xref: /freebsd/sys/kern/kern_proc.c (revision b08fc26cbdd00df6852e71e1be58fa9cc92019f0)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96     "int");
97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100     "struct thread *");
101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104 
105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
117 static void pgdelete(struct pgrp *);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 static struct proc *zpfind_locked(pid_t pid);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl;
129 u_long pidhash;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc;
133 struct proclist zombproc;
134 struct sx allproc_lock;
135 struct sx proctree_lock;
136 struct mtx ppeers_lock;
137 uma_zone_t proc_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
149 const int thread_off_td_name = offsetof(struct thread, td_name);
150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
153 
154 int kstack_pages = KSTACK_PAGES;
155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
156     "Kernel stack size in pages");
157 static int vmmap_skip_res_cnt = 0;
158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
159     &vmmap_skip_res_cnt, 0,
160     "Skip calculation of the pages resident count in kern.proc.vmmap");
161 
162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
163 #ifdef COMPAT_FREEBSD32
164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
165 #endif
166 
167 /*
168  * Initialize global process hashing structures.
169  */
170 void
171 procinit(void)
172 {
173 
174 	sx_init(&allproc_lock, "allproc");
175 	sx_init(&proctree_lock, "proctree");
176 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
177 	LIST_INIT(&allproc);
178 	LIST_INIT(&zombproc);
179 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
180 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
181 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
182 	    proc_ctor, proc_dtor, proc_init, proc_fini,
183 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
184 	uihashinit();
185 }
186 
187 /*
188  * Prepare a proc for use.
189  */
190 static int
191 proc_ctor(void *mem, int size, void *arg, int flags)
192 {
193 	struct proc *p;
194 	struct thread *td;
195 
196 	p = (struct proc *)mem;
197 	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
198 	EVENTHANDLER_INVOKE(process_ctor, p);
199 	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
200 	td = FIRST_THREAD_IN_PROC(p);
201 	if (td != NULL) {
202 		/* Make sure all thread constructors are executed */
203 		EVENTHANDLER_INVOKE(thread_ctor, td);
204 	}
205 	return (0);
206 }
207 
208 /*
209  * Reclaim a proc after use.
210  */
211 static void
212 proc_dtor(void *mem, int size, void *arg)
213 {
214 	struct proc *p;
215 	struct thread *td;
216 
217 	/* INVARIANTS checks go here */
218 	p = (struct proc *)mem;
219 	td = FIRST_THREAD_IN_PROC(p);
220 	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
221 	if (td != NULL) {
222 #ifdef INVARIANTS
223 		KASSERT((p->p_numthreads == 1),
224 		    ("bad number of threads in exiting process"));
225 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
226 #endif
227 		/* Free all OSD associated to this thread. */
228 		osd_thread_exit(td);
229 
230 		/* Make sure all thread destructors are executed */
231 		EVENTHANDLER_INVOKE(thread_dtor, td);
232 	}
233 	EVENTHANDLER_INVOKE(process_dtor, p);
234 	if (p->p_ksi != NULL)
235 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
236 	SDT_PROBE3(proc, , dtor, return, p, size, arg);
237 }
238 
239 /*
240  * Initialize type-stable parts of a proc (when newly created).
241  */
242 static int
243 proc_init(void *mem, int size, int flags)
244 {
245 	struct proc *p;
246 
247 	p = (struct proc *)mem;
248 	SDT_PROBE3(proc, , init, entry, p, size, flags);
249 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
250 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
251 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
252 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
253 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
254 	cv_init(&p->p_pwait, "ppwait");
255 	cv_init(&p->p_dbgwait, "dbgwait");
256 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
257 	EVENTHANDLER_INVOKE(process_init, p);
258 	p->p_stats = pstats_alloc();
259 	p->p_pgrp = NULL;
260 	SDT_PROBE3(proc, , init, return, p, size, flags);
261 	return (0);
262 }
263 
264 /*
265  * UMA should ensure that this function is never called.
266  * Freeing a proc structure would violate type stability.
267  */
268 static void
269 proc_fini(void *mem, int size)
270 {
271 #ifdef notnow
272 	struct proc *p;
273 
274 	p = (struct proc *)mem;
275 	EVENTHANDLER_INVOKE(process_fini, p);
276 	pstats_free(p->p_stats);
277 	thread_free(FIRST_THREAD_IN_PROC(p));
278 	mtx_destroy(&p->p_mtx);
279 	if (p->p_ksi != NULL)
280 		ksiginfo_free(p->p_ksi);
281 #else
282 	panic("proc reclaimed");
283 #endif
284 }
285 
286 /*
287  * Is p an inferior of the current process?
288  */
289 int
290 inferior(struct proc *p)
291 {
292 
293 	sx_assert(&proctree_lock, SX_LOCKED);
294 	PROC_LOCK_ASSERT(p, MA_OWNED);
295 	for (; p != curproc; p = proc_realparent(p)) {
296 		if (p->p_pid == 0)
297 			return (0);
298 	}
299 	return (1);
300 }
301 
302 struct proc *
303 pfind_locked(pid_t pid)
304 {
305 	struct proc *p;
306 
307 	sx_assert(&allproc_lock, SX_LOCKED);
308 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
309 		if (p->p_pid == pid) {
310 			PROC_LOCK(p);
311 			if (p->p_state == PRS_NEW) {
312 				PROC_UNLOCK(p);
313 				p = NULL;
314 			}
315 			break;
316 		}
317 	}
318 	return (p);
319 }
320 
321 /*
322  * Locate a process by number; return only "live" processes -- i.e., neither
323  * zombies nor newly born but incompletely initialized processes.  By not
324  * returning processes in the PRS_NEW state, we allow callers to avoid
325  * testing for that condition to avoid dereferencing p_ucred, et al.
326  */
327 struct proc *
328 pfind(pid_t pid)
329 {
330 	struct proc *p;
331 
332 	sx_slock(&allproc_lock);
333 	p = pfind_locked(pid);
334 	sx_sunlock(&allproc_lock);
335 	return (p);
336 }
337 
338 static struct proc *
339 pfind_tid_locked(pid_t tid)
340 {
341 	struct proc *p;
342 	struct thread *td;
343 
344 	sx_assert(&allproc_lock, SX_LOCKED);
345 	FOREACH_PROC_IN_SYSTEM(p) {
346 		PROC_LOCK(p);
347 		if (p->p_state == PRS_NEW) {
348 			PROC_UNLOCK(p);
349 			continue;
350 		}
351 		FOREACH_THREAD_IN_PROC(p, td) {
352 			if (td->td_tid == tid)
353 				goto found;
354 		}
355 		PROC_UNLOCK(p);
356 	}
357 found:
358 	return (p);
359 }
360 
361 /*
362  * Locate a process group by number.
363  * The caller must hold proctree_lock.
364  */
365 struct pgrp *
366 pgfind(pid_t pgid)
367 {
368 	struct pgrp *pgrp;
369 
370 	sx_assert(&proctree_lock, SX_LOCKED);
371 
372 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
373 		if (pgrp->pg_id == pgid) {
374 			PGRP_LOCK(pgrp);
375 			return (pgrp);
376 		}
377 	}
378 	return (NULL);
379 }
380 
381 /*
382  * Locate process and do additional manipulations, depending on flags.
383  */
384 int
385 pget(pid_t pid, int flags, struct proc **pp)
386 {
387 	struct proc *p;
388 	int error;
389 
390 	sx_slock(&allproc_lock);
391 	if (pid <= PID_MAX) {
392 		p = pfind_locked(pid);
393 		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
394 			p = zpfind_locked(pid);
395 	} else if ((flags & PGET_NOTID) == 0) {
396 		p = pfind_tid_locked(pid);
397 	} else {
398 		p = NULL;
399 	}
400 	sx_sunlock(&allproc_lock);
401 	if (p == NULL)
402 		return (ESRCH);
403 	if ((flags & PGET_CANSEE) != 0) {
404 		error = p_cansee(curthread, p);
405 		if (error != 0)
406 			goto errout;
407 	}
408 	if ((flags & PGET_CANDEBUG) != 0) {
409 		error = p_candebug(curthread, p);
410 		if (error != 0)
411 			goto errout;
412 	}
413 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
414 		error = EPERM;
415 		goto errout;
416 	}
417 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
418 		error = ESRCH;
419 		goto errout;
420 	}
421 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
422 		/*
423 		 * XXXRW: Not clear ESRCH is the right error during proc
424 		 * execve().
425 		 */
426 		error = ESRCH;
427 		goto errout;
428 	}
429 	if ((flags & PGET_HOLD) != 0) {
430 		_PHOLD(p);
431 		PROC_UNLOCK(p);
432 	}
433 	*pp = p;
434 	return (0);
435 errout:
436 	PROC_UNLOCK(p);
437 	return (error);
438 }
439 
440 /*
441  * Create a new process group.
442  * pgid must be equal to the pid of p.
443  * Begin a new session if required.
444  */
445 int
446 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
447 {
448 
449 	sx_assert(&proctree_lock, SX_XLOCKED);
450 
451 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
452 	KASSERT(p->p_pid == pgid,
453 	    ("enterpgrp: new pgrp and pid != pgid"));
454 	KASSERT(pgfind(pgid) == NULL,
455 	    ("enterpgrp: pgrp with pgid exists"));
456 	KASSERT(!SESS_LEADER(p),
457 	    ("enterpgrp: session leader attempted setpgrp"));
458 
459 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
460 
461 	if (sess != NULL) {
462 		/*
463 		 * new session
464 		 */
465 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
466 		PROC_LOCK(p);
467 		p->p_flag &= ~P_CONTROLT;
468 		PROC_UNLOCK(p);
469 		PGRP_LOCK(pgrp);
470 		sess->s_leader = p;
471 		sess->s_sid = p->p_pid;
472 		refcount_init(&sess->s_count, 1);
473 		sess->s_ttyvp = NULL;
474 		sess->s_ttydp = NULL;
475 		sess->s_ttyp = NULL;
476 		bcopy(p->p_session->s_login, sess->s_login,
477 			    sizeof(sess->s_login));
478 		pgrp->pg_session = sess;
479 		KASSERT(p == curproc,
480 		    ("enterpgrp: mksession and p != curproc"));
481 	} else {
482 		pgrp->pg_session = p->p_session;
483 		sess_hold(pgrp->pg_session);
484 		PGRP_LOCK(pgrp);
485 	}
486 	pgrp->pg_id = pgid;
487 	LIST_INIT(&pgrp->pg_members);
488 
489 	/*
490 	 * As we have an exclusive lock of proctree_lock,
491 	 * this should not deadlock.
492 	 */
493 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
494 	pgrp->pg_jobc = 0;
495 	SLIST_INIT(&pgrp->pg_sigiolst);
496 	PGRP_UNLOCK(pgrp);
497 
498 	doenterpgrp(p, pgrp);
499 
500 	return (0);
501 }
502 
503 /*
504  * Move p to an existing process group
505  */
506 int
507 enterthispgrp(struct proc *p, struct pgrp *pgrp)
508 {
509 
510 	sx_assert(&proctree_lock, SX_XLOCKED);
511 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
512 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
513 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
514 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
515 	KASSERT(pgrp->pg_session == p->p_session,
516 		("%s: pgrp's session %p, p->p_session %p.\n",
517 		__func__,
518 		pgrp->pg_session,
519 		p->p_session));
520 	KASSERT(pgrp != p->p_pgrp,
521 		("%s: p belongs to pgrp.", __func__));
522 
523 	doenterpgrp(p, pgrp);
524 
525 	return (0);
526 }
527 
528 /*
529  * Move p to a process group
530  */
531 static void
532 doenterpgrp(struct proc *p, struct pgrp *pgrp)
533 {
534 	struct pgrp *savepgrp;
535 
536 	sx_assert(&proctree_lock, SX_XLOCKED);
537 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
538 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
539 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
540 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
541 
542 	savepgrp = p->p_pgrp;
543 
544 	/*
545 	 * Adjust eligibility of affected pgrps to participate in job control.
