1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_kdtrace.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/kernel.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mount.h> 47 #include <sys/mutex.h> 48 #include <sys/proc.h> 49 #include <sys/refcount.h> 50 #include <sys/sbuf.h> 51 #include <sys/sysent.h> 52 #include <sys/sched.h> 53 #include <sys/smp.h> 54 #include <sys/stack.h> 55 #include <sys/sysctl.h> 56 #include <sys/filedesc.h> 57 #include <sys/tty.h> 58 #include <sys/signalvar.h> 59 #include <sys/sdt.h> 60 #include <sys/sx.h> 61 #include <sys/user.h> 62 #include <sys/jail.h> 63 #include <sys/vnode.h> 64 #include <sys/eventhandler.h> 65 #ifdef KTRACE 66 #include <sys/uio.h> 67 #include <sys/ktrace.h> 68 #endif 69 70 #ifdef DDB 71 #include <ddb/ddb.h> 72 #endif 73 74 #include <vm/vm.h> 75 #include <vm/vm_extern.h> 76 #include <vm/pmap.h> 77 #include <vm/vm_map.h> 78 #include <vm/vm_object.h> 79 #include <vm/uma.h> 80 81 SDT_PROVIDER_DEFINE(proc); 82 SDT_PROBE_DEFINE(proc, kernel, ctor, entry); 83 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 84 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 85 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 87 SDT_PROBE_DEFINE(proc, kernel, ctor, return); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 92 SDT_PROBE_DEFINE(proc, kernel, dtor, entry); 93 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 95 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 97 SDT_PROBE_DEFINE(proc, kernel, dtor, return); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 101 SDT_PROBE_DEFINE(proc, kernel, init, entry); 102 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 104 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, init, return); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 109 110 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 111 MALLOC_DEFINE(M_SESSION, "session", "session header"); 112 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 113 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 114 115 static void doenterpgrp(struct proc *, struct pgrp *); 116 static void orphanpg(struct pgrp *pg); 117 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 118 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 119 int preferthread); 120 static void pgadjustjobc(struct pgrp *pgrp, int entering); 121 static void pgdelete(struct pgrp *); 122 static int proc_ctor(void *mem, int size, void *arg, int flags); 123 static void proc_dtor(void *mem, int size, void *arg); 124 static int proc_init(void *mem, int size, int flags); 125 static void proc_fini(void *mem, int size); 126 static void pargs_free(struct pargs *pa); 127 128 /* 129 * Other process lists 130 */ 131 struct pidhashhead *pidhashtbl; 132 u_long pidhash; 133 struct pgrphashhead *pgrphashtbl; 134 u_long pgrphash; 135 struct proclist allproc; 136 struct proclist zombproc; 137 struct sx allproc_lock; 138 struct sx proctree_lock; 139 struct mtx ppeers_lock; 140 uma_zone_t proc_zone; 141 uma_zone_t ithread_zone; 142 143 int kstack_pages = KSTACK_PAGES; 144 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 145 146 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 147 148 /* 149 * Initialize global process hashing structures. 150 */ 151 void 152 procinit() 153 { 154 155 sx_init(&allproc_lock, "allproc"); 156 sx_init(&proctree_lock, "proctree"); 157 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 158 LIST_INIT(&allproc); 159 LIST_INIT(&zombproc); 160 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 161 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 162 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 163 proc_ctor, proc_dtor, proc_init, proc_fini, 164 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uihashinit(); 166 } 167 168 /* 169 * Prepare a proc for use. 170 */ 171 static int 172 proc_ctor(void *mem, int size, void *arg, int flags) 173 { 174 struct proc *p; 175 176 p = (struct proc *)mem; 177 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 178 EVENTHANDLER_INVOKE(process_ctor, p); 179 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 180 return (0); 181 } 182 183 /* 184 * Reclaim a proc after use. 185 */ 186 static void 187 proc_dtor(void *mem, int size, void *arg) 188 { 189 struct proc *p; 190 struct thread *td; 191 192 /* INVARIANTS checks go here */ 193 p = (struct proc *)mem; 194 td = FIRST_THREAD_IN_PROC(p); 195 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 196 if (td != NULL) { 197 #ifdef INVARIANTS 198 KASSERT((p->p_numthreads == 1), 199 ("bad number of threads in exiting process")); 200 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 201 #endif 202 /* Dispose of an alternate kstack, if it exists. 