1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mount.h> 49 #include <sys/mutex.h> 50 #include <sys/proc.h> 51 #include <sys/refcount.h> 52 #include <sys/sbuf.h> 53 #include <sys/sysent.h> 54 #include <sys/sched.h> 55 #include <sys/smp.h> 56 #include <sys/stack.h> 57 #include <sys/sysctl.h> 58 #include <sys/filedesc.h> 59 #include <sys/tty.h> 60 #include <sys/signalvar.h> 61 #include <sys/sdt.h> 62 #include <sys/sx.h> 63 #include <sys/user.h> 64 #include <sys/jail.h> 65 #include <sys/vnode.h> 66 #include <sys/eventhandler.h> 67 #ifdef KTRACE 68 #include <sys/uio.h> 69 #include <sys/ktrace.h> 70 #endif 71 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #endif 75 76 #include <vm/vm.h> 77 #include <vm/vm_extern.h> 78 #include <vm/pmap.h> 79 #include <vm/vm_map.h> 80 #include <vm/vm_object.h> 81 #include <vm/uma.h> 82 83 #ifdef COMPAT_FREEBSD32 84 #include <compat/freebsd32/freebsd32.h> 85 #include <compat/freebsd32/freebsd32_util.h> 86 #endif 87 88 SDT_PROVIDER_DEFINE(proc); 89 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 94 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 99 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 104 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 108 SDT_PROBE_DEFINE(proc, kernel, init, entry); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 112 SDT_PROBE_DEFINE(proc, kernel, init, return); 113 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 116 117 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 118 MALLOC_DEFINE(M_SESSION, "session", "session header"); 119 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 120 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 121 122 static void doenterpgrp(struct proc *, struct pgrp *); 123 static void orphanpg(struct pgrp *pg); 124 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 125 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 126 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 127 int preferthread); 128 static void pgadjustjobc(struct pgrp *pgrp, int entering); 129 static void pgdelete(struct pgrp *); 130 static int proc_ctor(void *mem, int size, void *arg, int flags); 131 static void proc_dtor(void *mem, int size, void *arg); 132 static int proc_init(void *mem, int size, int flags); 133 static void proc_fini(void *mem, int size); 134 static void pargs_free(struct pargs *pa); 135 136 /* 137 * Other process lists 138 */ 139 struct pidhashhead *pidhashtbl; 140 u_long pidhash; 141 struct pgrphashhead *pgrphashtbl; 142 u_long pgrphash; 143 struct proclist allproc; 144 struct proclist zombproc; 145 struct sx allproc_lock; 146 struct sx proctree_lock; 147 struct mtx ppeers_lock; 148 uma_zone_t proc_zone; 149 150 int kstack_pages = KSTACK_PAGES; 151 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 152 153 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 154 #ifdef COMPAT_FREEBSD32 155 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 156 #endif 157 158 /* 159 * Initialize global process hashing structures. 160 */ 161 void 162 procinit() 163 { 164 165 sx_init(&allproc_lock, "allproc"); 166 sx_init(&proctree_lock, "proctree"); 167 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 168 LIST_INIT(&allproc); 169 LIST_INIT(&zombproc); 170 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 171 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 172 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 173 proc_ctor, proc_dtor, proc_init, proc_fini, 174 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 175 uihashinit(); 176 } 177 178 /* 179 * Prepare a proc for use. 180 */ 181 static int 182 proc_ctor(void *mem, int size, void *arg, int flags) 183 { 184 struct proc *p; 185 186 p = (struct proc *)mem; 187 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 188 EVENTHANDLER_INVOKE(process_ctor, p); 189 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 190 return (0); 191 } 192 193 /* 194 * Reclaim a proc after use. 195 */ 196 static void 197 proc_dtor(void *mem, int size, void *arg) 198 { 199 struct proc *p; 200 struct thread *td; 201 202 /* INVARIANTS checks go here */ 203 p = (struct proc *)mem; 204 td = FIRST_THREAD_IN_PROC(p); 205 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 206 if (td != NULL) { 207 #ifdef INVARIANTS 208 KASSERT((p->p_numthreads == 1), 209 ("bad number of threads in exiting process")); 210 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 211 #endif 212 /* Free all OSD associated to this thread. */ 213 osd_thread_exit(td); 214 } 215 EVENTHANDLER_INVOKE(process_dtor, p); 216 if (p->p_ksi != NULL) 217 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 218 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 219 } 220 221 /* 222 * Initialize type-stable parts of a proc (when newly created). 223 */ 224 static int 225 proc_init(void *mem, int size, int flags) 226 { 227 struct proc *p; 228 229 p = (struct proc *)mem; 230 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 231 p->p_sched = (struct p_sched *)&p[1]; 232 bzero(&p->p_mtx, sizeof(struct mtx)); 233 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 234 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 235 cv_init(&p->p_pwait, "ppwait"); 236 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 237 EVENTHANDLER_INVOKE(process_init, p); 238 p->p_stats = pstats_alloc(); 239 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 240 return (0); 241 } 242 243 /* 244 * UMA should ensure that this function is never called. 245 * Freeing a proc structure would violate type stability. 246 */ 247 static void 248 proc_fini(void *mem, int size) 249 { 250 #ifdef notnow 251 struct proc *p; 252 253 p = (struct proc *)mem; 254 EVENTHANDLER_INVOKE(process_fini, p); 255 pstats_free(p->p_stats); 256 thread_free(FIRST_THREAD_IN_PROC(p)); 257 mtx_destroy(&p->p_mtx); 258 if (p->p_ksi != NULL) 259 ksiginfo_free(p->p_ksi); 260 #else 261 panic("proc reclaimed"); 262 #endif 263 } 264 265 /* 266 * Is p an inferior of the current process? 267 */ 268 int 269 inferior(p) 270 register struct proc *p; 271 { 272 273 sx_assert(&proctree_lock, SX_LOCKED); 274 for (; p != curproc; p = p->p_pptr) 275 if (p->p_pid == 0) 276 return (0); 277 return (1); 278 } 279 280 /* 281 * Locate a process by number; return only "live" processes -- i.e., neither 282 * zombies nor newly born but incompletely initialized processes. By not 283 * returning processes in the PRS_NEW state, we allow callers to avoid 284 * testing for that condition to avoid dereferencing p_ucred, et al. 285 */ 286 struct proc * 287 pfind(pid) 288 register pid_t pid; 289 { 290 register struct proc *p; 291 292 sx_slock(&allproc_lock); 293 LIST_FOREACH(p, PIDHASH(pid), p_hash) 294 if (p->p_pid == pid) { 295 if (p->p_state == PRS_NEW) { 296 p = NULL; 297 break; 298 } 299 PROC_LOCK(p); 300 break; 301 } 302 sx_sunlock(&allproc_lock); 303 return (p); 304 } 305 306 /* 307 * Locate a process group by number. 