546 	 * Increment eligibility counts before decrementing, otherwise we
547 	 * could reach 0 spuriously during the first call.
548 	 */
549 	fixjobc(p, pgrp, 1);
550 	fixjobc(p, p->p_pgrp, 0);
551 
552 	PGRP_LOCK(pgrp);
553 	PGRP_LOCK(savepgrp);
554 	PROC_LOCK(p);
555 	LIST_REMOVE(p, p_pglist);
556 	p->p_pgrp = pgrp;
557 	PROC_UNLOCK(p);
558 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
559 	PGRP_UNLOCK(savepgrp);
560 	PGRP_UNLOCK(pgrp);
561 	if (LIST_EMPTY(&savepgrp->pg_members))
562 		pgdelete(savepgrp);
563 }
564 
565 /*
566  * remove process from process group
567  */
568 int
569 leavepgrp(struct proc *p)
570 {
571 	struct pgrp *savepgrp;
572 
573 	sx_assert(&proctree_lock, SX_XLOCKED);
574 	savepgrp = p->p_pgrp;
575 	PGRP_LOCK(savepgrp);
576 	PROC_LOCK(p);
577 	LIST_REMOVE(p, p_pglist);
578 	p->p_pgrp = NULL;
579 	PROC_UNLOCK(p);
580 	PGRP_UNLOCK(savepgrp);
581 	if (LIST_EMPTY(&savepgrp->pg_members))
582 		pgdelete(savepgrp);
583 	return (0);
584 }
585 
586 /*
587  * delete a process group
588  */
589 static void
590 pgdelete(struct pgrp *pgrp)
591 {
592 	struct session *savesess;
593 	struct tty *tp;
594 
595 	sx_assert(&proctree_lock, SX_XLOCKED);
596 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
597 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
598 
599 	/*
600 	 * Reset any sigio structures pointing to us as a result of
601 	 * F_SETOWN with our pgid.
602 	 */
603 	funsetownlst(&pgrp->pg_sigiolst);
604 
605 	PGRP_LOCK(pgrp);
606 	tp = pgrp->pg_session->s_ttyp;
607 	LIST_REMOVE(pgrp, pg_hash);
608 	savesess = pgrp->pg_session;
609 	PGRP_UNLOCK(pgrp);
610 
611 	/* Remove the reference to the pgrp before deallocating it. */
612 	if (tp != NULL) {
613 		tty_lock(tp);
614 		tty_rel_pgrp(tp, pgrp);
615 	}
616 
617 	mtx_destroy(&pgrp->pg_mtx);
618 	free(pgrp, M_PGRP);
619 	sess_release(savesess);
620 }
621 
622 static void
623 pgadjustjobc(struct pgrp *pgrp, int entering)
624 {
625 
626 	PGRP_LOCK(pgrp);
627 	if (entering)
628 		pgrp->pg_jobc++;
629 	else {
630 		--pgrp->pg_jobc;
631 		if (pgrp->pg_jobc == 0)
632 			orphanpg(pgrp);
633 	}
634 	PGRP_UNLOCK(pgrp);
635 }
636 
637 /*
638  * Adjust pgrp jobc counters when specified process changes process group.
639  * We count the number of processes in each process group that "qualify"
640  * the group for terminal job control (those with a parent in a different
641  * process group of the same session).  If that count reaches zero, the
642  * process group becomes orphaned.  Check both the specified process'
643  * process group and that of its children.
644  * entering == 0 => p is leaving specified group.
645  * entering == 1 => p is entering specified group.
646  */
647 void
648 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
649 {
650 	struct pgrp *hispgrp;
651 	struct session *mysession;
652 	struct proc *q;
653 
654 	sx_assert(&proctree_lock, SX_LOCKED);
655 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
656 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
657 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
658 
659 	/*
660 	 * Check p's parent to see whether p qualifies its own process
661 	 * group; if so, adjust count for p's process group.
662 	 */
663 	mysession = pgrp->pg_session;
664 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
665 	    hispgrp->pg_session == mysession)
666 		pgadjustjobc(pgrp, entering);
667 
668 	/*
669 	 * Check this process' children to see whether they qualify
670 	 * their process groups; if so, adjust counts for children's
671 	 * process groups.
672 	 */
673 	LIST_FOREACH(q, &p->p_children, p_sibling) {
674 		hispgrp = q->p_pgrp;
675 		if (hispgrp == pgrp ||
676 		    hispgrp->pg_session != mysession)
677 			continue;
678 		if (q->p_state == PRS_ZOMBIE)
679 			continue;
680 		pgadjustjobc(hispgrp, entering);
681 	}
682 }
683 
684 void
685 killjobc(void)
686 {
687 	struct session *sp;
688 	struct tty *tp;
689 	struct proc *p;
690 	struct vnode *ttyvp;
691 
692 	p = curproc;
693 	MPASS(p->p_flag & P_WEXIT);
694 	/*
695 	 * Do a quick check to see if there is anything to do with the
696 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
697 	 */
698 	PROC_LOCK(p);
699 	if (!SESS_LEADER(p) &&
700 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
701 	    LIST_EMPTY(&p->p_children)) {
702 		PROC_UNLOCK(p);
703 		return;
704 	}
705 	PROC_UNLOCK(p);
706 
707 	sx_xlock(&proctree_lock);
708 	if (SESS_LEADER(p)) {
709 		sp = p->p_session;
710 
711 		/*
712 		 * s_ttyp is not zero'd; we use this to indicate that
713 		 * the session once had a controlling terminal. (for
714 		 * logging and informational purposes)
715 		 */
716 		SESS_LOCK(sp);
717 		ttyvp = sp->s_ttyvp;
718 		tp = sp->s_ttyp;
719 		sp->s_ttyvp = NULL;
720 		sp->s_ttydp = NULL;
721 		sp->s_leader = NULL;
722 		SESS_UNLOCK(sp);
723 
724 		/*
725 		 * Signal foreground pgrp and revoke access to
726 		 * controlling terminal if it has not been revoked
727 		 * already.
728 		 *
729 		 * Because the TTY may have been revoked in the mean
730 		 * time and could already have a new session associated
731 		 * with it, make sure we don't send a SIGHUP to a
732 		 * foreground process group that does not belong to this
733 		 * session.
734 		 */
735 
736 		if (tp != NULL) {
737 			tty_lock(tp);
738 			if (tp->t_session == sp)
739 				tty_signal_pgrp(tp, SIGHUP);
740 			tty_unlock(tp);
741 		}
742 
743 		if (ttyvp != NULL) {
744 			sx_xunlock(&proctree_lock);
745 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
746 				VOP_REVOKE(ttyvp, REVOKEALL);
747 				VOP_UNLOCK(ttyvp, 0);
748 			}
749 			vrele(ttyvp);
750 			sx_xlock(&proctree_lock);
751 		}
752 	}
753 	fixjobc(p, p->p_pgrp, 0);
754 	sx_xunlock(&proctree_lock);
755 }
756 
757 /*
758  * A process group has become orphaned;
759  * if there are any stopped processes in the group,
760  * hang-up all process in that group.
761  */
762 static void
763 orphanpg(struct pgrp *pg)
764 {
765 	struct proc *p;
766 
767 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
768 
769 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
770 		PROC_LOCK(p);
771 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
772 			PROC_UNLOCK(p);
773 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
774 				PROC_LOCK(p);
775 				kern_psignal(p, SIGHUP);
776 				kern_psignal(p, SIGCONT);
777 				PROC_UNLOCK(p);
778 			}
779 			return;
780 		}
781 		PROC_UNLOCK(p);
782 	}
783 }
784 
785 void
786 sess_hold(struct session *s)
787 {
788 
789 	refcount_acquire(&s->s_count);
790 }
791 
792 void
793 sess_release(struct session *s)
794 {
795 
796 	if (refcount_release(&s->s_count)) {
797 		if (s->s_ttyp != NULL) {
798 			tty_lock(s->s_ttyp);
799 			tty_rel_sess(s->s_ttyp, s);
800 		}
801 		mtx_destroy(&s->s_mtx);
802 		free(s, M_SESSION);
803 	}
804 }
805 
806 #ifdef DDB
807 
808 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
809 {
810 	struct pgrp *pgrp;
811 	struct proc *p;
812 	int i;
813 
814 	for (i = 0; i <= pgrphash; i++) {
815 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
816 			printf("\tindx %d\n", i);
817 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
818 				printf(
819 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
820 				    (void *)pgrp, (long)pgrp->pg_id,
821 				    (void *)pgrp->pg_session,
822 				    pgrp->pg_session->s_count,
823 				    (void *)LIST_FIRST(&pgrp->pg_members));
824 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
825 					printf("\t\tpid %ld addr %p pgrp %p\n",
826 					    (long)p->p_pid, (void *)p,
827 					    (void *)p->p_pgrp);
828 				}
829 			}
830 		}
831 	}
832 }
833 #endif /* DDB */
834 
835 /*
836  * Calculate the kinfo_proc members which contain process-wide
837  * informations.
838  * Must be called with the target process locked.
839  */
840 static void
841 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
842 {
843 	struct thread *td;
844 
845 	PROC_LOCK_ASSERT(p, MA_OWNED);
846 
847 	kp->ki_estcpu = 0;
848 	kp->ki_pctcpu = 0;
849 	FOREACH_THREAD_IN_PROC(p, td) {
850 		thread_lock(td);
851 		kp->ki_pctcpu += sched_pctcpu(td);
852 		kp->ki_estcpu += sched_estcpu(td);
853 		thread_unlock(td);
854 	}
855 }
856 
857 /*
858  * Clear kinfo_proc and fill in any information that is common
859  * to all threads in the process.
860  * Must be called with the target process locked.