203 * XXX What if there are more than one thread in the proc? 204 * The first thread in the proc is special and not 205 * freed, so you gotta do this here. 206 */ 207 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 208 vm_thread_dispose_altkstack(td); 209 } 210 EVENTHANDLER_INVOKE(process_dtor, p); 211 if (p->p_ksi != NULL) 212 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 213 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 214 } 215 216 /* 217 * Initialize type-stable parts of a proc (when newly created). 218 */ 219 static int 220 proc_init(void *mem, int size, int flags) 221 { 222 struct proc *p; 223 224 p = (struct proc *)mem; 225 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 226 p->p_sched = (struct p_sched *)&p[1]; 227 bzero(&p->p_mtx, sizeof(struct mtx)); 228 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 229 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 230 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 231 EVENTHANDLER_INVOKE(process_init, p); 232 p->p_stats = pstats_alloc(); 233 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 234 return (0); 235 } 236 237 /* 238 * UMA should ensure that this function is never called. 239 * Freeing a proc structure would violate type stability. 240 */ 241 static void 242 proc_fini(void *mem, int size) 243 { 244 #ifdef notnow 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 EVENTHANDLER_INVOKE(process_fini, p); 249 pstats_free(p->p_stats); 250 thread_free(FIRST_THREAD_IN_PROC(p)); 251 mtx_destroy(&p->p_mtx); 252 if (p->p_ksi != NULL) 253 ksiginfo_free(p->p_ksi); 254 #else 255 panic("proc reclaimed"); 256 #endif 257 } 258 259 /* 260 * Is p an inferior of the current process? 261 */ 262 int 263 inferior(p) 264 register struct proc *p; 265 { 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 for (; p != curproc; p = p->p_pptr) 269 if (p->p_pid == 0) 270 return (0); 271 return (1); 272 } 273 274 /* 275 * Locate a process by number; return only "live" processes -- i.e., neither 276 * zombies nor newly born but incompletely initialized processes. By not 277 * returning processes in the PRS_NEW state, we allow callers to avoid 278 * testing for that condition to avoid dereferencing p_ucred, et al. 279 */ 280 struct proc * 281 pfind(pid) 282 register pid_t pid; 283 { 284 register struct proc *p; 285 286 sx_slock(&allproc_lock); 287 LIST_FOREACH(p, PIDHASH(pid), p_hash) 288 if (p->p_pid == pid) { 289 if (p->p_state == PRS_NEW) { 290 p = NULL; 291 break; 292 } 293 PROC_LOCK(p); 294 break; 295 } 296 sx_sunlock(&allproc_lock); 297 return (p); 298 } 299 300 /* 301 * Locate a process group by number. 302 * The caller must hold proctree_lock. 303 */ 304 struct pgrp * 305 pgfind(pgid) 306 register pid_t pgid; 307 { 308 register struct pgrp *pgrp; 309 310 sx_assert(&proctree_lock, SX_LOCKED); 311 312 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 313 if (pgrp->pg_id == pgid) { 314 PGRP_LOCK(pgrp); 315 return (pgrp); 316 } 317 } 318 return (NULL); 319 } 320 321 /* 322 * Create a new process group. 323 * pgid must be equal to the pid of p. 324 * Begin a new session if required. 