xref: /freebsd/sys/kern/kern_proc.c (revision aa12cea2ccc6e686d6d31cf67d6bc69cbc1ba744)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/mount.h>
48 #include <sys/mutex.h>
49 #include <sys/proc.h>
50 #include <sys/refcount.h>
51 #include <sys/sbuf.h>
52 #include <sys/sysent.h>
53 #include <sys/sched.h>
54 #include <sys/smp.h>
55 #include <sys/stack.h>
56 #include <sys/sysctl.h>
57 #include <sys/filedesc.h>
58 #include <sys/tty.h>
59 #include <sys/signalvar.h>
60 #include <sys/sdt.h>
61 #include <sys/sx.h>
62 #include <sys/user.h>
63 #include <sys/jail.h>
64 #include <sys/vnode.h>
65 #include <sys/eventhandler.h>
66 #ifdef KTRACE
67 #include <sys/uio.h>
68 #include <sys/ktrace.h>
69 #endif
70 
71 #ifdef DDB
72 #include <ddb/ddb.h>
73 #endif
74 
75 #include <vm/vm.h>
76 #include <vm/vm_extern.h>
77 #include <vm/pmap.h>
78 #include <vm/vm_map.h>
79 #include <vm/vm_object.h>
80 #include <vm/uma.h>
81 
82 SDT_PROVIDER_DEFINE(proc);
83 SDT_PROBE_DEFINE(proc, kernel, ctor, entry);
84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
88 SDT_PROBE_DEFINE(proc, kernel, ctor, return);
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
93 SDT_PROBE_DEFINE(proc, kernel, dtor, entry);
94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
98 SDT_PROBE_DEFINE(proc, kernel, dtor, return);
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
102 SDT_PROBE_DEFINE(proc, kernel, init, entry);
103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
106 SDT_PROBE_DEFINE(proc, kernel, init, return);
107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
110 
111 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
112 MALLOC_DEFINE(M_SESSION, "session", "session header");
113 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
114 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
115 
116 static void doenterpgrp(struct proc *, struct pgrp *);
117 static void orphanpg(struct pgrp *pg);
118 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
119 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
120 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
121     int preferthread);
122 static void pgadjustjobc(struct pgrp *pgrp, int entering);
123 static void pgdelete(struct pgrp *);
124 static int proc_ctor(void *mem, int size, void *arg, int flags);
125 static void proc_dtor(void *mem, int size, void *arg);
126 static int proc_init(void *mem, int size, int flags);
127 static void proc_fini(void *mem, int size);
128 static void pargs_free(struct pargs *pa);
129 
130 /*
131  * Other process lists
132  */
133 struct pidhashhead *pidhashtbl;
134 u_long pidhash;
135 struct pgrphashhead *pgrphashtbl;
136 u_long pgrphash;
137 struct proclist allproc;
138 struct proclist zombproc;
139 struct sx allproc_lock;
140 struct sx proctree_lock;
141 struct mtx ppeers_lock;
142 uma_zone_t proc_zone;
143 
144 int kstack_pages = KSTACK_PAGES;
145 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
146 
147 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
148 
149 /*
150  * Initialize global process hashing structures.
151  */
152 void
153 procinit()
154 {
155 
156 	sx_init(&allproc_lock, "allproc");
157 	sx_init(&proctree_lock, "proctree");
158 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
159 	LIST_INIT(&allproc);
160 	LIST_INIT(&zombproc);
161 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
162 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
163 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
164 	    proc_ctor, proc_dtor, proc_init, proc_fini,
165 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
166 	uihashinit();
167 }
168 
169 /*
170  * Prepare a proc for use.
171  */
172 static int
173 proc_ctor(void *mem, int size, void *arg, int flags)
174 {
175 	struct proc *p;
176 
177 	p = (struct proc *)mem;
178 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
179 	EVENTHANDLER_INVOKE(process_ctor, p);
180 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
181 	return (0);
182 }
183 
184 /*
185  * Reclaim a proc after use.
186  */
187 static void
188 proc_dtor(void *mem, int size, void *arg)
189 {
190 	struct proc *p;
191 	struct thread *td;
192 
193 	/* INVARIANTS checks go here */
194 	p = (struct proc *)mem;
195 	td = FIRST_THREAD_IN_PROC(p);
196 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
197 	if (td != NULL) {
198 #ifdef INVARIANTS
199 		KASSERT((p->p_numthreads == 1),
200 		    ("bad number of threads in exiting process"));
201 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
202 #endif
203 		/* Free all OSD associated to this thread. */
204 		osd_thread_exit(td);
205 	}
206 	EVENTHANDLER_INVOKE(process_dtor, p);
207 	if (p->p_ksi != NULL)
208 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
209 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
210 }
211 
212 /*
213  * Initialize type-stable parts of a proc (when newly created).
214  */
215 static int
216 proc_init(void *mem, int size, int flags)
217 {
218 	struct proc *p;
219 
220 	p = (struct proc *)mem;
221 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
222 	p->p_sched = (struct p_sched *)&p[1];
223 	bzero(&p->p_mtx, sizeof(struct mtx));
224 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
225 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
226 	cv_init(&p->p_pwait, "ppwait");
227 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
228 	EVENTHANDLER_INVOKE(process_init, p);
229 	p->p_stats = pstats_alloc();
230 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
231 	return (0);
232 }
233 
234 /*
235  * UMA should ensure that this function is never called.
236  * Freeing a proc structure would violate type stability.
237  */
238 static void
239 proc_fini(void *mem, int size)
240 {
241 #ifdef notnow
242 	struct proc *p;
243 
244 	p = (struct proc *)mem;
245 	EVENTHANDLER_INVOKE(process_fini, p);
246 	pstats_free(p->p_stats);
247 	thread_free(FIRST_THREAD_IN_PROC(p));
248 	mtx_destroy(&p->p_mtx);
249 	if (p->p_ksi != NULL)
250 		ksiginfo_free(p->p_ksi);
251 #else
252 	panic("proc reclaimed");
253 #endif
254 }
255 
256 /*
257  * Is p an inferior of the current process?
258  */
259 int
260 inferior(p)
261 	register struct proc *p;
262 {
263 
264 	sx_assert(&proctree_lock, SX_LOCKED);
265 	for (; p != curproc; p = p->p_pptr)
266 		if (p->p_pid == 0)
267 			return (0);
268 	return (1);
269 }
270 
271 /*
272  * Locate a process by number; return only "live" processes -- i.e., neither
273  * zombies nor newly born but incompletely initialized processes.  By not
274  * returning processes in the PRS_NEW state, we allow callers to avoid
275  * testing for that condition to avoid dereferencing p_ucred, et al.
276  */
277 struct proc *
278 pfind(pid)
279 	register pid_t pid;
280 {
281 	register struct proc *p;
282 
283 	sx_slock(&allproc_lock);
284 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
285 		if (p->p_pid == pid) {
286 			if (p->p_state == PRS_NEW) {
287 				p = NULL;
288 				break;
289 			}
290 			PROC_LOCK(p);
291 			break;
292 		}
293 	sx_sunlock(&allproc_lock);
294 	return (p);
295 }
296 
297 /*
298  * Locate a process group by number.
299  * The caller must hold proctree_lock.
300  */
301 struct pgrp *
302 pgfind(pgid)
303 	register pid_t pgid;
304 {
305 	register struct pgrp *pgrp;
306 
307 	sx_assert(&proctree_lock, SX_LOCKED);
308 
309 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
310 		if (pgrp->pg_id == pgid) {
311 			PGRP_LOCK(pgrp);
312 			return (pgrp);
313 		}
314 	}
315 	return (NULL);
316 }
317 
318 /*
319  * Create a new process group.