308 * The caller must hold proctree_lock. 309 */ 310 struct pgrp * 311 pgfind(pgid) 312 register pid_t pgid; 313 { 314 register struct pgrp *pgrp; 315 316 sx_assert(&proctree_lock, SX_LOCKED); 317 318 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 319 if (pgrp->pg_id == pgid) { 320 PGRP_LOCK(pgrp); 321 return (pgrp); 322 } 323 } 324 return (NULL); 325 } 326 327 /* 328 * Create a new process group. 329 * pgid must be equal to the pid of p. 330 * Begin a new session if required. 331 */ 332 int 333 enterpgrp(p, pgid, pgrp, sess) 334 register struct proc *p; 335 pid_t pgid; 336 struct pgrp *pgrp; 337 struct session *sess; 338 { 339 struct pgrp *pgrp2; 340 341 sx_assert(&proctree_lock, SX_XLOCKED); 342 343 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 344 KASSERT(p->p_pid == pgid, 345 ("enterpgrp: new pgrp and pid != pgid")); 346 347 pgrp2 = pgfind(pgid); 348 349 KASSERT(pgrp2 == NULL, 350 ("enterpgrp: pgrp with pgid exists")); 351 KASSERT(!SESS_LEADER(p), 352 ("enterpgrp: session leader attempted setpgrp")); 353 354 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 355 356 if (sess != NULL) { 357 /* 358 * new session 359 */ 360 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 361 PROC_LOCK(p); 362 p->p_flag &= ~P_CONTROLT; 363 PROC_UNLOCK(p); 364 PGRP_LOCK(pgrp); 365 sess->s_leader = p; 366 sess->s_sid = p->p_pid; 367 refcount_init(&sess->s_count, 1); 368 sess->s_ttyvp = NULL; 369 sess->s_ttydp = NULL; 370 sess->s_ttyp = NULL; 371 bcopy(p->p_session->s_login, sess->s_login, 372 sizeof(sess->s_login)); 373 pgrp->pg_session = sess; 374 KASSERT(p == curproc, 375 ("enterpgrp: mksession and p != curproc")); 376 } else { 377 pgrp->pg_session = p->p_session; 378 sess_hold(pgrp->pg_session); 379 PGRP_LOCK(pgrp); 380 } 381 pgrp->pg_id = pgid; 382 LIST_INIT(&pgrp->pg_members); 383 384 /* 385 * As we have an exclusive lock of proctree_lock, 386 * this should not deadlock. 387 */ 388 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 389 pgrp->pg_jobc = 0; 390 SLIST_INIT(&pgrp->pg_sigiolst); 391 PGRP_UNLOCK(pgrp); 392 393 doenterpgrp(p, pgrp); 394 395 return (0); 396 } 397 398 /* 399 * Move p to an existing process group 400 */ 401 int 402 enterthispgrp(p, pgrp) 403 register struct proc *p; 404 struct pgrp *pgrp; 405 { 406 407 sx_assert(&proctree_lock, SX_XLOCKED); 408 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 409 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 410 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 411 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 412 KASSERT(pgrp->pg_session == p->p_session, 413 ("%s: pgrp's session %p, p->p_session %p.\n", 414 __func__, 415 pgrp->pg_session, 416 p->p_session)); 417 KASSERT(pgrp != p->p_pgrp, 418 ("%s: p belongs to pgrp.", __func__)); 419 420 doenterpgrp(p, pgrp); 421 422 return (0); 423 } 424 425 /* 426 * Move p to a process group 427 */ 428 static void 429 doenterpgrp(p, pgrp) 430 struct proc *p; 431 struct pgrp *pgrp; 432 { 433 struct pgrp *savepgrp; 434 435 sx_assert(&proctree_lock, SX_XLOCKED); 436 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 437 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 438 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 439 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 440 441 savepgrp = p->p_pgrp; 442 443 /* 444 * Adjust eligibility of affected pgrps to participate in job control. 445 * Increment eligibility counts before decrementing, otherwise we 446 * could reach 0 spuriously during the first call. 447 */ 448 fixjobc(p, pgrp, 1); 449 fixjobc(p, p->p_pgrp, 0); 450 451 PGRP_LOCK(pgrp); 452 PGRP_LOCK(savepgrp); 453 PROC_LOCK(p); 454 LIST_REMOVE(p, p_pglist); 455 p->p_pgrp = pgrp; 456 PROC_UNLOCK(p); 457 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 458 PGRP_UNLOCK(savepgrp); 459 PGRP_UNLOCK(pgrp); 460 if (LIST_EMPTY(&savepgrp->pg_members)) 461 pgdelete(savepgrp); 462 } 463 464 /* 465 * remove process from process group 466 */ 467 int 468 leavepgrp(p) 469 register struct proc *p; 470 { 471 struct pgrp *savepgrp; 472 473 sx_assert(&proctree_lock, SX_XLOCKED); 474 savepgrp = p->p_pgrp; 475 PGRP_LOCK(savepgrp); 476 PROC_LOCK(p); 477 LIST_REMOVE(p, p_pglist); 478 p->p_pgrp = NULL; 479 PROC_UNLOCK(p); 480 PGRP_UNLOCK(savepgrp); 481 if (LIST_EMPTY(&savepgrp->pg_members)) 482 pgdelete(savepgrp); 483 return (0); 484 } 485 486 /* 487 * delete a process group 488 */ 489 static void 490 pgdelete(pgrp) 491 register struct pgrp *pgrp; 492 { 493 struct session *savesess; 494 struct tty *tp; 495 496 sx_assert(&proctree_lock, SX_XLOCKED); 497 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 498 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 499 500 /* 501 * Reset any sigio structures pointing to us as a result of 502 * F_SETOWN with our pgid. 503 */ 504 funsetownlst(&pgrp->pg_sigiolst); 505 506 PGRP_LOCK(pgrp); 507 tp = pgrp->pg_session->s_ttyp; 508 LIST_REMOVE(pgrp, pg_hash); 509 savesess = pgrp->pg_session; 510 PGRP_UNLOCK(pgrp); 511 512 /* Remove the reference to the pgrp before deallocating it. */ 513 if (tp != NULL) { 514 tty_lock(tp); 515 tty_rel_pgrp(tp, pgrp); 516 } 517 518 mtx_destroy(&pgrp->pg_mtx); 519 free(pgrp, M_PGRP); 520 sess_release(savesess); 521 } 522 523 static void 524 pgadjustjobc(pgrp, entering) 525 struct pgrp *pgrp; 526 int entering; 527 { 528 529 PGRP_LOCK(pgrp); 530 if (entering) 531 pgrp->pg_jobc++; 532 else { 533 --pgrp->pg_jobc; 534 if (pgrp->pg_jobc == 0) 535 orphanpg(pgrp); 536 } 537 PGRP_UNLOCK(pgrp); 538 } 539 540 /* 541 * Adjust pgrp jobc counters when specified process changes process group. 542 * We count the number of processes in each process group that "qualify" 543 * the group for terminal job control (those with a parent in a different 544 * process group of the same session). If that count reaches zero, the 545 * process group becomes orphaned. Check both the specified process' 546 * process group and that of its children. 547 * entering == 0 => p is leaving specified group. 548 * entering == 1 => p is entering specified group. 549 */ 550 void 551 fixjobc(p, pgrp, entering) 552 register struct proc *p; 553 register struct pgrp *pgrp; 554 int entering; 555 { 556 register struct pgrp *hispgrp; 557 register struct session *mysession; 558 559 sx_assert(&proctree_lock, SX_LOCKED); 560 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 561 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 562 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 563 564 /* 565 * Check p's parent to see whether p qualifies its own process 566 * group; if so, adjust count for p's process group. 