325 */ 326 int 327 enterpgrp(p, pgid, pgrp, sess) 328 register struct proc *p; 329 pid_t pgid; 330 struct pgrp *pgrp; 331 struct session *sess; 332 { 333 struct pgrp *pgrp2; 334 335 sx_assert(&proctree_lock, SX_XLOCKED); 336 337 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 338 KASSERT(p->p_pid == pgid, 339 ("enterpgrp: new pgrp and pid != pgid")); 340 341 pgrp2 = pgfind(pgid); 342 343 KASSERT(pgrp2 == NULL, 344 ("enterpgrp: pgrp with pgid exists")); 345 KASSERT(!SESS_LEADER(p), 346 ("enterpgrp: session leader attempted setpgrp")); 347 348 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 349 350 if (sess != NULL) { 351 /* 352 * new session 353 */ 354 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 355 PROC_LOCK(p); 356 p->p_flag &= ~P_CONTROLT; 357 PROC_UNLOCK(p); 358 PGRP_LOCK(pgrp); 359 sess->s_leader = p; 360 sess->s_sid = p->p_pid; 361 refcount_init(&sess->s_count, 1); 362 sess->s_ttyvp = NULL; 363 sess->s_ttyp = NULL; 364 bcopy(p->p_session->s_login, sess->s_login, 365 sizeof(sess->s_login)); 366 pgrp->pg_session = sess; 367 KASSERT(p == curproc, 368 ("enterpgrp: mksession and p != curproc")); 369 } else { 370 pgrp->pg_session = p->p_session; 371 sess_hold(pgrp->pg_session); 372 PGRP_LOCK(pgrp); 373 } 374 pgrp->pg_id = pgid; 375 LIST_INIT(&pgrp->pg_members); 376 377 /* 378 * As we have an exclusive lock of proctree_lock, 379 * this should not deadlock. 380 */ 381 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 382 pgrp->pg_jobc = 0; 383 SLIST_INIT(&pgrp->pg_sigiolst); 384 PGRP_UNLOCK(pgrp); 385 386 doenterpgrp(p, pgrp); 387 388 return (0); 389 } 390 391 /* 392 * Move p to an existing process group 393 */ 394 int 395 enterthispgrp(p, pgrp) 396 register struct proc *p; 397 struct pgrp *pgrp; 398 { 399 400 sx_assert(&proctree_lock, SX_XLOCKED); 401 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 402 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 403 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 404 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 405 KASSERT(pgrp->pg_session == p->p_session, 406 ("%s: pgrp's session %p, p->p_session %p.\n", 407 __func__, 408 pgrp->pg_session, 409 p->p_session)); 410 KASSERT(pgrp != p->p_pgrp, 411 ("%s: p belongs to pgrp.", __func__)); 412 413 doenterpgrp(p, pgrp); 414 415 return (0); 416 } 417 418 /* 419 * Move p to a process group 420 */ 421 static void 422 doenterpgrp(p, pgrp) 423 struct proc *p; 424 struct pgrp *pgrp; 425 { 426 struct pgrp *savepgrp; 427 428 sx_assert(&proctree_lock, SX_XLOCKED); 429 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 430 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 431 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 432 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 433 434 savepgrp = p->p_pgrp; 435 436 /* 437 * Adjust eligibility of affected pgrps to participate in job control. 438 * Increment eligibility counts before decrementing, otherwise we 439 * could reach 0 spuriously during the first call. 440 */ 441 fixjobc(p, pgrp, 1); 442 fixjobc(p, p->p_pgrp, 0); 443 444 PGRP_LOCK(pgrp); 445 PGRP_LOCK(savepgrp); 446 PROC_LOCK(p); 447 LIST_REMOVE(p, p_pglist); 448 p->p_pgrp = pgrp; 449 PROC_UNLOCK(p); 450 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 451 PGRP_UNLOCK(savepgrp); 452 PGRP_UNLOCK(pgrp); 453 if (LIST_EMPTY(&savepgrp->pg_members)) 454 pgdelete(savepgrp); 455 } 456 457 /* 458 * remove process from process group 459 */ 460 int 461 leavepgrp(p) 462 register struct proc *p; 463 { 464 struct pgrp *savepgrp; 465 466 sx_assert(&proctree_lock, SX_XLOCKED); 467 savepgrp = p->p_pgrp; 468 PGRP_LOCK(savepgrp); 469 PROC_LOCK(p); 470 LIST_REMOVE(p, p_pglist); 471 p->p_pgrp = NULL; 472 PROC_UNLOCK(p); 473 PGRP_UNLOCK(savepgrp); 474 if (LIST_EMPTY(&savepgrp->pg_members)) 475 pgdelete(savepgrp); 476 return (0); 477 } 478 479 /* 480 * delete a process group 481 */ 482 static void 483 pgdelete(pgrp) 484 register struct pgrp *pgrp; 485 { 486 struct session *savesess; 487 struct tty *tp; 488 489 sx_assert(&proctree_lock, SX_XLOCKED); 490 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 491 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 492 493 /* 494 * Reset any sigio structures pointing to us as a result of 495 * F_SETOWN with our pgid. 496 */ 497 funsetownlst(&pgrp->pg_sigiolst); 498 499 PGRP_LOCK(pgrp); 500 tp = pgrp->pg_session->s_ttyp; 501 LIST_REMOVE(pgrp, pg_hash); 502 savesess = pgrp->pg_session; 503 PGRP_UNLOCK(pgrp); 504 505 /* Remove the reference to the pgrp before deallocating it. */ 506 if (tp != NULL) { 507 tty_lock(tp); 508 tty_rel_pgrp(tp, pgrp); 509 } 510 511 mtx_destroy(&pgrp->pg_mtx); 512 free(pgrp, M_PGRP); 513 sess_release(savesess); 514 } 515 516 static void 517 pgadjustjobc(pgrp, entering) 518 struct pgrp *pgrp; 519 int entering; 520 { 521 522 PGRP_LOCK(pgrp); 523 if (entering) 524 pgrp->pg_jobc++; 525 else { 526 --pgrp->pg_jobc; 527 if (pgrp->pg_jobc == 0) 528 orphanpg(pgrp); 529 } 530 PGRP_UNLOCK(pgrp); 531 } 532 533 /* 534 * Adjust pgrp jobc counters when specified process changes process group. 