1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mount.h> 48 #include <sys/mutex.h> 49 #include <sys/proc.h> 50 #include <sys/refcount.h> 51 #include <sys/sbuf.h> 52 #include <sys/sysent.h> 53 #include <sys/sched.h> 54 #include <sys/smp.h> 55 #include <sys/stack.h> 56 #include <sys/sysctl.h> 57 #include <sys/filedesc.h> 58 #include <sys/tty.h> 59 #include <sys/signalvar.h> 60 #include <sys/sdt.h> 61 #include <sys/sx.h> 62 #include <sys/user.h> 63 #include <sys/jail.h> 64 #include <sys/vnode.h> 65 #include <sys/eventhandler.h> 66 #ifdef KTRACE 67 #include <sys/uio.h> 68 #include <sys/ktrace.h> 69 #endif 70 71 #ifdef DDB 72 #include <ddb/ddb.h> 73 #endif 74 75 #include <vm/vm.h> 76 #include <vm/vm_extern.h> 77 #include <vm/pmap.h> 78 #include <vm/vm_map.h> 79 #include <vm/vm_object.h> 80 #include <vm/uma.h> 81 82 SDT_PROVIDER_DEFINE(proc); 83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 88 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 98 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 102 SDT_PROBE_DEFINE(proc, kernel, init, entry); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 106 SDT_PROBE_DEFINE(proc, kernel, init, return); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 110 111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 112 MALLOC_DEFINE(M_SESSION, "session", "session header"); 113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 115 116 static void doenterpgrp(struct proc *, struct pgrp *); 117 static void orphanpg(struct pgrp *pg); 118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 121 int preferthread); 122 static void pgadjustjobc(struct pgrp *pgrp, int entering); 123 static void pgdelete(struct pgrp *); 124 static int proc_ctor(void *mem, int size, void *arg, int flags); 125 static void proc_dtor(void *mem, int size, void *arg); 126 static int proc_init(void *mem, int size, int flags); 127 static void proc_fini(void *mem, int size); 128 static void pargs_free(struct pargs *pa); 129 130 /* 131 * Other process lists 132 */ 133 struct pidhashhead *pidhashtbl; 134 u_long pidhash; 135 struct pgrphashhead *pgrphashtbl; 136 u_long pgrphash; 137 struct proclist allproc; 138 struct proclist zombproc; 139 struct sx allproc_lock; 140 struct sx proctree_lock; 141 struct mtx ppeers_lock; 142 uma_zone_t proc_zone; 143 144 int kstack_pages = KSTACK_PAGES; 145 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 146 147 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 148 149 /* 150 * Initialize global process hashing structures. 151 */ 152 void 153 procinit() 154 { 155 156 sx_init(&allproc_lock, "allproc"); 157 sx_init(&proctree_lock, "proctree"); 158 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 159 LIST_INIT(&allproc); 160 LIST_INIT(&zombproc); 161 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 162 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 163 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 164 proc_ctor, proc_dtor, proc_init, proc_fini, 165 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 166 uihashinit(); 167 } 168 169 /* 170 * Prepare a proc for use. 171 */ 172 static int 173 proc_ctor(void *mem, int size, void *arg, int flags) 174 { 175 struct proc *p; 176 177 p = (struct proc *)mem; 178 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 179 EVENTHANDLER_INVOKE(process_ctor, p); 180 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 181 return (0); 182 } 183 184 /* 185 * Reclaim a proc after use. 186 */ 187 static void 188 proc_dtor(void *mem, int size, void *arg) 189 { 190 struct proc *p; 191 struct thread *td; 192 193 /* INVARIANTS checks go here */ 194 p = (struct proc *)mem; 195 td = FIRST_THREAD_IN_PROC(p); 196 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 197 if (td != NULL) { 198 #ifdef INVARIANTS 199 KASSERT((p->p_numthreads == 1), 200 ("bad number of threads in exiting process")); 201 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 202 #endif 203 /* Free all OSD associated to this thread. */ 204 osd_thread_exit(td); 205 } 206 EVENTHANDLER_INVOKE(process_dtor, p); 207 if (p->p_ksi != NULL) 208 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 209 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 210 } 211 212 /* 213 * Initialize type-stable parts of a proc (when newly created). 214 */ 215 static int 216 proc_init(void *mem, int size, int flags) 217 { 218 struct proc *p; 219 220 p = (struct proc *)mem; 221 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 222 p->p_sched = (struct p_sched *)&p[1]; 223 bzero(&p->p_mtx, sizeof(struct mtx)); 224 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 225 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 226 cv_init(&p->p_pwait, "ppwait"); 227 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 228 EVENTHANDLER_INVOKE(process_init, p); 229 p->p_stats = pstats_alloc(); 230 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 231 return (0); 232 } 233 234 /* 235 * UMA should ensure that this function is never called. 236 * Freeing a proc structure would violate type stability. 237 */ 238 static void 239 proc_fini(void *mem, int size) 240 { 241 #ifdef notnow 242 struct proc *p; 243 244 p = (struct proc *)mem; 245 EVENTHANDLER_INVOKE(process_fini, p); 246 pstats_free(p->p_stats); 247 thread_free(FIRST_THREAD_IN_PROC(p)); 248 mtx_destroy(&p->p_mtx); 249 if (p->p_ksi != NULL) 250 ksiginfo_free(p->p_ksi); 251 #else 252 panic("proc reclaimed"); 253 #endif 254 } 255 256 /* 257 * Is p an inferior of the current process? 258 */ 259 int 260 inferior(p) 261 register struct proc *p; 262 { 263 264 sx_assert(&proctree_lock, SX_LOCKED); 265 for (; p != curproc; p = p->p_pptr) 266 if (p->p_pid == 0) 267 return (0); 268 return (1); 269 } 270 271 /* 272 * Locate a process by number; return only "live" processes -- i.e., neither 273 * zombies nor newly born but incompletely initialized processes. By not 274 * returning processes in the PRS_NEW state, we allow callers to avoid 275 * testing for that condition to avoid dereferencing p_ucred, et al. 276 */ 277 struct proc * 278 pfind(pid) 279 register pid_t pid; 280 { 281 register struct proc *p; 282 283 sx_slock(&allproc_lock); 284 LIST_FOREACH(p, PIDHASH(pid), p_hash) 285 if (p->p_pid == pid) { 286 if (p->p_state == PRS_NEW) { 287 p = NULL; 288 break; 289 } 290 PROC_LOCK(p); 291 break; 292 } 293 sx_sunlock(&allproc_lock); 294 return (p); 295 } 296 297 /* 298 * Locate a process group by number. 