567 */ 568 mysession = pgrp->pg_session; 569 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 570 hispgrp->pg_session == mysession) 571 pgadjustjobc(pgrp, entering); 572 573 /* 574 * Check this process' children to see whether they qualify 575 * their process groups; if so, adjust counts for children's 576 * process groups. 577 */ 578 LIST_FOREACH(p, &p->p_children, p_sibling) { 579 hispgrp = p->p_pgrp; 580 if (hispgrp == pgrp || 581 hispgrp->pg_session != mysession) 582 continue; 583 PROC_LOCK(p); 584 if (p->p_state == PRS_ZOMBIE) { 585 PROC_UNLOCK(p); 586 continue; 587 } 588 PROC_UNLOCK(p); 589 pgadjustjobc(hispgrp, entering); 590 } 591 } 592 593 /* 594 * A process group has become orphaned; 595 * if there are any stopped processes in the group, 596 * hang-up all process in that group. 597 */ 598 static void 599 orphanpg(pg) 600 struct pgrp *pg; 601 { 602 register struct proc *p; 603 604 PGRP_LOCK_ASSERT(pg, MA_OWNED); 605 606 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 607 PROC_LOCK(p); 608 if (P_SHOULDSTOP(p)) { 609 PROC_UNLOCK(p); 610 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 611 PROC_LOCK(p); 612 psignal(p, SIGHUP); 613 psignal(p, SIGCONT); 614 PROC_UNLOCK(p); 615 } 616 return; 617 } 618 PROC_UNLOCK(p); 619 } 620 } 621 622 void 623 sess_hold(struct session *s) 624 { 625 626 refcount_acquire(&s->s_count); 627 } 628 629 void 630 sess_release(struct session *s) 631 { 632 633 if (refcount_release(&s->s_count)) { 634 if (s->s_ttyp != NULL) { 635 tty_lock(s->s_ttyp); 636 tty_rel_sess(s->s_ttyp, s); 637 } 638 mtx_destroy(&s->s_mtx); 639 free(s, M_SESSION); 640 } 641 } 642 643 #include "opt_ddb.h" 644 #ifdef DDB 645 #include <ddb/ddb.h> 646 647 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 648 { 649 register struct pgrp *pgrp; 650 register struct proc *p; 651 register int i; 652 653 for (i = 0; i <= pgrphash; i++) { 654 if (!LIST_EMPTY(&pgrphashtbl[i])) { 655 printf("\tindx %d\n", i); 656 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 657 printf( 658 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 659 (void *)pgrp, (long)pgrp->pg_id, 660 (void *)pgrp->pg_session, 661 pgrp->pg_session->s_count, 662 (void *)LIST_FIRST(&pgrp->pg_members)); 663 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 664 printf("\t\tpid %ld addr %p pgrp %p\n", 665 (long)p->p_pid, (void *)p, 666 (void *)p->p_pgrp); 667 } 668 } 669 } 670 } 671 } 672 #endif /* DDB */ 673 674 /* 675 * Calculate the kinfo_proc members which contain process-wide 676 * informations. 677 * Must be called with the target process locked. 678 */ 679 static void 680 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 681 { 682 struct thread *td; 683 684 PROC_LOCK_ASSERT(p, MA_OWNED); 685 686 kp->ki_estcpu = 0; 687 kp->ki_pctcpu = 0; 688 FOREACH_THREAD_IN_PROC(p, td) { 689 thread_lock(td); 690 kp->ki_pctcpu += sched_pctcpu(td); 691 kp->ki_estcpu += td->td_estcpu; 692 thread_unlock(td); 693 } 694 } 695 696 /* 697 * Clear kinfo_proc and fill in any information that is common 698 * to all threads in the process. 699 * Must be called with the target process locked. 700 */ 701 static void 702 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 703 { 704 struct thread *td0; 705 struct tty *tp; 706 struct session *sp; 707 struct ucred *cred; 708 struct sigacts *ps; 709 710 PROC_LOCK_ASSERT(p, MA_OWNED); 711 bzero(kp, sizeof(*kp)); 712 713 kp->ki_structsize = sizeof(*kp); 714 kp->ki_paddr = p; 715 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 716 kp->ki_args = p->p_args; 717 kp->ki_textvp = p->p_textvp; 718 #ifdef KTRACE 719 kp->ki_tracep = p->p_tracevp; 720 mtx_lock(&ktrace_mtx); 721 kp->ki_traceflag = p->p_traceflag; 722 mtx_unlock(&ktrace_mtx); 723 #endif 724 kp->ki_fd = p->p_fd; 725 kp->ki_vmspace = p->p_vmspace; 726 kp->ki_flag = p->p_flag; 727 cred = p->p_ucred; 728 if (cred) { 729 kp->ki_uid = cred->cr_uid; 730 kp->ki_ruid = cred->cr_ruid; 731 kp->ki_svuid = cred->cr_svuid; 732 kp->ki_cr_flags = cred->cr_flags; 733 /* XXX bde doesn't like KI_NGROUPS */ 734 if (cred->cr_ngroups > KI_NGROUPS) { 735 kp->ki_ngroups = KI_NGROUPS; 736 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 737 } else 738 kp->ki_ngroups = cred->cr_ngroups; 739 bcopy(cred->cr_groups, kp->ki_groups, 740 kp->ki_ngroups * sizeof(gid_t)); 741 kp->ki_rgid = cred->cr_rgid; 742 kp->ki_svgid = cred->cr_svgid; 743 /* If jailed(cred), emulate the old P_JAILED flag. */ 744 if (jailed(cred)) { 745 kp->ki_flag |= P_JAILED; 746 /* If inside the jail, use 0 as a jail ID. */ 747 if (cred->cr_prison != curthread->td_ucred->cr_prison) 748 kp->ki_jid = cred->cr_prison->pr_id; 749 } 750 } 751 ps = p->p_sigacts; 752 if (ps) { 753 mtx_lock(&ps->ps_mtx); 754 kp->ki_sigignore = ps->ps_sigignore; 755 kp->ki_sigcatch = ps->ps_sigcatch; 756 mtx_unlock(&ps->ps_mtx); 757 } 758 PROC_SLOCK(p); 759 if (p->p_state != PRS_NEW && 760 p->p_state != PRS_ZOMBIE && 761 p->p_vmspace != NULL) { 762 struct vmspace *vm = p->p_vmspace; 763 764 kp->ki_size = vm->vm_map.size; 765 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 766 FOREACH_THREAD_IN_PROC(p, td0) { 767 if (!TD_IS_SWAPPED(td0)) 768 kp->ki_rssize += td0->td_kstack_pages; 769 } 770 kp->ki_swrss = vm->vm_swrss; 771 kp->ki_tsize = vm->vm_tsize; 772 kp->ki_dsize = vm->vm_dsize; 773 kp->ki_ssize = vm->vm_ssize; 774 } else if (p->p_state == PRS_ZOMBIE) 775 kp->ki_stat = SZOMB; 776 if (kp->ki_flag & P_INMEM) 777 kp->ki_sflag = PS_INMEM; 778 else 779 kp->ki_sflag = 0; 780 /* Calculate legacy swtime as seconds since 'swtick'. */ 781 kp->ki_swtime = (ticks - p->p_swtick) / hz; 782 kp->ki_pid = p->p_pid; 783 kp->ki_nice = p->p_nice; 784 rufetch(p, &kp->ki_rusage); 785 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 786 PROC_SUNLOCK(p); 787 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 788 kp->ki_start = p->p_stats->p_start; 789 timevaladd(&kp->ki_start, &boottime); 790 PROC_SLOCK(p); 791 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 792 PROC_SUNLOCK(p); 793 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 794 795 /* Some callers want child-times in a single value */ 796 kp->ki_childtime = kp->ki_childstime; 797 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 798 } 799 tp = NULL; 800 if (p->p_pgrp) { 801 kp->ki_pgid = p->p_pgrp->pg_id; 802 kp->ki_jobc = p->p_pgrp->pg_jobc; 803 sp = p->p_pgrp->pg_session; 804 805 if (sp != NULL) { 806 kp->ki_sid = sp->s_sid; 807 SESS_LOCK(sp); 808 strlcpy(kp->ki_login, sp->s_login, 809 sizeof(kp->ki_login)); 810 if (sp->s_ttyvp) 811 kp->ki_kiflag |= KI_CTTY; 812 if (SESS_LEADER(p)) 813 kp->ki_kiflag |= KI_SLEADER; 814 /* XXX proctree_lock */ 815 tp = sp->s_ttyp; 816 SESS_UNLOCK(sp); 817 } 818 } 819 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 820 kp->ki_tdev = tty_udev(tp); 821 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 822 if (tp->t_session) 823 kp->ki_tsid = tp->t_session->s_sid; 824 } else 825 kp->ki_tdev = NODEV; 826 if (p->p_comm[0] != '\0') 827 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 828 if (p->p_sysent && p->p_sysent->sv_name != NULL && 829 p->p_sysent->sv_name[0] != '\0') 830 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 831 kp->ki_siglist = p->p_siglist; 832 kp->ki_xstat = p->p_xstat; 833 kp->ki_acflag = p->p_acflag; 834 kp->ki_lock = p->p_lock; 835 if (p->p_pptr) 836 kp->ki_ppid = p->p_pptr->p_pid; 837 } 838 839 /* 840 * Fill in information that is thread specific. Must be called with 841 * target process locked. If 'preferthread' is set, overwrite certain 842 * process-related fields that are maintained for both threads and 843 * processes. 