535 * We count the number of processes in each process group that "qualify" 536 * the group for terminal job control (those with a parent in a different 537 * process group of the same session). If that count reaches zero, the 538 * process group becomes orphaned. Check both the specified process' 539 * process group and that of its children. 540 * entering == 0 => p is leaving specified group. 541 * entering == 1 => p is entering specified group. 542 */ 543 void 544 fixjobc(p, pgrp, entering) 545 register struct proc *p; 546 register struct pgrp *pgrp; 547 int entering; 548 { 549 register struct pgrp *hispgrp; 550 register struct session *mysession; 551 552 sx_assert(&proctree_lock, SX_LOCKED); 553 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 554 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 555 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 556 557 /* 558 * Check p's parent to see whether p qualifies its own process 559 * group; if so, adjust count for p's process group. 560 */ 561 mysession = pgrp->pg_session; 562 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 563 hispgrp->pg_session == mysession) 564 pgadjustjobc(pgrp, entering); 565 566 /* 567 * Check this process' children to see whether they qualify 568 * their process groups; if so, adjust counts for children's 569 * process groups. 570 */ 571 LIST_FOREACH(p, &p->p_children, p_sibling) { 572 hispgrp = p->p_pgrp; 573 if (hispgrp == pgrp || 574 hispgrp->pg_session != mysession) 575 continue; 576 PROC_LOCK(p); 577 if (p->p_state == PRS_ZOMBIE) { 578 PROC_UNLOCK(p); 579 continue; 580 } 581 PROC_UNLOCK(p); 582 pgadjustjobc(hispgrp, entering); 583 } 584 } 585 586 /* 587 * A process group has become orphaned; 588 * if there are any stopped processes in the group, 589 * hang-up all process in that group. 590 */ 591 static void 592 orphanpg(pg) 593 struct pgrp *pg; 594 { 595 register struct proc *p; 596 597 PGRP_LOCK_ASSERT(pg, MA_OWNED); 598 599 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 600 PROC_LOCK(p); 601 if (P_SHOULDSTOP(p)) { 602 PROC_UNLOCK(p); 603 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 604 PROC_LOCK(p); 605 psignal(p, SIGHUP); 606 psignal(p, SIGCONT); 607 PROC_UNLOCK(p); 608 } 609 return; 610 } 611 PROC_UNLOCK(p); 612 } 613 } 614 615 void 616 sess_hold(struct session *s) 617 { 618 619 refcount_acquire(&s->s_count); 620 } 621 622 void 623 sess_release(struct session *s) 624 { 625 626 if (refcount_release(&s->s_count)) { 627 if (s->s_ttyp != NULL) { 628 tty_lock(s->s_ttyp); 629 tty_rel_sess(s->s_ttyp, s); 630 } 631 mtx_destroy(&s->s_mtx); 632 free(s, M_SESSION); 633 } 634 } 635 636 #include "opt_ddb.h" 637 #ifdef DDB 638 #include <ddb/ddb.h> 639 640 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 641 { 642 register struct pgrp *pgrp; 643 register struct proc *p; 644 register int i; 645 646 for (i = 0; i <= pgrphash; i++) { 647 if (!LIST_EMPTY(&pgrphashtbl[i])) { 648 printf("\tindx %d\n", i); 649 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 650 printf( 651 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 652 (void *)pgrp, (long)pgrp->pg_id, 653 (void *)pgrp->pg_session, 654 pgrp->pg_session->s_count, 655 (void *)LIST_FIRST(&pgrp->pg_members)); 656 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 657 printf("\t\tpid %ld addr %p pgrp %p\n", 658 (long)p->p_pid, (void *)p, 659 (void *)p->p_pgrp); 660 } 661 } 662 } 663 } 664 } 665 #endif /* DDB */ 666 667 /* 668 * Clear kinfo_proc and fill in any information that is common 669 * to all threads in the process. 670 * Must be called with the target process locked. 