299 * The caller must hold proctree_lock. 300 */ 301 struct pgrp * 302 pgfind(pgid) 303 register pid_t pgid; 304 { 305 register struct pgrp *pgrp; 306 307 sx_assert(&proctree_lock, SX_LOCKED); 308 309 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 310 if (pgrp->pg_id == pgid) { 311 PGRP_LOCK(pgrp); 312 return (pgrp); 313 } 314 } 315 return (NULL); 316 } 317 318 /* 319 * Create a new process group. 320 * pgid must be equal to the pid of p. 321 * Begin a new session if required. 322 */ 323 int 324 enterpgrp(p, pgid, pgrp, sess) 325 register struct proc *p; 326 pid_t pgid; 327 struct pgrp *pgrp; 328 struct session *sess; 329 { 330 struct pgrp *pgrp2; 331 332 sx_assert(&proctree_lock, SX_XLOCKED); 333 334 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 335 KASSERT(p->p_pid == pgid, 336 ("enterpgrp: new pgrp and pid != pgid")); 337 338 pgrp2 = pgfind(pgid); 339 340 KASSERT(pgrp2 == NULL, 341 ("enterpgrp: pgrp with pgid exists")); 342 KASSERT(!SESS_LEADER(p), 343 ("enterpgrp: session leader attempted setpgrp")); 344 345 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 346 347 if (sess != NULL) { 348 /* 349 * new session 350 */ 351 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 352 PROC_LOCK(p); 353 p->p_flag &= ~P_CONTROLT; 354 PROC_UNLOCK(p); 355 PGRP_LOCK(pgrp); 356 sess->s_leader = p; 357 sess->s_sid = p->p_pid; 358 refcount_init(&sess->s_count, 1); 359 sess->s_ttyvp = NULL; 360 sess->s_ttydp = NULL; 361 sess->s_ttyp = NULL; 362 bcopy(p->p_session->s_login, sess->s_login, 363 sizeof(sess->s_login)); 364 pgrp->pg_session = sess; 365 KASSERT(p == curproc, 366 ("enterpgrp: mksession and p != curproc")); 367 } else { 368 pgrp->pg_session = p->p_session; 369 sess_hold(pgrp->pg_session); 370 PGRP_LOCK(pgrp); 371 } 372 pgrp->pg_id = pgid; 373 LIST_INIT(&pgrp->pg_members); 374 375 /* 376 * As we have an exclusive lock of proctree_lock, 377 * this should not deadlock. 378 */ 379 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 380 pgrp->pg_jobc = 0; 381 SLIST_INIT(&pgrp->pg_sigiolst); 382 PGRP_UNLOCK(pgrp); 383 384 doenterpgrp(p, pgrp); 385 386 return (0); 387 } 388 389 /* 390 * Move p to an existing process group 391 */ 392 int 393 enterthispgrp(p, pgrp) 394 register struct proc *p; 395 struct pgrp *pgrp; 396 { 397 398 sx_assert(&proctree_lock, SX_XLOCKED); 399 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 400 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 401 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 402 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 403 KASSERT(pgrp->pg_session == p->p_session, 404 ("%s: pgrp's session %p, p->p_session %p.\n", 405 __func__, 406 pgrp->pg_session, 407 p->p_session)); 408 KASSERT(pgrp != p->p_pgrp, 409 ("%s: p belongs to pgrp.", __func__)); 410 411 doenterpgrp(p, pgrp); 412 413 return (0); 414 } 415 416 /* 417 * Move p to a process group 418 */ 419 static void 420 doenterpgrp(p, pgrp) 421 struct proc *p; 422 struct pgrp *pgrp; 423 { 424 struct pgrp *savepgrp; 425 426 sx_assert(&proctree_lock, SX_XLOCKED); 427 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 428 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 429 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 430 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 431 432 savepgrp = p->p_pgrp; 433 434 /* 435 * Adjust eligibility of affected pgrps to participate in job control. 436 * Increment eligibility counts before decrementing, otherwise we 437 * could reach 0 spuriously during the first call. 438 */ 439 fixjobc(p, pgrp, 1); 440 fixjobc(p, p->p_pgrp, 0); 441 442 PGRP_LOCK(pgrp); 443 PGRP_LOCK(savepgrp); 444 PROC_LOCK(p); 445 LIST_REMOVE(p, p_pglist); 446 p->p_pgrp = pgrp; 447 PROC_UNLOCK(p); 448 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 449 PGRP_UNLOCK(savepgrp); 450 PGRP_UNLOCK(pgrp); 451 if (LIST_EMPTY(&savepgrp->pg_members)) 452 pgdelete(savepgrp); 453 } 454 455 /* 456 * remove process from process group 457 */ 458 int 459 leavepgrp(p) 460 register struct proc *p; 461 { 462 struct pgrp *savepgrp; 463 464 sx_assert(&proctree_lock, SX_XLOCKED); 465 savepgrp = p->p_pgrp; 466 PGRP_LOCK(savepgrp); 467 PROC_LOCK(p); 468 LIST_REMOVE(p, p_pglist); 469 p->p_pgrp = NULL; 470 PROC_UNLOCK(p); 471 PGRP_UNLOCK(savepgrp); 472 if (LIST_EMPTY(&savepgrp->pg_members)) 473 pgdelete(savepgrp); 474 return (0); 475 } 476 477 /* 478 * delete a process group 479 */ 480 static void 481 pgdelete(pgrp) 482 register struct pgrp *pgrp; 483 { 484 struct session *savesess; 485 struct tty *tp; 486 487 sx_assert(&proctree_lock, SX_XLOCKED); 488 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 489 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 490 491 /* 492 * Reset any sigio structures pointing to us as a result of 493 * F_SETOWN with our pgid. 494 */ 495 funsetownlst(&pgrp->pg_sigiolst); 496 497 PGRP_LOCK(pgrp); 498 tp = pgrp->pg_session->s_ttyp; 499 LIST_REMOVE(pgrp, pg_hash); 500 savesess = pgrp->pg_session; 501 PGRP_UNLOCK(pgrp); 502 503 /* Remove the reference to the pgrp before deallocating it. */ 504 if (tp != NULL) { 505 tty_lock(tp); 506 tty_rel_pgrp(tp, pgrp); 507 } 508 509 mtx_destroy(&pgrp->pg_mtx); 510 free(pgrp, M_PGRP); 511 sess_release(savesess); 512 } 513 514 static void 515 pgadjustjobc(pgrp, entering) 516 struct pgrp *pgrp; 517 int entering; 518 { 519 520 PGRP_LOCK(pgrp); 521 if (entering) 522 pgrp->pg_jobc++; 523 else { 524 --pgrp->pg_jobc; 525 if (pgrp->pg_jobc == 0) 526 orphanpg(pgrp); 527 } 528 PGRP_UNLOCK(pgrp); 529 } 530 531 /* 532 * Adjust pgrp jobc counters when specified process changes process group. 533 * We count the number of processes in each process group that "qualify" 534 * the group for terminal job control (those with a parent in a different 535 * process group of the same session). If that count reaches zero, the 536 * process group becomes orphaned. Check both the specified process' 537 * process group and that of its children. 