844 */ 845 static void 846 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 847 { 848 struct proc *p; 849 850 p = td->td_proc; 851 PROC_LOCK_ASSERT(p, MA_OWNED); 852 853 thread_lock(td); 854 if (td->td_wmesg != NULL) 855 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 856 else 857 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 858 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 859 if (TD_ON_LOCK(td)) { 860 kp->ki_kiflag |= KI_LOCKBLOCK; 861 strlcpy(kp->ki_lockname, td->td_lockname, 862 sizeof(kp->ki_lockname)); 863 } else { 864 kp->ki_kiflag &= ~KI_LOCKBLOCK; 865 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 866 } 867 868 if (p->p_state == PRS_NORMAL) { /* approximate. */ 869 if (TD_ON_RUNQ(td) || 870 TD_CAN_RUN(td) || 871 TD_IS_RUNNING(td)) { 872 kp->ki_stat = SRUN; 873 } else if (P_SHOULDSTOP(p)) { 874 kp->ki_stat = SSTOP; 875 } else if (TD_IS_SLEEPING(td)) { 876 kp->ki_stat = SSLEEP; 877 } else if (TD_ON_LOCK(td)) { 878 kp->ki_stat = SLOCK; 879 } else { 880 kp->ki_stat = SWAIT; 881 } 882 } else if (p->p_state == PRS_ZOMBIE) { 883 kp->ki_stat = SZOMB; 884 } else { 885 kp->ki_stat = SIDL; 886 } 887 888 /* Things in the thread */ 889 kp->ki_wchan = td->td_wchan; 890 kp->ki_pri.pri_level = td->td_priority; 891 kp->ki_pri.pri_native = td->td_base_pri; 892 kp->ki_lastcpu = td->td_lastcpu; 893 kp->ki_oncpu = td->td_oncpu; 894 kp->ki_tdflags = td->td_flags; 895 kp->ki_tid = td->td_tid; 896 kp->ki_numthreads = p->p_numthreads; 897 kp->ki_pcb = td->td_pcb; 898 kp->ki_kstack = (void *)td->td_kstack; 899 kp->ki_slptime = (ticks - td->td_slptick) / hz; 900 kp->ki_pri.pri_class = td->td_pri_class; 901 kp->ki_pri.pri_user = td->td_user_pri; 902 903 if (preferthread) { 904 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 905 kp->ki_pctcpu = sched_pctcpu(td); 906 kp->ki_estcpu = td->td_estcpu; 907 } 908 909 /* We can't get this anymore but ps etc never used it anyway. */ 910 kp->ki_rqindex = 0; 911 912 if (preferthread) 913 kp->ki_siglist = td->td_siglist; 914 kp->ki_sigmask = td->td_sigmask; 915 thread_unlock(td); 916 } 917 918 /* 919 * Fill in a kinfo_proc structure for the specified process. 920 * Must be called with the target process locked. 921 */ 922 void 923 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 924 { 925 926 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 927 928 fill_kinfo_proc_only(p, kp); 929 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 930 fill_kinfo_aggregate(p, kp); 931 } 932 933 struct pstats * 934 pstats_alloc(void) 935 { 936 937 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 938 } 939 940 /* 941 * Copy parts of p_stats; zero the rest of p_stats (statistics). 942 */ 943 void 944 pstats_fork(struct pstats *src, struct pstats *dst) 945 { 946 947 bzero(&dst->pstat_startzero, 948 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 949 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 950 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 951 } 952 953 void 954 pstats_free(struct pstats *ps) 955 { 956 957 free(ps, M_SUBPROC); 958 } 959 960 /* 961 * Locate a zombie process by number 962 */ 963 struct proc * 964 zpfind(pid_t pid) 965 { 966 struct proc *p; 967 968 sx_slock(&allproc_lock); 969 LIST_FOREACH(p, &zombproc, p_list) 970 if (p->p_pid == pid) { 971 PROC_LOCK(p); 972 break; 973 } 974 sx_sunlock(&allproc_lock); 975 return (p); 976 } 977 978 #define KERN_PROC_ZOMBMASK 0x3 979 #define KERN_PROC_NOTHREADS 0x4 980 981 #ifdef COMPAT_FREEBSD32 982 983 /* 984 * This function is typically used to copy out the kernel address, so 985 * it can be replaced by assignment of zero. 986 */ 987 static inline uint32_t 988 ptr32_trim(void *ptr) 989 { 990 uintptr_t uptr; 991 992 uptr = (uintptr_t)ptr; 993 return ((uptr > UINT_MAX) ? 0 : uptr); 994 } 995 996 #define PTRTRIM_CP(src,dst,fld) \ 997 do { (dst).fld = ptr32_trim((src).fld); } while (0) 998 999 static void 1000 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1001 { 1002 int i; 1003 1004 bzero(ki32, sizeof(struct kinfo_proc32)); 1005 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1006 CP(*ki, *ki32, ki_layout); 1007 PTRTRIM_CP(*ki, *ki32, ki_args); 1008 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1009 PTRTRIM_CP(*ki, *ki32, ki_addr); 1010 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1011 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1012 PTRTRIM_CP(*ki, *ki32, ki_fd); 1013 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1014 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1015 CP(*ki, *ki32, ki_pid); 1016 CP(*ki, *ki32, ki_ppid); 1017 CP(*ki, *ki32, ki_pgid); 1018 CP(*ki, *ki32, ki_tpgid); 1019 CP(*ki, *ki32, ki_sid); 1020 CP(*ki, *ki32, ki_tsid); 1021 CP(*ki, *ki32, ki_jobc); 1022 CP(*ki, *ki32, ki_tdev); 1023 CP(*ki, *ki32, ki_siglist); 1024 CP(*ki, *ki32, ki_sigmask); 1025 CP(*ki, *ki32, ki_sigignore); 1026 CP(*ki, *ki32, ki_sigcatch); 1027 CP(*ki, *ki32, ki_uid); 1028 CP(*ki, *ki32, ki_ruid); 1029 CP(*ki, *ki32, ki_svuid); 1030 CP(*ki, *ki32, ki_rgid); 1031 CP(*ki, *ki32, ki_svgid); 1032 CP(*ki, *ki32, ki_ngroups); 1033 for (i = 0; i < KI_NGROUPS; i++) 1034 CP(*ki, *ki32, ki_groups[i]); 1035 CP(*ki, *ki32, ki_size); 1036 CP(*ki, *ki32, ki_rssize); 1037 CP(*ki, *ki32, ki_swrss); 1038 CP(*ki, *ki32, ki_tsize); 1039 CP(*ki, *ki32, ki_dsize); 1040 CP(*ki, *ki32, ki_ssize); 1041 CP(*ki, *ki32, ki_xstat); 1042 CP(*ki, *ki32, ki_acflag); 1043 CP(*ki, *ki32, ki_pctcpu); 1044 CP(*ki, *ki32, ki_estcpu); 1045 CP(*ki, *ki32, ki_slptime); 1046 CP(*ki, *ki32, ki_swtime); 1047 CP(*ki, *ki32, ki_runtime); 1048 TV_CP(*ki, *ki32, ki_start); 1049 TV_CP(*ki, *ki32, ki_childtime); 1050 CP(*ki, *ki32, ki_flag); 1051 CP(*ki, *ki32, ki_kiflag); 1052 CP(*ki, *ki32, ki_traceflag); 1053 CP(*ki, *ki32, ki_stat); 1054 CP(*ki, *ki32, ki_nice); 1055 CP(*ki, *ki32, ki_lock); 1056 CP(*ki, *ki32, ki_rqindex); 1057 