320  * pgid must be equal to the pid of p.
321  * Begin a new session if required.
322  */
323 int
324 enterpgrp(p, pgid, pgrp, sess)
325 	register struct proc *p;
326 	pid_t pgid;
327 	struct pgrp *pgrp;
328 	struct session *sess;
329 {
330 	struct pgrp *pgrp2;
331 
332 	sx_assert(&proctree_lock, SX_XLOCKED);
333 
334 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
335 	KASSERT(p->p_pid == pgid,
336 	    ("enterpgrp: new pgrp and pid != pgid"));
337 
338 	pgrp2 = pgfind(pgid);
339 
340 	KASSERT(pgrp2 == NULL,
341 	    ("enterpgrp: pgrp with pgid exists"));
342 	KASSERT(!SESS_LEADER(p),
343 	    ("enterpgrp: session leader attempted setpgrp"));
344 
345 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
346 
347 	if (sess != NULL) {
348 		/*
349 		 * new session
350 		 */
351 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
352 		PROC_LOCK(p);
353 		p->p_flag &= ~P_CONTROLT;
354 		PROC_UNLOCK(p);
355 		PGRP_LOCK(pgrp);
356 		sess->s_leader = p;
357 		sess->s_sid = p->p_pid;
358 		refcount_init(&sess->s_count, 1);
359 		sess->s_ttyvp = NULL;
360 		sess->s_ttydp = NULL;
361 		sess->s_ttyp = NULL;
362 		bcopy(p->p_session->s_login, sess->s_login,
363 			    sizeof(sess->s_login));
364 		pgrp->pg_session = sess;
365 		KASSERT(p == curproc,
366 		    ("enterpgrp: mksession and p != curproc"));
367 	} else {
368 		pgrp->pg_session = p->p_session;
369 		sess_hold(pgrp->pg_session);
370 		PGRP_LOCK(pgrp);
371 	}
372 	pgrp->pg_id = pgid;
373 	LIST_INIT(&pgrp->pg_members);
374 
375 	/*
376 	 * As we have an exclusive lock of proctree_lock,
377 	 * this should not deadlock.
378 	 */
379 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
380 	pgrp->pg_jobc = 0;
381 	SLIST_INIT(&pgrp->pg_sigiolst);
382 	PGRP_UNLOCK(pgrp);
383 
384 	doenterpgrp(p, pgrp);
385 
386 	return (0);
387 }
388 
389 /*
390  * Move p to an existing process group
391  */
392 int
393 enterthispgrp(p, pgrp)
394 	register struct proc *p;
395 	struct pgrp *pgrp;
396 {
397 
398 	sx_assert(&proctree_lock, SX_XLOCKED);
399 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
400 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
401 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
402 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
403 	KASSERT(pgrp->pg_session == p->p_session,
404 		("%s: pgrp's session %p, p->p_session %p.\n",
405 		__func__,
406 		pgrp->pg_session,
407 		p->p_session));
408 	KASSERT(pgrp != p->p_pgrp,
409 		("%s: p belongs to pgrp.", __func__));
410 
411 	doenterpgrp(p, pgrp);
412 
413 	return (0);
414 }
415 
416 /*
417  * Move p to a process group
418  */
419 static void
420 doenterpgrp(p, pgrp)
421 	struct proc *p;
422 	struct pgrp *pgrp;
423 {
424 	struct pgrp *savepgrp;
425 
426 	sx_assert(&proctree_lock, SX_XLOCKED);
427 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
428 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
429 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
430 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
431 
432 	savepgrp = p->p_pgrp;
433 
434 	/*
435 	 * Adjust eligibility of affected pgrps to participate in job control.
436 	 * Increment eligibility counts before decrementing, otherwise we
437 	 * could reach 0 spuriously during the first call.
438 	 */
439 	fixjobc(p, pgrp, 1);
440 	fixjobc(p, p->p_pgrp, 0);
441 
442 	PGRP_LOCK(pgrp);
443 	PGRP_LOCK(savepgrp);
444 	PROC_LOCK(p);
445 	LIST_REMOVE(p, p_pglist);
446 	p->p_pgrp = pgrp;
447 	PROC_UNLOCK(p);
448 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
449 	PGRP_UNLOCK(savepgrp);
450 	PGRP_UNLOCK(pgrp);
451 	if (LIST_EMPTY(&savepgrp->pg_members))
452 		pgdelete(savepgrp);
453 }
454 
455 /*
456  * remove process from process group
457  */
458 int
459 leavepgrp(p)
460 	register struct proc *p;
461 {
462 	struct pgrp *savepgrp;
463 
464 	sx_assert(&proctree_lock, SX_XLOCKED);
465 	savepgrp = p->p_pgrp;
466 	PGRP_LOCK(savepgrp);
467 	PROC_LOCK(p);
468 	LIST_REMOVE(p, p_pglist);
469 	p->p_pgrp = NULL;
470 	PROC_UNLOCK(p);
471 	PGRP_UNLOCK(savepgrp);
472 	if (LIST_EMPTY(&savepgrp->pg_members))
473 		pgdelete(savepgrp);
474 	return (0);
475 }
476 
477 /*
478  * delete a process group
479  */
480 static void
481 pgdelete(pgrp)
482 	register struct pgrp *pgrp;
483 {
484 	struct session *savesess;
485 	struct tty *tp;
486 
487 	sx_assert(&proctree_lock, SX_XLOCKED);
488 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
489 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
490 
491 	/*
492 	 * Reset any sigio structures pointing to us as a result of
493 	 * F_SETOWN with our pgid.
494 	 */
495 	funsetownlst(&pgrp->pg_sigiolst);
496 
497 	PGRP_LOCK(pgrp);
498 	tp = pgrp->pg_session->s_ttyp;
499 	LIST_REMOVE(pgrp, pg_hash);
500 	savesess = pgrp->pg_session;
501 	PGRP_UNLOCK(pgrp);
502 
503 	/* Remove the reference to the pgrp before deallocating it. */
504 	if (tp != NULL) {
505 		tty_lock(tp);
506 		tty_rel_pgrp(tp, pgrp);
507 	}
508 
509 	mtx_destroy(&pgrp->pg_mtx);
510 	free(pgrp, M_PGRP);
511 	sess_release(savesess);
512 }
513 
514 static void
515 pgadjustjobc(pgrp, entering)
516 	struct pgrp *pgrp;
517 	int entering;
518 {
519 
520 	PGRP_LOCK(pgrp);
521 	if (entering)
522 		pgrp->pg_jobc++;
523 	else {
524 		--pgrp->pg_jobc;
525 		if (pgrp->pg_jobc == 0)
526 			orphanpg(pgrp);
527 	}
528 	PGRP_UNLOCK(pgrp);
529 }
530 
531 /*
532  * Adjust pgrp jobc counters when specified process changes process group.
533  * We count the number of processes in each process group that "qualify"
534  * the group for terminal job control (those with a parent in a different
535  * process group of the same session).  If that count reaches zero, the
536  * process group becomes orphaned.  Check both the specified process'
537  * process group and that of its children.
538  * entering == 0 => p is leaving specified group.
539  * entering == 1 => p is entering specified group.