538 * entering == 0 => p is leaving specified group. 539 * entering == 1 => p is entering specified group. 540 */ 541 void 542 fixjobc(p, pgrp, entering) 543 register struct proc *p; 544 register struct pgrp *pgrp; 545 int entering; 546 { 547 register struct pgrp *hispgrp; 548 register struct session *mysession; 549 550 sx_assert(&proctree_lock, SX_LOCKED); 551 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 552 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 553 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 554 555 /* 556 * Check p's parent to see whether p qualifies its own process 557 * group; if so, adjust count for p's process group. 558 */ 559 mysession = pgrp->pg_session; 560 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 561 hispgrp->pg_session == mysession) 562 pgadjustjobc(pgrp, entering); 563 564 /* 565 * Check this process' children to see whether they qualify 566 * their process groups; if so, adjust counts for children's 567 * process groups. 568 */ 569 LIST_FOREACH(p, &p->p_children, p_sibling) { 570 hispgrp = p->p_pgrp; 571 if (hispgrp == pgrp || 572 hispgrp->pg_session != mysession) 573 continue; 574 PROC_LOCK(p); 575 if (p->p_state == PRS_ZOMBIE) { 576 PROC_UNLOCK(p); 577 continue; 578 } 579 PROC_UNLOCK(p); 580 pgadjustjobc(hispgrp, entering); 581 } 582 } 583 584 /* 585 * A process group has become orphaned; 586 * if there are any stopped processes in the group, 587 * hang-up all process in that group. 588 */ 589 static void 590 orphanpg(pg) 591 struct pgrp *pg; 592 { 593 register struct proc *p; 594 595 PGRP_LOCK_ASSERT(pg, MA_OWNED); 596 597 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 598 PROC_LOCK(p); 599 if (P_SHOULDSTOP(p)) { 600 PROC_UNLOCK(p); 601 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 602 PROC_LOCK(p); 603 psignal(p, SIGHUP); 604 psignal(p, SIGCONT); 605 PROC_UNLOCK(p); 606 } 607 return; 608 } 609 PROC_UNLOCK(p); 610 } 611 } 612 613 void 614 sess_hold(struct session *s) 615 { 616 617 refcount_acquire(&s->s_count); 618 } 619 620 void 621 sess_release(struct session *s) 622 { 623 624 if (refcount_release(&s->s_count)) { 625 if (s->s_ttyp != NULL) { 626 tty_lock(s->s_ttyp); 627 tty_rel_sess(s->s_ttyp, s); 628 } 629 mtx_destroy(&s->s_mtx); 630 free(s, M_SESSION); 631 } 632 } 633 634 #include "opt_ddb.h" 635 #ifdef DDB 636 #include <ddb/ddb.h> 637 638 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 639 { 640 register struct pgrp *pgrp; 641 register struct proc *p; 642 register int i; 643 644 for (i = 0; i <= pgrphash; i++) { 645 if (!LIST_EMPTY(&pgrphashtbl[i])) { 646 printf("\tindx %d\n", i); 647 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 648 printf( 649 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 650 (void *)pgrp, (long)pgrp->pg_id, 651 (void *)pgrp->pg_session, 652 pgrp->pg_session->s_count, 653 (void *)LIST_FIRST(&pgrp->pg_members)); 654 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 655 printf("\t\tpid %ld addr %p pgrp %p\n", 656 (long)p->p_pid, (void *)p, 657 (void *)p->p_pgrp); 658 } 659 } 660 } 661 } 662 } 663 #endif /* DDB */ 664 665 /* 666 * Calculate the kinfo_proc members which contain process-wide 667 * informations. 668 * Must be called with the target process locked. 669 */ 670 static void 671 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 672 { 673 struct thread *td; 674 675 PROC_LOCK_ASSERT(p, MA_OWNED); 676 677 kp->ki_estcpu = 0; 678 kp->ki_pctcpu = 0; 679 FOREACH_THREAD_IN_PROC(p, td) { 680 thread_lock(td); 681 kp->ki_pctcpu += sched_pctcpu(td); 682 kp->ki_estcpu += td->td_estcpu; 683 thread_unlock(td); 684 } 685 } 686 687 /* 688 * Clear kinfo_proc and fill in any information that is common 689 * to all threads in the process. 690 * Must be called with the target process locked. 691 */ 692 static void 693 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 694 { 695 struct thread *td0; 696 struct tty *tp; 697 struct session *sp; 698 struct ucred *cred; 699 struct sigacts *ps; 700 701 PROC_LOCK_ASSERT(p, MA_OWNED); 702 bzero(kp, sizeof(*kp)); 703 704 kp->ki_structsize = sizeof(*kp); 705 kp->ki_paddr = p; 706 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 707 kp->ki_args = p->p_args; 708 kp->ki_textvp = p->p_textvp; 709 #ifdef KTRACE 710 kp->ki_tracep = p->p_tracevp; 711 mtx_lock(&ktrace_mtx); 712 kp->ki_traceflag = p->p_traceflag; 713 mtx_unlock(&ktrace_mtx); 714 #endif 715 kp->ki_fd = p->p_fd; 716 kp->ki_vmspace = p->p_vmspace; 717 kp->ki_flag = p->p_flag; 718 cred = p->p_ucred; 719 if (cred) { 720 kp->ki_uid = cred->cr_uid; 721 kp->ki_ruid = cred->cr_ruid; 722 kp->ki_svuid = cred->cr_svuid; 723 kp->ki_cr_flags = cred->cr_flags; 724 /* XXX bde doesn't like KI_NGROUPS */ 725 if (cred->cr_ngroups > KI_NGROUPS) { 726 kp->ki_ngroups = KI_NGROUPS; 727 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 728 } else 729 kp->ki_ngroups = cred->cr_ngroups; 730 bcopy(cred->cr_groups, kp->ki_groups, 731 kp->ki_ngroups * sizeof(gid_t)); 732 kp->ki_rgid = cred->cr_rgid; 733 kp->ki_svgid = cred->cr_svgid; 734 /* If jailed(cred), emulate the old P_JAILED flag. */ 735 if (jailed(cred)) { 736 kp->ki_flag |= P_JAILED; 737 /* If inside the jail, use 0 as a jail ID. */ 738 if (cred->cr_prison != curthread->td_ucred->cr_prison) 739 kp->ki_jid = cred->cr_prison->pr_id; 740 } 741 } 742 ps = p->p_sigacts; 743 if (ps) { 744 mtx_lock(&ps->ps_mtx); 745 kp->ki_sigignore = ps->ps_sigignore; 746 kp->ki_sigcatch = ps->ps_sigcatch; 747 mtx_unlock(&ps->ps_mtx); 748 } 749 PROC_SLOCK(p); 750 if (p->p_state != PRS_NEW && 751 p->p_state != PRS_ZOMBIE && 752 p->p_vmspace != NULL) { 753 struct vmspace *vm = p->p_vmspace; 754 755 kp->ki_size = vm->vm_map.size; 756 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 757 FOREACH_THREAD_IN_PROC(p, td0) { 758 if (!TD_IS_SWAPPED(td0)) 759 kp->ki_rssize += td0->td_kstack_pages; 760 } 761 kp->ki_swrss = vm->vm_swrss; 762 kp->ki_tsize = vm->vm_tsize; 763 kp->ki_dsize = vm->vm_dsize; 764 kp->ki_ssize = vm->vm_ssize; 765 } else if (p->p_state == PRS_ZOMBIE) 766 kp->ki_stat = SZOMB; 767 if (kp->ki_flag & P_INMEM) 768 kp->ki_sflag = PS_INMEM; 769 else 770 kp->ki_sflag = 0; 771 /* Calculate legacy swtime as