CP(*ki, *ki32, ki_oncpu); 1058 CP(*ki, *ki32, ki_lastcpu); 1059 bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1); 1060 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1061 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1062 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1063 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1064 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1065 CP(*ki, *ki32, ki_cr_flags); 1066 CP(*ki, *ki32, ki_jid); 1067 CP(*ki, *ki32, ki_numthreads); 1068 CP(*ki, *ki32, ki_tid); 1069 CP(*ki, *ki32, ki_pri); 1070 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1071 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1072 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1073 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1074 PTRTRIM_CP(*ki, *ki32, ki_udata); 1075 CP(*ki, *ki32, ki_sflag); 1076 CP(*ki, *ki32, ki_tdflags); 1077 } 1078 1079 static int 1080 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1081 { 1082 struct kinfo_proc32 ki32; 1083 int error; 1084 1085 if (req->flags & SCTL_MASK32) { 1086 freebsd32_kinfo_proc_out(ki, &ki32); 1087 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1088 } else 1089 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1090 return (error); 1091 } 1092 #else 1093 static int 1094 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1095 { 1096 1097 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1098 } 1099 #endif 1100 1101 /* 1102 * Must be called with the process locked and will return with it unlocked. 1103 */ 1104 static int 1105 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1106 { 1107 struct thread *td; 1108 struct kinfo_proc kinfo_proc; 1109 int error = 0; 1110 struct proc *np; 1111 pid_t pid = p->p_pid; 1112 1113 PROC_LOCK_ASSERT(p, MA_OWNED); 1114 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1115 1116 fill_kinfo_proc(p, &kinfo_proc); 1117 if (flags & KERN_PROC_NOTHREADS) 1118 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1119 else { 1120 FOREACH_THREAD_IN_PROC(p, td) { 1121 fill_kinfo_thread(td, &kinfo_proc, 1); 1122 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1123 if (error) 1124 break; 1125 } 1126 } 1127 PROC_UNLOCK(p); 1128 if (error) 1129 return (error); 1130 if (flags & KERN_PROC_ZOMBMASK) 1131 np = zpfind(pid); 1132 else { 1133 if (pid == 0) 1134 return (0); 1135 np = pfind(pid); 1136 } 1137 if (np == NULL) 1138 return (ESRCH); 1139 if (np != p) { 1140 PROC_UNLOCK(np); 1141 return (ESRCH); 1142 } 1143 PROC_UNLOCK(np); 1144 return (0); 1145 } 1146 1147 static int 1148 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1149 { 1150 int *name = (int*) arg1; 1151 u_int namelen = arg2; 1152 struct proc *p; 1153 int flags, doingzomb, oid_number; 1154 int error = 0; 1155 1156 oid_number = oidp->oid_number; 1157 if (oid_number != KERN_PROC_ALL && 1158 (oid_number & KERN_PROC_INC_THREAD) == 0) 1159 flags = KERN_PROC_NOTHREADS; 1160 else { 1161 flags = 0; 1162 oid_number &= ~KERN_PROC_INC_THREAD; 1163 } 1164 if (oid_number == KERN_PROC_PID) { 1165 if (namelen != 1) 1166 return (EINVAL); 1167 error = sysctl_wire_old_buffer(req, 0); 1168 if (error) 1169 return (error); 1170 p = pfind((pid_t)name[0]); 1171 if (!p) 1172 return (ESRCH); 1173 if ((error = p_cansee(curthread, p))) { 1174 PROC_UNLOCK(p); 1175 return (error); 1176 } 1177 error = sysctl_out_proc(p, req, flags); 1178 return (error); 1179 } 1180 1181 switch (oid_number) { 1182 case KERN_PROC_ALL: 1183 if (namelen != 0) 1184 return (EINVAL); 1185 break; 1186 case KERN_PROC_PROC: 1187 if (namelen != 0 && namelen != 1) 1188 return (EINVAL); 1189 break; 1190 default: 1191 if (namelen != 1) 1192 return (EINVAL); 1193 break; 1194 } 1195 1196 if (!req->oldptr) { 1197 /* overestimate by 5 procs */ 1198 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1199 if (error) 1200 return (error); 1201 } 1202 error = sysctl_wire_old_buffer(req, 0); 1203 if (error != 0) 1204 return (error); 1205 sx_slock(&allproc_lock); 1206 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1207 if (!doingzomb) 1208 p = LIST_FIRST(&allproc); 1209 else 1210 p = LIST_FIRST(&zombproc); 1211 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1212 /* 1213 * Skip embryonic processes. 1214 */ 1215 PROC_SLOCK(p); 1216 if (p->p_state == PRS_NEW) { 1217 PROC_SUNLOCK(p); 1218 continue; 1219 } 1220 PROC_SUNLOCK(p); 1221 PROC_LOCK(p); 1222 KASSERT(p->p_ucred != NULL, 1223 ("process credential is NULL for non-NEW proc")); 1224 /* 1225 * Show a user only appropriate processes. 1226 */ 1227 if (p_cansee(curthread, p)) { 1228 PROC_UNLOCK(p); 1229 continue; 1230 } 1231 /* 1232 * TODO - make more efficient (see notes below). 1233 * do by session. 1234 */ 1235 switch (oid_number) { 1236 1237 case KERN_PROC_GID: 1238 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1239 PROC_UNLOCK(p); 1240 continue; 1241 } 1242 break; 1243 1244 case KERN_PROC_PGRP: 1245 /* could do this by traversing pgrp */ 1246 if (p->p_pgrp == NULL || 1247 p->p_pgrp->pg_id != (pid_t)name[0]) { 1248 PROC_UNLOCK(p); 1249 continue; 1250 } 1251 break; 1252 1253 case KERN_PROC_RGID: 1254 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1255 PROC_UNLOCK(p); 1256 continue; 1257 } 1258 break; 1259 1260 case KERN_PROC_SESSION: 1261 if (p->p_session == NULL || 1262 p->p_session->s_sid != (pid_t)name[0]) { 1263 PROC_UNLOCK(p); 1264 continue; 1265 } 1266 break; 1267 1268 case KERN_PROC_TTY: 1269 if ((p->p_flag & P_CONTROLT) == 0 || 1270 p->p_session == NULL) { 1271 PROC_UNLOCK(p); 1272 continue; 1273 } 1274 /* XXX proctree_lock */ 1275 SESS_LOCK(p->p_session); 1276 if (p->p_session->s_ttyp == NULL || 1277 tty_udev(p->p_session->s_ttyp) != 1278 (dev_t)name[0]) { 1279 SESS_UNLOCK(p->p_session); 1280 PROC_UNLOCK(p); 1281 continue; 1282 } 1283 SESS_UNLOCK(p->p_session); 1284 break; 1285 1286 case KERN_PROC_UID: 1287 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1288 PROC_UNLOCK(p); 1289 continue; 1290 } 1291 break; 1292 1293 case KERN_PROC_RUID: 1294 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1295 PROC_UNLOCK(p); 1296 continue; 1297 } 1298 break; 1299 1300 case KERN_PROC_PROC: 1301 break; 1302 1303 default: 1304 break; 1305 1306 } 1307 1308 error = sysctl_out_proc(p, req, flags | doingzomb); 1309 if (error) { 1310 sx_sunlock(&allproc_lock); 1311 return (error); 1312 } 1313 } 1314 } 1315 sx_sunlock(&allproc_lock); 1316 return (0); 1317 } 1318 1319 struct pargs * 1320 pargs_alloc(int len) 1321 { 1322 struct pargs *pa; 1323 1324 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1325 M_WAITOK); 1326 refcount_init(&pa->ar_ref, 1); 1327 pa->ar_length = len; 1328 return (pa); 1329 } 1330 1331 static void 1332 pargs_free(struct pargs *pa) 1333 { 1334 1335 free(pa, M_PARGS); 1336 } 1337 1338 void 1339 pargs_hold(struct pargs *pa) 1340 { 1341 1342 if (pa == NULL) 1343 return; 1344 refcount_acquire(&pa->ar_ref); 1345 } 1346 1347 void 1348 pargs_drop(struct pargs *pa) 1349 { 1350 1351 if (pa == NULL) 1352 return; 1353 if (refcount_release(&pa->ar_ref)) 1354 pargs_free(pa); 1355 } 1356 1357 /* 1358 * This sysctl allows a process to retrieve the argument list or process 1359 * title for another process without groping around in the address space 1360 * of the other process. It also allow a process to set its own "process 1361 * title to a string of its own choice. 