540  */
541 void
542 fixjobc(p, pgrp, entering)
543 	register struct proc *p;
544 	register struct pgrp *pgrp;
545 	int entering;
546 {
547 	register struct pgrp *hispgrp;
548 	register struct session *mysession;
549 
550 	sx_assert(&proctree_lock, SX_LOCKED);
551 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
552 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
553 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
554 
555 	/*
556 	 * Check p's parent to see whether p qualifies its own process
557 	 * group; if so, adjust count for p's process group.
558 	 */
559 	mysession = pgrp->pg_session;
560 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
561 	    hispgrp->pg_session == mysession)
562 		pgadjustjobc(pgrp, entering);
563 
564 	/*
565 	 * Check this process' children to see whether they qualify
566 	 * their process groups; if so, adjust counts for children's
567 	 * process groups.
568 	 */
569 	LIST_FOREACH(p, &p->p_children, p_sibling) {
570 		hispgrp = p->p_pgrp;
571 		if (hispgrp == pgrp ||
572 		    hispgrp->pg_session != mysession)
573 			continue;
574 		PROC_LOCK(p);
575 		if (p->p_state == PRS_ZOMBIE) {
576 			PROC_UNLOCK(p);
577 			continue;
578 		}
579 		PROC_UNLOCK(p);
580 		pgadjustjobc(hispgrp, entering);
581 	}
582 }
583 
584 /*
585  * A process group has become orphaned;
586  * if there are any stopped processes in the group,
587  * hang-up all process in that group.
588  */
589 static void
590 orphanpg(pg)
591 	struct pgrp *pg;
592 {
593 	register struct proc *p;
594 
595 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
596 
597 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
598 		PROC_LOCK(p);
599 		if (P_SHOULDSTOP(p)) {
600 			PROC_UNLOCK(p);
601 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
602 				PROC_LOCK(p);
603 				psignal(p, SIGHUP);
604 				psignal(p, SIGCONT);
605 				PROC_UNLOCK(p);
606 			}
607 			return;
608 		}
609 		PROC_UNLOCK(p);
610 	}
611 }
612 
613 void
614 sess_hold(struct session *s)
615 {
616 
617 	refcount_acquire(&s->s_count);
618 }
619 
620 void
621 sess_release(struct session *s)
622 {
623 
624 	if (refcount_release(&s->s_count)) {
625 		if (s->s_ttyp != NULL) {
626 			tty_lock(s->s_ttyp);
627 			tty_rel_sess(s->s_ttyp, s);
628 		}
629 		mtx_destroy(&s->s_mtx);
630 		free(s, M_SESSION);
631 	}
632 }
633 
634 #include "opt_ddb.h"
635 #ifdef DDB
636 #include <ddb/ddb.h>
637 
638 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
639 {
640 	register struct pgrp *pgrp;
641 	register struct proc *p;
642 	register int i;
643 
644 	for (i = 0; i <= pgrphash; i++) {
645 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
646 			printf("\tindx %d\n", i);
647 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
648 				printf(
649 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
650 				    (void *)pgrp, (long)pgrp->pg_id,
651 				    (void *)pgrp->pg_session,
652 				    pgrp->pg_session->s_count,
653 				    (void *)LIST_FIRST(&pgrp->pg_members));
654 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
655 					printf("\t\tpid %ld addr %p pgrp %p\n",
656 					    (long)p->p_pid, (void *)p,
657 					    (void *)p->p_pgrp);
658 				}
659 			}
660 		}
661 	}
662 }
663 #endif /* DDB */
664 
665 /*
666  * Calculate the kinfo_proc members which contain process-wide
667  * informations.
668  * Must be called with the target process locked.
669  */
670 static void
671 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
672 {
673 	struct thread *td;
674 
675 	PROC_LOCK_ASSERT(p, MA_OWNED);
676 
677 	kp->ki_estcpu = 0;
678 	kp->ki_pctcpu = 0;
679 	FOREACH_THREAD_IN_PROC(p, td) {
680 		thread_lock(td);
681 		kp->ki_pctcpu += sched_pctcpu(td);
682 		kp->ki_estcpu += td->td_estcpu;
683 		thread_unlock(td);
684 	}
685 }
686 
687 /*
688  * Clear kinfo_proc and fill in any information that is common
689  * to all threads in the process.
690  * Must be called with the target process locked.
691  */
692 static void
693 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
694 {
695 	struct thread *td0;
696 	struct tty *tp;
697 	struct session *sp;
698 	struct ucred *cred;
699 	struct sigacts *ps;
700 
701 	PROC_LOCK_ASSERT(p, MA_OWNED);
702 	bzero(kp, sizeof(*kp));
703 
704 	kp->ki_structsize = sizeof(*kp);
705 	kp->ki_paddr = p;
706 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
707 	kp->ki_args = p->p_args;
708 	kp->ki_textvp = p->p_textvp;
709 #ifdef KTRACE
710 	kp->ki_tracep = p->p_tracevp;
711 	mtx_lock(&ktrace_mtx);
712 	kp->ki_traceflag = p->p_traceflag;
713 	mtx_unlock(&ktrace_mtx);
714 #endif
715 	kp->ki_fd = p->p_fd;
716 	kp->ki_vmspace = p->p_vmspace;
717 	kp->ki_flag = p->p_flag;
718 	cred = p->p_ucred;
719 	if (cred) {
720 		kp->ki_uid = cred->cr_uid;
721 		kp->ki_ruid = cred->cr_ruid;
722 		kp->ki_svuid = cred->cr_svuid;
723 		kp->ki_cr_flags = cred->cr_flags;
724 		/* XXX bde doesn't like KI_NGROUPS */
725 		if (cred->cr_ngroups > KI_NGROUPS) {
726 			kp->ki_ngroups = KI_NGROUPS;
727 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
728 		} else
729 			kp->ki_ngroups = cred->cr_ngroups;
730 		bcopy(cred->cr_groups, kp->ki_groups,
731 		    kp->ki_ngroups * sizeof(gid_t));
732 		kp->ki_rgid = cred->cr_rgid;
733 		kp->ki_svgid = cred->cr_svgid;
734 		/* If jailed(cred), emulate the old P_JAILED flag. */
735 		if (jailed(cred)) {
736 			kp->ki_flag |= P_JAILED;
737 			/* If inside the jail, use 0 as a jail ID. */
738 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
739 				kp->ki_jid = cred->cr_prison->pr_id;
740 		}
741 	}
742 	ps = p->p_sigacts;
743 	if (ps) {
744 		mtx_lock(&ps->ps_mtx);
745 		kp->ki_sigignore = ps->ps_sigignore;
746 		kp->ki_sigcatch = ps->ps_sigcatch;
747 		mtx_unlock(&ps->ps_mtx);
748 	}
749 	PROC_SLOCK(p);
750 	if (p->p_state != PRS_NEW &&
751 	    p->p_state != PRS_ZOMBIE &&
752 	    p->p_vmspace != NULL) {
753 		struct vmspace *vm = p->p_vmspace;
754 
755 		kp->ki_size = vm->vm_map.size;
756 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
757 		FOREACH_THREAD_IN_PROC(p, td0) {
758 			if (!TD_IS_SWAPPED(td0))
759 				kp->ki_rssize += td0->td_kstack_pages;
760 		}
761 		kp->ki_swrss = vm->vm_swrss;
762 		kp->ki_tsize = vm->vm_tsize;