861  */
862 static void
863 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
864 {
865 	struct thread *td0;
866 	struct tty *tp;
867 	struct session *sp;
868 	struct ucred *cred;
869 	struct sigacts *ps;
870 	struct timeval boottime;
871 
872 	/* For proc_realparent. */
873 	sx_assert(&proctree_lock, SX_LOCKED);
874 	PROC_LOCK_ASSERT(p, MA_OWNED);
875 	bzero(kp, sizeof(*kp));
876 
877 	kp->ki_structsize = sizeof(*kp);
878 	kp->ki_paddr = p;
879 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
880 	kp->ki_args = p->p_args;
881 	kp->ki_textvp = p->p_textvp;
882 #ifdef KTRACE
883 	kp->ki_tracep = p->p_tracevp;
884 	kp->ki_traceflag = p->p_traceflag;
885 #endif
886 	kp->ki_fd = p->p_fd;
887 	kp->ki_vmspace = p->p_vmspace;
888 	kp->ki_flag = p->p_flag;
889 	kp->ki_flag2 = p->p_flag2;
890 	cred = p->p_ucred;
891 	if (cred) {
892 		kp->ki_uid = cred->cr_uid;
893 		kp->ki_ruid = cred->cr_ruid;
894 		kp->ki_svuid = cred->cr_svuid;
895 		kp->ki_cr_flags = 0;
896 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
897 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
898 		/* XXX bde doesn't like KI_NGROUPS */
899 		if (cred->cr_ngroups > KI_NGROUPS) {
900 			kp->ki_ngroups = KI_NGROUPS;
901 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
902 		} else
903 			kp->ki_ngroups = cred->cr_ngroups;
904 		bcopy(cred->cr_groups, kp->ki_groups,
905 		    kp->ki_ngroups * sizeof(gid_t));
906 		kp->ki_rgid = cred->cr_rgid;
907 		kp->ki_svgid = cred->cr_svgid;
908 		/* If jailed(cred), emulate the old P_JAILED flag. */
909 		if (jailed(cred)) {
910 			kp->ki_flag |= P_JAILED;
911 			/* If inside the jail, use 0 as a jail ID. */
912 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
913 				kp->ki_jid = cred->cr_prison->pr_id;
914 		}
915 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
916 		    sizeof(kp->ki_loginclass));
917 	}
918 	ps = p->p_sigacts;
919 	if (ps) {
920 		mtx_lock(&ps->ps_mtx);
921 		kp->ki_sigignore = ps->ps_sigignore;
922 		kp->ki_sigcatch = ps->ps_sigcatch;
923 		mtx_unlock(&ps->ps_mtx);
924 	}
925 	if (p->p_state != PRS_NEW &&
926 	    p->p_state != PRS_ZOMBIE &&
927 	    p->p_vmspace != NULL) {
928 		struct vmspace *vm = p->p_vmspace;
929 
930 		kp->ki_size = vm->vm_map.size;
931 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
932 		FOREACH_THREAD_IN_PROC(p, td0) {
933 			if (!TD_IS_SWAPPED(td0))
934 				kp->ki_rssize += td0->td_kstack_pages;
935 		}
936 		kp->ki_swrss = vm->vm_swrss;
937 		kp->ki_tsize = vm->vm_tsize;
938 		kp->ki_dsize = vm->vm_dsize;
939 		kp->ki_ssize = vm->vm_ssize;
940 	} else if (p->p_state == PRS_ZOMBIE)
941 		kp->ki_stat = SZOMB;
942 	if (kp->ki_flag & P_INMEM)
943 		kp->ki_sflag = PS_INMEM;
944 	else
945 		kp->ki_sflag = 0;
946 	/* Calculate legacy swtime as seconds since 'swtick'. */
947 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
948 	kp->ki_pid = p->p_pid;
949 	kp->ki_nice = p->p_nice;
950 	kp->ki_fibnum = p->p_fibnum;
951 	kp->ki_start = p->p_stats->p_start;
952 	getboottime(&boottime);
953 	timevaladd(&kp->ki_start, &boottime);
954 	PROC_STATLOCK(p);
955 	rufetch(p, &kp->ki_rusage);
956 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
957 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
958 	PROC_STATUNLOCK(p);
959 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
960 	/* Some callers want child times in a single value. */
961 	kp->ki_childtime = kp->ki_childstime;
962 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
963 
964 	FOREACH_THREAD_IN_PROC(p, td0)
965 		kp->ki_cow += td0->td_cow;
966 
967 	tp = NULL;
968 	if (p->p_pgrp) {
969 		kp->ki_pgid = p->p_pgrp->pg_id;
970 		kp->ki_jobc = p->p_pgrp->pg_jobc;
971 		sp = p->p_pgrp->pg_session;
972 
973 		if (sp != NULL) {
974 			kp->ki_sid = sp->s_sid;
975 			SESS_LOCK(sp);
976 			strlcpy(kp->ki_login, sp->s_login,
977 			    sizeof(kp->ki_login));
978 			if (sp->s_ttyvp)
979 				kp->ki_kiflag |= KI_CTTY;
980 			if (SESS_LEADER(p))
981 				kp->ki_kiflag |= KI_SLEADER;
982 			/* XXX proctree_lock */
983 			tp = sp->s_ttyp;
984 			SESS_UNLOCK(sp);
985 		}
986 	}
987 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
988 		kp->ki_tdev = tty_udev(tp);
989 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
990 		if (tp->t_session)
991 			kp->ki_tsid = tp->t_session->s_sid;
992 	} else
993 		kp->ki_tdev = NODEV;
994 	if (p->p_comm[0] != '\0')
995 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
996 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
997 	    p->p_sysent->sv_name[0] != '\0')
998 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
999 	kp->ki_siglist = p->p_siglist;
1000 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1001 	kp->ki_acflag = p->p_acflag;
1002 	kp->ki_lock = p->p_lock;
1003 	if (p->p_pptr) {
1004 		kp->ki_ppid = proc_realparent(p)->p_pid;
1005 		if (p->p_flag & P_TRACED)
1006 			kp->ki_tracer = p->p_pptr->p_pid;
1007 	}
1008 }
1009 
1010 /*
1011  * Fill in information that is thread specific.  Must be called with
1012  * target process locked.  If 'preferthread' is set, overwrite certain
1013  * process-related fields that are maintained for both threads and
1014  * processes.
1015  */
1016 static void
1017 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1018 {
1019 	struct proc *p;
1020 
1021 	p = td->td_proc;
1022 	kp->ki_tdaddr = td;
1023 	PROC_LOCK_ASSERT(p, MA_OWNED);
1024 
1025 	if (preferthread)
1026 		PROC_STATLOCK(p);
1027 	thread_lock(td);
1028 	if (td->td_wmesg != NULL)
1029 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1030 	else
1031 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1032 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1033 	    sizeof(kp->ki_tdname)) {
1034 		strlcpy(kp->ki_moretdname,
1035 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1036 		    sizeof(kp->ki_moretdname));
1037 	} else {
1038 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1039 	}
1040 	if (TD_ON_LOCK(td)) {
1041 		kp->ki_kiflag |= KI_LOCKBLOCK;
1042 		strlcpy(kp->ki_lockname, td->td_lockname,
1043 		    sizeof(kp->ki_lockname));
1044 	} else {
1045 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1046 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1047 	}
1048 
1049 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1050 		if (TD_ON_RUNQ(td) ||
1051 		    TD_CAN_RUN(td) ||
1052 		    TD_IS_RUNNING(td)) {
1053 			kp->ki_stat = SRUN;
1054 		} else if (P_SHOULDSTOP(p)) {
1055 			kp->ki_stat = SSTOP;
1056 		} else if (TD_IS_SLEEPING(td)) {
1057 			kp->ki_stat = SSLEEP;
1058 		} else if (TD_ON_LOCK(td)) {
1059 			kp->ki_stat = SLOCK;
1060 		} else {
1061 			kp->ki_stat = SWAIT;
1062 		}
1063 	} else if (p->p_state == PRS_ZOMBIE) {
1064 		kp->ki_stat = SZOMB;
1065 	} else {
1066 		kp->ki_stat = SIDL;
1067 	}
1068 
1069 	/* Things in the thread */
1070 	kp->ki_wchan = td->td_wchan;
1071 	kp->ki_pri.pri_level = td->td_priority;
1072 	kp->ki_pri.pri_native = td->td_base_pri;
1073 
1074 	/*
1075 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1076 	 * the maximum u_char CPU value.
1077 	 */
1078 	if (td->td_lastcpu == NOCPU)
1079 		kp->ki_lastcpu_old = NOCPU_OLD;
1080 	else if (td->td_lastcpu > MAXCPU_OLD)
1081 		kp->ki_lastcpu_old = MAXCPU_OLD;
1082 	else
1083 		kp->ki_lastcpu_old = td->td_lastcpu;
1084 
1085 	if (td->td_oncpu == NOCPU)
1086 		kp->ki_oncpu_old = NOCPU_OLD;
1087 	else if (td->td_oncpu > MAXCPU_OLD)
1088 		kp->ki_oncpu_old = MAXCPU_OLD;
1089 	else
1090 		kp->ki_oncpu_old = td->td_oncpu;
1091 
1092 	kp->ki_lastcpu = td->td_lastcpu;
1093 	kp->ki_oncpu = td->td_oncpu;
1094 	kp->ki_tdflags = td->td_flags;
1095 	kp->ki_tid = td->td_tid;
1096 	kp->ki_numthreads = p->p_numthreads;
1097 	kp->ki_pcb = td->td_pcb;
1098 	kp->ki_kstack = (void *)td->td_kstack;
1099 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1100 	kp->ki_pri.pri_class = td->td_pri_class;
1101 	kp->ki_pri.pri_user = td->td_user_pri;
1102 
1103 	if (preferthread) {
1104 		rufetchtd(td, &kp->ki_rusage);
1105 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1106 		kp->ki_pctcpu = sched_pctcpu(td);
1107 		kp->ki_estcpu = sched_estcpu(td);
1108 		kp->ki_cow = td->td_cow;
1109 	}
1110 
1111 	/* We can't get this anymore but ps etc never used it anyway. */
1112 	kp->ki_rqindex = 0;
1113 
1114 	if (preferthread)
1115 		kp->ki_siglist = td->td_siglist;
1116 	kp->ki_sigmask = td->td_sigmask;
1117 	thread_unlock(td);
1118 	if (preferthread)
1119 		PROC_STATUNLOCK(p);
1120 }
1121 
1122 /*
1123  * Fill in a kinfo_proc structure for the specified process.
1124  * Must be called with the target process locked.
1125  */
1126 void
1127 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1128 {
1129 
1130 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1131 
1132 	fill_kinfo_proc_only(p, kp);
1133 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1134 	fill_kinfo_aggregate(p, kp);
1135 }
1136 
1137 struct pstats *
1138 pstats_alloc(void)
1139 {
1140 
1141 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1142 }
1143 
1144 /*
1145  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1146  */
1147 void
1148 pstats_fork(struct pstats *src, struct pstats *dst)
1149 {
1150 
1151 	bzero(&dst->pstat_startzero,
1152 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1153 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1154 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1155 }
1156 
1157 void
1158 pstats_free(struct pstats *ps)
1159 {
1160 
1161 	free(ps, M_SUBPROC);
1162 }
1163 
1164 static struct proc *
1165 zpfind_locked(pid_t pid)
1166 {
1167 	struct proc *p;
1168 
1169 	sx_assert(&allproc_lock, SX_LOCKED);
1170 	LIST_FOREACH(p, &zombproc, p_list) {
1171 		if (p->p_pid == pid) {
1172 			PROC_LOCK(p);
1173 			break;
1174 		}
1175 	}
1176 	return (p);
1177 }
1178 
1179 /*
1180  * Locate a zombie process by number
1181  */
1182 struct proc *
1183 zpfind(pid_t pid)
1184 {
1185 	struct proc *p;
1186 
1187 	sx_slock(&allproc_lock);
1188 	p = zpfind_locked(pid);
1189 	sx_sunlock(&allproc_lock);
1190 	return (p);
1191 }
1192 
1193 #ifdef COMPAT_FREEBSD32
1194 
1195 /*
1196  * This function is typically used to copy out the kernel address, so
1197  * it can be replaced by assignment of zero.