1362 */ 1363 static int 1364 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1365 { 1366 int *name = (int*) arg1; 1367 u_int namelen = arg2; 1368 struct pargs *newpa, *pa; 1369 struct proc *p; 1370 int error = 0; 1371 1372 if (namelen != 1) 1373 return (EINVAL); 1374 1375 p = pfind((pid_t)name[0]); 1376 if (!p) 1377 return (ESRCH); 1378 1379 if ((error = p_cansee(curthread, p)) != 0) { 1380 PROC_UNLOCK(p); 1381 return (error); 1382 } 1383 1384 if (req->newptr && curproc != p) { 1385 PROC_UNLOCK(p); 1386 return (EPERM); 1387 } 1388 1389 pa = p->p_args; 1390 pargs_hold(pa); 1391 PROC_UNLOCK(p); 1392 if (req->oldptr != NULL && pa != NULL) 1393 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1394 pargs_drop(pa); 1395 if (error != 0 || req->newptr == NULL) 1396 return (error); 1397 1398 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1399 return (ENOMEM); 1400 newpa = pargs_alloc(req->newlen); 1401 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1402 if (error != 0) { 1403 pargs_free(newpa); 1404 return (error); 1405 } 1406 PROC_LOCK(p); 1407 pa = p->p_args; 1408 p->p_args = newpa; 1409 PROC_UNLOCK(p); 1410 pargs_drop(pa); 1411 return (0); 1412 } 1413 1414 /* 1415 * This sysctl allows a process to retrieve the path of the executable for 1416 * itself or another process. 1417 */ 1418 static int 1419 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1420 { 1421 pid_t *pidp = (pid_t *)arg1; 1422 unsigned int arglen = arg2; 1423 struct proc *p; 1424 struct vnode *vp; 1425 char *retbuf, *freebuf; 1426 int error, vfslocked; 1427 1428 if (arglen != 1) 1429 return (EINVAL); 1430 if (*pidp == -1) { /* -1 means this process */ 1431 p = req->td->td_proc; 1432 } else { 1433 p = pfind(*pidp); 1434 if (p == NULL) 1435 return (ESRCH); 1436 if ((error = p_cansee(curthread, p)) != 0) { 1437 PROC_UNLOCK(p); 1438 return (error); 1439 } 1440 } 1441 1442 vp = p->p_textvp; 1443 if (vp == NULL) { 1444 if (*pidp != -1) 1445 PROC_UNLOCK(p); 1446 return (0); 1447 } 1448 vref(vp); 1449 if (*pidp != -1) 1450 PROC_UNLOCK(p); 1451 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1452 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1453 vrele(vp); 1454 VFS_UNLOCK_GIANT(vfslocked); 1455 if (error) 1456 return (error); 1457 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1458 free(freebuf, M_TEMP); 1459 return (error); 1460 } 1461 1462 static int 1463 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1464 { 1465 struct proc *p; 1466 char *sv_name; 1467 int *name; 1468 int namelen; 1469 int error; 1470 1471 namelen = arg2; 1472 if (namelen != 1) 1473 return (EINVAL); 1474 1475 name = (int *)arg1; 1476 if ((p = pfind((pid_t)name[0])) == NULL) 1477 return (ESRCH); 1478 if ((error = p_cansee(curthread, p))) { 1479 PROC_UNLOCK(p); 1480 return (error); 1481 } 1482 sv_name = p->p_sysent->sv_name; 1483 PROC_UNLOCK(p); 1484 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1485 } 1486 1487 #ifdef KINFO_OVMENTRY_SIZE 1488 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1489 #endif 1490 1491 #ifdef COMPAT_FREEBSD7 1492 static int 1493 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1494 { 1495 vm_map_entry_t entry, tmp_entry; 1496 unsigned int last_timestamp; 1497 char *fullpath, *freepath; 1498 struct kinfo_ovmentry *kve; 1499 struct vattr va; 1500 struct ucred *cred; 1501 int error, *name; 1502 struct vnode *vp; 1503 struct proc *p; 1504 vm_map_t map; 1505 struct vmspace *vm; 1506 1507 name = (int *)arg1; 1508 if ((p = pfind((pid_t)name[0])) == NULL) 1509 return (ESRCH); 1510 if (p->p_flag & P_WEXIT) { 1511 PROC_UNLOCK(p); 1512 return (ESRCH); 1513 } 1514 if ((error = p_candebug(curthread, p))) { 1515 PROC_UNLOCK(p); 1516 return (error); 1517 } 1518 _PHOLD(p); 1519 PROC_UNLOCK(p); 1520 vm = vmspace_acquire_ref(p); 1521 if (vm == NULL) { 1522 PRELE(p); 1523 return (ESRCH); 1524 } 1525 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1526 1527 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1528 vm_map_lock_read(map); 1529 for (entry = map->header.next; entry != &map->header; 1530 entry = entry->next) { 1531 vm_object_t obj, tobj, lobj; 1532 vm_offset_t addr; 1533 int vfslocked; 1534 1535 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1536 continue; 1537 1538 bzero(kve, sizeof(*kve)); 1539 kve->kve_structsize = sizeof(*kve); 1540 1541 kve->kve_private_resident = 0; 1542 obj = entry->object.vm_object; 1543 if (obj != NULL) { 1544 VM_OBJECT_LOCK(obj); 1545 if (obj->shadow_count == 1) 1546 kve->kve_private_resident = 1547 obj->resident_page_count; 1548 } 1549 kve->kve_resident = 0; 1550 addr = entry->start; 1551 while (addr < entry->end) { 1552 if (pmap_extract(map->pmap, addr)) 1553 kve->kve_resident++; 1554 addr += PAGE_SIZE; 1555 } 1556 1557 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1558 if (tobj != obj) 1559 VM_OBJECT_LOCK(tobj); 1560 if (lobj != obj) 1561 VM_OBJECT_UNLOCK(lobj); 1562 lobj = tobj; 1563 } 1564 1565 kve->kve_start = (void*)entry->start; 1566 kve->kve_end = (void*)entry->end; 1567 kve->kve_offset = (off_t)entry->offset; 1568 1569 if (entry->protection & VM_PROT_READ) 1570 kve->kve_protection |= KVME_PROT_READ; 1571 if (entry->protection & VM_PROT_WRITE) 1572 kve->kve_protection |= KVME_PROT_WRITE; 1573 if (entry->protection & VM_PROT_EXECUTE) 1574 kve->kve_protection |= KVME_PROT_EXEC; 1575 1576 if (entry->eflags & MAP_ENTRY_COW) 1577 kve->kve_flags |= KVME_FLAG_COW; 1578 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1579 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1580 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1581 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1582 1583 last_timestamp = map->timestamp; 1584 vm_map_unlock_read(map); 1585 1586 kve->kve_fileid = 0; 1587 kve->kve_fsid = 0; 1588 freepath = NULL; 1589 fullpath = ""; 1590 if (lobj) { 1591 vp = NULL; 1592 switch (lobj->type) { 1593 case OBJT_DEFAULT: 1594 kve->kve_type = KVME_TYPE_DEFAULT; 1595 break; 1596 case OBJT_VNODE: 1597 kve->kve_type = KVME_TYPE_VNODE; 1598 vp = lobj->handle; 1599 vref(vp); 1600 break; 1601 case OBJT_SWAP: 1602 kve->kve_type = KVME_TYPE_SWAP; 1603 break; 1604 case OBJT_DEVICE: 1605 