763 		kp->ki_dsize = vm->vm_dsize;
764 		kp->ki_ssize = vm->vm_ssize;
765 	} else if (p->p_state == PRS_ZOMBIE)
766 		kp->ki_stat = SZOMB;
767 	if (kp->ki_flag & P_INMEM)
768 		kp->ki_sflag = PS_INMEM;
769 	else
770 		kp->ki_sflag = 0;
771 	/* Calculate legacy swtime as seconds since 'swtick'. */
772 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
773 	kp->ki_pid = p->p_pid;
774 	kp->ki_nice = p->p_nice;
775 	rufetch(p, &kp->ki_rusage);
776 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
777 	PROC_SUNLOCK(p);
778 	if ((p->p_flag & P_INMEM) && p->p_stats != NULL) {
779 		kp->ki_start = p->p_stats->p_start;
780 		timevaladd(&kp->ki_start, &boottime);
781 		PROC_SLOCK(p);
782 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
783 		PROC_SUNLOCK(p);
784 		calccru(p, &kp->ki_childutime, &kp->ki_childstime);
785 
786 		/* Some callers want child-times in a single value */
787 		kp->ki_childtime = kp->ki_childstime;
788 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
789 	}
790 	tp = NULL;
791 	if (p->p_pgrp) {
792 		kp->ki_pgid = p->p_pgrp->pg_id;
793 		kp->ki_jobc = p->p_pgrp->pg_jobc;
794 		sp = p->p_pgrp->pg_session;
795 
796 		if (sp != NULL) {
797 			kp->ki_sid = sp->s_sid;
798 			SESS_LOCK(sp);
799 			strlcpy(kp->ki_login, sp->s_login,
800 			    sizeof(kp->ki_login));
801 			if (sp->s_ttyvp)
802 				kp->ki_kiflag |= KI_CTTY;
803 			if (SESS_LEADER(p))
804 				kp->ki_kiflag |= KI_SLEADER;
805 			/* XXX proctree_lock */
806 			tp = sp->s_ttyp;
807 			SESS_UNLOCK(sp);
808 		}
809 	}
810 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
811 		kp->ki_tdev = tty_udev(tp);
812 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
813 		if (tp->t_session)
814 			kp->ki_tsid = tp->t_session->s_sid;
815 	} else
816 		kp->ki_tdev = NODEV;
817 	if (p->p_comm[0] != '\0')
818 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
819 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
820 	    p->p_sysent->sv_name[0] != '\0')
821 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
822 	kp->ki_siglist = p->p_siglist;
823 	kp->ki_xstat = p->p_xstat;
824 	kp->ki_acflag = p->p_acflag;
825 	kp->ki_lock = p->p_lock;
826 	if (p->p_pptr)
827 		kp->ki_ppid = p->p_pptr->p_pid;
828 }
829 
830 /*
831  * Fill in information that is thread specific.  Must be called with
832  * target process locked.  If 'preferthread' is set, overwrite certain
833  * process-related fields that are maintained for both threads and
834  * processes.
835  */
836 static void
837 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
838 {
839 	struct proc *p;
840 
841 	p = td->td_proc;
842 	PROC_LOCK_ASSERT(p, MA_OWNED);
843 
844 	thread_lock(td);
845 	if (td->td_wmesg != NULL)
846 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
847 	else
848 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
849 	strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
850 	if (TD_ON_LOCK(td)) {
851 		kp->ki_kiflag |= KI_LOCKBLOCK;
852 		strlcpy(kp->ki_lockname, td->td_lockname,
853 		    sizeof(kp->ki_lockname));
854 	} else {
855 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
856 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
857 	}
858 
859 	if (p->p_state == PRS_NORMAL) { /* approximate. */
860 		if (TD_ON_RUNQ(td) ||
861 		    TD_CAN_RUN(td) ||
862 		    TD_IS_RUNNING(td)) {
863 			kp->ki_stat = SRUN;
864 		} else if (P_SHOULDSTOP(p)) {
865 			kp->ki_stat = SSTOP;
866 		} else if (TD_IS_SLEEPING(td)) {
867 			kp->ki_stat = SSLEEP;
868 		} else if (TD_ON_LOCK(td)) {
869 			kp->ki_stat = SLOCK;
870 		} else {
871 			kp->ki_stat = SWAIT;
872 		}
873 	} else if (p->p_state == PRS_ZOMBIE) {
874 		kp->ki_stat = SZOMB;
875 	} else {
876 		kp->ki_stat = SIDL;
877 	}
878 
879 	/* Things in the thread */
880 	kp->ki_wchan = td->td_wchan;
881 	kp->ki_pri.pri_level = td->td_priority;
882 	kp->ki_pri.pri_native = td->td_base_pri;
883 	kp->ki_lastcpu = td->td_lastcpu;
884 	kp->ki_oncpu = td->td_oncpu;
885 	kp->ki_tdflags = td->td_flags;
886 	kp->ki_tid = td->td_tid;
887 	kp->ki_numthreads = p->p_numthreads;
888 	kp->ki_pcb = td->td_pcb;
889 	kp->ki_kstack = (void *)td->td_kstack;
890 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
891 	kp->ki_pri.pri_class = td->td_pri_class;
892 	kp->ki_pri.pri_user = td->td_user_pri;
893 
894 	if (preferthread) {
895 		kp->ki_runtime = cputick2usec(td->td_runtime);
896 		kp->ki_pctcpu = sched_pctcpu(td);
897 		kp->ki_estcpu = td->td_estcpu;
898 	}
899 
900 	/* We can't get this anymore but ps etc never used it anyway. */
901 	kp->ki_rqindex = 0;
902 
903 	if (preferthread)
904 		kp->ki_siglist = td->td_siglist;
905 	kp->ki_sigmask = td->td_sigmask;
906 	thread_unlock(td);
907 }
908 
909 /*
910  * Fill in a kinfo_proc structure for the specified process.
911  * Must be called with the target process locked.
912  */
913 void
914 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
915 {
916 
917 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
918 
919 	fill_kinfo_proc_only(p, kp);
920 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
921 	fill_kinfo_aggregate(p, kp);
922 }
923 
924 struct pstats *
925 pstats_alloc(void)
926 {
927 
928 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
929 }
930 
931 /*
932  * Copy parts of p_stats; zero the rest of p_stats (statistics).
933  */
934 void
935 pstats_fork(struct pstats *src, struct pstats *dst)
936 {
937 
938 	bzero(&dst->pstat_startzero,
939 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
940 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
941 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
942 }
943 
944 void
945 pstats_free(struct pstats *ps)
946 {
947 
948 	free(ps, M_SUBPROC);
949 }
950 
951 /*
952  * Locate a zombie process by number
953  */
954 struct proc *
955 zpfind(pid_t pid)
956 {
957 	struct proc *p;
958 
959 	sx_slock(&allproc_lock);
960 	LIST_FOREACH(p, &zombproc, p_list)
961 		if (p->p_pid == pid) {
962 			PROC_LOCK(p);
963 			break;
964 		}
965 	sx_sunlock(&allproc_lock);
966 	return (p);
967 }
968 
969 #define KERN_PROC_ZOMBMASK	0x3
970 #define KERN_PROC_NOTHREADS	0x4
971 
972 /*
973  * Must be called with the process locked and will return with it unlocked.