1198  */
1199 static inline uint32_t
1200 ptr32_trim(void *ptr)
1201 {
1202 	uintptr_t uptr;
1203 
1204 	uptr = (uintptr_t)ptr;
1205 	return ((uptr > UINT_MAX) ? 0 : uptr);
1206 }
1207 
1208 #define PTRTRIM_CP(src,dst,fld) \
1209 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1210 
1211 static void
1212 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1213 {
1214 	int i;
1215 
1216 	bzero(ki32, sizeof(struct kinfo_proc32));
1217 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1218 	CP(*ki, *ki32, ki_layout);
1219 	PTRTRIM_CP(*ki, *ki32, ki_args);
1220 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1221 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1222 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1223 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1224 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1225 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1226 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1227 	CP(*ki, *ki32, ki_pid);
1228 	CP(*ki, *ki32, ki_ppid);
1229 	CP(*ki, *ki32, ki_pgid);
1230 	CP(*ki, *ki32, ki_tpgid);
1231 	CP(*ki, *ki32, ki_sid);
1232 	CP(*ki, *ki32, ki_tsid);
1233 	CP(*ki, *ki32, ki_jobc);
1234 	CP(*ki, *ki32, ki_tdev);
1235 	CP(*ki, *ki32, ki_siglist);
1236 	CP(*ki, *ki32, ki_sigmask);
1237 	CP(*ki, *ki32, ki_sigignore);
1238 	CP(*ki, *ki32, ki_sigcatch);
1239 	CP(*ki, *ki32, ki_uid);
1240 	CP(*ki, *ki32, ki_ruid);
1241 	CP(*ki, *ki32, ki_svuid);
1242 	CP(*ki, *ki32, ki_rgid);
1243 	CP(*ki, *ki32, ki_svgid);
1244 	CP(*ki, *ki32, ki_ngroups);
1245 	for (i = 0; i < KI_NGROUPS; i++)
1246 		CP(*ki, *ki32, ki_groups[i]);
1247 	CP(*ki, *ki32, ki_size);
1248 	CP(*ki, *ki32, ki_rssize);
1249 	CP(*ki, *ki32, ki_swrss);
1250 	CP(*ki, *ki32, ki_tsize);
1251 	CP(*ki, *ki32, ki_dsize);
1252 	CP(*ki, *ki32, ki_ssize);
1253 	CP(*ki, *ki32, ki_xstat);
1254 	CP(*ki, *ki32, ki_acflag);
1255 	CP(*ki, *ki32, ki_pctcpu);
1256 	CP(*ki, *ki32, ki_estcpu);
1257 	CP(*ki, *ki32, ki_slptime);
1258 	CP(*ki, *ki32, ki_swtime);
1259 	CP(*ki, *ki32, ki_cow);
1260 	CP(*ki, *ki32, ki_runtime);
1261 	TV_CP(*ki, *ki32, ki_start);
1262 	TV_CP(*ki, *ki32, ki_childtime);
1263 	CP(*ki, *ki32, ki_flag);
1264 	CP(*ki, *ki32, ki_kiflag);
1265 	CP(*ki, *ki32, ki_traceflag);
1266 	CP(*ki, *ki32, ki_stat);
1267 	CP(*ki, *ki32, ki_nice);
1268 	CP(*ki, *ki32, ki_lock);
1269 	CP(*ki, *ki32, ki_rqindex);
1270 	CP(*ki, *ki32, ki_oncpu);
1271 	CP(*ki, *ki32, ki_lastcpu);
1272 
1273 	/* XXX TODO: wrap cpu value as appropriate */
1274 	CP(*ki, *ki32, ki_oncpu_old);
1275 	CP(*ki, *ki32, ki_lastcpu_old);
1276 
1277 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1278 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1279 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1280 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1281 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1282 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1283 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1284 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1285 	CP(*ki, *ki32, ki_tracer);
1286 	CP(*ki, *ki32, ki_flag2);
1287 	CP(*ki, *ki32, ki_fibnum);
1288 	CP(*ki, *ki32, ki_cr_flags);
1289 	CP(*ki, *ki32, ki_jid);
1290 	CP(*ki, *ki32, ki_numthreads);
1291 	CP(*ki, *ki32, ki_tid);
1292 	CP(*ki, *ki32, ki_pri);
1293 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1294 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1295 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1296 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1297 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1298 	CP(*ki, *ki32, ki_sflag);
1299 	CP(*ki, *ki32, ki_tdflags);
1300 }
1301 #endif
1302 
1303 int
1304 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1305 {
1306 	struct thread *td;
1307 	struct kinfo_proc ki;
1308 #ifdef COMPAT_FREEBSD32
1309 	struct kinfo_proc32 ki32;
1310 #endif
1311 	int error;
1312 
1313 	PROC_LOCK_ASSERT(p, MA_OWNED);
1314 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1315 
1316 	error = 0;
1317 	fill_kinfo_proc(p, &ki);
1318 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1319 #ifdef COMPAT_FREEBSD32
1320 		if ((flags & KERN_PROC_MASK32) != 0) {
1321 			freebsd32_kinfo_proc_out(&ki, &ki32);
1322 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1323 				error = ENOMEM;
1324 		} else
1325 #endif
1326 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1327 				error = ENOMEM;
1328 	} else {
1329 		FOREACH_THREAD_IN_PROC(p, td) {
1330 			fill_kinfo_thread(td, &ki, 1);
1331 #ifdef COMPAT_FREEBSD32
1332 			if ((flags & KERN_PROC_MASK32) != 0) {
1333 				freebsd32_kinfo_proc_out(&ki, &ki32);
1334 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1335 					error = ENOMEM;
1336 			} else
1337 #endif
1338 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1339 					error = ENOMEM;
1340 			if (error != 0)
1341 				break;
1342 		}
1343 	}
1344 	PROC_UNLOCK(p);
1345 	return (error);
1346 }
1347 
1348 static int
1349 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1350     int doingzomb)
1351 {
1352 	struct sbuf sb;
1353 	struct kinfo_proc ki;
1354 	struct proc *np;
1355 	int error, error2;
1356 	pid_t pid;
1357 
1358 	pid = p->p_pid;
1359 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1360 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1361 	error = kern_proc_out(p, &sb, flags);
1362 	error2 = sbuf_finish(&sb);
1363 	sbuf_delete(&sb);
1364 	if (error != 0)
1365 		return (error);
1366 	else if (error2 != 0)
1367 		return (error2);
1368 	if (doingzomb)
1369 		np = zpfind(pid);
1370 	else {
1371 		if (pid == 0)
1372 			return (0);
1373 		np = pfind(pid);
1374 	}
1375 	if (np == NULL)
1376 		return (ESRCH);
1377 	if (np != p) {
1378 		PROC_UNLOCK(np);
1379 		return (ESRCH);
1380 	}
1381 	PROC_UNLOCK(np);
1382 	return (0);
1383 }
1384 
1385 static int
1386 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1387 {
1388 	int *name = (int *)arg1;
1389 	u_int namelen = arg2;
1390 	struct proc *p;
1391 	int flags, doingzomb, oid_number;
1392 	int error = 0;
1393 
1394 	oid_number = oidp->oid_number;
1395 	if (oid_number != KERN_PROC_ALL &&
1396 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1397 		flags = KERN_PROC_NOTHREADS;
1398 	else {
1399 		flags = 0;
1400 		oid_number &= ~KERN_PROC_INC_THREAD;
1401 	}
1402 #ifdef COMPAT_FREEBSD32
1403 	if (req->flags & SCTL_MASK32)
1404 		flags |= KERN_PROC_MASK32;
1405 #endif
1406 	if (oid_number == KERN_PROC_PID) {
1407 		if (namelen != 1)
1408 			return (EINVAL);
1409 		error = sysctl_wire_old_buffer(req, 0);
1410 		if (error)
1411 			return (error);
1412 		sx_slock(&proctree_lock);
1413 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1414 		if (error == 0)
1415 			error = sysctl_out_proc(p, req, flags, 0);
1416 		sx_sunlock(&proctree_lock);
1417 		return (error);
1418 	}
1419 
1420 	switch (oid_number) {
1421 	case KERN_PROC_ALL:
1422 		if (namelen != 0)
1423 			return (EINVAL);
1424 		break;
1425 	case KERN_PROC_PROC:
1426 		if (namelen != 0 && namelen != 1)
1427 			return (EINVAL);
1428 		break;
1429 	default:
1430 		if (namelen != 1)
1431 			return (EINVAL);
1432 		break;
1433 	}
1434 
1435 	if (!req->oldptr) {
1436 		/* overestimate by 5 procs */
1437 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1438 		if (error)
1439 			return (error);
1440 	}
1441 	error = sysctl_wire_old_buffer(req, 0);
1442 	if (error != 0)
1443 		return (error);
1444 	sx_slock(&proctree_lock);
1445 	sx_slock(&allproc_lock);
1446 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1447 		if (!doingzomb)
1448 			p = LIST_FIRST(&allproc);
1449 		else
1450 			p = LIST_FIRST(&zombproc);
1451 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1452 			/*
1453 			 * Skip embryonic processes.
1454 			 */
1455 			PROC_LOCK(p);
1456 			if (p->p_state == PRS_NEW) {
1457 				PROC_UNLOCK(p);
1458 				continue;
1459 			}
1460 			KASSERT(p->p_ucred != NULL,
1461 			    ("process credential is NULL for non-NEW proc"));
1462 			/*
1463 			 * Show a user only appropriate processes.
1464 			 */
1465 			if (p_cansee(curthread, p)) {
1466 				PROC_UNLOCK(p);
1467 				continue;
1468 			}
1469 			/*
1470 			 * TODO - make more efficient (see notes below).
1471 			 * do by session.
1472 			 */
1473 			switch (oid_number) {
1474 
1475 			case KERN_PROC_GID:
1476 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1477 					PROC_UNLOCK(p);
1478 					continue;
1479 				}
1480 				break;
1481 
1482 			case KERN_PROC_PGRP:
1483 				/* could do this by traversing pgrp */
1484 				if (p->p_pgrp == NULL ||
1485 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1486 					PROC_UNLOCK(p);
1487 					continue;
1488 				}
1489 				break;
1490 
1491 			case KERN_PROC_RGID:
1492 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1493 					PROC_UNLOCK(p);
1494 					continue;
1495 				}
1496 				break;
1497 
1498 			case KERN_PROC_SESSION:
1499 				if (p->p_session == NULL ||
1500 				    p->p_session->s_sid != (pid_t)name[0]) {
1501 					PROC_UNLOCK(p);
1502 					continue;
1503 				}
1504 				break;
1505 
1506 			case KERN_PROC_TTY:
1507 				if ((p->p_flag & P_CONTROLT) == 0 ||
1508 				    p->p_session == NULL) {
1509 					PROC_UNLOCK(p);
1510 					continue;
1511 				}
1512 				/* XXX proctree_lock */
1513 				SESS_LOCK(p->p_session);
1514 				if (p->p_session->s_ttyp == NULL ||
1515 				    tty_udev(p->p_session->s_ttyp) !=
1516 				    (dev_t)name[0]) {
1517 					SESS_UNLOCK(p->p_session);
1518 					PROC_UNLOCK(p);
1519 					continue;
1520 				}
1521 				SESS_UNLOCK(p->p_session);
1522 				break;
1523 
1524 			case KERN_PROC_UID:
1525 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1526 					PROC_UNLOCK(p);
1527 					continue;
1528 				}
1529 				break;
1530 
1531 			case KERN_PROC_RUID:
1532 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1533 					PROC_UNLOCK(p);
1534 					continue;
1535 				}
1536 				break;
1537 
1538 			case KERN_PROC_PROC:
1539 				break;
1540 
1541 			default:
1542 				break;
1543 
1544 			}
1545 
1546 			error = sysctl_out_proc(p, req, flags, doingzomb);
1547 			if (error) {
1548 				sx_sunlock(&allproc_lock);
1549 				sx_sunlock(&proctree_lock);
1550 				return (error);
1551 			}
1552 		}
1553 	}
1554 	sx_sunlock(&allproc_lock);
1555 	sx_sunlock(&proctree_lock);
1556 	return (0);
1557 }
1558 
1559 struct pargs *
1560 pargs_alloc(int len)
1561 {
1562 	struct pargs *pa;
1563 
1564 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1565 		M_WAITOK);
1566 	refcount_init(&pa->ar_ref, 1);
1567 	pa->ar_length = len;
1568 	return (pa);
1569 }
1570 
1571 static void
1572 pargs_free(struct pargs *pa)
1573 {
1574 
1575 	free(pa, M_PARGS);
1576 }
1577 
1578 void
1579 pargs_hold(struct pargs *pa)
1580 {
1581 
1582 	if (pa == NULL)
1583 		return;
1584 	refcount_acquire(&pa->ar_ref);
1585 }
1586 
1587 void
1588 pargs_drop(struct pargs *pa)
1589 {
1590 
1591 	if (pa == NULL)
1592 		return;
1593 	if (refcount_release(&pa->ar_ref))
1594 		pargs_free(pa);
1595 }
1596 
1597 static int
1598 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1599     size_t len)
1600 {
1601 	ssize_t n;
1602 
1603 	/*
1604 	 * This may return a short read if the string is shorter than the chunk
1605 	 * and is aligned at the end of the page, and the following page is not
1606 	 * mapped.