kve->kve_type = KVME_TYPE_DEVICE; 1606 break; 1607 case OBJT_PHYS: 1608 kve->kve_type = KVME_TYPE_PHYS; 1609 break; 1610 case OBJT_DEAD: 1611 kve->kve_type = KVME_TYPE_DEAD; 1612 break; 1613 case OBJT_SG: 1614 kve->kve_type = KVME_TYPE_SG; 1615 break; 1616 default: 1617 kve->kve_type = KVME_TYPE_UNKNOWN; 1618 break; 1619 } 1620 if (lobj != obj) 1621 VM_OBJECT_UNLOCK(lobj); 1622 1623 kve->kve_ref_count = obj->ref_count; 1624 kve->kve_shadow_count = obj->shadow_count; 1625 VM_OBJECT_UNLOCK(obj); 1626 if (vp != NULL) { 1627 vn_fullpath(curthread, vp, &fullpath, 1628 &freepath); 1629 cred = curthread->td_ucred; 1630 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1631 vn_lock(vp, LK_SHARED | LK_RETRY); 1632 if (VOP_GETATTR(vp, &va, cred) == 0) { 1633 kve->kve_fileid = va.va_fileid; 1634 kve->kve_fsid = va.va_fsid; 1635 } 1636 vput(vp); 1637 VFS_UNLOCK_GIANT(vfslocked); 1638 } 1639 } else { 1640 kve->kve_type = KVME_TYPE_NONE; 1641 kve->kve_ref_count = 0; 1642 kve->kve_shadow_count = 0; 1643 } 1644 1645 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1646 if (freepath != NULL) 1647 free(freepath, M_TEMP); 1648 1649 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1650 vm_map_lock_read(map); 1651 if (error) 1652 break; 1653 if (last_timestamp != map->timestamp) { 1654 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1655 entry = tmp_entry; 1656 } 1657 } 1658 vm_map_unlock_read(map); 1659 vmspace_free(vm); 1660 PRELE(p); 1661 free(kve, M_TEMP); 1662 return (error); 1663 } 1664 #endif /* COMPAT_FREEBSD7 */ 1665 1666 #ifdef KINFO_VMENTRY_SIZE 1667 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1668 #endif 1669 1670 static int 1671 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1672 { 1673 vm_map_entry_t entry, tmp_entry; 1674 unsigned int last_timestamp; 1675 char *fullpath, *freepath; 1676 struct kinfo_vmentry *kve; 1677 struct vattr va; 1678 struct ucred *cred; 1679 int error, *name; 1680 struct vnode *vp; 1681 struct proc *p; 1682 struct vmspace *vm; 1683 vm_map_t map; 1684 1685 name = (int *)arg1; 1686 if ((p = pfind((pid_t)name[0])) == NULL) 1687 return (ESRCH); 1688 if (p->p_flag & P_WEXIT) { 1689 PROC_UNLOCK(p); 1690 return (ESRCH); 1691 } 1692 if ((error = p_candebug(curthread, p))) { 1693 PROC_UNLOCK(p); 1694 return (error); 1695 } 1696 _PHOLD(p); 1697 PROC_UNLOCK(p); 1698 vm = vmspace_acquire_ref(p); 1699 if (vm == NULL) { 1700 PRELE(p); 1701 return (ESRCH); 1702 } 1703 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1704 1705 map = &vm->vm_map; /* XXXRW: More locking required? */ 1706 vm_map_lock_read(map); 1707 for (entry = map->header.next; entry != &map->header; 1708 entry = entry->next) { 1709 vm_object_t obj, tobj, lobj; 1710 vm_offset_t addr; 1711 int vfslocked; 1712 1713 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1714 continue; 1715 1716 bzero(kve, sizeof(*kve)); 1717 1718 kve->kve_private_resident = 0; 1719 obj = entry->object.vm_object; 1720 if (obj != NULL) { 1721 VM_OBJECT_LOCK(obj); 1722 if (obj->shadow_count == 1) 1723 kve->kve_private_resident = 1724 obj->resident_page_count; 1725 } 1726 kve->kve_resident = 0; 1727 addr = entry->start; 1728 while (addr < entry->end) { 1729 if (pmap_extract(map->pmap, addr)) 1730 kve->kve_resident++; 1731 addr += PAGE_SIZE; 1732 } 1733 1734 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1735 if (tobj != obj) 1736 VM_OBJECT_LOCK(tobj); 1737 if (lobj != obj) 1738 VM_OBJECT_UNLOCK(lobj); 1739 lobj = tobj; 1740 } 1741 1742 kve->kve_start = entry->start; 1743 kve->kve_end = entry->end; 1744 kve->kve_offset = entry->offset; 1745 1746 if (entry->protection & VM_PROT_READ) 1747 kve->kve_protection |= KVME_PROT_READ; 1748 if (entry->protection & VM_PROT_WRITE) 1749 kve->kve_protection |= KVME_PROT_WRITE; 1750 if (entry->protection & VM_PROT_EXECUTE) 1751 kve->kve_protection |= KVME_PROT_EXEC; 1752 1753 if (entry->eflags & MAP_ENTRY_COW) 1754 kve->kve_flags |= KVME_FLAG_COW; 1755 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1756 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1757 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1758 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1759 1760 last_timestamp = map->timestamp; 1761 vm_map_unlock_read(map); 1762 1763 kve->kve_fileid = 0; 1764 kve->kve_fsid = 0; 1765 freepath = NULL; 1766 fullpath = ""; 1767 if (lobj) { 1768 vp = NULL; 1769 switch (lobj->type) { 1770 case OBJT_DEFAULT: 1771 kve->kve_type = KVME_TYPE_DEFAULT; 1772 break; 1773 case OBJT_VNODE: 1774 kve->kve_type = KVME_TYPE_VNODE; 1775 vp = lobj->handle; 1776 vref(vp); 1777 break; 1778 case OBJT_SWAP: 1779 kve->kve_type = KVME_TYPE_SWAP; 1780 break; 1781 case OBJT_DEVICE: 1782 kve->kve_type = KVME_TYPE_DEVICE; 1783 break; 1784 case OBJT_PHYS: 1785 kve->kve_type = KVME_TYPE_PHYS; 1786 break; 1787 case OBJT_DEAD: 1788 kve->kve_type = KVME_TYPE_DEAD; 1789 break; 1790 case OBJT_SG: 1791 kve->kve_type = KVME_TYPE_SG; 1792 break; 1793 default: 1794 kve->kve_type = KVME_TYPE_UNKNOWN; 1795 break; 1796 } 1797 if (lobj != obj) 1798 VM_OBJECT_UNLOCK(lobj); 1799 1800 kve->kve_ref_count = obj->ref_count; 1801 kve->kve_shadow_count = obj->shadow_count; 1802 VM_OBJECT_UNLOCK(obj); 1803 if (vp != NULL) { 1804 vn_fullpath(curthread, vp, &fullpath, 1805 &freepath); 1806 cred = curthread->td_ucred; 1807 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1808 vn_lock(vp, LK_SHARED | LK_RETRY); 1809 if (VOP_GETATTR(vp, &va, cred) == 0) { 1810 kve->kve_fileid = va.va_fileid; 1811 kve->kve_fsid = va.va_fsid; 1812 } 1813 vput(vp); 1814 VFS_UNLOCK_GIANT(vfslocked); 1815 } 1816 } else { 1817 kve->kve_type = KVME_TYPE_NONE; 1818 kve->kve_ref_count = 0; 1819 kve->kve_shadow_count = 0; 1820 } 1821 1822 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1823 if (freepath != NULL) 1824 free(freepath, M_TEMP); 1825 1826 /* Pack record size down */ 1827 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1828 strlen(kve->kve_path) + 1; 1829 kve->kve_structsize = roundup(kve->kve_structsize, 1830 sizeof(uint64_t)); 1831 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1832 vm_map_lock_read(map); 1833 if (error) 1834 break; 1835 if (last_timestamp != map->timestamp) { 1836 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1837 entry = tmp_entry; 1838 } 1839 } 1840 vm_map_unlock_read(map); 1841 vmspace_free(vm); 1842 PRELE(p); 1843 free(kve, M_TEMP); 1844 return (error); 1845 } 1846 1847 #if defined(STACK) || defined(DDB) 1848 static int 1849 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1850 { 1851 struct kinfo_kstack *kkstp; 1852 int error, i, *name, numthreads; 1853 lwpid_t *lwpidarray; 1854 struct thread *td; 1855 struct stack *st; 1856 struct sbuf sb; 1857 struct proc *p; 1858 1859 name = (int *)arg1; 1860 if ((p = pfind((pid_t)name[0])) == NULL) 1861 return (ESRCH); 1862 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1863 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1864 PROC_UNLOCK(p); 1865 return (ESRCH); 1866 } 1867 if ((error = p_candebug(curthread, p))) { 1868 PROC_UNLOCK(p); 1869 return (error); 1870 } 1871 _PHOLD(p); 1872 PROC_UNLOCK(p); 1873 1874 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1875 st = stack_create(); 1876 1877 lwpidarray = NULL; 1878 numthreads = 0; 1879 PROC_LOCK(p); 1880 repeat: 1881 if (numthreads < p->p_numthreads) { 1882 if (lwpidarray != NULL) { 1883 free(lwpidarray, M_TEMP); 1884 lwpidarray = NULL; 1885 } 1886 numthreads = p->p_numthreads; 1887 PROC_UNLOCK(p); 1888 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1889 M_WAITOK | M_ZERO); 1890 PROC_LOCK(p); 1891 goto repeat; 1892 } 1893 i = 0; 1894 1895 /* 1896 * XXXRW: During the below loop, execve(2) and countless other sorts 1897 * of changes could have taken place. Should we check to see if the 1898 * vmspace has been replaced, or the like, in order to prevent 1899 * giving a snapshot that spans, say, execve(2), with some threads 1900 * before and some after? Among other things, the credentials could 1901 * have changed, in which case the right to extract debug info might 1902 * no longer be assured. 1903 */ 1904 FOREACH_THREAD_IN_PROC(p, td) { 1905 KASSERT(i < numthreads, 1906 ("sysctl_kern_proc_kstack: numthreads")); 1907 lwpidarray[i] = td->td_tid; 1908 i++; 1909 } 1910 numthreads = i; 1911 for (i = 0; i < numthreads; i++) { 1912 td = thread_find(p, lwpidarray[i]); 1913 if (td == NULL) { 1914 continue; 1915 } 1916 bzero(kkstp, sizeof(*kkstp)); 1917 (void)sbuf_new(&sb, kkstp->kkst_trace, 1918 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1919 thread_lock(td); 1920 kkstp->kkst_tid = td->td_tid; 1921 if (TD_IS_SWAPPED(td)) 1922 kkstp->kkst_state = KKST_STATE_SWAPPED; 1923 else if (TD_IS_RUNNING(td)) 1924 kkstp->kkst_state = KKST_STATE_RUNNING; 1925 else { 1926 kkstp->kkst_state = KKST_STATE_STACKOK; 1927 stack_save_td(st, td); 1928 } 1929 thread_unlock(td); 1930 PROC_UNLOCK(p); 1931 stack_sbuf_print(&sb, st); 1932 sbuf_finish(&sb); 1933 sbuf_delete(&sb); 1934 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1935 PROC_LOCK(p); 1936 if (error) 1937 break; 1938 } 1939 _PRELE(p); 1940 PROC_UNLOCK(p); 1941 if (lwpidarray != NULL) 1942 free(lwpidarray, M_TEMP); 1943 stack_destroy(st); 1944 free(kkstp, M_TEMP); 1945 return (error); 1946 } 1947 #endif 1948 1949 /* 1950 * This sysctl allows a process to retrieve the full list of groups from 1951 * itself or another process. 1952 */ 1953 static int 1954 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 1955 { 1956 pid_t *pidp = (pid_t *)arg1; 1957 unsigned int arglen = arg2; 1958 struct proc *p; 1959 struct ucred *cred; 1960 int error; 1961 1962 if (arglen != 1) 1963 return (EINVAL); 1964 if (*pidp == -1) { /* -1 means this process */ 1965 p = req->td->td_proc; 1966 } else { 1967 p = pfind(*pidp); 1968 if (p == NULL) 1969 return (ESRCH); 1970 if ((error = p_cansee(curthread, p)) != 0) { 1971 PROC_UNLOCK(p); 1972 return (error); 1973 } 1974 } 1975 1976 cred = crhold(p->p_ucred); 1977 if (*pidp != -1) 1978 PROC_UNLOCK(p); 1979 1980 error = SYSCTL_OUT(req, cred->cr_groups, 1981 cred->cr_ngroups * sizeof(gid_t)); 1982 crfree(cred); 1983 return (error); 1984 } 1985 1986 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1987 1988 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1989 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1990 "Return entire process table"); 1991 1992 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1993 sysctl_kern_proc, "Process table"); 1994 1995 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1996 sysctl_kern_proc, "Process table"); 1997 1998 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1999 sysctl_kern_proc, "Process table"); 2000 2001 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2002 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2003 2004 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2005 sysctl_kern_proc, "Process table"); 2006 2007 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2008 sysctl_kern_proc, "Process table"); 2009 2010 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2011 sysctl_kern_proc, "Process table"); 2012 2013 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2014 sysctl_kern_proc, "Process table"); 2015 2016 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2017 sysctl_kern_proc, "Return process table, no threads"); 2018 2019 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2020 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2021 sysctl_kern_proc_args, "Process argument list"); 2022 2023 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2024 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2025 2026 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2027 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2028 "Process syscall vector name (ABI type)"); 2029 2030 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2031 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2032 2033 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2034 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2035 2036 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2037 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2038 2039 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2040 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2041 2042 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2043 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2044 2045 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2046 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2047 2048 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2049 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2050 2051 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2052 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2053 2054 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2055 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2056 "Return process table, no threads"); 2057 2058 #ifdef COMPAT_FREEBSD7 2059 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2060 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2061 #endif 2062 2063 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2064 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2065 2066 #if defined(STACK) || defined(DDB) 2067 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2068 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2069 #endif 2070 2071 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2072 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2073