974  */
975 static int
976 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
977 {
978 	struct thread *td;
979 	struct kinfo_proc kinfo_proc;
980 	int error = 0;
981 	struct proc *np;
982 	pid_t pid = p->p_pid;
983 
984 	PROC_LOCK_ASSERT(p, MA_OWNED);
985 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
986 
987 	fill_kinfo_proc(p, &kinfo_proc);
988 	if (flags & KERN_PROC_NOTHREADS)
989 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
990 		    sizeof(kinfo_proc));
991 	else {
992 		FOREACH_THREAD_IN_PROC(p, td) {
993 			fill_kinfo_thread(td, &kinfo_proc, 1);
994 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
995 			    sizeof(kinfo_proc));
996 			if (error)
997 				break;
998 		}
999 	}
1000 	PROC_UNLOCK(p);
1001 	if (error)
1002 		return (error);
1003 	if (flags & KERN_PROC_ZOMBMASK)
1004 		np = zpfind(pid);
1005 	else {
1006 		if (pid == 0)
1007 			return (0);
1008 		np = pfind(pid);
1009 	}
1010 	if (np == NULL)
1011 		return (ESRCH);
1012 	if (np != p) {
1013 		PROC_UNLOCK(np);
1014 		return (ESRCH);
1015 	}
1016 	PROC_UNLOCK(np);
1017 	return (0);
1018 }
1019 
1020 static int
1021 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1022 {
1023 	int *name = (int*) arg1;
1024 	u_int namelen = arg2;
1025 	struct proc *p;
1026 	int flags, doingzomb, oid_number;
1027 	int error = 0;
1028 
1029 	oid_number = oidp->oid_number;
1030 	if (oid_number != KERN_PROC_ALL &&
1031 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1032 		flags = KERN_PROC_NOTHREADS;
1033 	else {
1034 		flags = 0;
1035 		oid_number &= ~KERN_PROC_INC_THREAD;
1036 	}
1037 	if (oid_number == KERN_PROC_PID) {
1038 		if (namelen != 1)
1039 			return (EINVAL);
1040 		error = sysctl_wire_old_buffer(req, 0);
1041 		if (error)
1042 			return (error);
1043 		p = pfind((pid_t)name[0]);
1044 		if (!p)
1045 			return (ESRCH);
1046 		if ((error = p_cansee(curthread, p))) {
1047 			PROC_UNLOCK(p);
1048 			return (error);
1049 		}
1050 		error = sysctl_out_proc(p, req, flags);
1051 		return (error);
1052 	}
1053 
1054 	switch (oid_number) {
1055 	case KERN_PROC_ALL:
1056 		if (namelen != 0)
1057 			return (EINVAL);
1058 		break;
1059 	case KERN_PROC_PROC:
1060 		if (namelen != 0 && namelen != 1)
1061 			return (EINVAL);
1062 		break;
1063 	default:
1064 		if (namelen != 1)
1065 			return (EINVAL);
1066 		break;
1067 	}
1068 
1069 	if (!req->oldptr) {
1070 		/* overestimate by 5 procs */
1071 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1072 		if (error)
1073 			return (error);
1074 	}
1075 	error = sysctl_wire_old_buffer(req, 0);
1076 	if (error != 0)
1077 		return (error);
1078 	sx_slock(&allproc_lock);
1079 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1080 		if (!doingzomb)
1081 			p = LIST_FIRST(&allproc);
1082 		else
1083 			p = LIST_FIRST(&zombproc);
1084 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1085 			/*
1086 			 * Skip embryonic processes.
1087 			 */
1088 			PROC_SLOCK(p);
1089 			if (p->p_state == PRS_NEW) {
1090 				PROC_SUNLOCK(p);
1091 				continue;
1092 			}
1093 			PROC_SUNLOCK(p);
1094 			PROC_LOCK(p);
1095 			KASSERT(p->p_ucred != NULL,
1096 			    ("process credential is NULL for non-NEW proc"));
1097 			/*
1098 			 * Show a user only appropriate processes.
1099 			 */
1100 			if (p_cansee(curthread, p)) {
1101 				PROC_UNLOCK(p);
1102 				continue;
1103 			}
1104 			/*
1105 			 * TODO - make more efficient (see notes below).
1106 			 * do by session.
1107 			 */
1108 			switch (oid_number) {
1109 
1110 			case KERN_PROC_GID:
1111 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1112 					PROC_UNLOCK(p);
1113 					continue;
1114 				}
1115 				break;
1116 
1117 			case KERN_PROC_PGRP:
1118 				/* could do this by traversing pgrp */
1119 				if (p->p_pgrp == NULL ||
1120 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1121 					PROC_UNLOCK(p);
1122 					continue;
1123 				}
1124 				break;
1125 
1126 			case KERN_PROC_RGID:
1127 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1128 					PROC_UNLOCK(p);
1129 					continue;
1130 				}
1131 				break;
1132 
1133 			case KERN_PROC_SESSION:
1134 				if (p->p_session == NULL ||
1135 				    p->p_session->s_sid != (pid_t)name[0]) {
1136 					PROC_UNLOCK(p);
1137 					continue;
1138 				}
1139 				break;
1140 
1141 			case KERN_PROC_TTY:
1142 				if ((p->p_flag & P_CONTROLT) == 0 ||
1143 				    p->p_session == NULL) {
1144 					PROC_UNLOCK(p);
1145 					continue;
1146 				}
1147 				/* XXX proctree_lock */
1148 				SESS_LOCK(p->p_session);
1149 				if (p->p_session->s_ttyp == NULL ||
1150 				    tty_udev(p->p_session->s_ttyp) !=
1151 				    (dev_t)name[0]) {
1152 					SESS_UNLOCK(p->p_session);
1153 					PROC_UNLOCK(p);
1154 					continue;
1155 				}
1156 				SESS_UNLOCK(p->p_session);
1157 				break;
1158 
1159 			case KERN_PROC_UID:
1160 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1161 					PROC_UNLOCK(p);
1162 					continue;
1163 				}
1164 				break;
1165 
1166 			case KERN_PROC_RUID:
1167 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1168 					PROC_UNLOCK(p);
1169 					continue;
1170 				}
1171 				break;
1172 
1173 			case KERN_PROC_PROC:
1174 				break;
1175 
1176 			default:
1177 				break;
1178 
1179 			}
1180 
1181 			error = sysctl_out_proc(p, req, flags | doingzomb);
1182 			if (error) {
1183 				sx_sunlock(&allproc_lock);
1184 				return (error);
1185 			}
1186 		}
1187 	}
1188 	sx_sunlock(&allproc_lock);
1189 	return (0);
1190 }
1191 
1192 struct pargs *
1193 pargs_alloc(int len)
1194 {
1195 	struct pargs *pa;
1196 
1197 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1198 		M_WAITOK);
1199 	refcount_init(&pa->ar_ref, 1);
1200 	pa->ar_length = len;
1201 	return (pa);
1202 }
1203 
1204 static void
1205 pargs_free(struct pargs *pa)
1206 {
1207 
1208 	free(pa, M_PARGS);
1209 }
1210 
1211 void
1212 pargs_hold(struct pargs *pa)
1213 {
1214 
1215 	if (pa == NULL)
1216 		return;
1217 	refcount_acquire(&pa->ar_ref);
1218 }
1219 
1220 void
1221 pargs_drop(struct pargs *pa)
1222 {
1223 
1224 	if (pa == NULL)
1225 		return;
1226 	if (refcount_release(&pa->ar_ref))
1227 		pargs_free(pa);
1228 }
1229 
1230 /*
1231  * This sysctl allows a process to retrieve the argument list or process
1232  * title for another process without groping around in the address space
1233  * of the other process.  It also allow a process to set its own "process
1234  * title to a string of its own choice.
