("proc reclaimed"); 258 #endif 259 } 260 261 /* 262 * Is p an inferior of the current process? 263 */ 264 int 265 inferior(p) 266 register struct proc *p; 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 for (; p != curproc; p = p->p_pptr) 271 if (p->p_pid == 0) 272 return (0); 273 return (1); 274 } 275 276 /* 277 * Locate a process by number; return only "live" processes -- i.e., neither 278 * zombies nor newly born but incompletely initialized processes. By not 279 * returning processes in the PRS_NEW state, we allow callers to avoid 280 * testing for that condition to avoid dereferencing p_ucred, et al. 281 */ 282 struct proc * 283 pfind(pid) 284 register pid_t pid; 285 { 286 register struct proc *p; 287 288 sx_slock(&allproc_lock); 289 LIST_FOREACH(p, PIDHASH(pid), p_hash) 290 if (p->p_pid == pid) { 291 if (p->p_state == PRS_NEW) { 292 p = NULL; 293 break; 294 } 295 PROC_LOCK(p); 296 break; 297 } 298 sx_sunlock(&allproc_lock); 299 return (p); 300 } 301 302 /* 303 * Locate a process group by number. 304 * The caller must hold proctree_lock. 305 */ 306 struct pgrp * 307 pgfind(pgid) 308 register pid_t pgid; 309 { 310 register struct pgrp *pgrp; 311 312 sx_assert(&proctree_lock, SX_LOCKED); 313 314 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 315 if (pgrp->pg_id == pgid) { 316 PGRP_LOCK(pgrp); 317 return (pgrp); 318 } 319 } 320 return (NULL); 321 } 322 323 /* 324 * Create a new process group. 325 * pgid must be equal to the pid of p. 326 * Begin a new session if required. 327 */ 328 int 329 enterpgrp(p, pgid, pgrp, sess) 330 register struct proc *p; 331 pid_t pgid; 332 struct pgrp *pgrp; 333 struct session *sess; 334 { 335 struct pgrp *pgrp2; 336 337 sx_assert(&proctree_lock, SX_XLOCKED); 338 339 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 340 KASSERT(p->p_pid == pgid, 341 ("enterpgrp: new pgrp and pid != pgid")); 342 343 pgrp2 = pgfind(pgid); 344 345 KASSERT(pgrp2 == NULL, 346 ("enterpgrp: pgrp with pgid exists")); 347 KASSERT(!SESS_LEADER(p), 348 ("enterpgrp: session leader attempted setpgrp")); 349 350 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 351 352 if (sess != NULL) { 353 /* 354 * new session 355 */ 356 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 357 PROC_LOCK(p); 358 p->p_flag &= ~P_CONTROLT; 359 PROC_UNLOCK(p); 360 PGRP_LOCK(pgrp); 361 sess->s_leader = p; 362 sess->s_sid = p->p_pid; 363 refcount_init(&sess->s_count, 1); 364 sess->s_ttyvp = NULL; 365 sess->s_ttydp = NULL; 366 sess->s_ttyp = NULL; 367 bcopy(p->p_session->s_login, sess->s_login, 368 sizeof(sess->s_login)); 369 pgrp->pg_session = sess; 370 KASSERT(p == curproc, 371 ("enterpgrp: mksession and p != curproc")); 372 } else { 373 pgrp->pg_session = p->p_session; 374 sess_hold(pgrp->pg_session); 375 PGRP_LOCK(pgrp); 376 } 377 pgrp->pg_id = pgid; 378 LIST_INIT(&pgrp->pg_members); 379 380 /* 381 * As we have an exclusive lock of proctree_lock, 382 * this should not deadlock. 383 */ 384 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 385 pgrp->pg_jobc = 0; 386 SLIST_INIT(&pgrp->pg_sigiolst); 387 PGRP_UNLOCK(pgrp); 388 389 doenterpgrp(p, pgrp); 390 391 return (0); 392 } 393 394 /* 395 * Move p to an existing process group 396 */ 397 int 398 enterthispgrp(p, pgrp) 399 register struct proc *p; 400 struct pgrp *pgrp; 401 { 402 403 sx_assert(&proctree_lock, SX_XLOCKED); 404 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 405 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 406 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 407 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 408 KASSERT(pgrp->pg_session == p->p_session, 409 ("%s: pgrp's session %p, p->p_session %p.\n", 410 __func__, 411 pgrp->pg_session, 412 p->p_session)); 413 KASSERT(pgrp != p->p_pgrp, 414 ("%s: p belongs to pgrp.", __func__)); 415 416 doenterpgrp(p, pgrp); 417 418 return (0); 419 } 420 421 /* 422 * Move p to a process group 423 */ 424 static void 425 doenterpgrp(p, pgrp) 426 struct proc *p; 427 struct pgrp *pgrp; 428 { 429 struct pgrp *savepgrp; 430 431 sx_assert(&proctree_lock, SX_XLOCKED); 432 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 433 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 434 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 435 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 436 437 savepgrp = p->p_pgrp; 438 439 /* 440 * Adjust eligibility of affected pgrps to participate in job control. 441 * Increment eligibility counts before decrementing, otherwise we 442 * could reach 0 spuriously during the first call. 443 */ 444 fixjobc(p, pgrp, 1); 445 fixjobc(p, p->p_pgrp, 0); 446 447 PGRP_LOCK(pgrp); 448 PGRP_LOCK(savepgrp); 449 PROC_LOCK(p); 450 LIST_REMOVE(p, p_pglist); 451 p->p_pgrp = pgrp; 452 PROC_UNLOCK(p); 453 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 454 PGRP_UNLOCK(savepgrp); 455 PGRP_UNLOCK(pgrp); 456 if (LIST_EMPTY(&savepgrp->pg_members)) 457 pgdelete(savepgrp); 458 } 459 460 /* 461 * remove process from process group 462 */ 463 int 464 leavepgrp(p) 465 register struct proc *p; 466 { 467 struct pgrp *savepgrp; 468 469 sx_assert(&proctree_lock, SX_XLOCKED); 470 savepgrp = p->p_pgrp; 471 PGRP_LOCK(savepgrp); 472 PROC_LOCK(p); 473 LIST_REMOVE(p, p_pglist); 474 p->p_pgrp = NULL; 475 PROC_UNLOCK(p); 476 PGRP_UNLOCK(savepgrp); 477 if (LIST_EMPTY(&savepgrp->pg_members)) 478 pgdelete(savepgrp); 479 return (0); 480 } 481 482 /* 483 * delete a process group 484 */ 485 static void 486 pgdelete(pgrp) 487 register struct pgrp *pgrp; 488 { 489 struct session *savesess; 490 struct tty *tp; 491 492 sx_assert(&proctree_lock, SX_XLOCKED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 495 496 /* 497 * Reset any sigio structures pointing to us as a result of 498 * F_SETOWN with our pgid. 499 */ 500 funsetownlst(&pgrp->pg_sigiolst); 501 502 PGRP_LOCK(pgrp); 503 tp = pgrp->pg_session->s_ttyp; 504 LIST_REMOVE(pgrp, pg_hash); 505 savesess = pgrp->pg_session; 506 PGRP_UNLOCK(pgrp); 507 508 /* Remove the reference to the pgrp before deallocating it. */ 509 if (tp != NULL) { 510 tty_lock(tp); 511 tty_rel_pgrp(tp, pgrp); 512 } 513 514 mtx_destroy(&pgrp->pg_mtx); 515 free(pgrp, M_PGRP); 516 sess_release(savesess); 517 } 518 519 static void 520 pgadjustjobc(pgrp, entering) 521 struct pgrp *pgrp; 522 int entering; 523 { 524 525 PGRP_LOCK(pgrp); 526 if (entering) 527 pgrp->pg_jobc++; 528 else { 529 --pgrp->pg_jobc; 530 if (pgrp->pg_jobc == 0) 531 orphanpg(pgrp); 532 } 533 PGRP_UNLOCK(pgrp); 534 } 535 536 /* 537 * Adjust pgrp jobc counters when specified process changes process group. 