671 */ 672 static void 673 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 674 { 675 struct thread *td0; 676 struct tty *tp; 677 struct session *sp; 678 struct ucred *cred; 679 struct sigacts *ps; 680 681 PROC_LOCK_ASSERT(p, MA_OWNED); 682 bzero(kp, sizeof(*kp)); 683 684 kp->ki_structsize = sizeof(*kp); 685 kp->ki_paddr = p; 686 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 687 kp->ki_args = p->p_args; 688 kp->ki_textvp = p->p_textvp; 689 #ifdef KTRACE 690 kp->ki_tracep = p->p_tracevp; 691 mtx_lock(&ktrace_mtx); 692 kp->ki_traceflag = p->p_traceflag; 693 mtx_unlock(&ktrace_mtx); 694 #endif 695 kp->ki_fd = p->p_fd; 696 kp->ki_vmspace = p->p_vmspace; 697 kp->ki_flag = p->p_flag; 698 cred = p->p_ucred; 699 if (cred) { 700 kp->ki_uid = cred->cr_uid; 701 kp->ki_ruid = cred->cr_ruid; 702 kp->ki_svuid = cred->cr_svuid; 703 /* XXX bde doesn't like KI_NGROUPS */ 704 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 705 bcopy(cred->cr_groups, kp->ki_groups, 706 kp->ki_ngroups * sizeof(gid_t)); 707 kp->ki_rgid = cred->cr_rgid; 708 kp->ki_svgid = cred->cr_svgid; 709 /* If jailed(cred), emulate the old P_JAILED flag. */ 710 if (jailed(cred)) { 711 kp->ki_flag |= P_JAILED; 712 /* If inside a jail, use 0 as a jail ID. */ 713 if (!jailed(curthread->td_ucred)) 714 kp->ki_jid = cred->cr_prison->pr_id; 715 } 716 } 717 ps = p->p_sigacts; 718 if (ps) { 719 mtx_lock(&ps->ps_mtx); 720 kp->ki_sigignore = ps->ps_sigignore; 721 kp->ki_sigcatch = ps->ps_sigcatch; 722 mtx_unlock(&ps->ps_mtx); 723 } 724 PROC_SLOCK(p); 725 if (p->p_state != PRS_NEW && 726 p->p_state != PRS_ZOMBIE && 727 p->p_vmspace != NULL) { 728 struct vmspace *vm = p->p_vmspace; 729 730 kp->ki_size = vm->vm_map.size; 731 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 732 FOREACH_THREAD_IN_PROC(p, td0) { 733 if (!TD_IS_SWAPPED(td0)) 734 kp->ki_rssize += td0->td_kstack_pages; 735 if (td0->td_altkstack_obj != NULL) 736 kp->ki_rssize += td0->td_altkstack_pages; 737 } 738 kp->ki_swrss = vm->vm_swrss; 739 kp->ki_tsize = vm->vm_tsize; 740 kp->ki_dsize = vm->vm_dsize; 741 kp->ki_ssize = vm->vm_ssize; 742 } else if (p->p_state == PRS_ZOMBIE) 743 kp->ki_stat = SZOMB; 744 if (kp->ki_flag & P_INMEM) 745 kp->ki_sflag = PS_INMEM; 746 else 747 kp->ki_sflag = 0; 748 /* Calculate legacy swtime as seconds since 'swtick'. */ 749 kp->ki_swtime = (ticks - p->p_swtick) / hz; 750 kp->ki_pid = p->p_pid; 751 kp->ki_nice = p->p_nice; 752 rufetch(p, &kp->ki_rusage); 753 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 754 PROC_SUNLOCK(p); 755 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 756 kp->ki_start = p->p_stats->p_start; 757 timevaladd(&kp->ki_start, &boottime); 758 PROC_SLOCK(p); 759 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 760 PROC_SUNLOCK(p); 761 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 762 763 /* Some callers want child-times in a single value */ 764 kp->ki_childtime = kp->ki_childstime; 765 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 766 } 767 tp = NULL; 768 if (p->p_pgrp) { 769 kp->ki_pgid = p->p_pgrp->pg_id; 770 kp->ki_jobc = p->p_pgrp->pg_jobc; 771 sp = p->p_pgrp->pg_session; 772 773 if (sp != NULL) { 774 kp->ki_sid = sp->s_sid; 775 SESS_LOCK(sp); 776 strlcpy(kp->ki_login, sp->s_login, 777 sizeof(kp->ki_login)); 778 if (sp->s_ttyvp) 779 kp->ki_kiflag |= KI_CTTY; 780 if (SESS_LEADER(p)) 781 kp->ki_kiflag |= KI_SLEADER; 782 /* XXX proctree_lock */ 783 tp = sp->s_ttyp; 784 SESS_UNLOCK(sp); 785 } 786 } 787 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 788 kp->ki_tdev = tty_udev(tp); 789 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 790 if (tp->t_session) 791 kp->ki_tsid = tp->t_session->s_sid; 792 } else 793 kp->ki_tdev = NODEV; 794 if (p->p_comm[0] != '\0') 795 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 796 if (p->p_sysent && p->p_sysent->sv_name != NULL && 797 p->p_sysent->sv_name[0] != '\0') 798 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 799 kp->ki_siglist = p->p_siglist; 800 kp->ki_xstat = p->p_xstat; 801 kp->ki_acflag = p->p_acflag; 802 kp->ki_lock = p->p_lock; 803 if (p->p_pptr) 804 kp->ki_ppid = p->p_pptr->p_pid; 805 } 806 807 /* 808 * Fill in information that is thread specific. Must be called with p_slock 809 * locked. If 'preferthread' is set, overwrite certain process-related 810 * fields that are maintained for both threads and processes. 