1235  */
1236 static int
1237 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1238 {
1239 	int *name = (int*) arg1;
1240 	u_int namelen = arg2;
1241 	struct pargs *newpa, *pa;
1242 	struct proc *p;
1243 	int error = 0;
1244 
1245 	if (namelen != 1)
1246 		return (EINVAL);
1247 
1248 	p = pfind((pid_t)name[0]);
1249 	if (!p)
1250 		return (ESRCH);
1251 
1252 	if ((error = p_cansee(curthread, p)) != 0) {
1253 		PROC_UNLOCK(p);
1254 		return (error);
1255 	}
1256 
1257 	if (req->newptr && curproc != p) {
1258 		PROC_UNLOCK(p);
1259 		return (EPERM);
1260 	}
1261 
1262 	pa = p->p_args;
1263 	pargs_hold(pa);
1264 	PROC_UNLOCK(p);
1265 	if (req->oldptr != NULL && pa != NULL)
1266 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1267 	pargs_drop(pa);
1268 	if (error != 0 || req->newptr == NULL)
1269 		return (error);
1270 
1271 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1272 		return (ENOMEM);
1273 	newpa = pargs_alloc(req->newlen);
1274 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1275 	if (error != 0) {
1276 		pargs_free(newpa);
1277 		return (error);
1278 	}
1279 	PROC_LOCK(p);
1280 	pa = p->p_args;
1281 	p->p_args = newpa;
1282 	PROC_UNLOCK(p);
1283 	pargs_drop(pa);
1284 	return (0);
1285 }
1286 
1287 /*
1288  * This sysctl allows a process to retrieve the path of the executable for
1289  * itself or another process.
1290  */
1291 static int
1292 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1293 {
1294 	pid_t *pidp = (pid_t *)arg1;
1295 	unsigned int arglen = arg2;
1296 	struct proc *p;
1297 	struct vnode *vp;
1298 	char *retbuf, *freebuf;
1299 	int error, vfslocked;
1300 
1301 	if (arglen != 1)
1302 		return (EINVAL);
1303 	if (*pidp == -1) {	/* -1 means this process */
1304 		p = req->td->td_proc;
1305 	} else {
1306 		p = pfind(*pidp);
1307 		if (p == NULL)
1308 			return (ESRCH);
1309 		if ((error = p_cansee(curthread, p)) != 0) {
1310 			PROC_UNLOCK(p);
1311 			return (error);
1312 		}
1313 	}
1314 
1315 	vp = p->p_textvp;
1316 	if (vp == NULL) {
1317 		if (*pidp != -1)
1318 			PROC_UNLOCK(p);
1319 		return (0);
1320 	}
1321 	vref(vp);
1322 	if (*pidp != -1)
1323 		PROC_UNLOCK(p);
1324 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1325 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1326 	vrele(vp);
1327 	VFS_UNLOCK_GIANT(vfslocked);
1328 	if (error)
1329 		return (error);
1330 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1331 	free(freebuf, M_TEMP);
1332 	return (error);
1333 }
1334 
1335 static int
1336 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1337 {
1338 	struct proc *p;
1339 	char *sv_name;
1340 	int *name;
1341 	int namelen;
1342 	int error;
1343 
1344 	namelen = arg2;
1345 	if (namelen != 1)
1346 		return (EINVAL);
1347 
1348 	name = (int *)arg1;
1349 	if ((p = pfind((pid_t)name[0])) == NULL)
1350 		return (ESRCH);
1351 	if ((error = p_cansee(curthread, p))) {
1352 		PROC_UNLOCK(p);
1353 		return (error);
1354 	}
1355 	sv_name = p->p_sysent->sv_name;
1356 	PROC_UNLOCK(p);
1357 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1358 }
1359 
1360 #ifdef KINFO_OVMENTRY_SIZE
1361 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1362 #endif
1363 
1364 #ifdef COMPAT_FREEBSD7
1365 static int
1366 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1367 {
1368 	vm_map_entry_t entry, tmp_entry;
1369 	unsigned int last_timestamp;
1370 	char *fullpath, *freepath;
1371 	struct kinfo_ovmentry *kve;
1372 	struct vattr va;
1373 	struct ucred *cred;
1374 	int error, *name;
1375 	struct vnode *vp;
1376 	struct proc *p;
1377 	vm_map_t map;
1378 	struct vmspace *vm;
1379 
1380 	name = (int *)arg1;
1381 	if ((p = pfind((pid_t)name[0])) == NULL)
1382 		return (ESRCH);
1383 	if (p->p_flag & P_WEXIT) {
1384 		PROC_UNLOCK(p);
1385 		return (ESRCH);
1386 	}
1387 	if ((error = p_candebug(curthread, p))) {
1388 		PROC_UNLOCK(p);
1389 		return (error);
1390 	}
1391 	_PHOLD(p);
1392 	PROC_UNLOCK(p);
1393 	vm = vmspace_acquire_ref(p);
1394 	if (vm == NULL) {
1395 		PRELE(p);
1396 		return (ESRCH);
1397 	}
1398 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1399 
1400 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1401 	vm_map_lock_read(map);
1402 	for (entry = map->header.next; entry != &map->header;
1403 	    entry = entry->next) {
1404 		vm_object_t obj, tobj, lobj;
1405 		vm_offset_t addr;
1406 		int vfslocked;
1407 
1408 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1409 			continue;
1410 
1411 		bzero(kve, sizeof(*kve));
1412 		kve->kve_structsize = sizeof(*kve);
1413 
1414 		kve->kve_private_resident = 0;
1415 		obj = entry->object.vm_object;
1416 		if (obj != NULL) {
1417 			VM_OBJECT_LOCK(obj);
1418 			if (obj->shadow_count == 1)
1419 				kve->kve_private_resident =
1420 				    obj->resident_page_count;
1421 		}
1422 		kve->kve_resident = 0;
1423 		addr = entry->start;
1424 		while (addr < entry->end) {
1425 			if (pmap_extract(map->pmap, addr))
1426 				kve->kve_resident++;
1427 			addr += PAGE_SIZE;
1428 		}
1429 
1430 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1431 			if (tobj != obj)
1432 				VM_OBJECT_LOCK(tobj);
1433 			if (lobj != obj)
1434 				VM_OBJECT_UNLOCK(lobj);
1435 			lobj = tobj;
1436 		}
1437 
1438 		kve->kve_start = (void*)entry->start;
1439 		kve->kve_end = (void*)entry->end;
1440 		kve->kve_offset = (off_t)entry->offset;
1441 
1442 		if (entry->protection & VM_PROT_READ)
1443 			kve->kve_protection |= KVME_PROT_READ;
1444 		if (entry->protection & VM_PROT_WRITE)
1445 			kve->kve_protection |= KVME_PROT_WRITE;
1446 		if (entry->protection & VM_PROT_EXECUTE)
1447 			kve->kve_protection |= KVME_PROT_EXEC;
1448 
1449 		if (entry->eflags & MAP_ENTRY_COW)
1450 			kve->kve_flags |= KVME_FLAG_COW;
1451 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1452 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1453 
1454 		last_timestamp = map->timestamp;
1455 		vm_map_unlock_read(map);
1456 
1457 		kve->kve_fileid = 0;
1458 		kve->kve_fsid = 0;
1459 		freepath = NULL;
1460 		fullpath = "";
1461 		if (lobj) {
1462 			vp = NULL;
1463 			switch (lobj->type) {
1464 			case OBJT_DEFAULT:
1465 				kve->kve_type = KVME_TYPE_DEFAULT;
1466 				break;
1467 			case OBJT_VNODE:
1468 				kve->kve_type = KVME_TYPE_VNODE;
1469 				vp = lobj->handle;
1470 				vref(vp);
1471 				break;
1472 			case OBJT_SWAP:
1473 				kve->kve_type = KVME_TYPE_SWAP;
1474 				break;
1475 			case OBJT_DEVICE:
1476 				kve->kve_type = KVME_TYPE_DEVICE;
1477 				break;
1478 			case OBJT_PHYS:
1479 				kve->kve_type = KVME_TYPE_PHYS;
1480 				break;
1481 			case OBJT_DEAD:
1482 				kve->kve_type = KVME_TYPE_DEAD;
1483 				break;
1484 			case OBJT_SG:
1485 				kve->kve_type = KVME_TYPE_SG;
1486 				break;
1487 			default:
1488 				kve->kve_type = KVME_TYPE_UNKNOWN;
1489 				break;
1490 			}
1491 			if (lobj != obj)
1492 				VM_OBJECT_UNLOCK(lobj);
1493 
1494 			kve->kve_ref_count = obj->ref_count;