538 * We count the number of processes in each process group that "qualify" 539 * the group for terminal job control (those with a parent in a different 540 * process group of the same session). If that count reaches zero, the 541 * process group becomes orphaned. Check both the specified process' 542 * process group and that of its children. 543 * entering == 0 => p is leaving specified group. 544 * entering == 1 => p is entering specified group. 545 */ 546 void 547 fixjobc(p, pgrp, entering) 548 register struct proc *p; 549 register struct pgrp *pgrp; 550 int entering; 551 { 552 register struct pgrp *hispgrp; 553 register struct session *mysession; 554 555 sx_assert(&proctree_lock, SX_LOCKED); 556 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 557 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 558 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 559 560 /* 561 * Check p's parent to see whether p qualifies its own process 562 * group; if so, adjust count for p's process group. 563 */ 564 mysession = pgrp->pg_session; 565 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 566 hispgrp->pg_session == mysession) 567 pgadjustjobc(pgrp, entering); 568 569 /* 570 * Check this process' children to see whether they qualify 571 * their process groups; if so, adjust counts for children's 572 * process groups. 573 */ 574 LIST_FOREACH(p, &p->p_children, p_sibling) { 575 hispgrp = p->p_pgrp; 576 if (hispgrp == pgrp || 577 hispgrp->pg_session != mysession) 578 continue; 579 PROC_LOCK(p); 580 if (p->p_state == PRS_ZOMBIE) { 581 PROC_UNLOCK(p); 582 continue; 583 } 584 PROC_UNLOCK(p); 585 pgadjustjobc(hispgrp, entering); 586 } 587 } 588 589 /* 590 * A process group has become orphaned; 591 * if there are any stopped processes in the group, 592 * hang-up all process in that group. 593 */ 594 static void 595 orphanpg(pg) 596 struct pgrp *pg; 597 { 598 register struct proc *p; 599 600 PGRP_LOCK_ASSERT(pg, MA_OWNED); 601 602 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 603 PROC_LOCK(p); 604 if (P_SHOULDSTOP(p)) { 605 PROC_UNLOCK(p); 606 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 607 PROC_LOCK(p); 608 psignal(p, SIGHUP); 609 psignal(p, SIGCONT); 610 PROC_UNLOCK(p); 611 } 612 return; 613 } 614 PROC_UNLOCK(p); 615 } 616 } 617 618 void 619 sess_hold(struct session *s) 620 { 621 622 refcount_acquire(&s->s_count); 623 } 624 625 void 626 sess_release(struct session *s) 627 { 628 629 if (refcount_release(&s->s_count)) { 630 if (s->s_ttyp != NULL) { 631 tty_lock(s->s_ttyp); 632 tty_rel_sess(s->s_ttyp, s); 633 } 634 mtx_destroy(&s->s_mtx); 635 free(s, M_SESSION); 636 } 637 } 638 639 #include "opt_ddb.h" 640 #ifdef DDB 641 #include <ddb/ddb.h> 642 643 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 644 { 645 register struct pgrp *pgrp; 646 register struct proc *p; 647 register int i; 648 649 for (i = 0; i <= pgrphash; i++) { 650 if (!LIST_EMPTY(&pgrphashtbl[i])) { 651 printf("\tindx %d\n", i); 652 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 653 printf( 654 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 655 (void *)pgrp, (long)pgrp->pg_id, 656 (void *)pgrp->pg_session, 657 pgrp->pg_session->s_count, 658 (void *)LIST_FIRST(&pgrp->pg_members)); 659 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 660 printf("\t\tpid %ld addr %p pgrp %p\n", 661 (long)p->p_pid, (void *)p, 662 (void *)p->p_pgrp); 663 } 664 } 665 } 666 } 667 } 668 #endif /* DDB */ 669 670 /* 671 * Calculate the kinfo_proc members which contain process-wide 672 * informations. 673 * Must be called with the target process locked. 674 */ 675 static void 676 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 677 { 678 struct thread *td; 679 680 PROC_LOCK_ASSERT(p, MA_OWNED); 681 682 kp->ki_estcpu = 0; 683 kp->ki_pctcpu = 0; 684 FOREACH_THREAD_IN_PROC(p, td) { 685 thread_lock(td); 686 kp->ki_pctcpu += sched_pctcpu(td); 687 kp->ki_estcpu += td->td_estcpu; 688 thread_unlock(td); 689 } 690 } 691 692 /* 693 * Clear kinfo_proc and fill in any information that is common 694 * to all threads in the process. 695 * Must be called with the target process locked. 696 */ 697 static void 698 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 699 { 700 struct thread *td0; 701 struct tty *tp; 702 struct session *sp; 703 struct ucred *cred; 704 struct sigacts *ps; 705 706 PROC_LOCK_ASSERT(p, MA_OWNED); 707 bzero(kp, sizeof(*kp)); 708 709 kp->ki_structsize = sizeof(*kp); 710 kp->ki_paddr = p; 711 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 712 kp->ki_args = p->p_args; 713 kp->ki_textvp = p->p_textvp; 714 #ifdef KTRACE 715 kp->ki_tracep = p->p_tracevp; 716 kp->ki_traceflag = p->p_traceflag; 717 #endif 718 kp->ki_fd = p->p_fd; 719 kp->ki_vmspace = p->p_vmspace; 720 kp->ki_flag = p->p_flag; 721 cred = p->p_ucred; 722 if (cred) { 723 kp->ki_uid = cred->cr_uid; 724 kp->ki_ruid = cred->cr_ruid; 725 kp->ki_svuid = cred->cr_svuid; 726 kp->ki_cr_flags = cred->cr_flags; 727 /* XXX bde doesn't like KI_NGROUPS */ 728 if (cred->cr_ngroups > KI_NGROUPS) { 729 kp->ki_ngroups = KI_NGROUPS; 730 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 731 } else 732 kp->ki_ngroups = cred->cr_ngroups; 733 bcopy(cred->cr_groups, kp->ki_groups, 734 kp->ki_ngroups * sizeof(gid_t)); 735 kp->ki_rgid = cred->cr_rgid; 736 kp->ki_svgid = cred->cr_svgid; 737 /* If jailed(cred), emulate the old P_JAILED flag. */ 738 if (jailed(cred)) { 739 kp->ki_flag |= P_JAILED; 740 /* If inside