811 */ 812 static void 813 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 814 { 815 struct proc *p; 816 817 p = td->td_proc; 818 PROC_LOCK_ASSERT(p, MA_OWNED); 819 820 thread_lock(td); 821 if (td->td_wmesg != NULL) 822 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 823 else 824 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 825 if (td->td_name[0] != '\0') 826 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 827 if (TD_ON_LOCK(td)) { 828 kp->ki_kiflag |= KI_LOCKBLOCK; 829 strlcpy(kp->ki_lockname, td->td_lockname, 830 sizeof(kp->ki_lockname)); 831 } else { 832 kp->ki_kiflag &= ~KI_LOCKBLOCK; 833 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 834 } 835 836 if (p->p_state == PRS_NORMAL) { /* approximate. */ 837 if (TD_ON_RUNQ(td) || 838 TD_CAN_RUN(td) || 839 TD_IS_RUNNING(td)) { 840 kp->ki_stat = SRUN; 841 } else if (P_SHOULDSTOP(p)) { 842 kp->ki_stat = SSTOP; 843 } else if (TD_IS_SLEEPING(td)) { 844 kp->ki_stat = SSLEEP; 845 } else if (TD_ON_LOCK(td)) { 846 kp->ki_stat = SLOCK; 847 } else { 848 kp->ki_stat = SWAIT; 849 } 850 } else if (p->p_state == PRS_ZOMBIE) { 851 kp->ki_stat = SZOMB; 852 } else { 853 kp->ki_stat = SIDL; 854 } 855 856 /* Things in the thread */ 857 kp->ki_wchan = td->td_wchan; 858 kp->ki_pri.pri_level = td->td_priority; 859 kp->ki_pri.pri_native = td->td_base_pri; 860 kp->ki_lastcpu = td->td_lastcpu; 861 kp->ki_oncpu = td->td_oncpu; 862 kp->ki_tdflags = td->td_flags; 863 kp->ki_tid = td->td_tid; 864 kp->ki_numthreads = p->p_numthreads; 865 kp->ki_pcb = td->td_pcb; 866 kp->ki_kstack = (void *)td->td_kstack; 867 kp->ki_pctcpu = sched_pctcpu(td); 868 kp->ki_estcpu = td->td_estcpu; 869 kp->ki_slptime = (ticks - td->td_slptick) / hz; 870 kp->ki_pri.pri_class = td->td_pri_class; 871 kp->ki_pri.pri_user = td->td_user_pri; 872 873 if (preferthread) 874 kp->ki_runtime = cputick2usec(td->td_runtime); 875 876 /* We can't get this anymore but ps etc never used it anyway. */ 877 kp->ki_rqindex = 0; 878 879 SIGSETOR(kp->ki_siglist, td->td_siglist); 880 kp->ki_sigmask = td->td_sigmask; 881 thread_unlock(td); 882 } 883 884 /* 885 * Fill in a kinfo_proc structure for the specified process. 886 * Must be called with the target process locked. 887 */ 888 void 889 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 890 { 891 892 fill_kinfo_proc_only(p, kp); 893 if (FIRST_THREAD_IN_PROC(p) != NULL) 894 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 895 } 896 897 struct pstats * 898 pstats_alloc(void) 899 { 900 901 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 902 } 903 904 /* 905 * Copy parts of p_stats; zero the rest of p_stats (statistics). 906 */ 907 void 908 pstats_fork(struct pstats *src, struct pstats *dst) 909 { 910 911 bzero(&dst->pstat_startzero, 912 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 913 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 914 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 915 } 916 917 void 918 pstats_free(struct pstats *ps) 919 { 920 921 free(ps, M_SUBPROC); 922 } 923 924 /* 925 * Locate a zombie process by number 926 */ 927 struct proc * 928 zpfind(pid_t pid) 929 { 930 struct proc *p; 931 932 sx_slock(&allproc_lock); 933 LIST_FOREACH(p, &zombproc, p_list) 934 if (p->p_pid == pid) { 935 PROC_LOCK(p); 936 break; 937 } 938 sx_sunlock(&allproc_lock); 939 return (p); 940 } 941 942 #define KERN_PROC_ZOMBMASK 0x3 943 #define KERN_PROC_NOTHREADS 0x4 944 945 /* 946 * Must be called with the process locked and will return with it unlocked. 