seconds since 'swtick'. */ 772 kp->ki_swtime = (ticks - p->p_swtick) / hz; 773 kp->ki_pid = p->p_pid; 774 kp->ki_nice = p->p_nice; 775 rufetch(p, &kp->ki_rusage); 776 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 777 PROC_SUNLOCK(p); 778 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 779 kp->ki_start = p->p_stats->p_start; 780 timevaladd(&kp->ki_start, &boottime); 781 PROC_SLOCK(p); 782 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 783 PROC_SUNLOCK(p); 784 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 785 786 /* Some callers want child-times in a single value */ 787 kp->ki_childtime = kp->ki_childstime; 788 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 789 } 790 tp = NULL; 791 if (p->p_pgrp) { 792 kp->ki_pgid = p->p_pgrp->pg_id; 793 kp->ki_jobc = p->p_pgrp->pg_jobc; 794 sp = p->p_pgrp->pg_session; 795 796 if (sp != NULL) { 797 kp->ki_sid = sp->s_sid; 798 SESS_LOCK(sp); 799 strlcpy(kp->ki_login, sp->s_login, 800 sizeof(kp->ki_login)); 801 if (sp->s_ttyvp) 802 kp->ki_kiflag |= KI_CTTY; 803 if (SESS_LEADER(p)) 804 kp->ki_kiflag |= KI_SLEADER; 805 /* XXX proctree_lock */ 806 tp = sp->s_ttyp; 807 SESS_UNLOCK(sp); 808 } 809 } 810 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 811 kp->ki_tdev = tty_udev(tp); 812 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 813 if (tp->t_session) 814 kp->ki_tsid = tp->t_session->s_sid; 815 } else 816 kp->ki_tdev = NODEV; 817 if (p->p_comm[0] != '\0') 818 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 819 if (p->p_sysent && p->p_sysent->sv_name != NULL && 820 p->p_sysent->sv_name[0] != '\0') 821 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 822 kp->ki_siglist = p->p_siglist; 823 kp->ki_xstat = p->p_xstat; 824 kp->ki_acflag = p->p_acflag; 825 kp->ki_lock = p->p_lock; 826 if (p->p_pptr) 827 kp->ki_ppid = p->p_pptr->p_pid; 828 } 829 830 /* 831 * Fill in information that is thread specific. Must be called with 832 * target process locked. If 'preferthread' is set, overwrite certain 833 * process-related fields that are maintained for both threads and 834 * processes. 835 */ 836 static void 837 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 838 { 839 struct proc *p; 840 841 p = td->td_proc; 842 PROC_LOCK_ASSERT(p, MA_OWNED); 843 844 thread_lock(td); 845 if (td->td_wmesg != NULL) 846 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 847 else 848 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 849 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 850 if (TD_ON_LOCK(td)) { 851 kp->ki_kiflag |= KI_LOCKBLOCK; 852 strlcpy(kp->ki_lockname, td->td_lockname, 853 sizeof(kp->ki_lockname)); 854 } else { 855 kp->ki_kiflag &= ~KI_LOCKBLOCK; 856 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 857 } 858 859 if (p->p_state == PRS_NORMAL) { /* approximate. */ 860 if (TD_ON_RUNQ(td) || 861 TD_CAN_RUN(td) || 862 TD_IS_RUNNING(td)) { 863 kp->ki_stat = SRUN; 864 } else if (P_SHOULDSTOP(p)) { 865 kp->ki_stat = SSTOP; 866 } else if (TD_IS_SLEEPING(td)) { 867 kp->ki_stat = SSLEEP; 868 } else if (TD_ON_LOCK(td)) { 869 kp->ki_stat = SLOCK; 870 } else { 871 kp->ki_stat = SWAIT; 872 } 873 } else if (p->p_state == PRS_ZOMBIE) { 874 kp->ki_stat = SZOMB; 875 } else { 876 kp->ki_stat = SIDL; 877 } 878 879 /* Things in the thread */ 880 kp->ki_wchan = td->td_wchan; 881 kp->ki_pri.pri_level = td->td_priority; 882 kp->ki_pri.pri_native = td->td_base_pri; 883 kp->ki_lastcpu = td->td_lastcpu; 884 kp->ki_oncpu = td->td_oncpu; 885 kp->ki_tdflags = td->td_flags; 886 kp->ki_tid = td->td_tid; 887 kp->ki_numthreads = p->p_numthreads; 888 kp->ki_pcb = td->td_pcb; 889 kp->ki_kstack = (void *)td->td_kstack; 890 kp->ki_slptime = (ticks - td->td_slptick) / hz; 891 kp->ki_pri.pri_class = td->td_pri_class; 892 kp->ki_pri.pri_user = td->td_user_pri; 893 894 if (preferthread) { 895 kp->ki_runtime = cputick2usec(td->td_runtime); 896 kp->ki_pctcpu = sched_pctcpu(td); 897 kp->ki_estcpu = td->td_estcpu; 898 } 899 900 /* We can't get this anymore but ps etc never used it anyway. */ 901 kp->ki_rqindex = 0; 902 903 if (preferthread) 904 kp->ki_siglist = td->td_siglist; 905 kp->ki_sigmask = td->td_sigmask; 906 thread_unlock(td); 907 } 908 909 /* 910 * Fill in a kinfo_proc structure for the specified process. 911 * Must be called with the target process locked. 912 */ 913 void 914 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 915 { 916 917 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 918 919 fill_kinfo_proc_only(p, kp); 920 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 921 fill_kinfo_aggregate(p, kp); 922 } 923 924 struct pstats * 925 pstats_alloc(void) 926 { 927 928 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 929 } 930 931 /* 932 * Copy parts of p_stats; zero the rest of p_stats (statistics). 933 */ 934 void 935 pstats_fork(struct pstats *src, struct pstats *dst) 936 { 937 938 bzero(&dst->pstat_startzero, 939 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 940 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 941 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 942 } 943 944 void 945 pstats_free(struct pstats *ps) 946 { 947 948 free(ps, M_SUBPROC); 949 } 950 951 /* 952 * Locate a zombie process by number 953 */ 954 struct proc * 955 zpfind(pid_t pid) 956 { 957 struct proc *p; 958 959 sx_slock(&allproc_lock); 960 LIST_FOREACH(p, &zombproc, p_list) 961 if (p->p_pid == pid) { 962 PROC_LOCK(p); 963 break; 964 } 965 sx_sunlock(&allproc_lock); 966 return (p); 967 } 968 969 #define KERN_PROC_ZOMBMASK 0x3 970 #define KERN_PROC_NOTHREADS 0x4 971 972 /* 973 * Must be called with the process locked and will return with it unlocked. 