1495 			kve->kve_shadow_count = obj->shadow_count;
1496 			VM_OBJECT_UNLOCK(obj);
1497 			if (vp != NULL) {
1498 				vn_fullpath(curthread, vp, &fullpath,
1499 				    &freepath);
1500 				cred = curthread->td_ucred;
1501 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1502 				vn_lock(vp, LK_SHARED | LK_RETRY);
1503 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1504 					kve->kve_fileid = va.va_fileid;
1505 					kve->kve_fsid = va.va_fsid;
1506 				}
1507 				vput(vp);
1508 				VFS_UNLOCK_GIANT(vfslocked);
1509 			}
1510 		} else {
1511 			kve->kve_type = KVME_TYPE_NONE;
1512 			kve->kve_ref_count = 0;
1513 			kve->kve_shadow_count = 0;
1514 		}
1515 
1516 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1517 		if (freepath != NULL)
1518 			free(freepath, M_TEMP);
1519 
1520 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1521 		vm_map_lock_read(map);
1522 		if (error)
1523 			break;
1524 		if (last_timestamp != map->timestamp) {
1525 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1526 			entry = tmp_entry;
1527 		}
1528 	}
1529 	vm_map_unlock_read(map);
1530 	vmspace_free(vm);
1531 	PRELE(p);
1532 	free(kve, M_TEMP);
1533 	return (error);
1534 }
1535 #endif	/* COMPAT_FREEBSD7 */
1536 
1537 #ifdef KINFO_VMENTRY_SIZE
1538 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1539 #endif
1540 
1541 static int
1542 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1543 {
1544 	vm_map_entry_t entry, tmp_entry;
1545 	unsigned int last_timestamp;
1546 	char *fullpath, *freepath;
1547 	struct kinfo_vmentry *kve;
1548 	struct vattr va;
1549 	struct ucred *cred;
1550 	int error, *name;
1551 	struct vnode *vp;
1552 	struct proc *p;
1553 	struct vmspace *vm;
1554 	vm_map_t map;
1555 
1556 	name = (int *)arg1;
1557 	if ((p = pfind((pid_t)name[0])) == NULL)
1558 		return (ESRCH);
1559 	if (p->p_flag & P_WEXIT) {
1560 		PROC_UNLOCK(p);
1561 		return (ESRCH);
1562 	}
1563 	if ((error = p_candebug(curthread, p))) {
1564 		PROC_UNLOCK(p);
1565 		return (error);
1566 	}
1567 	_PHOLD(p);
1568 	PROC_UNLOCK(p);
1569 	vm = vmspace_acquire_ref(p);
1570 	if (vm == NULL) {
1571 		PRELE(p);
1572 		return (ESRCH);
1573 	}
1574 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1575 
1576 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1577 	vm_map_lock_read(map);
1578 	for (entry = map->header.next; entry != &map->header;
1579 	    entry = entry->next) {
1580 		vm_object_t obj, tobj, lobj;
1581 		vm_offset_t addr;
1582 		int vfslocked;
1583 
1584 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1585 			continue;
1586 
1587 		bzero(kve, sizeof(*kve));
1588 
1589 		kve->kve_private_resident = 0;
1590 		obj = entry->object.vm_object;
1591 		if (obj != NULL) {
1592 			VM_OBJECT_LOCK(obj);
1593 			if (obj->shadow_count == 1)
1594 				kve->kve_private_resident =
1595 				    obj->resident_page_count;
1596 		}
1597 		kve->kve_resident = 0;
1598 		addr = entry->start;
1599 		while (addr < entry->end) {
1600 			if (pmap_extract(map->pmap, addr))
1601 				kve->kve_resident++;
1602 			addr += PAGE_SIZE;
1603 		}
1604 
1605 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1606 			if (tobj != obj)
1607 				VM_OBJECT_LOCK(tobj);
1608 			if (lobj != obj)
1609 				VM_OBJECT_UNLOCK(lobj);
1610 			lobj = tobj;
1611 		}
1612 
1613 		kve->kve_start = entry->start;
1614 		kve->kve_end = entry->end;
1615 		kve->kve_offset = entry->offset;
1616 
1617 		if (entry->protection & VM_PROT_READ)
1618 			kve->kve_protection |= KVME_PROT_READ;
1619 		if (entry->protection & VM_PROT_WRITE)
1620 			kve->kve_protection |= KVME_PROT_WRITE;
1621 		if (entry->protection & VM_PROT_EXECUTE)
1622 			kve->kve_protection |= KVME_PROT_EXEC;
1623 
1624 		if (entry->eflags & MAP_ENTRY_COW)
1625 			kve->kve_flags |= KVME_FLAG_COW;
1626 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1627 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1628 
1629 		last_timestamp = map->timestamp;
1630 		vm_map_unlock_read(map);
1631 
1632 		kve->kve_fileid = 0;
1633 		kve->kve_fsid = 0;
1634 		freepath = NULL;
1635 		fullpath = "";
1636 		if (lobj) {
1637 			vp = NULL;
1638 			switch (lobj->type) {
1639 			case OBJT_DEFAULT:
1640 				kve->kve_type = KVME_TYPE_DEFAULT;
1641 				break;
1642 			case OBJT_VNODE:
1643 				kve->kve_type = KVME_TYPE_VNODE;
1644 				vp = lobj->handle;
1645 				vref(vp);
1646 				break;
1647 			case OBJT_SWAP:
1648 				kve->kve_type = KVME_TYPE_SWAP;
1649 				break;
1650 			case OBJT_DEVICE:
1651 				kve->kve_type = KVME_TYPE_DEVICE;
1652 				break;
1653 			case OBJT_PHYS:
1654 				kve->kve_type = KVME_TYPE_PHYS;
1655 				break;
1656 			case OBJT_DEAD:
1657 				kve->kve_type = KVME_TYPE_DEAD;
1658 				break;
1659 			case OBJT_SG:
1660 				kve->kve_type = KVME_TYPE_SG;
1661 				break;
1662 			default:
1663 				kve->kve_type = KVME_TYPE_UNKNOWN;
1664 				break;
1665 			}
1666 			if (lobj != obj)
1667 				VM_OBJECT_UNLOCK(lobj);
1668 
1669 			kve->kve_ref_count = obj->ref_count;
1670 			kve->kve_shadow_count = obj->shadow_count;
1671 			VM_OBJECT_UNLOCK(obj);
1672 			if (vp != NULL) {
1673 				vn_fullpath(curthread, vp, &fullpath,
1674 				    &freepath);
1675 				cred = curthread->td_ucred;
1676 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1677 				vn_lock(vp, LK_SHARED | LK_RETRY);
1678 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1679 					kve->kve_fileid = va.va_fileid;
1680 					kve->kve_fsid = va.va_fsid;
1681 				}
1682 				vput(vp);
1683 				VFS_UNLOCK_GIANT(vfslocked);
1684 			}
1685 		} else {
1686 			kve->kve_type = KVME_TYPE_NONE;
1687 			kve->kve_ref_count = 0;
1688 			kve->kve_shadow_count = 0;
1689 		}
1690 
1691 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1692 		if (freepath != NULL)
1693 			free(freepath, M_TEMP);
1694 
1695 		/* Pack record size down */
1696 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1697 		    strlen(kve->kve_path) + 1;
1698 		kve->kve_structsize = roundup(kve->kve_structsize,
1699 		    sizeof(uint64_t));
1700 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1701 		vm_map_lock_read(map);
1702 		if (error)
1703 			break;
1704 		if (last_timestamp != map->timestamp) {
1705 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1706 			entry = tmp_entry;
1707 		}
1708 	}
1709 	vm_map_unlock_read(map);
1710 	vmspace_free(vm);
1711 	PRELE(p);
1712 	free(kve, M_TEMP);
1713 	return (error);
1714 }
1715 
1716 #if defined(STACK) || defined(DDB)
1717 static int
1718 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1719 {
1720 	struct kinfo_kstack *kkstp;
1721 	int error, i, *name, numthreads;
1722 	lwpid_t *lwpidarray;
1723 	struct thread *td;
1724 	struct stack *st;
1725 	struct sbuf sb;
1726 	struct proc *p;
1727 
1728 	name = (int *)arg1;
1729 	if ((p = pfind((pid_t)name[0])) == NULL)
1730 		return (ESRCH);