947 */ 948 static int 949 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 950 { 951 struct thread *td; 952 struct kinfo_proc kinfo_proc; 953 int error = 0; 954 struct proc *np; 955 pid_t pid = p->p_pid; 956 957 PROC_LOCK_ASSERT(p, MA_OWNED); 958 959 fill_kinfo_proc_only(p, &kinfo_proc); 960 if (flags & KERN_PROC_NOTHREADS) { 961 if (FIRST_THREAD_IN_PROC(p) != NULL) 962 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), 963 &kinfo_proc, 0); 964 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 965 sizeof(kinfo_proc)); 966 } else { 967 if (FIRST_THREAD_IN_PROC(p) != NULL) 968 FOREACH_THREAD_IN_PROC(p, td) { 969 fill_kinfo_thread(td, &kinfo_proc, 1); 970 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 971 sizeof(kinfo_proc)); 972 if (error) 973 break; 974 } 975 else 976 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 977 sizeof(kinfo_proc)); 978 } 979 PROC_UNLOCK(p); 980 if (error) 981 return (error); 982 if (flags & KERN_PROC_ZOMBMASK) 983 np = zpfind(pid); 984 else { 985 if (pid == 0) 986 return (0); 987 np = pfind(pid); 988 } 989 if (np == NULL) 990 return (ESRCH); 991 if (np != p) { 992 PROC_UNLOCK(np); 993 return (ESRCH); 994 } 995 PROC_UNLOCK(np); 996 return (0); 997 } 998 999 static int 1000 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1001 { 1002 int *name = (int*) arg1; 1003 u_int namelen = arg2; 1004 struct proc *p; 1005 int flags, doingzomb, oid_number; 1006 int error = 0; 1007 1008 oid_number = oidp->oid_number; 1009 if (oid_number != KERN_PROC_ALL && 1010 (oid_number & KERN_PROC_INC_THREAD) == 0) 1011 flags = KERN_PROC_NOTHREADS; 1012 else { 1013 flags = 0; 1014 oid_number &= ~KERN_PROC_INC_THREAD; 1015 } 1016 if (oid_number == KERN_PROC_PID) { 1017 if (namelen != 1) 1018 return (EINVAL); 1019 error = sysctl_wire_old_buffer(req, 0); 1020 if (error) 1021 return (error); 1022 p = pfind((pid_t)name[0]); 1023 if (!p) 1024 return (ESRCH); 1025 if ((error = p_cansee(curthread, p))) { 1026 PROC_UNLOCK(p); 1027 return (error); 1028 } 1029 error = sysctl_out_proc(p, req, flags); 1030 return (error); 1031 } 1032 1033 switch (oid_number) { 1034 case KERN_PROC_ALL: 1035 if (namelen != 0) 1036 return (EINVAL); 1037 break; 1038 case KERN_PROC_PROC: 1039 if (namelen != 0 && namelen != 1) 1040 return (EINVAL); 1041 break; 1042 default: 1043 if (namelen != 1) 1044 return (EINVAL); 1045 break; 1046 } 1047 1048 if (!req->oldptr) { 1049 /* overestimate by 5 procs */ 1050 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1051 if (error) 1052 return (error); 1053 } 1054 error = sysctl_wire_old_buffer(req, 0); 1055 if (error != 0) 1056 return (error); 1057 sx_slock(&allproc_lock); 1058 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1059 if (!doingzomb) 1060 p = LIST_FIRST(&allproc); 1061 else 1062 p = LIST_FIRST(&zombproc); 1063 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1064 /* 1065 * Skip embryonic processes. 1066 */ 1067 PROC_SLOCK(p); 1068 if (p->p_state == PRS_NEW) { 1069 PROC_SUNLOCK(p); 1070 continue; 1071 } 1072 PROC_SUNLOCK(p); 1073 PROC_LOCK(p); 1074 KASSERT(p->p_ucred != NULL, 1075 ("process credential is NULL for non-NEW proc")); 1076 /* 1077 * Show a user only appropriate processes. 1078 */ 1079 if (p_cansee(curthread, p)) { 1080 PROC_UNLOCK(p); 1081 continue; 1082 } 1083 /* 1084 * TODO - make more efficient (see notes below). 1085 * do by session. 1086 */ 1087 switch (oid_number) { 1088 1089 case KERN_PROC_GID: 1090 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1091 PROC_UNLOCK(p); 1092 continue; 1093 } 1094 break; 1095 1096 case KERN_PROC_PGRP: 1097 /* could do this by traversing pgrp */ 1098 if (p->p_pgrp == NULL || 1099 p->p_pgrp->pg_id != (pid_t)name[0]) { 1100 PROC_UNLOCK(p); 1101 continue; 1102 } 1103 break; 1104 1105 case KERN_PROC_RGID: 1106 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1107 PROC_UNLOCK(p); 1108 continue; 1109 } 1110 break; 1111 1112 case KERN_PROC_SESSION: 1113 if (p->p_session == NULL || 1114 p->p_session->s_sid != (pid_t)name[0]) { 1115 PROC_UNLOCK(p); 1116 continue; 1117 } 1118 break; 1119 1120 case KERN_PROC_TTY: 1121 if ((p->p_flag & P_CONTROLT) == 0 || 1122 p->p_session == NULL) { 1123 PROC_UNLOCK(p); 1124 continue; 1125 } 1126 /* XXX proctree_lock */ 1127 SESS_LOCK(p->p_session); 1128 if (p->p_session->s_ttyp == NULL || 1129 tty_udev(p->p_session->s_ttyp) != 1130 (dev_t)name[0]) { 1131 SESS_UNLOCK(p->p_session); 1132 PROC_UNLOCK(p); 1133 continue; 1134 } 1135 SESS_UNLOCK(p->p_session); 1136 break; 1137 1138 case KERN_PROC_UID: 1139 