974 */ 975 static int 976 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 977 { 978 struct thread *td; 979 struct kinfo_proc kinfo_proc; 980 int error = 0; 981 struct proc *np; 982 pid_t pid = p->p_pid; 983 984 PROC_LOCK_ASSERT(p, MA_OWNED); 985 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 986 987 fill_kinfo_proc(p, &kinfo_proc); 988 if (flags & KERN_PROC_NOTHREADS) 989 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 990 sizeof(kinfo_proc)); 991 else { 992 FOREACH_THREAD_IN_PROC(p, td) { 993 fill_kinfo_thread(td, &kinfo_proc, 1); 994 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 995 sizeof(kinfo_proc)); 996 if (error) 997 break; 998 } 999 } 1000 PROC_UNLOCK(p); 1001 if (error) 1002 return (error); 1003 if (flags & KERN_PROC_ZOMBMASK) 1004 np = zpfind(pid); 1005 else { 1006 if (pid == 0) 1007 return (0); 1008 np = pfind(pid); 1009 } 1010 if (np == NULL) 1011 return (ESRCH); 1012 if (np != p) { 1013 PROC_UNLOCK(np); 1014 return (ESRCH); 1015 } 1016 PROC_UNLOCK(np); 1017 return (0); 1018 } 1019 1020 static int 1021 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1022 { 1023 int *name = (int*) arg1; 1024 u_int namelen = arg2; 1025 struct proc *p; 1026 int flags, doingzomb, oid_number; 1027 int error = 0; 1028 1029 oid_number = oidp->oid_number; 1030 if (oid_number != KERN_PROC_ALL && 1031 (oid_number & KERN_PROC_INC_THREAD) == 0) 1032 flags = KERN_PROC_NOTHREADS; 1033 else { 1034 flags = 0; 1035 oid_number &= ~KERN_PROC_INC_THREAD; 1036 } 1037 if (oid_number == KERN_PROC_PID) { 1038 if (namelen != 1) 1039 return (EINVAL); 1040 error = sysctl_wire_old_buffer(req, 0); 1041 if (error) 1042 return (error); 1043 p = pfind((pid_t)name[0]); 1044 if (!p) 1045 return (ESRCH); 1046 if ((error = p_cansee(curthread, p))) { 1047 PROC_UNLOCK(p); 1048 return (error); 1049 } 1050 error = sysctl_out_proc(p, req, flags); 1051 return (error); 1052 } 1053 1054 switch (oid_number) { 1055 case KERN_PROC_ALL: 1056 if (namelen != 0) 1057 return (EINVAL); 1058 break; 1059 case KERN_PROC_PROC: 1060 if (namelen != 0 && namelen != 1) 1061 return (EINVAL); 1062 break; 1063 default: 1064 if (namelen != 1) 1065 return (EINVAL); 1066 break; 1067 } 1068 1069 if (!req->oldptr) { 1070 /* overestimate by 5 procs */ 1071 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1072 if (error) 1073 return (error); 1074 } 1075 error = sysctl_wire_old_buffer(req, 0); 1076 if (error != 0) 1077 return (error); 1078 sx_slock(&allproc_lock); 1079 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1080 if (!doingzomb) 1081 p = LIST_FIRST(&allproc); 1082 else 1083 p = LIST_FIRST(&zombproc); 1084 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1085 /* 1086 * Skip embryonic processes. 1087 */ 1088 PROC_SLOCK(p); 1089 if (p->p_state == PRS_NEW) { 1090 PROC_SUNLOCK(p); 1091 continue; 1092 } 1093 PROC_SUNLOCK(p); 1094 PROC_LOCK(p); 1095 KASSERT(p->p_ucred != NULL, 1096 ("process credential is NULL for non-NEW proc")); 1097 /* 1098 * Show a user only appropriate processes. 1099 */ 1100 if (p_cansee(curthread, p)) { 1101 PROC_UNLOCK(p); 1102 continue; 1103 } 1104 /* 1105 * TODO - make more efficient (see notes below). 1106 * do by session. 1107 */ 1108 switch (oid_number) { 1109 1110 case KERN_PROC_GID: 1111 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1112 PROC_UNLOCK(p); 1113 continue; 1114 } 1115 break; 1116 1117 case KERN_PROC_PGRP: 1118 /* could do this by traversing pgrp */ 1119 if (p->p_pgrp == NULL || 1120 p->p_pgrp->pg_id != (pid_t)name[0]) { 1121 PROC_UNLOCK(p); 1122 continue; 1123 } 1124 break; 1125 1126 case KERN_PROC_RGID: 1127 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1128 PROC_UNLOCK(p); 1129 continue; 1130 } 1131 break; 1132 1133 case KERN_PROC_SESSION: 1134 if (p->p_session == NULL || 1135 p->p_session->s_sid != (pid_t)name[0]) { 1136 PROC_UNLOCK(p); 1137 continue; 1138 } 1139 break; 1140 1141 case KERN_PROC_TTY: 1142 if ((p->p_flag & P_CONTROLT) == 0 || 1143 p->p_session == NULL) { 1144 PROC_UNLOCK(p); 1145 continue; 1146 } 1147 /* XXX proctree_lock */ 1148 SESS_LOCK(p->p_session); 1149 if (p->p_session->s_ttyp == NULL || 1150 tty_udev(p->p_session->s_ttyp) != 1151 (dev_t)name[0]) { 1152 SESS_UNLOCK(p->p_session); 1153 PROC_UNLOCK(p); 1154 continue; 1155 } 1156 SESS_UNLOCK(p->p_session); 1157 break; 1158 1159 case KERN_PROC_UID: 1160 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1161 PROC_UNLOCK(p); 1162 continue; 1163 } 1164 break; 1165 1166 case KERN_PROC_RUID: 1167 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1168 PROC_UNLOCK(p); 1169 continue; 1170 } 1171 break; 1172 1173 case KERN_PROC_PROC: 1174 break; 1175 1176 default: 1177 break; 1178 1179 } 1180 1181 error = sysctl_out_proc(p, req, flags | doingzomb); 1182 if (error) { 1183 sx_sunlock(&allproc_lock); 1184 return (error); 1185 } 1186 } 1187 } 1188 sx_sunlock(&allproc_lock); 1189 return (0); 1190 } 1191 1192 struct pargs * 1193 pargs_alloc(int len) 1194 { 1195 struct pargs *pa; 1196 1197 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1198 M_WAITOK); 1199 refcount_init(&pa->ar_ref, 1); 1200 pa->ar_length = len; 1201 return (pa); 1202 } 1203 1204 static void 1205 pargs_free(struct pargs *pa) 1206 { 1207 1208 free(pa, M_PARGS); 1209 } 1210 1211 void 1212 pargs_hold(struct pargs *pa) 1213 { 1214 1215 if (pa == NULL) 1216 return; 1217 refcount_acquire(&pa->ar_ref); 1218 } 1219 1220 void 1221 pargs_drop(struct pargs *pa) 1222 { 1223 1224 if (pa == NULL) 1225 return; 1226 if (refcount_release(&pa->ar_ref)) 1227 pargs_free(pa); 1228 } 1229 1230 /* 1231 * This sysctl allows a process to retrieve the argument list or process 1232 * title for another process without groping around in the address space 1233 * of the other process. It also allow a process to set its own "process 1234 * title to a string of its own choice. 1235 */ 1236 static int 1237 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1238 { 1239 int *name = (int*) arg1; 1240 u_int namelen = arg2; 1241 struct pargs *newpa, *pa; 1242 struct proc *p; 1243 int error = 0; 1244 1245 if (namelen != 1) 1246 return (EINVAL); 1247 1248 p = pfind((pid_t)name[0]); 1249 if (!p) 1250 return (ESRCH); 1251 1252 if ((error = p_cansee(curthread, p)) != 0) { 1253 PROC_UNLOCK(p); 1254 return (error); 1255 } 1256 1257 if (req->newptr && curproc != p) { 1258 PROC_UNLOCK(p); 1259 return (EPERM); 1260 } 1261 1262 pa = p->p_args; 1263 pargs_hold(pa); 1264 PROC_UNLOCK(p); 1265 if (req->oldptr != NULL && pa != NULL) 1266 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1267 pargs_drop(pa); 1268 if (error != 0 || req->newptr == NULL) 1269 return (error); 1270 1271 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1272 return (ENOMEM); 1273 newpa = pargs_alloc(req->newlen); 1274 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1275 if (error != 0) { 1276 pargs_free(newpa); 1277 return (error); 1278 } 1279 PROC_LOCK(p); 1280 pa = p->p_args; 1281 p->p_args = newpa; 1282 PROC_UNLOCK(p); 1283 pargs_drop(pa); 1284 return (0); 1285 } 1286 1287 /* 1288 * This sysctl allows a process to retrieve the path of the executable for 1289 * itself or another process. 