the jail, use 0 as a jail ID. */ 741 if (cred->cr_prison != curthread->td_ucred->cr_prison) 742 kp->ki_jid = cred->cr_prison->pr_id; 743 } 744 } 745 ps = p->p_sigacts; 746 if (ps) { 747 mtx_lock(&ps->ps_mtx); 748 kp->ki_sigignore = ps->ps_sigignore; 749 kp->ki_sigcatch = ps->ps_sigcatch; 750 mtx_unlock(&ps->ps_mtx); 751 } 752 PROC_SLOCK(p); 753 if (p->p_state != PRS_NEW && 754 p->p_state != PRS_ZOMBIE && 755 p->p_vmspace != NULL) { 756 struct vmspace *vm = p->p_vmspace; 757 758 kp->ki_size = vm->vm_map.size; 759 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 760 FOREACH_THREAD_IN_PROC(p, td0) { 761 if (!TD_IS_SWAPPED(td0)) 762 kp->ki_rssize += td0->td_kstack_pages; 763 } 764 kp->ki_swrss = vm->vm_swrss; 765 kp->ki_tsize = vm->vm_tsize; 766 kp->ki_dsize = vm->vm_dsize; 767 kp->ki_ssize = vm->vm_ssize; 768 } else if (p->p_state == PRS_ZOMBIE) 769 kp->ki_stat = SZOMB; 770 if (kp->ki_flag & P_INMEM) 771 kp->ki_sflag = PS_INMEM; 772 else 773 kp->ki_sflag = 0; 774 /* Calculate legacy swtime as seconds since 'swtick'. */ 775 kp->ki_swtime = (ticks - p->p_swtick) / hz; 776 kp->ki_pid = p->p_pid; 777 kp->ki_nice = p->p_nice; 778 rufetch(p, &kp->ki_rusage); 779 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 780 PROC_SUNLOCK(p); 781 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 782 kp->ki_start = p->p_stats->p_start; 783 timevaladd(&kp->ki_start, &boottime); 784 PROC_SLOCK(p); 785 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 786 PROC_SUNLOCK(p); 787 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 788 789 /* Some callers want child-times in a single value */ 790 kp->ki_childtime = kp->ki_childstime; 791 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 792 } 793 tp = NULL; 794 if (p->p_pgrp) { 795 kp->ki_pgid = p->p_pgrp->pg_id; 796 kp->ki_jobc = p->p_pgrp->pg_jobc; 797 sp = p->p_pgrp->pg_session; 798 799 if (sp != NULL) { 800 kp->ki_sid = sp->s_sid; 801 SESS_LOCK(sp); 802 strlcpy(kp->ki_login, sp->s_login, 803 sizeof(kp->ki_login)); 804 if (sp->s_ttyvp) 805 kp->ki_kiflag |= KI_CTTY; 806 if (SESS_LEADER(p)) 807 kp->ki_kiflag |= KI_SLEADER; 808 /* XXX proctree_lock */ 809 tp = sp->s_ttyp; 810 SESS_UNLOCK(sp); 811 } 812 } 813 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 814 kp->ki_tdev = tty_udev(tp); 815 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 816 if (tp->t_session) 817 kp->ki_tsid = tp->t_session->s_sid; 818 } else 819 kp->ki_tdev = NODEV; 820 if (p->p_comm[0] != '\0') 821 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 822 if (p->p_sysent && p->p_sysent->sv_name != NULL && 823 p->p_sysent->sv_name[0] != '\0') 824 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 825 kp->ki_siglist = p->p_siglist; 826 kp->ki_xstat = p->p_xstat; 827 kp->ki_acflag = p->p_acflag; 828 kp->ki_lock = p->p_lock; 829 if (p->p_pptr) 830 kp->ki_ppid = p->p_pptr->p_pid; 831 } 832 833 /* 834 * Fill in information that is thread specific. Must be called with 835 * target process locked. If 'preferthread' is set, overwrite certain 836 * process-related fields that are maintained for both threads and 837 * processes. 838 */ 839 static void 840 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 841 { 842 struct proc *p; 843 844 p = td->td_proc; 845 PROC_LOCK_ASSERT(p, MA_OWNED); 846 847 thread_lock(td); 848 if (td->td_wmesg != NULL) 849 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 850 else 851 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 852 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 853 if (TD_ON_LOCK(td)) { 854 kp->ki_kiflag |= KI_LOCKBLOCK; 855 strlcpy(kp->ki_lockname, td->td_lockname, 856 sizeof(kp->ki_lockname)); 857 } else { 858 kp->ki_kiflag &= ~KI_LOCKBLOCK; 859 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 860 } 861 862 if (p->p_state == PRS_NORMAL) { /* approximate. */ 863 if (TD_ON_RUNQ(td) || 864 TD_CAN_RUN(td) || 865 TD_IS_RUNNING(td)) { 866 kp->ki_stat = SRUN; 867 } else if (P_SHOULDSTOP(p)) { 868 kp->ki_stat = SSTOP; 869 } else if (TD_IS_SLEEPING(td)) { 870 kp->ki_stat = SSLEEP; 871 } else if (TD_ON_LOCK(td)) { 872 kp->ki_stat = SLOCK; 873 } else { 874 kp->ki_stat = SWAIT; 875 } 876 } else if (p->p_state == PRS_ZOMBIE) { 877 kp->ki_stat = SZOMB; 878 } else { 879 kp->ki_stat = SIDL; 880 } 881 882 /* Things in the thread */ 883 kp->ki_wchan = td->td_wchan; 884 kp->ki_pri.pri_level = td->td_priority; 885 kp->ki_pri.pri_native = td->td_base_pri; 886 kp->ki_lastcpu = td->td_lastcpu; 887 kp->ki_oncpu = td->td_oncpu; 888 kp->ki_tdflags = td->td_flags; 889 kp->ki_tid = td->td_tid; 890 kp->ki_numthreads = p->p_numthreads; 891 kp->ki_pcb = td->td_pcb; 892 kp->ki_kstack = (void *)td->td_kstack; 893 kp->ki_slptime = (ticks - td->td_slptick) / hz; 894 kp->ki_pri.pri_class = td->td_pri_class; 895 kp->ki_pri.pri_user = td->td_user_pri; 896 897 if (preferthread) { 898 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 899 kp->ki_pctcpu = sched_pctcpu(td); 900 kp->ki_estcpu = td->td_estcpu; 901 } 902 903 /* We can't get this anymore but ps etc never used it anyway. */ 904 kp->ki_rqindex = 0; 905 906 if (preferthread) 907 kp->ki_siglist = td->td_siglist; 908 kp->ki_sigmask = td->td_sigmask; 909 thread_unlock(td); 910 } 911 912 /* 913 * Fill in a kinfo_proc structure for the specified process. 914 * Must be called with the target process locked. 915 */ 916 void 917 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 918 { 919 920 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 921 922 fill_kinfo_proc_only(p, kp); 923 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 924 fill_kinfo_aggregate(p, kp); 925 } 926 927 struct pstats * 928 pstats_alloc(void) 929 { 930 931 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 932 } 933 934 /* 935 * Copy parts of p_stats; zero the rest of p_stats (statistics). 