1607 	 */
1608 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1609 	if (n <= 0)
1610 		return (ENOMEM);
1611 	return (0);
1612 }
1613 
1614 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1615 
1616 enum proc_vector_type {
1617 	PROC_ARG,
1618 	PROC_ENV,
1619 	PROC_AUX,
1620 };
1621 
1622 #ifdef COMPAT_FREEBSD32
1623 static int
1624 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1625     size_t *vsizep, enum proc_vector_type type)
1626 {
1627 	struct freebsd32_ps_strings pss;
1628 	Elf32_Auxinfo aux;
1629 	vm_offset_t vptr, ptr;
1630 	uint32_t *proc_vector32;
1631 	char **proc_vector;
1632 	size_t vsize, size;
1633 	int i, error;
1634 
1635 	error = 0;
1636 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1637 	    sizeof(pss)) != sizeof(pss))
1638 		return (ENOMEM);
1639 	switch (type) {
1640 	case PROC_ARG:
1641 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1642 		vsize = pss.ps_nargvstr;
1643 		if (vsize > ARG_MAX)
1644 			return (ENOEXEC);
1645 		size = vsize * sizeof(int32_t);
1646 		break;
1647 	case PROC_ENV:
1648 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1649 		vsize = pss.ps_nenvstr;
1650 		if (vsize > ARG_MAX)
1651 			return (ENOEXEC);
1652 		size = vsize * sizeof(int32_t);
1653 		break;
1654 	case PROC_AUX:
1655 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1656 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1657 		if (vptr % 4 != 0)
1658 			return (ENOEXEC);
1659 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1660 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1661 			    sizeof(aux))
1662 				return (ENOMEM);
1663 			if (aux.a_type == AT_NULL)
1664 				break;
1665 			ptr += sizeof(aux);
1666 		}
1667 		if (aux.a_type != AT_NULL)
1668 			return (ENOEXEC);
1669 		vsize = i + 1;
1670 		size = vsize * sizeof(aux);
1671 		break;
1672 	default:
1673 		KASSERT(0, ("Wrong proc vector type: %d", type));
1674 		return (EINVAL);
1675 	}
1676 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1677 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1678 		error = ENOMEM;
1679 		goto done;
1680 	}
1681 	if (type == PROC_AUX) {
1682 		*proc_vectorp = (char **)proc_vector32;
1683 		*vsizep = vsize;
1684 		return (0);
1685 	}
1686 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1687 	for (i = 0; i < (int)vsize; i++)
1688 		proc_vector[i] = PTRIN(proc_vector32[i]);
1689 	*proc_vectorp = proc_vector;
1690 	*vsizep = vsize;
1691 done:
1692 	free(proc_vector32, M_TEMP);
1693 	return (error);
1694 }
1695 #endif
1696 
1697 static int
1698 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1699     size_t *vsizep, enum proc_vector_type type)
1700 {
1701 	struct ps_strings pss;
1702 	Elf_Auxinfo aux;
1703 	vm_offset_t vptr, ptr;
1704 	char **proc_vector;
1705 	size_t vsize, size;
1706 	int i;
1707 
1708 #ifdef COMPAT_FREEBSD32
1709 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1710 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1711 #endif
1712 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1713 	    sizeof(pss)) != sizeof(pss))
1714 		return (ENOMEM);
1715 	switch (type) {
1716 	case PROC_ARG:
1717 		vptr = (vm_offset_t)pss.ps_argvstr;
1718 		vsize = pss.ps_nargvstr;
1719 		if (vsize > ARG_MAX)
1720 			return (ENOEXEC);
1721 		size = vsize * sizeof(char *);
1722 		break;
1723 	case PROC_ENV:
1724 		vptr = (vm_offset_t)pss.ps_envstr;
1725 		vsize = pss.ps_nenvstr;
1726 		if (vsize > ARG_MAX)
1727 			return (ENOEXEC);
1728 		size = vsize * sizeof(char *);
1729 		break;
1730 	case PROC_AUX:
1731 		/*
1732 		 * The aux array is just above env array on the stack. Check
1733 		 * that the address is naturally aligned.
1734 		 */
1735 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1736 		    * sizeof(char *);
1737 #if __ELF_WORD_SIZE == 64
1738 		if (vptr % sizeof(uint64_t) != 0)
1739 #else
1740 		if (vptr % sizeof(uint32_t) != 0)
1741 #endif
1742 			return (ENOEXEC);
1743 		/*
1744 		 * We count the array size reading the aux vectors from the
1745 		 * stack until AT_NULL vector is returned.  So (to keep the code
1746 		 * simple) we read the process stack twice: the first time here
1747 		 * to find the size and the second time when copying the vectors
1748 		 * to the allocated proc_vector.
1749 		 */
1750 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1751 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1752 			    sizeof(aux))
1753 				return (ENOMEM);
1754 			if (aux.a_type == AT_NULL)
1755 				break;
1756 			ptr += sizeof(aux);
1757 		}
1758 		/*
1759 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1760 		 * not reached AT_NULL, it is most likely we are reading wrong
1761 		 * data: either the process doesn't have auxv array or data has
1762 		 * been modified. Return the error in this case.
1763 		 */
1764 		if (aux.a_type != AT_NULL)
1765 			return (ENOEXEC);
1766 		vsize = i + 1;
1767 		size = vsize * sizeof(aux);
1768 		break;
1769 	default:
1770 		KASSERT(0, ("Wrong proc vector type: %d", type));
1771 		return (EINVAL); /* In case we are built without INVARIANTS. */
1772 	}
1773 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1774 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1775 		free(proc_vector, M_TEMP);
1776 		return (ENOMEM);
1777 	}
1778 	*proc_vectorp = proc_vector;
1779 	*vsizep = vsize;
1780 
1781 	return (0);
1782 }
1783 
1784 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1785 
1786 static int
1787 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1788     enum proc_vector_type type)
1789 {
1790 	size_t done, len, nchr, vsize;
1791 	int error, i;
1792 	char **proc_vector, *sptr;
1793 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1794 
1795 	PROC_ASSERT_HELD(p);
1796 
1797 	/*
1798 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1799 	 */
1800 	nchr = 2 * (PATH_MAX + ARG_MAX);
1801 
1802 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1803 	if (error != 0)
1804 		return (error);
1805 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1806 		/*
1807 		 * The program may have scribbled into its argv array, e.g. to
1808 		 * remove some arguments.  If that has happened, break out
1809 		 * before trying to read from NULL.
1810 		 */
1811 		if (proc_vector[i] == NULL)
1812 			break;
1813 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1814 			error = proc_read_string(td, p, sptr, pss_string,
1815 			    sizeof(pss_string));
1816 			if (error != 0)
1817 				goto done;
1818 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1819 			if (done + len >= nchr)
1820 				len = nchr - done - 1;
1821 			sbuf_bcat(sb, pss_string, len);
1822 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1823 				break;
1824 			done += GET_PS_STRINGS_CHUNK_SZ;
1825 		}
1826 		sbuf_bcat(sb, "", 1);
1827 		done += len + 1;
1828 	}
1829 done:
1830 	free(proc_vector, M_TEMP);
1831 	return (error);
1832 }
1833 
1834 int
1835 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1836 {
1837 
1838 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1839 }
1840 
1841 int
1842 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1843 {
1844 
1845 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1846 }
1847 
1848 int
1849 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1850 {
1851 	size_t vsize, size;
1852 	char **auxv;
1853 	int error;
1854 
1855 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1856 	if (error == 0) {
1857 #ifdef COMPAT_FREEBSD32
1858 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1859 			size = vsize * sizeof(Elf32_Auxinfo);
1860 		else
1861 #endif
1862 			size = vsize * sizeof(Elf_Auxinfo);
1863 		if (sbuf_bcat(sb, auxv, size) != 0)
1864 			error = ENOMEM;
1865 		free(auxv, M_TEMP);
1866 	}
1867 	return (error);
1868 }
1869 
1870 /*
1871  * This sysctl allows a process to retrieve the argument list or process
1872  * title for another process without groping around in the address space
1873  * of the other process.  It also allow a process to set its own "process
1874  * title to a string of its own choice.
1875  */
1876 static int
1877 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1878 {
1879 	int *name = (int *)arg1;
1880 	u_int namelen = arg2;
1881 	struct pargs *newpa, *pa;
1882 	struct proc *p;
1883 	struct sbuf sb;
1884 	int flags, error = 0, error2;
1885 
1886 	if (namelen != 1)
1887 		return (EINVAL);
1888 
1889 	flags = PGET_CANSEE;
1890 	if (req->newptr != NULL)
1891 		flags |= PGET_ISCURRENT;
1892 	error = pget((pid_t)name[0], flags, &p);
1893 	if (error)
1894 		return (error);
1895 
1896 	pa = p->p_args;
1897 	if (pa != NULL) {
1898 		pargs_hold(pa);
1899 		PROC_UNLOCK(p);
1900 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1901 		pargs_drop(pa);
1902 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1903 		_PHOLD(p);
1904 		PROC_UNLOCK(p);
1905 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1906 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1907 		error = proc_getargv(curthread, p, &sb);
1908 		error2 = sbuf_finish(&sb);
1909 		PRELE(p);
1910 		sbuf_delete(&sb);
1911 		if (error == 0 && error2 != 0)
1912 			error = error2;
1913 	} else {
1914 		PROC_UNLOCK(p);
1915 	}
1916 	if (error != 0 || req->newptr == NULL)
1917 		return (error);
1918 
1919 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1920 		return (ENOMEM);
1921 	newpa = pargs_alloc(req->newlen);
1922 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1923 	if (error != 0) {
1924 		pargs_free(newpa);
1925 		return (error);
1926 	}
1927 	PROC_LOCK(p);
1928 	pa = p->p_args;
1929 	p->p_args = newpa;
1930 	PROC_UNLOCK(p);
1931 	pargs_drop(pa);
1932 	return (0);
1933 }
1934 
1935 /*
1936  * This sysctl allows a process to retrieve environment of another process.
1937  */
1938 static int
1939 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1940 {
1941 	int *name = (int *)arg1;
1942 	u_int namelen = arg2;
1943 	struct proc *p;
1944 	struct sbuf sb;
1945 	int error, error2;
1946 
1947 	if (namelen != 1)
1948 		return (EINVAL);
1949 
1950 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1951 	if (error != 0)
1952 		return (error);
1953 	if ((p->p_flag & P_SYSTEM) != 0) {
1954 		PRELE(p);
1955 		return (0);
1956 	}
1957 
1958 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1959 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1960 	error = proc_getenvv(curthread, p, &sb);
1961 	error2 = sbuf_finish(&sb);
1962 	PRELE(p);
1963 	sbuf_delete(&sb);
1964 	return (error != 0 ? error : error2);
1965 }
1966 
1967 /*
1968  * This sysctl allows a process to retrieve ELF auxiliary vector of
1969  * another process.