1731 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1732 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1733 		PROC_UNLOCK(p);
1734 		return (ESRCH);
1735 	}
1736 	if ((error = p_candebug(curthread, p))) {
1737 		PROC_UNLOCK(p);
1738 		return (error);
1739 	}
1740 	_PHOLD(p);
1741 	PROC_UNLOCK(p);
1742 
1743 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1744 	st = stack_create();
1745 
1746 	lwpidarray = NULL;
1747 	numthreads = 0;
1748 	PROC_LOCK(p);
1749 repeat:
1750 	if (numthreads < p->p_numthreads) {
1751 		if (lwpidarray != NULL) {
1752 			free(lwpidarray, M_TEMP);
1753 			lwpidarray = NULL;
1754 		}
1755 		numthreads = p->p_numthreads;
1756 		PROC_UNLOCK(p);
1757 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1758 		    M_WAITOK | M_ZERO);
1759 		PROC_LOCK(p);
1760 		goto repeat;
1761 	}
1762 	i = 0;
1763 
1764 	/*
1765 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1766 	 * of changes could have taken place.  Should we check to see if the
1767 	 * vmspace has been replaced, or the like, in order to prevent
1768 	 * giving a snapshot that spans, say, execve(2), with some threads
1769 	 * before and some after?  Among other things, the credentials could
1770 	 * have changed, in which case the right to extract debug info might
1771 	 * no longer be assured.
1772 	 */
1773 	FOREACH_THREAD_IN_PROC(p, td) {
1774 		KASSERT(i < numthreads,
1775 		    ("sysctl_kern_proc_kstack: numthreads"));
1776 		lwpidarray[i] = td->td_tid;
1777 		i++;
1778 	}
1779 	numthreads = i;
1780 	for (i = 0; i < numthreads; i++) {
1781 		td = thread_find(p, lwpidarray[i]);
1782 		if (td == NULL) {
1783 			continue;
1784 		}
1785 		bzero(kkstp, sizeof(*kkstp));
1786 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1787 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1788 		thread_lock(td);
1789 		kkstp->kkst_tid = td->td_tid;
1790 		if (TD_IS_SWAPPED(td))
1791 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1792 		else if (TD_IS_RUNNING(td))
1793 			kkstp->kkst_state = KKST_STATE_RUNNING;
1794 		else {
1795 			kkstp->kkst_state = KKST_STATE_STACKOK;
1796 			stack_save_td(st, td);
1797 		}
1798 		thread_unlock(td);
1799 		PROC_UNLOCK(p);
1800 		stack_sbuf_print(&sb, st);
1801 		sbuf_finish(&sb);
1802 		sbuf_delete(&sb);
1803 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1804 		PROC_LOCK(p);
1805 		if (error)
1806 			break;
1807 	}
1808 	_PRELE(p);
1809 	PROC_UNLOCK(p);
1810 	if (lwpidarray != NULL)
1811 		free(lwpidarray, M_TEMP);
1812 	stack_destroy(st);
1813 	free(kkstp, M_TEMP);
1814 	return (error);
1815 }
1816 #endif
1817 
1818 /*
1819  * This sysctl allows a process to retrieve the full list of groups from
1820  * itself or another process.
1821  */
1822 static int
1823 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1824 {
1825 	pid_t *pidp = (pid_t *)arg1;
1826 	unsigned int arglen = arg2;
1827 	struct proc *p;
1828 	struct ucred *cred;
1829 	int error;
1830 
1831 	if (arglen != 1)
1832 		return (EINVAL);
1833 	if (*pidp == -1) {	/* -1 means this process */
1834 		p = req->td->td_proc;
1835 	} else {
1836 		p = pfind(*pidp);
1837 		if (p == NULL)
1838 			return (ESRCH);
1839 		if ((error = p_cansee(curthread, p)) != 0) {
1840 			PROC_UNLOCK(p);
1841 			return (error);
1842 		}
1843 	}
1844 
1845 	cred = crhold(p->p_ucred);
1846 	if (*pidp != -1)
1847 		PROC_UNLOCK(p);
1848 
1849 	error = SYSCTL_OUT(req, cred->cr_groups,
1850 	    cred->cr_ngroups * sizeof(gid_t));
1851 	crfree(cred);
1852 	return (error);
1853 }
1854 
1855 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1856 
1857 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1858 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1859 	"Return entire process table");
1860 
1861 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1862 	sysctl_kern_proc, "Process table");
1863 
1864 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1865 	sysctl_kern_proc, "Process table");
1866 
1867 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1868 	sysctl_kern_proc, "Process table");
1869 
1870 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1871 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1872 
1873 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
1874 	sysctl_kern_proc, "Process table");
1875 
1876 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1877 	sysctl_kern_proc, "Process table");
1878 
1879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1880 	sysctl_kern_proc, "Process table");
1881 
1882 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1883 	sysctl_kern_proc, "Process table");
1884 
1885 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
1886 	sysctl_kern_proc, "Return process table, no threads");
1887 
1888 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
1889 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
1890 	sysctl_kern_proc_args, "Process argument list");
1891 
1892 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
1893 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
1894 
1895 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
1896 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
1897 	"Process syscall vector name (ABI type)");
1898 
1899 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1900 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1901 
1902 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1903 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1904 
1905 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1906 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1907 
1908 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
1909 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1910 
1911 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1912 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1913 
1914 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1915 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1916 
1917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1918 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1919 
1920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1921 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1922 
1923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1924 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
1925 	"Return process table, no threads");
1926 
1927 #ifdef COMPAT_FREEBSD7
1928 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
1929 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
1930 #endif
1931 
1932 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
1933 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
1934 
1935 #if defined(STACK) || defined(DDB)
1936 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
1937 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
1938 #endif
1939 
1940 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
1941 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
1942