936 */ 937 void 938 pstats_fork(struct pstats *src, struct pstats *dst) 939 { 940 941 bzero(&dst->pstat_startzero, 942 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 943 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 944 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 945 } 946 947 void 948 pstats_free(struct pstats *ps) 949 { 950 951 free(ps, M_SUBPROC); 952 } 953 954 /* 955 * Locate a zombie process by number 956 */ 957 struct proc * 958 zpfind(pid_t pid) 959 { 960 struct proc *p; 961 962 sx_slock(&allproc_lock); 963 LIST_FOREACH(p, &zombproc, p_list) 964 if (p->p_pid == pid) { 965 PROC_LOCK(p); 966 break; 967 } 968 sx_sunlock(&allproc_lock); 969 return (p); 970 } 971 972 #define KERN_PROC_ZOMBMASK 0x3 973 #define KERN_PROC_NOTHREADS 0x4 974 975 #ifdef COMPAT_FREEBSD32 976 977 /* 978 * This function is typically used to copy out the kernel address, so 979 * it can be replaced by assignment of zero. 980 */ 981 static inline uint32_t 982 ptr32_trim(void *ptr) 983 { 984 uintptr_t uptr; 985 986 uptr = (uintptr_t)ptr; 987 return ((uptr > UINT_MAX) ? 0 : uptr); 988 } 989 990 #define PTRTRIM_CP(src,dst,fld) \ 991 do { (dst).fld = ptr32_trim((src).fld); } while (0) 992 993 static void 994 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 995 { 996 int i; 997 998 bzero(ki32, sizeof(struct kinfo_proc32)); 999 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1000 CP(*ki, *ki32, ki_layout); 1001 PTRTRIM_CP(*ki, *ki32, ki_args); 1002 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1003 PTRTRIM_CP(*ki, *ki32, ki_addr); 1004 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1005 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1006 PTRTRIM_CP(*ki, *ki32, ki_fd); 1007 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1008 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1009 CP(*ki, *ki32, ki_pid); 1010 CP(*ki, *ki32, ki_ppid); 1011 CP(*ki, *ki32, ki_pgid); 1012 CP(*ki, *ki32, ki_tpgid); 1013 CP(*ki, *ki32, ki_sid); 1014 CP(*ki, *ki32, ki_tsid); 1015 CP(*ki, *ki32, ki_jobc); 1016 CP(*ki, *ki32, ki_tdev); 1017 CP(*ki, *ki32, ki_siglist); 1018 CP(*ki, *ki32, ki_sigmask); 1019 CP(*ki, *ki32, ki_sigignore); 1020 CP(*ki, *ki32, ki_sigcatch); 1021 CP(*ki, *ki32, ki_uid); 1022 CP(*ki, *ki32, ki_ruid); 1023 CP(*ki, *ki32, ki_svuid); 1024 CP(*ki, *ki32, ki_rgid); 1025 CP(*ki, *ki32, ki_svgid); 1026 CP(*ki, *ki32, ki_ngroups); 1027 for (i = 0; i < KI_NGROUPS; i++) 1028 CP(*ki, *ki32, ki_groups[i]); 1029 CP(*ki, *ki32, ki_size); 1030 CP(*ki, *ki32, ki_rssize); 1031 CP(*ki, *ki32, ki_swrss); 1032 CP(*ki, *ki32, ki_tsize); 1033 CP(*ki, *ki32, ki_dsize); 1034 CP(*ki, *ki32, ki_ssize); 1035 CP(*ki, *ki32, ki_xstat); 1036 CP(*ki, *ki32, ki_acflag); 1037 CP(*ki, *ki32, ki_pctcpu); 1038 CP(*ki, *ki32, ki_estcpu); 1039 CP(*ki, *ki32, ki_slptime); 1040 CP(*ki, *ki32, ki_swtime); 1041 CP(*ki, *ki32, ki_runtime); 1042 TV_CP(*ki, *ki32, ki_start); 1043 TV_CP(*ki, *ki32, ki_childtime); 1044 CP(*ki, *ki32, ki_flag); 1045 CP(*ki, *ki32, ki_kiflag); 1046 CP(*ki, *ki32, ki_traceflag); 1047 CP(*ki, *ki32, ki_stat); 1048 CP(*ki, *ki32, ki_nice); 1049 CP(*ki, *ki32, ki_lock); 1050 CP(*ki, *ki32, ki_rqindex); 1051 CP(*ki, *ki32, ki_oncpu); 1052 CP(*ki, *ki32, ki_lastcpu); 1053 bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1); 1054 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1055 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1056 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1057 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1058 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1059 CP(*ki, *ki32, ki_cr_flags); 1060 CP(*ki, *ki32, ki_jid); 1061 CP(*ki, *ki32, ki_numthreads); 1062 CP(*ki, *ki32, ki_tid); 1063 CP(*ki, *ki32, ki_pri); 1064 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1065 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1066 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1067 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1068 PTRTRIM_CP(*ki, *ki32, ki_udata); 1069 CP(*ki, *ki32, ki_sflag); 1070 CP(*ki, *ki32, ki_tdflags); 1071 } 1072 1073 static int 1074 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1075 { 1076 struct kinfo_proc32 ki32; 1077 int error; 1078 1079 if (req->flags & SCTL_MASK32) { 1080 freebsd32_kinfo_proc_out(ki, &ki32); 1081 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1082 } else 1083 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1084 return (error); 1085 } 1086 #else 1087 static int 1088 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1089 { 1090 1091 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1092 } 1093 #endif 1094 1095 /* 1096 * Must be called with the process locked and will return with it unlocked. 1097 */ 1098 static int 1099 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1100 { 1101 struct thread *td; 1102 struct kinfo_proc kinfo_proc; 1103 int error = 0; 1104 struct proc *np; 1105 pid_t pid = p->p_pid; 1106 1107 PROC_LOCK_ASSERT(p, MA_OWNED); 1108 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1109 1110 fill_kinfo_proc(p, &kinfo_proc); 1111 if (flags & KERN_PROC_NOTHREADS) 1112 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1113 else { 1114 FOREACH_THREAD_IN_PROC(p, td) { 1115 fill_kinfo_thread(td, &kinfo_proc, 1); 1116 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1117 if (error) 1118 break; 1119 } 1120 } 1121 PROC_UNLOCK(p); 1122 if (error) 1123 return (error); 1124 if (flags & KERN_PROC_ZOMBMASK) 1125 np = zpfind(pid); 1126 else { 1127 if (pid == 0) 1128 return (0); 1129 np = pfind(pid); 1130 } 1131 if (np == NULL) 1132 return (ESRCH); 1133 if (np != p) { 1134 PROC_UNLOCK(np); 1135 return (ESRCH); 1136 } 1137 PROC_UNLOCK(np); 1138 return (0); 1139 } 1140 1141 static int 1142 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1143 { 1144 int *name = (int*) arg1; 1145 u_int namelen = arg2; 1146 struct proc *p; 1147 int flags, doingzomb, oid_number; 1148 int error = 0; 1149 1150 oid_number = oidp->oid_number; 1151 if (oid_number != KERN_PROC_ALL && 1152 (oid_number & KERN_PROC_INC_THREAD) == 0) 1153 flags = KERN_PROC_NOTHREADS; 1154 else { 1155 flags = 0; 1156 oid_number &= ~KERN_PROC_INC_THREAD; 1157 } 1158 