1970  */
1971 static int
1972 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1973 {
1974 	int *name = (int *)arg1;
1975 	u_int namelen = arg2;
1976 	struct proc *p;
1977 	struct sbuf sb;
1978 	int error, error2;
1979 
1980 	if (namelen != 1)
1981 		return (EINVAL);
1982 
1983 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1984 	if (error != 0)
1985 		return (error);
1986 	if ((p->p_flag & P_SYSTEM) != 0) {
1987 		PRELE(p);
1988 		return (0);
1989 	}
1990 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1991 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1992 	error = proc_getauxv(curthread, p, &sb);
1993 	error2 = sbuf_finish(&sb);
1994 	PRELE(p);
1995 	sbuf_delete(&sb);
1996 	return (error != 0 ? error : error2);
1997 }
1998 
1999 /*
2000  * This sysctl allows a process to retrieve the path of the executable for
2001  * itself or another process.
2002  */
2003 static int
2004 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2005 {
2006 	pid_t *pidp = (pid_t *)arg1;
2007 	unsigned int arglen = arg2;
2008 	struct proc *p;
2009 	struct vnode *vp;
2010 	char *retbuf, *freebuf;
2011 	int error;
2012 
2013 	if (arglen != 1)
2014 		return (EINVAL);
2015 	if (*pidp == -1) {	/* -1 means this process */
2016 		p = req->td->td_proc;
2017 	} else {
2018 		error = pget(*pidp, PGET_CANSEE, &p);
2019 		if (error != 0)
2020 			return (error);
2021 	}
2022 
2023 	vp = p->p_textvp;
2024 	if (vp == NULL) {
2025 		if (*pidp != -1)
2026 			PROC_UNLOCK(p);
2027 		return (0);
2028 	}
2029 	vref(vp);
2030 	if (*pidp != -1)
2031 		PROC_UNLOCK(p);
2032 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2033 	vrele(vp);
2034 	if (error)
2035 		return (error);
2036 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2037 	free(freebuf, M_TEMP);
2038 	return (error);
2039 }
2040 
2041 static int
2042 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2043 {
2044 	struct proc *p;
2045 	char *sv_name;
2046 	int *name;
2047 	int namelen;
2048 	int error;
2049 
2050 	namelen = arg2;
2051 	if (namelen != 1)
2052 		return (EINVAL);
2053 
2054 	name = (int *)arg1;
2055 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2056 	if (error != 0)
2057 		return (error);
2058 	sv_name = p->p_sysent->sv_name;
2059 	PROC_UNLOCK(p);
2060 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2061 }
2062 
2063 #ifdef KINFO_OVMENTRY_SIZE
2064 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2065 #endif
2066 
2067 #ifdef COMPAT_FREEBSD7
2068 static int
2069 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2070 {
2071 	vm_map_entry_t entry, tmp_entry;
2072 	unsigned int last_timestamp;
2073 	char *fullpath, *freepath;
2074 	struct kinfo_ovmentry *kve;
2075 	struct vattr va;
2076 	struct ucred *cred;
2077 	int error, *name;
2078 	struct vnode *vp;
2079 	struct proc *p;
2080 	vm_map_t map;
2081 	struct vmspace *vm;
2082 
2083 	name = (int *)arg1;
2084 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2085 	if (error != 0)
2086 		return (error);
2087 	vm = vmspace_acquire_ref(p);
2088 	if (vm == NULL) {
2089 		PRELE(p);
2090 		return (ESRCH);
2091 	}
2092 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2093 
2094 	map = &vm->vm_map;
2095 	vm_map_lock_read(map);
2096 	for (entry = map->header.next; entry != &map->header;
2097 	    entry = entry->next) {
2098 		vm_object_t obj, tobj, lobj;
2099 		vm_offset_t addr;
2100 
2101 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2102 			continue;
2103 
2104 		bzero(kve, sizeof(*kve));
2105 		kve->kve_structsize = sizeof(*kve);
2106 
2107 		kve->kve_private_resident = 0;
2108 		obj = entry->object.vm_object;
2109 		if (obj != NULL) {
2110 			VM_OBJECT_RLOCK(obj);
2111 			if (obj->shadow_count == 1)
2112 				kve->kve_private_resident =
2113 				    obj->resident_page_count;
2114 		}
2115 		kve->kve_resident = 0;
2116 		addr = entry->start;
2117 		while (addr < entry->end) {
2118 			if (pmap_extract(map->pmap, addr))
2119 				kve->kve_resident++;
2120 			addr += PAGE_SIZE;
2121 		}
2122 
2123 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2124 			if (tobj != obj)
2125 				VM_OBJECT_RLOCK(tobj);
2126 			if (lobj != obj)
2127 				VM_OBJECT_RUNLOCK(lobj);
2128 			lobj = tobj;
2129 		}
2130 
2131 		kve->kve_start = (void*)entry->start;
2132 		kve->kve_end = (void*)entry->end;
2133 		kve->kve_offset = (off_t)entry->offset;
2134 
2135 		if (entry->protection & VM_PROT_READ)
2136 			kve->kve_protection |= KVME_PROT_READ;
2137 		if (entry->protection & VM_PROT_WRITE)
2138 			kve->kve_protection |= KVME_PROT_WRITE;
2139 		if (entry->protection & VM_PROT_EXECUTE)
2140 			kve->kve_protection |= KVME_PROT_EXEC;
2141 
2142 		if (entry->eflags & MAP_ENTRY_COW)
2143 			kve->kve_flags |= KVME_FLAG_COW;
2144 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2145 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2146 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2147 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2148 
2149 		last_timestamp = map->timestamp;
2150 		vm_map_unlock_read(map);
2151 
2152 		kve->kve_fileid = 0;
2153 		kve->kve_fsid = 0;
2154 		freepath = NULL;
2155 		fullpath = "";
2156 		if (lobj) {
2157 			vp = NULL;
2158 			switch (lobj->type) {
2159 			case OBJT_DEFAULT:
2160 				kve->kve_type = KVME_TYPE_DEFAULT;
2161 				break;
2162 			case OBJT_VNODE:
2163 				kve->kve_type = KVME_TYPE_VNODE;
2164 				vp = lobj->handle;
2165 				vref(vp);
2166 				break;
2167 			case OBJT_SWAP:
2168 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2169 					kve->kve_type = KVME_TYPE_VNODE;
2170 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2171 						vp = lobj->un_pager.swp.swp_tmpfs;
2172 						vref(vp);
2173 					}
2174 				} else {
2175 					kve->kve_type = KVME_TYPE_SWAP;
2176 				}
2177 				break;
2178 			case OBJT_DEVICE:
2179 				kve->kve_type = KVME_TYPE_DEVICE;
2180 				break;
2181 			case OBJT_PHYS:
2182 				kve->kve_type = KVME_TYPE_PHYS;
2183 				break;
2184 			case OBJT_DEAD:
2185 				kve->kve_type = KVME_TYPE_DEAD;
2186 				break;
2187 			case OBJT_SG:
2188 				kve->kve_type = KVME_TYPE_SG;
2189 				break;
2190 			default:
2191 				kve->kve_type = KVME_TYPE_UNKNOWN;
2192 				break;
2193 			}
2194 			if (lobj != obj)
2195 				VM_OBJECT_RUNLOCK(lobj);
2196 
2197 			kve->kve_ref_count = obj->ref_count;
2198 			kve->kve_shadow_count = obj->shadow_count;
2199 			VM_OBJECT_RUNLOCK(obj);
2200 			if (vp != NULL) {
2201 				vn_fullpath(curthread, vp, &fullpath,
2202 				    &freepath);
2203 				cred = curthread->td_ucred;
2204 				vn_lock(vp, LK_SHARED | LK_RETRY);
2205 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2206 					kve->kve_fileid = va.va_fileid;
2207 					kve->kve_fsid = va.va_fsid;
2208 				}
2209 				vput(vp);
2210 			}
2211 		} else {
2212 			kve->kve_type = KVME_TYPE_NONE;
2213 			kve->kve_ref_count = 0;
2214 			kve->kve_shadow_count = 0;
2215 		}
2216 
2217 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2218 		if (freepath != NULL)
2219 			free(freepath, M_TEMP);
2220 
2221 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2222 		vm_map_lock_read(map);
2223 		if (error)
2224 			break;
2225 		if (last_timestamp != map->timestamp) {
2226 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2227 			entry = tmp_entry;
2228 		}
2229 	}
2230 	vm_map_unlock_read(map);
2231 	vmspace_free(vm);
2232 	PRELE(p);
2233 	free(kve, M_TEMP);
2234 	return (error);
2235 }
2236 #endif	/* COMPAT_FREEBSD7 */
2237 
2238 #ifdef KINFO_VMENTRY_SIZE
2239 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2240 #endif
2241 
2242 static void
2243 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2244     struct kinfo_vmentry *kve)
2245 {
2246 	vm_object_t obj, tobj;
2247 	vm_page_t m, m_adv;
2248 	vm_offset_t addr;
2249 	vm_paddr_t locked_pa;
2250 	vm_pindex_t pi, pi_adv, pindex;
2251 
2252 	locked_pa = 0;
2253 	obj = entry->object.vm_object;
2254 	addr = entry->start;
2255 	m_adv = NULL;
2256 	pi = OFF_TO_IDX(entry->offset);
2257 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2258 		if (m_adv != NULL) {
2259 			m = m_adv;
2260 		} else {
2261 			pi_adv = OFF_TO_IDX(entry->end - addr);
2262 			pindex = pi;
2263 			for (tobj = obj;; tobj = tobj->backing_object) {
2264 				m = vm_page_find_least(tobj, pindex);
2265 				if (m != NULL) {
2266 					if (m->pindex == pindex)
2267 						break;
2268 					if (pi_adv > m->pindex - pindex) {
2269 						pi_adv = m->pindex - pindex;
2270 						m_adv = m;
2271 					}
2272 				}
2273 				if (tobj->backing_object == NULL)
2274 					goto next;
2275 				pindex += OFF_TO_IDX(tobj->
2276 				    backing_object_offset);
2277 			}
2278 		}
2279 		m_adv = NULL;
2280 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2281 		    (addr & (pagesizes[1] - 1)) == 0 &&
2282 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2283 		    MINCORE_SUPER) != 0) {
2284 			kve->kve_flags |= KVME_FLAG_SUPER;
2285 			pi_adv = OFF_TO_IDX(pagesizes[1]);
2286 		} else {
2287 			/*
2288 			 * We do not test the found page on validity.
2289 			 * Either the page is busy and being paged in,
2290 			 * or it was invalidated.  The first case
2291 			 * should be counted as resident, the second
2292 			 * is not so clear; we do account both.
2293 			 */
2294 			pi_adv = 1;
2295 		}
2296 		kve->kve_resident += pi_adv;
2297 next:;
2298 	}
2299 	PA_UNLOCK_COND(locked_pa);
2300 }
2301 
2302 /*
2303  * Must be called with the process locked and will return unlocked.