1290 */ 1291 static int 1292 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1293 { 1294 pid_t *pidp = (pid_t *)arg1; 1295 unsigned int arglen = arg2; 1296 struct proc *p; 1297 struct vnode *vp; 1298 char *retbuf, *freebuf; 1299 int error, vfslocked; 1300 1301 if (arglen != 1) 1302 return (EINVAL); 1303 if (*pidp == -1) { /* -1 means this process */ 1304 p = req->td->td_proc; 1305 } else { 1306 p = pfind(*pidp); 1307 if (p == NULL) 1308 return (ESRCH); 1309 if ((error = p_cansee(curthread, p)) != 0) { 1310 PROC_UNLOCK(p); 1311 return (error); 1312 } 1313 } 1314 1315 vp = p->p_textvp; 1316 if (vp == NULL) { 1317 if (*pidp != -1) 1318 PROC_UNLOCK(p); 1319 return (0); 1320 } 1321 vref(vp); 1322 if (*pidp != -1) 1323 PROC_UNLOCK(p); 1324 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1325 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1326 vrele(vp); 1327 VFS_UNLOCK_GIANT(vfslocked); 1328 if (error) 1329 return (error); 1330 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1331 free(freebuf, M_TEMP); 1332 return (error); 1333 } 1334 1335 static int 1336 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1337 { 1338 struct proc *p; 1339 char *sv_name; 1340 int *name; 1341 int namelen; 1342 int error; 1343 1344 namelen = arg2; 1345 if (namelen != 1) 1346 return (EINVAL); 1347 1348 name = (int *)arg1; 1349 if ((p = pfind((pid_t)name[0])) == NULL) 1350 return (ESRCH); 1351 if ((error = p_cansee(curthread, p))) { 1352 PROC_UNLOCK(p); 1353 return (error); 1354 } 1355 sv_name = p->p_sysent->sv_name; 1356 PROC_UNLOCK(p); 1357 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1358 } 1359 1360 #ifdef KINFO_OVMENTRY_SIZE 1361 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1362 #endif 1363 1364 #ifdef COMPAT_FREEBSD7 1365 static int 1366 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1367 { 1368 vm_map_entry_t entry, tmp_entry; 1369 unsigned int last_timestamp; 1370 char *fullpath, *freepath; 1371 struct kinfo_ovmentry *kve; 1372 struct vattr va; 1373 struct ucred *cred; 1374 int error, *name; 1375 struct vnode *vp; 1376 struct proc *p; 1377 vm_map_t map; 1378 struct vmspace *vm; 1379 1380 name = (int *)arg1; 1381 if ((p = pfind((pid_t)name[0])) == NULL) 1382 return (ESRCH); 1383 if (p->p_flag & P_WEXIT) { 1384 PROC_UNLOCK(p); 1385 return (ESRCH); 1386 } 1387 if ((error = p_candebug(curthread, p))) { 1388 PROC_UNLOCK(p); 1389 return (error); 1390 } 1391 _PHOLD(p); 1392 PROC_UNLOCK(p); 1393 vm = vmspace_acquire_ref(p); 1394 if (vm == NULL) { 1395 PRELE(p); 1396 return (ESRCH); 1397 } 1398 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1399 1400 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1401 vm_map_lock_read(map); 1402 for (entry = map->header.next; entry != &map->header; 1403 entry = entry->next) { 1404 vm_object_t obj, tobj, lobj; 1405 vm_offset_t addr; 1406 int vfslocked; 1407 1408 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1409 continue; 1410 1411 bzero(kve, sizeof(*kve)); 1412 kve->kve_structsize = sizeof(*kve); 1413 1414 kve->kve_private_resident = 0; 1415 obj = entry->object.vm_object; 1416 if (obj != NULL) { 1417 VM_OBJECT_LOCK(obj); 1418 if (obj->shadow_count == 1) 1419 kve->kve_private_resident = 1420 obj->resident_page_count; 1421 } 1422 kve->kve_resident = 0; 1423 addr = entry->start; 1424 while (addr < entry->end) { 1425 if (pmap_extract(map->pmap, addr)) 1426 kve->kve_resident++; 1427 addr += PAGE_SIZE; 1428 } 1429 1430 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1431 if (tobj != obj) 1432 VM_OBJECT_LOCK(tobj); 1433 if (lobj != obj) 1434 VM_OBJECT_UNLOCK(lobj); 1435 lobj = tobj; 1436 } 1437 1438 kve->kve_start = (void*)entry->start; 1439 kve->kve_end = (void*)entry->end; 1440 kve->kve_offset = (off_t)entry->offset; 1441 1442 if (entry->protection & VM_PROT_READ) 1443 kve->kve_protection |= KVME_PROT_READ; 1444 if (entry->protection & VM_PROT_WRITE) 1445 kve->kve_protection |= KVME_PROT_WRITE; 1446 if (entry->protection & VM_PROT_EXECUTE) 1447 kve->kve_protection |= KVME_PROT_EXEC; 1448 1449 if (entry->eflags & MAP_ENTRY_COW) 1450 kve->kve_flags |= KVME_FLAG_COW; 1451 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1452 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1453 1454 last_timestamp = map->timestamp; 1455 vm_map_unlock_read(map); 1456 1457 kve->kve_fileid = 0; 1458 kve->kve_fsid = 0; 1459 freepath = NULL; 1460 fullpath = ""; 1461 if (lobj) { 1462 vp = NULL; 1463 switch (lobj->type) { 1464 case OBJT_DEFAULT: 1465 kve->kve_type = KVME_TYPE_DEFAULT; 1466 break; 1467 case OBJT_VNODE: 1468 kve->kve_type = KVME_TYPE_VNODE; 1469 vp = lobj->handle; 1470 vref(vp); 1471 break; 1472 case OBJT_SWAP: 1473 kve->kve_type = KVME_TYPE_SWAP; 1474 break; 1475 case OBJT_DEVICE: 1476 kve->kve_type = KVME_TYPE_DEVICE; 1477 break; 1478 case OBJT_PHYS: 1479 kve->kve_type = KVME_TYPE_PHYS; 1480 break; 1481 case OBJT_DEAD: 1482 kve->kve_type = KVME_TYPE_DEAD; 1483 break; 1484 case OBJT_SG: 1485 kve->kve_type = KVME_TYPE_SG; 1486 break; 1487 default: 1488 kve->kve_type = KVME_TYPE_UNKNOWN; 1489 break; 1490 } 1491 if (lobj != obj) 1492 VM_OBJECT_UNLOCK(lobj); 1493 1494 kve->kve_ref_count = obj->ref_count; 1495 kve->kve_shadow_count = obj->shadow_count; 1496 VM_OBJECT_UNLOCK(obj); 1497 if (vp != NULL) { 1498 vn_fullpath(curthread, vp, &fullpath, 1499 &freepath); 1500 cred = curthread->td_ucred; 1501 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1502 vn_lock(vp, LK_SHARED | LK_RETRY); 1503 if (VOP_GETATTR(vp, &va, cred) == 0) { 1504 kve->kve_fileid = va.va_fileid; 1505 kve->kve_fsid = va.va_fsid; 1506 } 1507 vput(vp); 1508 VFS_UNLOCK_GIANT(vfslocked); 1509 } 1510 } else { 1511 kve->kve_type = KVME_TYPE_NONE; 1512 kve->kve_ref_count = 0; 1513 kve->kve_shadow_count = 0; 1514 } 1515 1516 