if (oid_number == KERN_PROC_PID) { 1159 if (namelen != 1) 1160 return (EINVAL); 1161 error = sysctl_wire_old_buffer(req, 0); 1162 if (error) 1163 return (error); 1164 p = pfind((pid_t)name[0]); 1165 if (!p) 1166 return (ESRCH); 1167 if ((error = p_cansee(curthread, p))) { 1168 PROC_UNLOCK(p); 1169 return (error); 1170 } 1171 error = sysctl_out_proc(p, req, flags); 1172 return (error); 1173 } 1174 1175 switch (oid_number) { 1176 case KERN_PROC_ALL: 1177 if (namelen != 0) 1178 return (EINVAL); 1179 break; 1180 case KERN_PROC_PROC: 1181 if (namelen != 0 && namelen != 1) 1182 return (EINVAL); 1183 break; 1184 default: 1185 if (namelen != 1) 1186 return (EINVAL); 1187 break; 1188 } 1189 1190 if (!req->oldptr) { 1191 /* overestimate by 5 procs */ 1192 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1193 if (error) 1194 return (error); 1195 } 1196 error = sysctl_wire_old_buffer(req, 0); 1197 if (error != 0) 1198 return (error); 1199 sx_slock(&allproc_lock); 1200 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1201 if (!doingzomb) 1202 p = LIST_FIRST(&allproc); 1203 else 1204 p = LIST_FIRST(&zombproc); 1205 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1206 /* 1207 * Skip embryonic processes. 1208 */ 1209 PROC_SLOCK(p); 1210 if (p->p_state == PRS_NEW) { 1211 PROC_SUNLOCK(p); 1212 continue; 1213 } 1214 PROC_SUNLOCK(p); 1215 PROC_LOCK(p); 1216 KASSERT(p->p_ucred != NULL, 1217 ("process credential is NULL for non-NEW proc")); 1218 /* 1219 * Show a user only appropriate processes. 1220 */ 1221 if (p_cansee(curthread, p)) { 1222 PROC_UNLOCK(p); 1223 continue; 1224 } 1225 /* 1226 * TODO - make more efficient (see notes below). 1227 * do by session. 1228 */ 1229 switch (oid_number) { 1230 1231 case KERN_PROC_GID: 1232 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1233 PROC_UNLOCK(p); 1234 continue; 1235 } 1236 break; 1237 1238 case KERN_PROC_PGRP: 1239 /* could do this by traversing pgrp */ 1240 if (p->p_pgrp == NULL || 1241 p->p_pgrp->pg_id != (pid_t)name[0]) { 1242 PROC_UNLOCK(p); 1243 continue; 1244 } 1245 break; 1246 1247 case KERN_PROC_RGID: 1248 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1249 PROC_UNLOCK(p); 1250 continue; 1251 } 1252 break; 1253 1254 case KERN_PROC_SESSION: 1255 if (p->p_session == NULL || 1256 p->p_session->s_sid != (pid_t)name[0]) { 1257 PROC_UNLOCK(p); 1258 continue; 1259 } 1260 break; 1261 1262 case KERN_PROC_TTY: 1263 if ((p->p_flag & P_CONTROLT) == 0 || 1264 p->p_session == NULL) { 1265 PROC_UNLOCK(p); 1266 continue; 1267 } 1268 /* XXX proctree_lock */ 1269 SESS_LOCK(p->p_session); 1270 if (p->p_session->s_ttyp == NULL || 1271 tty_udev(p->p_session->s_ttyp) != 1272 (dev_t)name[0]) { 1273 SESS_UNLOCK(p->p_session); 1274 PROC_UNLOCK(p); 1275 continue; 1276 } 1277 SESS_UNLOCK(p->p_session); 1278 break; 1279 1280 case KERN_PROC_UID: 1281 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1282 PROC_UNLOCK(p); 1283 continue; 1284 } 1285 break; 1286 1287 case KERN_PROC_RUID: 1288 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1289 PROC_UNLOCK(p); 1290 continue; 1291 } 1292 break; 1293 1294 case KERN_PROC_PROC: 1295 break; 1296 1297 default: 1298 break; 1299 1300 } 1301 1302 error = sysctl_out_proc(p, req, flags | doingzomb); 1303 if (error) { 1304 sx_sunlock(&allproc_lock); 1305 return (error); 1306 } 1307 } 1308 } 1309 sx_sunlock(&allproc_lock); 1310 return (0); 1311 } 1312 1313 struct pargs * 1314 pargs_alloc(int len) 1315 { 1316 struct pargs *pa; 1317 1318 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1319 M_WAITOK); 1320 refcount_init(&pa->ar_ref, 1); 1321 pa->ar_length = len; 1322 return (pa); 1323 } 1324 1325 static void 1326 pargs_free(struct pargs *pa) 1327 { 1328 1329 free(pa, M_PARGS); 1330 } 1331 1332 void 1333 pargs_hold(struct pargs *pa) 1334 { 1335 1336 if (pa == NULL) 1337 return; 1338 refcount_acquire(&pa->ar_ref); 1339 } 1340 1341 void 1342 pargs_drop(struct pargs *pa) 1343 { 1344 1345 if (pa == NULL) 1346 return; 1347 if (refcount_release(&pa->ar_ref)) 1348 pargs_free(pa); 1349 } 1350 1351 /* 1352 * This sysctl allows a process to retrieve the argument list or process 1353 * title for another process without groping around in the address space 1354 * of the other process. It also allow a process to set its own "process 1355 * title to a string of its own choice. 1356 */ 1357 static int 1358 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1359 { 1360 int *name = (int*) arg1; 1361 u_int namelen = arg2; 1362 struct pargs *newpa, *pa; 1363 struct proc *p; 1364 int error = 0; 1365 1366 if (namelen != 1) 1367 return (EINVAL); 1368 1369 p = pfind((pid_t)name[0]); 1370 if (!p) 1371 return (ESRCH); 1372 1373 if ((error = p_cansee(curthread, p)) != 0) { 1374 PROC_UNLOCK(p); 1375 return (error); 1376 } 1377 1378 if (req->newptr && curproc != p) { 1379 PROC_UNLOCK(p); 1380 return (EPERM); 1381 } 1382 1383 pa = p->p_args; 1384 pargs_hold(pa); 1385 PROC_UNLOCK(p); 1386 if (req->oldptr != NULL && pa != NULL) 1387 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1388 pargs_drop(pa); 1389 if (error != 0 || req->newptr == NULL) 1390 return (error); 1391 1392 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1393 return (ENOMEM); 1394 newpa = pargs_alloc(req->newlen); 1395 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1396 if (error != 0) { 1397 pargs_free(newpa); 1398 return (error); 1399 } 1400 PROC_LOCK(p); 1401 pa = p->p_args; 1402 p->p_args = newpa; 1403 PROC_UNLOCK(p); 1404 pargs_drop(pa); 1405 return (0); 1406 } 1407 1408 /* 1409 * This sysctl allows a process to retrieve the path of the executable for 1410 * itself or another process. 