2304  */
2305 int
2306 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2307 {
2308 	vm_map_entry_t entry, tmp_entry;
2309 	struct vattr va;
2310 	vm_map_t map;
2311 	vm_object_t obj, tobj, lobj;
2312 	char *fullpath, *freepath;
2313 	struct kinfo_vmentry *kve;
2314 	struct ucred *cred;
2315 	struct vnode *vp;
2316 	struct vmspace *vm;
2317 	vm_offset_t addr;
2318 	unsigned int last_timestamp;
2319 	int error;
2320 
2321 	PROC_LOCK_ASSERT(p, MA_OWNED);
2322 
2323 	_PHOLD(p);
2324 	PROC_UNLOCK(p);
2325 	vm = vmspace_acquire_ref(p);
2326 	if (vm == NULL) {
2327 		PRELE(p);
2328 		return (ESRCH);
2329 	}
2330 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2331 
2332 	error = 0;
2333 	map = &vm->vm_map;
2334 	vm_map_lock_read(map);
2335 	for (entry = map->header.next; entry != &map->header;
2336 	    entry = entry->next) {
2337 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2338 			continue;
2339 
2340 		addr = entry->end;
2341 		bzero(kve, sizeof(*kve));
2342 		obj = entry->object.vm_object;
2343 		if (obj != NULL) {
2344 			for (tobj = obj; tobj != NULL;
2345 			    tobj = tobj->backing_object) {
2346 				VM_OBJECT_RLOCK(tobj);
2347 				lobj = tobj;
2348 			}
2349 			if (obj->backing_object == NULL)
2350 				kve->kve_private_resident =
2351 				    obj->resident_page_count;
2352 			if (!vmmap_skip_res_cnt)
2353 				kern_proc_vmmap_resident(map, entry, kve);
2354 			for (tobj = obj; tobj != NULL;
2355 			    tobj = tobj->backing_object) {
2356 				if (tobj != obj && tobj != lobj)
2357 					VM_OBJECT_RUNLOCK(tobj);
2358 			}
2359 		} else {
2360 			lobj = NULL;
2361 		}
2362 
2363 		kve->kve_start = entry->start;
2364 		kve->kve_end = entry->end;
2365 		kve->kve_offset = entry->offset;
2366 
2367 		if (entry->protection & VM_PROT_READ)
2368 			kve->kve_protection |= KVME_PROT_READ;
2369 		if (entry->protection & VM_PROT_WRITE)
2370 			kve->kve_protection |= KVME_PROT_WRITE;
2371 		if (entry->protection & VM_PROT_EXECUTE)
2372 			kve->kve_protection |= KVME_PROT_EXEC;
2373 
2374 		if (entry->eflags & MAP_ENTRY_COW)
2375 			kve->kve_flags |= KVME_FLAG_COW;
2376 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2377 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2378 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2379 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2380 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2381 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2382 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2383 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2384 
2385 		last_timestamp = map->timestamp;
2386 		vm_map_unlock_read(map);
2387 
2388 		freepath = NULL;
2389 		fullpath = "";
2390 		if (lobj != NULL) {
2391 			vp = NULL;
2392 			switch (lobj->type) {
2393 			case OBJT_DEFAULT:
2394 				kve->kve_type = KVME_TYPE_DEFAULT;
2395 				break;
2396 			case OBJT_VNODE:
2397 				kve->kve_type = KVME_TYPE_VNODE;
2398 				vp = lobj->handle;
2399 				vref(vp);
2400 				break;
2401 			case OBJT_SWAP:
2402 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2403 					kve->kve_type = KVME_TYPE_VNODE;
2404 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2405 						vp = lobj->un_pager.swp.swp_tmpfs;
2406 						vref(vp);
2407 					}
2408 				} else {
2409 					kve->kve_type = KVME_TYPE_SWAP;
2410 				}
2411 				break;
2412 			case OBJT_DEVICE:
2413 				kve->kve_type = KVME_TYPE_DEVICE;
2414 				break;
2415 			case OBJT_PHYS:
2416 				kve->kve_type = KVME_TYPE_PHYS;
2417 				break;
2418 			case OBJT_DEAD:
2419 				kve->kve_type = KVME_TYPE_DEAD;
2420 				break;
2421 			case OBJT_SG:
2422 				kve->kve_type = KVME_TYPE_SG;
2423 				break;
2424 			case OBJT_MGTDEVICE:
2425 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2426 				break;
2427 			default:
2428 				kve->kve_type = KVME_TYPE_UNKNOWN;
2429 				break;
2430 			}
2431 			if (lobj != obj)
2432 				VM_OBJECT_RUNLOCK(lobj);
2433 
2434 			kve->kve_ref_count = obj->ref_count;
2435 			kve->kve_shadow_count = obj->shadow_count;
2436 			VM_OBJECT_RUNLOCK(obj);
2437 			if (vp != NULL) {
2438 				vn_fullpath(curthread, vp, &fullpath,
2439 				    &freepath);
2440 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2441 				cred = curthread->td_ucred;
2442 				vn_lock(vp, LK_SHARED | LK_RETRY);
2443 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2444 					kve->kve_vn_fileid = va.va_fileid;
2445 					kve->kve_vn_fsid = va.va_fsid;
2446 					kve->kve_vn_mode =
2447 					    MAKEIMODE(va.va_type, va.va_mode);
2448 					kve->kve_vn_size = va.va_size;
2449 					kve->kve_vn_rdev = va.va_rdev;
2450 					kve->kve_status = KF_ATTR_VALID;
2451 				}
2452 				vput(vp);
2453 			}
2454 		} else {
2455 			kve->kve_type = KVME_TYPE_NONE;
2456 			kve->kve_ref_count = 0;
2457 			kve->kve_shadow_count = 0;
2458 		}
2459 
2460 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2461 		if (freepath != NULL)
2462 			free(freepath, M_TEMP);
2463 
2464 		/* Pack record size down */
2465 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2466 			kve->kve_structsize =
2467 			    offsetof(struct kinfo_vmentry, kve_path) +
2468 			    strlen(kve->kve_path) + 1;
2469 		else
2470 			kve->kve_structsize = sizeof(*kve);
2471 		kve->kve_structsize = roundup(kve->kve_structsize,
2472 		    sizeof(uint64_t));
2473 
2474 		/* Halt filling and truncate rather than exceeding maxlen */
2475 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2476 			error = 0;
2477 			vm_map_lock_read(map);
2478 			break;
2479 		} else if (maxlen != -1)
2480 			maxlen -= kve->kve_structsize;
2481 
2482 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2483 			error = ENOMEM;
2484 		vm_map_lock_read(map);
2485 		if (error != 0)
2486 			break;
2487 		if (last_timestamp != map->timestamp) {
2488 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2489 			entry = tmp_entry;
2490 		}
2491 	}
2492 	vm_map_unlock_read(map);
2493 	vmspace_free(vm);
2494 	PRELE(p);
2495 	free(kve, M_TEMP);
2496 	return (error);
2497 }
2498 
2499 static int
2500 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2501 {
2502 	struct proc *p;
2503 	struct sbuf sb;
2504 	int error, error2, *name;
2505 
2506 	name = (int *)arg1;
2507 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2508 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2509 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2510 	if (error != 0) {
2511 		sbuf_delete(&sb);
2512 		return (error);
2513 	}
2514 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2515 	error2 = sbuf_finish(&sb);
2516 	sbuf_delete(&sb);
2517 	return (error != 0 ? error : error2);
2518 }
2519 
2520 #if defined(STACK) || defined(DDB)
2521 static int
2522 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2523 {
2524 	struct kinfo_kstack *kkstp;
2525 	int error, i, *name, numthreads;
2526 	lwpid_t *lwpidarray;
2527 	struct thread *td;
2528 	struct stack *st;
2529 	struct sbuf sb;
2530 	struct proc *p;
2531 
2532 	name = (int *)arg1;
2533 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2534 	if (error != 0)
2535 		return (error);
2536 
2537 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2538 	st = stack_create();
2539 
2540 	lwpidarray = NULL;
2541 	PROC_LOCK(p);
2542 	do {
2543 		if (lwpidarray != NULL) {
2544 			free(lwpidarray, M_TEMP);
2545 			lwpidarray = NULL;
2546 		}
2547 		numthreads = p->p_numthreads;
2548 		PROC_UNLOCK(p);
2549 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2550 		    M_WAITOK | M_ZERO);
2551 		PROC_LOCK(p);
2552 	} while (numthreads < p->p_numthreads);
2553 
2554 	/*
2555 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2556 	 * of changes could have taken place.  Should we check to see if the
2557 	 * vmspace has been replaced, or the like, in order to prevent
2558 	 * giving a snapshot that spans, say, execve(2), with some threads
2559 	 * before and some after?  Among other things, the credentials could
2560 	 * have changed, in which case the right to extract debug info might
2561 	 * no longer be assured.
2562 	 */
2563 	i = 0;
2564 	FOREACH_THREAD_IN_PROC(p, td) {
2565 		KASSERT(i < numthreads,
2566 		    ("sysctl_kern_proc_kstack: numthreads"));
2567 		lwpidarray[i] = td->td_tid;
2568 		i++;
2569 	}
2570 	numthreads = i;
2571 	for (i = 0; i < numthreads; i++) {
2572 		td = thread_find(p, lwpidarray[i]);
2573 		if (td == NULL) {
2574 			continue;
2575 		}
2576 		bzero(kkstp, sizeof(*kkstp));
2577 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2578 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2579 		thread_lock(td);
2580 		kkstp->kkst_tid = td->td_tid;
2581 		if (TD_IS_SWAPPED(td)) {
2582 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2583 		} else if (TD_IS_RUNNING(td)) {
2584 			if (stack_save_td_running(st, td) == 0)
2585 				kkstp->kkst_state = KKST_STATE_STACKOK;
2586 			else
2587 				kkstp->kkst_state = KKST_STATE_RUNNING;
2588 		} else {
2589 			kkstp->kkst_state = KKST_STATE_STACKOK;
2590 			stack_save_td(st, td);
2591 		}
2592 		thread_unlock(td);
2593 		PROC_UNLOCK(p);
2594 		stack_sbuf_print(&sb, st);
2595 		sbuf_finish(&sb);
2596 		sbuf_delete(&sb);
2597 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2598 		PROC_LOCK(p);
2599 		if (error)
2600 			break;
2601 	}
2602 	_PRELE(p);
2603 	PROC_UNLOCK(p);
2604 	if (lwpidarray != NULL)
2605 		free(lwpidarray, M_TEMP);
2606 	stack_destroy(st);
2607 	free(kkstp, M_TEMP);
2608 	return (error);
2609 }
2610 #endif
2611 
2612 /*
2613  * This sysctl allows a process to retrieve the full list of groups from
2614  * itself or another process.
2615  */
2616 static int
2617 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2618 {
2619 	pid_t *pidp = (pid_t *)arg1;
2620 	unsigned int arglen = arg2;
2621 	struct proc *p;
2622 	struct ucred *cred;
2623 	int error;
2624 
2625 	if (arglen != 1)
2626 		return (EINVAL);
2627 	if (*pidp == -1) {	/* -1 means this process */
2628 		p = req->td->td_proc;
2629 		PROC_LOCK(p);
2630 	} else {
2631 		error = pget(*pidp, PGET_CANSEE, &p);
2632 		if (error != 0)
2633 			return (error);
2634 	}
2635 
2636 	cred = crhold(p->p_ucred);
2637 	PROC_UNLOCK(p);
2638 
2639 	error = SYSCTL_OUT(req, cred->cr_groups,
2640 	    cred->cr_ngroups * sizeof(gid_t));
2641 	crfree(cred);
2642 	return (error);
2643 }
2644 
2645 /*
2646  * This sysctl allows a process to retrieve or/and set the resource limit for
2647  * another process.
2648  */
2649 static int
2650 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2651 {
2652 	int *name = (int *)arg1;
2653 	u_int namelen = arg2;
2654 	struct rlimit rlim;
2655 	struct proc *p;
2656 	u_int which;
2657 	int flags, error;
2658 
2659 	if (namelen != 2)
2660 		return (EINVAL);
2661 
2662 	which = (u_int)name[1];
2663 	if (which >= RLIM_NLIMITS)
2664 		return (EINVAL);
2665 
2666 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2667 		return (EINVAL);
2668 
2669 	flags = PGET_HOLD | PGET_NOTWEXIT;
2670 	if (req->newptr != NULL)
2671 		flags |= PGET_CANDEBUG;
2672 	else
2673 		flags |= PGET_CANSEE;
2674 	error = pget((pid_t)name[0], flags, &p);
2675 	if (error != 0)
2676 		return (error);
2677 
2678 	/*
2679 	 * Retrieve limit.