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1517 if (freepath != NULL) 1518 free(freepath, M_TEMP); 1519 1520 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1521 vm_map_lock_read(map); 1522 if (error) 1523 break; 1524 if (last_timestamp != map->timestamp) { 1525 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1526 entry = tmp_entry; 1527 } 1528 } 1529 vm_map_unlock_read(map); 1530 vmspace_free(vm); 1531 PRELE(p); 1532 free(kve, M_TEMP); 1533 return (error); 1534 } 1535 #endif /* COMPAT_FREEBSD7 */ 1536 1537 #ifdef KINFO_VMENTRY_SIZE 1538 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1539 #endif 1540 1541 static int 1542 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1543 { 1544 vm_map_entry_t entry, tmp_entry; 1545 unsigned int last_timestamp; 1546 char *fullpath, *freepath; 1547 struct kinfo_vmentry *kve; 1548 struct vattr va; 1549 struct ucred *cred; 1550 int error, *name; 1551 struct vnode *vp; 1552 struct proc *p; 1553 struct vmspace *vm; 1554 vm_map_t map; 1555 1556 name = (int *)arg1; 1557 if ((p = pfind((pid_t)name[0])) == NULL) 1558 return (ESRCH); 1559 if (p->p_flag & P_WEXIT) { 1560 PROC_UNLOCK(p); 1561 return (ESRCH); 1562 } 1563 if ((error = p_candebug(curthread, p))) { 1564 PROC_UNLOCK(p); 1565 return (error); 1566 } 1567 _PHOLD(p); 1568 PROC_UNLOCK(p); 1569 vm = vmspace_acquire_ref(p); 1570 if (vm == NULL) { 1571 PRELE(p); 1572 return (ESRCH); 1573 } 1574 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1575 1576 map = &vm->vm_map; /* XXXRW: More locking required? */ 1577 vm_map_lock_read(map); 1578 for (entry = map->header.next; entry != &map->header; 1579 entry = entry->next) { 1580 vm_object_t obj, tobj, lobj; 1581 vm_offset_t addr; 1582 int vfslocked; 1583 1584 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1585 continue; 1586 1587 bzero(kve, sizeof(*kve)); 1588 1589 kve->kve_private_resident = 0; 1590 obj = entry->object.vm_object; 1591 if (obj != NULL) { 1592 VM_OBJECT_LOCK(obj); 1593 if (obj->shadow_count == 1) 1594 kve->kve_private_resident = 1595 obj->resident_page_count; 1596 } 1597 kve->kve_resident = 0; 1598 addr = entry->start; 1599 while (addr < entry->end) { 1600 if (pmap_extract(map->pmap, addr)) 1601 kve->kve_resident++; 1602 addr += PAGE_SIZE; 1603 } 1604 1605 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1606 if (tobj != obj) 1607 VM_OBJECT_LOCK(tobj); 1608 if (lobj != obj) 1609 VM_OBJECT_UNLOCK(lobj); 1610 lobj = tobj; 1611 } 1612 1613 kve->kve_start = entry->start; 1614 kve->kve_end = entry->end; 1615 kve->kve_offset = entry->offset; 1616 1617 if (entry->protection & VM_PROT_READ) 1618 kve->kve_protection |= KVME_PROT_READ; 1619 if (entry->protection & VM_PROT_WRITE) 1620 kve->kve_protection |= KVME_PROT_WRITE; 1621 if (entry->protection & VM_PROT_EXECUTE) 1622 kve->kve_protection |= KVME_PROT_EXEC; 1623 1624 if (entry->eflags & MAP_ENTRY_COW) 1625 kve->kve_flags |= KVME_FLAG_COW; 1626 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1627 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1628 1629 last_timestamp = map->timestamp; 1630 vm_map_unlock_read(map); 1631 1632 kve->kve_fileid = 0; 1633 kve->kve_fsid = 0; 1634 freepath = NULL; 1635 fullpath = ""; 1636 if (lobj) { 1637 vp = NULL; 1638 switch (lobj->type) { 1639 case OBJT_DEFAULT: 1640 kve->kve_type = KVME_TYPE_DEFAULT; 1641 break; 1642 case OBJT_VNODE: 1643 kve->kve_type = KVME_TYPE_VNODE; 1644 vp = lobj->handle; 1645 vref(vp); 1646 break; 1647 case OBJT_SWAP: 1648 kve->kve_type = KVME_TYPE_SWAP; 1649 break; 1650 case OBJT_DEVICE: 1651 kve->kve_type = KVME_TYPE_DEVICE; 1652 break; 1653 case OBJT_PHYS: 1654 kve->kve_type = KVME_TYPE_PHYS; 1655 break; 1656 case OBJT_DEAD: 1657 kve->kve_type = KVME_TYPE_DEAD; 1658 break; 1659 case OBJT_SG: 1660 kve->kve_type = KVME_TYPE_SG; 1661 break; 1662 default: 1663 kve->kve_type = KVME_TYPE_UNKNOWN; 1664 break; 1665 } 1666 if (lobj != obj) 1667 VM_OBJECT_UNLOCK(lobj); 1668 1669 kve->kve_ref_count = obj->ref_count; 1670 kve->kve_shadow_count = obj->shadow_count; 1671 VM_OBJECT_UNLOCK(obj); 1672 if (vp != NULL) { 1673 vn_fullpath(curthread, vp, &fullpath, 1674 &freepath); 1675 cred = curthread->td_ucred; 1676 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1677 vn_lock(vp, LK_SHARED | LK_RETRY); 1678 if (VOP_GETATTR(vp, &va, cred) == 0) { 1679 kve->kve_fileid = va.va_fileid; 1680 kve->kve_fsid = va.va_fsid; 1681 } 1682 vput(vp); 1683 VFS_UNLOCK_GIANT(vfslocked); 1684 } 1685 } else { 1686 kve->kve_type = KVME_TYPE_NONE; 1687 kve->kve_ref_count = 0; 1688 kve->kve_shadow_count = 0; 1689 } 1690 1691 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1692 if (freepath != NULL) 1693 free(freepath, M_TEMP); 1694 1695 /* Pack record size down */ 1696 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1697 strlen(kve->kve_path) + 1; 1698 kve->kve_structsize = roundup(kve->kve_structsize, 1699 sizeof(uint64_t)); 1700 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1701 vm_map_lock_read(map); 1702 if (error) 1703 break; 1704 if (last_timestamp != map->timestamp) { 1705 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1706 entry = tmp_entry; 1707 } 1708 } 1709 vm_map_unlock_read(map); 1710 vmspace_free(vm); 1711 PRELE(p); 1712 free(kve, M_TEMP); 1713 return (error); 1714 } 1715 1716 #if defined(STACK) || defined(DDB) 1717 static int 1718 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1719 { 1720 struct kinfo_kstack *kkstp; 1721 int error, i, *name, numthreads; 1722 lwpid_t *lwpidarray; 1723 struct thread *td; 1724 struct stack *st; 1725 struct sbuf sb; 1726 struct proc *p; 1727 1728 name = (int *)arg1; 1729 if ((p = pfind((pid_t)name[0])) == NULL) 1730 return (ESRCH); 1731 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1732 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1733 PROC_UNLOCK(p); 1734 return (ESRCH); 1735 } 1736 if ((error = p_candebug(curthread, p))) { 1737 PROC_UNLOCK(p); 1738 return (error); 1739 } 1740 _PHOLD(p); 1741 PROC_UNLOCK(p); 1742 1743 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1744 st = stack_create(); 1745 1746 lwpidarray = NULL; 1747 numthreads = 0; 1748 PROC_LOCK(p); 1749 repeat: 1750 if (numthreads < p->p_numthreads) { 1751 if (lwpidarray != NULL) { 1752 free(lwpidarray, M_TEMP); 1753 lwpidarray = NULL; 1754 } 1755 numthreads = p->p_numthreads; 1756 PROC_UNLOCK(p); 1757 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1758 M_WAITOK | M_ZERO); 1759 PROC_LOCK(p); 1760 goto repeat; 1761 } 1762 i = 0; 1763 1764 /* 1765 * XXXRW: During the below loop, execve(2) and countless other sorts 1766 * of changes could have taken place. Should we check to see if the 1767 * vmspace has been replaced, or the like, in order to prevent 1768 * giving a snapshot that spans, say, execve(2), with some threads 1769 * before and some after? Among other things, the credentials could 1770 * have changed, in which case the right to extract debug info might 1771 * no longer be assured. 