1411 */ 1412 static int 1413 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1414 { 1415 pid_t *pidp = (pid_t *)arg1; 1416 unsigned int arglen = arg2; 1417 struct proc *p; 1418 struct vnode *vp; 1419 char *retbuf, *freebuf; 1420 int error, vfslocked; 1421 1422 if (arglen != 1) 1423 return (EINVAL); 1424 if (*pidp == -1) { /* -1 means this process */ 1425 p = req->td->td_proc; 1426 } else { 1427 p = pfind(*pidp); 1428 if (p == NULL) 1429 return (ESRCH); 1430 if ((error = p_cansee(curthread, p)) != 0) { 1431 PROC_UNLOCK(p); 1432 return (error); 1433 } 1434 } 1435 1436 vp = p->p_textvp; 1437 if (vp == NULL) { 1438 if (*pidp != -1) 1439 PROC_UNLOCK(p); 1440 return (0); 1441 } 1442 vref(vp); 1443 if (*pidp != -1) 1444 PROC_UNLOCK(p); 1445 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1446 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1447 vrele(vp); 1448 VFS_UNLOCK_GIANT(vfslocked); 1449 if (error) 1450 return (error); 1451 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1452 free(freebuf, M_TEMP); 1453 return (error); 1454 } 1455 1456 static int 1457 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1458 { 1459 struct proc *p; 1460 char *sv_name; 1461 int *name; 1462 int namelen; 1463 int error; 1464 1465 namelen = arg2; 1466 if (namelen != 1) 1467 return (EINVAL); 1468 1469 name = (int *)arg1; 1470 if ((p = pfind((pid_t)name[0])) == NULL) 1471 return (ESRCH); 1472 if ((error = p_cansee(curthread, p))) { 1473 PROC_UNLOCK(p); 1474 return (error); 1475 } 1476 sv_name = p->p_sysent->sv_name; 1477 PROC_UNLOCK(p); 1478 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1479 } 1480 1481 #ifdef KINFO_OVMENTRY_SIZE 1482 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1483 #endif 1484 1485 #ifdef COMPAT_FREEBSD7 1486 static int 1487 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1488 { 1489 vm_map_entry_t entry, tmp_entry; 1490 unsigned int last_timestamp; 1491 char *fullpath, *freepath; 1492 struct kinfo_ovmentry *kve; 1493 struct vattr va; 1494 struct ucred *cred; 1495 int error, *name; 1496 struct vnode *vp; 1497 struct proc *p; 1498 vm_map_t map; 1499 struct vmspace *vm; 1500 1501 name = (int *)arg1; 1502 if ((p = pfind((pid_t)name[0])) == NULL) 1503 return (ESRCH); 1504 if (p->p_flag & P_WEXIT) { 1505 PROC_UNLOCK(p); 1506 return (ESRCH); 1507 } 1508 if ((error = p_candebug(curthread, p))) { 1509 PROC_UNLOCK(p); 1510 return (error); 1511 } 1512 _PHOLD(p); 1513 PROC_UNLOCK(p); 1514 vm = vmspace_acquire_ref(p); 1515 if (vm == NULL) { 1516 PRELE(p); 1517 return (ESRCH); 1518 } 1519 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1520 1521 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1522 vm_map_lock_read(map); 1523 for (entry = map->header.next; entry != &map->header; 1524 entry = entry->next) { 1525 vm_object_t obj, tobj, lobj; 1526 vm_offset_t addr; 1527 int vfslocked; 1528 1529 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1530 continue; 1531 1532 bzero(kve, sizeof(*kve)); 1533 kve->kve_structsize = sizeof(*kve); 1534 1535 kve->kve_private_resident = 0; 1536 obj = entry->object.vm_object; 1537 if (obj != NULL) { 1538 VM_OBJECT_LOCK(obj); 1539 if (obj->shadow_count == 1) 1540 kve->kve_private_resident = 1541 obj->resident_page_count; 1542 } 1543 kve->kve_resident = 0; 1544 addr = entry->start; 1545 while (addr < entry->end) { 1546 if (pmap_extract(map->pmap, addr)) 1547 kve->kve_resident++; 1548 addr += PAGE_SIZE; 1549 } 1550 1551 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1552 if (tobj != obj) 1553 VM_OBJECT_LOCK(tobj); 1554 if (lobj != obj) 1555 VM_OBJECT_UNLOCK(lobj); 1556 lobj = tobj; 1557 } 1558 1559 kve->kve_start = (void*)entry->start; 1560 kve->kve_end = (void*)entry->end; 1561 kve->kve_offset = (off_t)entry->offset; 1562 1563 if (entry->protection & VM_PROT_READ) 1564 kve->kve_protection |= KVME_PROT_READ; 1565 if (entry->protection & VM_PROT_WRITE) 1566 kve->kve_protection |= KVME_PROT_WRITE; 1567 if (entry->protection & VM_PROT_EXECUTE) 1568 kve->kve_protection |= KVME_PROT_EXEC; 1569 1570 if (entry->eflags & MAP_ENTRY_COW) 1571 kve->kve_flags |= KVME_FLAG_COW; 1572 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1573 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1574 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1575 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1576 1577 last_timestamp = map->timestamp; 1578 vm_map_unlock_read(map); 1579 1580 kve->kve_fileid = 0; 1581 kve->kve_fsid = 0; 1582 freepath = NULL; 1583 fullpath = ""; 1584 if (lobj) { 1585 vp = NULL; 1586 switch (lobj->type) { 1587 case OBJT_DEFAULT: 1588 kve->kve_type = KVME_TYPE_DEFAULT; 1589 break; 1590 case OBJT_VNODE: 1591 kve->kve_type = KVME_TYPE_VNODE; 1592 vp = lobj->handle; 1593 vref(vp); 1594 break; 1595 case OBJT_SWAP: 1596 kve->kve_type = KVME_TYPE_SWAP; 1597 break; 1598 case OBJT_DEVICE: 1599 kve->kve_type = KVME_TYPE_DEVICE; 1600 break; 1601 case OBJT_PHYS: 1602 kve->kve_type = KVME_TYPE_PHYS; 1603 break; 1604 case OBJT_DEAD: 1605 kve->kve_type = KVME_TYPE_DEAD; 1606 break; 1607 case OBJT_SG: 1608 kve->kve_type = KVME_TYPE_SG; 1609 break; 1610 default: 1611 kve->kve_type = KVME_TYPE_UNKNOWN; 1612 break; 1613 } 1614 if (lobj != obj) 1615 VM_OBJECT_UNLOCK(lobj); 1616 1617 kve->kve_ref_count = obj->ref_count; 1618 kve->kve_shadow_count = obj->shadow_count; 1619 VM_OBJECT_UNLOCK(obj); 1620 if (vp != NULL) { 1621 vn_fullpath(curthread, vp, &fullpath, 1622 &freepath); 1623 cred = curthread->td_ucred; 1624 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1625 vn_lock(vp, LK_SHARED | LK_RETRY); 1626 if (VOP_GETATTR(vp, &va, cred) == 0) { 1627 kve->kve_fileid = va.va_fileid; 1628 kve->kve_fsid = va.va_fsid; 1629 } 1630 vput(vp); 1631 VFS_UNLOCK_GIANT(vfslocked); 1632 } 1633 } else { 1634 kve->kve_type = KVME_TYPE_NONE; 1635 kve->kve_ref_count = 0; 1636 kve->kve_shadow_count = 0; 1637 } 1638 1639 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1640 if (freepath != NULL) 1641 free(freepath, M_TEMP); 1642 1643 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1644 vm_map_lock_read(map); 1645 if (error) 1646 break; 1647 if (last_timestamp != map->timestamp) { 1648 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1649 entry = tmp_entry; 1650 } 1651 } 1652 vm_map_unlock_read(map); 1653 vmspace_free(vm); 1654 PRELE(p); 1655 free(kve, M_TEMP); 1656 return (error); 1657 } 