2680 	 */
2681 	if (req->oldptr != NULL) {
2682 		PROC_LOCK(p);
2683 		lim_rlimit_proc(p, which, &rlim);
2684 		PROC_UNLOCK(p);
2685 	}
2686 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2687 	if (error != 0)
2688 		goto errout;
2689 
2690 	/*
2691 	 * Set limit.
2692 	 */
2693 	if (req->newptr != NULL) {
2694 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2695 		if (error == 0)
2696 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2697 	}
2698 
2699 errout:
2700 	PRELE(p);
2701 	return (error);
2702 }
2703 
2704 /*
2705  * This sysctl allows a process to retrieve ps_strings structure location of
2706  * another process.
2707  */
2708 static int
2709 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2710 {
2711 	int *name = (int *)arg1;
2712 	u_int namelen = arg2;
2713 	struct proc *p;
2714 	vm_offset_t ps_strings;
2715 	int error;
2716 #ifdef COMPAT_FREEBSD32
2717 	uint32_t ps_strings32;
2718 #endif
2719 
2720 	if (namelen != 1)
2721 		return (EINVAL);
2722 
2723 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2724 	if (error != 0)
2725 		return (error);
2726 #ifdef COMPAT_FREEBSD32
2727 	if ((req->flags & SCTL_MASK32) != 0) {
2728 		/*
2729 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2730 		 * process.
2731 		 */
2732 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2733 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2734 		PROC_UNLOCK(p);
2735 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2736 		return (error);
2737 	}
2738 #endif
2739 	ps_strings = p->p_sysent->sv_psstrings;
2740 	PROC_UNLOCK(p);
2741 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2742 	return (error);
2743 }
2744 
2745 /*
2746  * This sysctl allows a process to retrieve umask of another process.
2747  */
2748 static int
2749 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2750 {
2751 	int *name = (int *)arg1;
2752 	u_int namelen = arg2;
2753 	struct proc *p;
2754 	int error;
2755 	u_short fd_cmask;
2756 
2757 	if (namelen != 1)
2758 		return (EINVAL);
2759 
2760 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2761 	if (error != 0)
2762 		return (error);
2763 
2764 	FILEDESC_SLOCK(p->p_fd);
2765 	fd_cmask = p->p_fd->fd_cmask;
2766 	FILEDESC_SUNLOCK(p->p_fd);
2767 	PRELE(p);
2768 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2769 	return (error);
2770 }
2771 
2772 /*
2773  * This sysctl allows a process to set and retrieve binary osreldate of
2774  * another process.
2775  */
2776 static int
2777 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2778 {
2779 	int *name = (int *)arg1;
2780 	u_int namelen = arg2;
2781 	struct proc *p;
2782 	int flags, error, osrel;
2783 
2784 	if (namelen != 1)
2785 		return (EINVAL);
2786 
2787 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2788 		return (EINVAL);
2789 
2790 	flags = PGET_HOLD | PGET_NOTWEXIT;
2791 	if (req->newptr != NULL)
2792 		flags |= PGET_CANDEBUG;
2793 	else
2794 		flags |= PGET_CANSEE;
2795 	error = pget((pid_t)name[0], flags, &p);
2796 	if (error != 0)
2797 		return (error);
2798 
2799 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2800 	if (error != 0)
2801 		goto errout;
2802 
2803 	if (req->newptr != NULL) {
2804 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2805 		if (error != 0)
2806 			goto errout;
2807 		if (osrel < 0) {
2808 			error = EINVAL;
2809 			goto errout;
2810 		}
2811 		p->p_osrel = osrel;
2812 	}
2813 errout:
2814 	PRELE(p);
2815 	return (error);
2816 }
2817 
2818 static int
2819 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2820 {
2821 	int *name = (int *)arg1;
2822 	u_int namelen = arg2;
2823 	struct proc *p;
2824 	struct kinfo_sigtramp kst;
2825 	const struct sysentvec *sv;
2826 	int error;
2827 #ifdef COMPAT_FREEBSD32
2828 	struct kinfo_sigtramp32 kst32;
2829 #endif
2830 
2831 	if (namelen != 1)
2832 		return (EINVAL);
2833 
2834 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2835 	if (error != 0)
2836 		return (error);
2837 	sv = p->p_sysent;
2838 #ifdef COMPAT_FREEBSD32
2839 	if ((req->flags & SCTL_MASK32) != 0) {
2840 		bzero(&kst32, sizeof(kst32));
2841 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2842 			if (sv->sv_sigcode_base != 0) {
2843 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2844 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2845 				    *sv->sv_szsigcode;
2846 			} else {
2847 				kst32.ksigtramp_start = sv->sv_psstrings -
2848 				    *sv->sv_szsigcode;
2849 				kst32.ksigtramp_end = sv->sv_psstrings;
2850 			}
2851 		}
2852 		PROC_UNLOCK(p);
2853 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2854 		return (error);
2855 	}
2856 #endif
2857 	bzero(&kst, sizeof(kst));
2858 	if (sv->sv_sigcode_base != 0) {
2859 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2860 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2861 		    *sv->sv_szsigcode;
2862 	} else {
2863 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2864 		    *sv->sv_szsigcode;
2865 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2866 	}
2867 	PROC_UNLOCK(p);
2868 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2869 	return (error);
2870 }
2871 
2872 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2873 
2874 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2875 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2876 	"Return entire process table");
2877 
2878 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2879 	sysctl_kern_proc, "Process table");
2880 
2881 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2882 	sysctl_kern_proc, "Process table");
2883 
2884 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2885 	sysctl_kern_proc, "Process table");
2886 
2887 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2888 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2889 
2890 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2891 	sysctl_kern_proc, "Process table");
2892 
2893 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2894 	sysctl_kern_proc, "Process table");
2895 
2896 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2897 	sysctl_kern_proc, "Process table");
2898 
2899 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2900 	sysctl_kern_proc, "Process table");
2901 
2902 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2903 	sysctl_kern_proc, "Return process table, no threads");
2904 
2905 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2906 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2907 	sysctl_kern_proc_args, "Process argument list");
2908 
2909 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2910 	sysctl_kern_proc_env, "Process environment");
2911 
2912 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2913 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2914 
2915 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2916 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2917 
2918 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2919 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2920 	"Process syscall vector name (ABI type)");
2921 
2922 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2923 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2924 
2925 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2926 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2927 
2928 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2929 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2930 
2931 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2932 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2933 
2934 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2935 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2936 
2937 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2938 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2939 
2940 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2941 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2942 
2943 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2944 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2945 
2946 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2947 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2948 	"Return process table, no threads");
2949 
2950 #ifdef COMPAT_FREEBSD7
2951 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2952 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2953 #endif
2954 
2955 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2956 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2957 
2958 #if defined(STACK) || defined(DDB)
2959 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2960 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2961 #endif
2962 
2963 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2964 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2965 
2966 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2967 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2968 	"Process resource limits");
2969 
2970 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2971 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2972 	"Process ps_strings location");
2973 
2974 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2975 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2976 
2977 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2978 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2979 	"Process binary osreldate");
2980 
2981 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2982 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2983 	"Process signal trampoline location");
2984 
2985 int allproc_gen;
2986 
2987 /*
2988  * stop_all_proc() purpose is to stop all process which have usermode,
2989  * except current process for obvious reasons.  This makes it somewhat
2990  * unreliable when invoked from multithreaded process.  The service
2991  * must not be user-callable anyway.
2992  */
2993 void
2994 stop_all_proc(void)
2995 {
2996 	struct proc *cp, *p;
2997 	int r, gen;
2998 	bool restart, seen_stopped, seen_exiting, stopped_some;
2999 
3000 	cp = curproc;
3001 allproc_loop:
3002 	sx_xlock(&allproc_lock);
3003 	gen = allproc_gen;
3004 	seen_exiting = seen_stopped = stopped_some = restart = false;
3005 	LIST_REMOVE(cp, p_list);
3006 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3007 	for (;;) {
3008 		p = LIST_NEXT(cp, p_list);
3009 		if (p == NULL)
3010 			break;
3011 		LIST_REMOVE(cp, p_list);
3012 		LIST_INSERT_AFTER(p, cp, p_list);
3013 		PROC_LOCK(p);
3014 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3015 			PROC_UNLOCK(p);
3016 			continue;
3017 		}
3018 		if ((p->p_flag & P_WEXIT) != 0) {
3019 			seen_exiting = true;
3020 			PROC_UNLOCK(p);
3021 			continue;
3022 		}
3023 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3024 			/*
3025 			 * Stopped processes are tolerated when there
3026 			 * are no other processes which might continue
3027 			 * them.  P_STOPPED_SINGLE but not
3028 			 * P_TOTAL_STOP process still has at least one
3029 			 * thread running.
3030 			 */
3031 			seen_stopped = true;
3032 			PROC_UNLOCK(p);
3033 			continue;
3034 		}
3035 		_PHOLD(p);
3036 		sx_xunlock(&allproc_lock);
3037 		r = thread_single(p, SINGLE_ALLPROC);
3038 		if (r != 0)
3039 			restart = true;
3040 		else
3041 			stopped_some = true;
3042 		_PRELE(p);
3043 		PROC_UNLOCK(p);
3044 		sx_xlock(&allproc_lock);
3045 	}
3046 	/* Catch forked children we did not see in iteration. */
3047 	if (gen != allproc_gen)
3048 		restart = true;
3049 	sx_xunlock(&allproc_lock);
3050 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3051 		kern_yield(PRI_USER);
3052 		goto allproc_loop;
3053 	}
3054 }
3055 
3056 void
3057 resume_all_proc(void)
3058 {
3059 	struct proc *cp, *p;
3060 
3061 	cp = curproc;
3062 	sx_xlock(&allproc_lock);
3063 	LIST_REMOVE(cp, p_list);
3064 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3065 	for (;;) {
3066 		p = LIST_NEXT(cp, p_list);
3067 		if (p == NULL)
3068 			break;
3069 		LIST_REMOVE(cp, p_list);
3070 		LIST_INSERT_AFTER(p, cp, p_list);
3071 		PROC_LOCK(p);
3072 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3073 			sx_xunlock(&allproc_lock);
3074 			_PHOLD(p);
3075 			thread_single_end(p, SINGLE_ALLPROC);
3076 			_PRELE(p);
3077 			PROC_UNLOCK(p);
3078 			sx_xlock(&allproc_lock);
3079 		} else {
3080 			PROC_UNLOCK(p);
3081 		}
3082 	}
3083 	sx_xunlock(&allproc_lock);
3084 }
3085 
3086 /* #define	TOTAL_STOP_DEBUG	1 */
3087 #ifdef TOTAL_STOP_DEBUG
3088 volatile static int ap_resume;
3089 #include <sys/mount.h>
3090 
3091 static int
3092 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3093 {
3094 	int error, val;
3095 
3096 	val = 0;
3097 	ap_resume = 0;
3098 	error = sysctl_handle_int(oidp, &val, 0, req);
3099 	if (error != 0 || req->newptr == NULL)
3100 		return (error);
3101 	if (val != 0) {
3102 		stop_all_proc();
3103 		syncer_suspend();
3104 		while (ap_resume == 0)
3105 			;
3106 		syncer_resume();
3107 		resume_all_proc();
3108 	}
3109 	return (0);
3110 }
3111 
3112 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3113     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3114     sysctl_debug_stop_all_proc, "I",
3115     "");
3116 #endif
3117