1772 */ 1773 FOREACH_THREAD_IN_PROC(p, td) { 1774 KASSERT(i < numthreads, 1775 ("sysctl_kern_proc_kstack: numthreads")); 1776 lwpidarray[i] = td->td_tid; 1777 i++; 1778 } 1779 numthreads = i; 1780 for (i = 0; i < numthreads; i++) { 1781 td = thread_find(p, lwpidarray[i]); 1782 if (td == NULL) { 1783 continue; 1784 } 1785 bzero(kkstp, sizeof(*kkstp)); 1786 (void)sbuf_new(&sb, kkstp->kkst_trace, 1787 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1788 thread_lock(td); 1789 kkstp->kkst_tid = td->td_tid; 1790 if (TD_IS_SWAPPED(td)) 1791 kkstp->kkst_state = KKST_STATE_SWAPPED; 1792 else if (TD_IS_RUNNING(td)) 1793 kkstp->kkst_state = KKST_STATE_RUNNING; 1794 else { 1795 kkstp->kkst_state = KKST_STATE_STACKOK; 1796 stack_save_td(st, td); 1797 } 1798 thread_unlock(td); 1799 PROC_UNLOCK(p); 1800 stack_sbuf_print(&sb, st); 1801 sbuf_finish(&sb); 1802 sbuf_delete(&sb); 1803 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1804 PROC_LOCK(p); 1805 if (error) 1806 break; 1807 } 1808 _PRELE(p); 1809 PROC_UNLOCK(p); 1810 if (lwpidarray != NULL) 1811 free(lwpidarray, M_TEMP); 1812 stack_destroy(st); 1813 free(kkstp, M_TEMP); 1814 return (error); 1815 } 1816 #endif 1817 1818 /* 1819 * This sysctl allows a process to retrieve the full list of groups from 1820 * itself or another process. 1821 */ 1822 static int 1823 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 1824 { 1825 pid_t *pidp = (pid_t *)arg1; 1826 unsigned int arglen = arg2; 1827 struct proc *p; 1828 struct ucred *cred; 1829 int error; 1830 1831 if (arglen != 1) 1832 return (EINVAL); 1833 if (*pidp == -1) { /* -1 means this process */ 1834 p = req->td->td_proc; 1835 } else { 1836 p = pfind(*pidp); 1837 if (p == NULL) 1838 return (ESRCH); 1839 if ((error = p_cansee(curthread, p)) != 0) { 1840 PROC_UNLOCK(p); 1841 return (error); 1842 } 1843 } 1844 1845 cred = crhold(p->p_ucred); 1846 if (*pidp != -1) 1847 PROC_UNLOCK(p); 1848 1849 error = SYSCTL_OUT(req, cred->cr_groups, 1850 cred->cr_ngroups * sizeof(gid_t)); 1851 crfree(cred); 1852 return (error); 1853 } 1854 1855 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1856 1857 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1858 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1859 "Return entire process table"); 1860 1861 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1862 sysctl_kern_proc, "Process table"); 1863 1864 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1865 sysctl_kern_proc, "Process table"); 1866 1867 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1868 sysctl_kern_proc, "Process table"); 1869 1870 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 1871 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1872 1873 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 1874 sysctl_kern_proc, "Process table"); 1875 1876 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1877 sysctl_kern_proc, "Process table"); 1878 1879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1880 sysctl_kern_proc, "Process table"); 1881 1882 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1883 sysctl_kern_proc, "Process table"); 1884 1885 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 1886 sysctl_kern_proc, "Return process table, no threads"); 1887 1888 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1889 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 1890 sysctl_kern_proc_args, "Process argument list"); 1891 1892 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 1893 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 1894 1895 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 1896 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 1897 "Process syscall vector name (ABI type)"); 1898 1899 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1900 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1901 1902 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1903 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1904 1905 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1906 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1907 1908 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1909 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1910 1911 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1912 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1913 1914 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1915 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1916 1917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1918 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1919 1920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1921 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1922 1923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1924 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 1925 "Return process table, no threads"); 1926 1927 #ifdef COMPAT_FREEBSD7 1928 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 1929 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 1930 #endif 1931 1932 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 1933 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 1934 1935 #if defined(STACK) || defined(DDB) 1936 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 1937 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 1938 #endif 1939 1940 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 1941 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 1942