1658 #endif /* COMPAT_FREEBSD7 */ 1659 1660 #ifdef KINFO_VMENTRY_SIZE 1661 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1662 #endif 1663 1664 static int 1665 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1666 { 1667 vm_map_entry_t entry, tmp_entry; 1668 unsigned int last_timestamp; 1669 char *fullpath, *freepath; 1670 struct kinfo_vmentry *kve; 1671 struct vattr va; 1672 struct ucred *cred; 1673 int error, *name; 1674 struct vnode *vp; 1675 struct proc *p; 1676 struct vmspace *vm; 1677 vm_map_t map; 1678 1679 name = (int *)arg1; 1680 if ((p = pfind((pid_t)name[0])) == NULL) 1681 return (ESRCH); 1682 if (p->p_flag & P_WEXIT) { 1683 PROC_UNLOCK(p); 1684 return (ESRCH); 1685 } 1686 if ((error = p_candebug(curthread, p))) { 1687 PROC_UNLOCK(p); 1688 return (error); 1689 } 1690 _PHOLD(p); 1691 PROC_UNLOCK(p); 1692 vm = vmspace_acquire_ref(p); 1693 if (vm == NULL) { 1694 PRELE(p); 1695 return (ESRCH); 1696 } 1697 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1698 1699 map = &vm->vm_map; /* XXXRW: More locking required? */ 1700 vm_map_lock_read(map); 1701 for (entry = map->header.next; entry != &map->header; 1702 entry = entry->next) { 1703 vm_object_t obj, tobj, lobj; 1704 vm_offset_t addr; 1705 int vfslocked; 1706 1707 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1708 continue; 1709 1710 bzero(kve, sizeof(*kve)); 1711 1712 kve->kve_private_resident = 0; 1713 obj = entry->object.vm_object; 1714 if (obj != NULL) { 1715 VM_OBJECT_LOCK(obj); 1716 if (obj->shadow_count == 1) 1717 kve->kve_private_resident = 1718 obj->resident_page_count; 1719 } 1720 kve->kve_resident = 0; 1721 addr = entry->start; 1722 while (addr < entry->end) { 1723 if (pmap_extract(map->pmap, addr)) 1724 kve->kve_resident++; 1725 addr += PAGE_SIZE; 1726 } 1727 1728 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1729 if (tobj != obj) 1730 VM_OBJECT_LOCK(tobj); 1731 if (lobj != obj) 1732 VM_OBJECT_UNLOCK(lobj); 1733 lobj = tobj; 1734 } 1735 1736 kve->kve_start = entry->start; 1737 kve->kve_end = entry->end; 1738 kve->kve_offset = entry->offset; 1739 1740 if (entry->protection & VM_PROT_READ) 1741 kve->kve_protection |= KVME_PROT_READ; 1742 if (entry->protection & VM_PROT_WRITE) 1743 kve->kve_protection |= KVME_PROT_WRITE; 1744 if (entry->protection & VM_PROT_EXECUTE) 1745 kve->kve_protection |= KVME_PROT_EXEC; 1746 1747 if (entry->eflags & MAP_ENTRY_COW) 1748 kve->kve_flags |= KVME_FLAG_COW; 1749 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1750 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1751 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1752 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1753 1754 last_timestamp = map->timestamp; 1755 vm_map_unlock_read(map); 1756 1757 kve->kve_fileid = 0; 1758 kve->kve_fsid = 0; 1759 freepath = NULL; 1760 fullpath = ""; 1761 if (lobj) { 1762 vp = NULL; 1763 switch (lobj->type) { 1764 case OBJT_DEFAULT: 1765 kve->kve_type = KVME_TYPE_DEFAULT; 1766 break; 1767 case OBJT_VNODE: 1768 kve->kve_type = KVME_TYPE_VNODE; 1769 vp = lobj->handle; 1770 vref(vp); 1771 break; 1772 case OBJT_SWAP: 1773 kve->kve_type = KVME_TYPE_SWAP; 1774 break; 1775 case OBJT_DEVICE: 1776 kve->kve_type = KVME_TYPE_DEVICE; 1777 break; 1778 case OBJT_PHYS: 1779 kve->kve_type = KVME_TYPE_PHYS; 1780 break; 1781 case OBJT_DEAD: 1782 kve->kve_type = KVME_TYPE_DEAD; 1783 break; 1784 case OBJT_SG: 1785 kve->kve_type = KVME_TYPE_SG; 1786 break; 1787 default: 1788 kve->kve_type = KVME_TYPE_UNKNOWN; 1789 break; 1790 } 1791 if (lobj != obj) 1792 VM_OBJECT_UNLOCK(lobj); 1793 1794 kve->kve_ref_count = obj->ref_count; 1795 kve->kve_shadow_count = obj->shadow_count; 1796 VM_OBJECT_UNLOCK(obj); 1797 if (vp != NULL) { 1798 vn_fullpath(curthread, vp, &fullpath, 1799 &freepath); 1800 cred = curthread->td_ucred; 1801 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1802 vn_lock(vp, LK_SHARED | LK_RETRY); 1803 if (VOP_GETATTR(vp, &va, cred) == 0) { 1804 kve->kve_fileid = va.va_fileid; 1805 kve->kve_fsid = va.va_fsid; 1806 } 1807 vput(vp); 1808 VFS_UNLOCK_GIANT(vfslocked); 1809 } 1810 } else { 1811 kve->kve_type = KVME_TYPE_NONE; 1812 kve->kve_ref_count = 0; 1813 kve->kve_shadow_count = 0; 1814 } 1815 1816 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1817 if (freepath != NULL) 1818 free(freepath, M_TEMP); 1819 1820 /* Pack record size down */ 1821 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1822 strlen(kve->kve_path) + 1; 1823 kve->kve_structsize = roundup(kve->kve_structsize, 1824 sizeof(uint64_t)); 1825 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1826 vm_map_lock_read(map); 1827 if (error) 1828 break; 1829 if (last_timestamp != map->timestamp) { 1830 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1831 entry = tmp_entry; 1832 } 1833 } 1834 vm_map_unlock_read(map); 1835 vmspace_free(vm); 1836 PRELE(p); 1837 free(kve, M_TEMP); 1838 return (error); 1839 } 1840 1841 #if defined(STACK) || defined(DDB) 1842 static int 1843 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1844 { 1845 struct kinfo_kstack *kkstp; 1846 int error, i, *name, numthreads; 1847 lwpid_t *lwpidarray; 1848 struct thread *td; 1849 struct stack *st; 1850 struct sbuf sb; 1851 struct proc *p; 1852 1853 name = (int *)arg1; 1854 if ((p = pfind((pid_t)name[0])) == NULL) 1855 return (ESRCH); 1856 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1857 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1858 PROC_UNLOCK(p); 1859 return (ESRCH); 1860 } 1861 if ((error = p_candebug(curthread, p))) { 1862 PROC_UNLOCK(p); 1863 return (error); 1864 } 1865 _PHOLD(p); 1866 PROC_UNLOCK(p); 1867 1868 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1869 st = stack_create(); 1870 1871 lwpidarray = NULL; 1872 numthreads = 0; 1873 PROC_LOCK(p); 1874 repeat: 1875 if (numthreads < p->p_numthreads) { 1876 if (lwpidarray != NULL) { 1877 free(lwpidarray, M_TEMP); 1878 lwpidarray = NULL; 1879 } 1880 numthreads = p->p_numthreads; 1881 PROC_UNLOCK(p); 1882 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1883 M_WAITOK | M_ZERO); 1884 PROC_LOCK(p); 1885 goto repeat; 1886 } 1887 i = 0; 1888 1889 /* 1890 * XXXRW: During the below loop, execve(2) and countless other sorts 1891 * of changes could have taken place. Should we check to see if the 1892 * vmspace has been replaced, or the like, in order to prevent 1893 * giving a snapshot that spans, say, execve(2), with some threads 1894 * before and some after? Among other things, the credentials could 1895 * have changed, in which case the right to extract debug info might 1896 * no longer be assured. 1897 */ 1898 FOREACH_THREAD_IN_PROC(p, td) { 1899 KASSERT(i < numthreads, 1900 ("sysctl_kern_proc_kstack: numthreads")); 1901 lwpidarray[i] = td->td_tid; 1902 i++; 1903 } 1904 numthreads = i; 1905 for (i = 0; i < numthreads; i++) { 1906 td = thread_find(p, lwpidarray[i]); 1907 if (td == NULL) { 1908 continue; 1909 } 1910 bzero(kkstp, sizeof(*kkstp)); 1911 (void)sbuf_new(&sb, kkstp->kkst_trace, 1912 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1913 thread_lock(td); 1914 kkstp->kkst_tid = td->td_tid; 1915 if (TD_IS_SWAPPED(td)) 1916 kkstp->kkst_state = KKST_STATE_SWAPPED; 1917 else if (TD_IS_RUNNING(td)) 1918 kkstp->kkst_state = KKST_STATE_RUNNING; 1919 else { 1920 kkstp->kkst_state = KKST_STATE_STACKOK; 1921 stack_save_td(st, td); 1922 } 1923 thread_unlock(td); 1924 PROC_UNLOCK(p); 1925 stack_sbuf_print(&sb, st); 1926 sbuf_finish(&sb); 1927 sbuf_delete(&sb); 1928 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1929 PROC_LOCK(p); 1930 if (error) 1931 break; 1932 } 1933 _PRELE(p); 1934 PROC_UNLOCK(p); 1935 if (lwpidarray != NULL) 1936 free(lwpidarray, M_TEMP); 1937 stack_destroy(st); 1938 free(kkstp, M_TEMP); 1939 return (error); 1940 } 1941 #endif 1942 1943 /* 1944 * This sysctl allows a process to retrieve the full list of groups from 1945 * itself or another process. 1946 */ 1947 static int 1948 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 1949 { 1950 pid_t *pidp = (pid_t *)arg1; 1951 unsigned int arglen = arg2; 1952 struct proc *p; 1953 struct ucred *cred; 1954 int error; 1955 1956 if (arglen != 1) 1957 return (EINVAL); 1958 if (*pidp == -1) { /* -1 means this process */ 1959 p = req->td->td_proc; 1960 } else { 1961 p = pfind(*pidp); 1962 if (p == NULL) 1963 return (ESRCH); 1964 if ((error = p_cansee(curthread, p)) != 0) { 1965 PROC_UNLOCK(p); 1966 return (error); 1967 } 1968 } 1969 1970 cred = crhold(p->p_ucred); 1971 if (*pidp != -1) 1972 PROC_UNLOCK(p); 1973 1974 error = SYSCTL_OUT(req, cred->cr_groups, 1975 cred->cr_ngroups * sizeof(gid_t)); 1976 crfree(cred); 1977 return (error); 1978 } 1979 1980 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1981 1982 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1983 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1984 "Return entire process table"); 1985 1986 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1987 sysctl_kern_proc, "Process table"); 1988 1989 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1990 sysctl_kern_proc, "Process table"); 1991 1992 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1993 sysctl_kern_proc, "Process table"); 1994 1995 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 1996 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1997 1998 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 1999 sysctl_kern_proc, "Process table"); 2000 2001 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2002 sysctl_kern_proc, "Process table"); 2003 2004 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2005 sysctl_kern_proc, "Process table"); 2006 2007 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2008 sysctl_kern_proc, "Process table"); 2009 2010 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2011 sysctl_kern_proc, "Return process table, no threads"); 2012 2013 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2014 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2015 sysctl_kern_proc_args, "Process argument list"); 2016 2017 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2018 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2019 2020 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2021 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2022 "Process syscall vector name (ABI type)"); 2023 2024 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2025 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2026 2027 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2028 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2029 2030 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2031 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2032 2033 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2034 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2035 2036 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2037 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2038 2039 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2040 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2041 2042 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2043 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2044 2045 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2046 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2047 2048 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2049 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2050 "Return process table, no threads"); 2051 2052 #ifdef COMPAT_FREEBSD7 2053 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2054 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2055 #endif 2056 2057 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2058 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2059 2060 #if defined(STACK) || defined(DDB) 2061 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2062 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2063 #endif 2064 2065 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2066 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2067