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1140 PROC_UNLOCK(p); 1141 continue; 1142 } 1143 break; 1144 1145 case KERN_PROC_RUID: 1146 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1147 PROC_UNLOCK(p); 1148 continue; 1149 } 1150 break; 1151 1152 case KERN_PROC_PROC: 1153 break; 1154 1155 default: 1156 break; 1157 1158 } 1159 1160 error = sysctl_out_proc(p, req, flags | doingzomb); 1161 if (error) { 1162 sx_sunlock(&allproc_lock); 1163 return (error); 1164 } 1165 } 1166 } 1167 sx_sunlock(&allproc_lock); 1168 return (0); 1169 } 1170 1171 struct pargs * 1172 pargs_alloc(int len) 1173 { 1174 struct pargs *pa; 1175 1176 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1177 M_WAITOK); 1178 refcount_init(&pa->ar_ref, 1); 1179 pa->ar_length = len; 1180 return (pa); 1181 } 1182 1183 static void 1184 pargs_free(struct pargs *pa) 1185 { 1186 1187 free(pa, M_PARGS); 1188 } 1189 1190 void 1191 pargs_hold(struct pargs *pa) 1192 { 1193 1194 if (pa == NULL) 1195 return; 1196 refcount_acquire(&pa->ar_ref); 1197 } 1198 1199 void 1200 pargs_drop(struct pargs *pa) 1201 { 1202 1203 if (pa == NULL) 1204 return; 1205 if (refcount_release(&pa->ar_ref)) 1206 pargs_free(pa); 1207 } 1208 1209 /* 1210 * This sysctl allows a process to retrieve the argument list or process 1211 * title for another process without groping around in the address space 1212 * of the other process. It also allow a process to set its own "process 1213 * title to a string of its own choice. 1214 */ 1215 static int 1216 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1217 { 1218 int *name = (int*) arg1; 1219 u_int namelen = arg2; 1220 struct pargs *newpa, *pa; 1221 struct proc *p; 1222 int error = 0; 1223 1224 if (namelen != 1) 1225 return (EINVAL); 1226 1227 p = pfind((pid_t)name[0]); 1228 if (!p) 1229 return (ESRCH); 1230 1231 if ((error = p_cansee(curthread, p)) != 0) { 1232 PROC_UNLOCK(p); 1233 return (error); 1234 } 1235 1236 if (req->newptr && curproc != p) { 1237 PROC_UNLOCK(p); 1238 return (EPERM); 1239 } 1240 1241 pa = p->p_args; 1242 pargs_hold(pa); 1243 PROC_UNLOCK(p); 1244 if (req->oldptr != NULL && pa != NULL) 1245 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1246 pargs_drop(pa); 1247 if (error != 0 || req->newptr == NULL) 1248 return (error); 1249 1250 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1251 return (ENOMEM); 1252 newpa = pargs_alloc(req->newlen); 1253 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1254 if (error != 0) { 1255 pargs_free(newpa); 1256 return (error); 1257 } 1258 PROC_LOCK(p); 1259 pa = p->p_args; 1260 p->p_args = newpa; 1261 PROC_UNLOCK(p); 1262 pargs_drop(pa); 1263 return (0); 1264 } 1265 1266 /* 1267 * This sysctl allows a process to retrieve the path of the executable for 1268 * itself or another process. 1269 */ 1270 static int 1271 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1272 { 1273 pid_t *pidp = (pid_t *)arg1; 1274 unsigned int arglen = arg2; 1275 struct proc *p; 1276 struct vnode *vp; 1277 char *retbuf, *freebuf; 1278 int error; 1279 1280 if (arglen != 1) 1281 return (EINVAL); 1282 if (*pidp == -1) { /* -1 means this process */ 1283 p = req->td->td_proc; 1284 } else { 1285 p = pfind(*pidp); 1286 if (p == NULL) 1287 return (ESRCH); 1288 if ((error = p_cansee(curthread, p)) != 0) { 1289 PROC_UNLOCK(p); 1290 return (error); 1291 } 1292 } 1293 1294 vp = p->p_textvp; 1295 if (vp == NULL) { 1296 if (*pidp != -1) 1297 PROC_UNLOCK(p); 1298 return (0); 1299 } 1300 vref(vp); 1301 if (*pidp != -1) 1302 PROC_UNLOCK(p); 1303 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1304 vrele(vp); 1305 if (error) 1306 return (error); 1307 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1308 free(freebuf, M_TEMP); 1309 return (error); 1310 } 1311 1312 static int 1313 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1314 { 1315 struct proc *p; 1316 char *sv_name; 1317 int *name; 1318 int namelen; 1319 int error; 1320 1321 namelen = arg2; 1322 if (namelen != 1) 1323 return (EINVAL); 1324 1325 name = (int *)arg1; 1326 if ((p = pfind((pid_t)name[0])) == NULL) 1327 return (ESRCH); 1328 if ((error = p_cansee(curthread, p))) { 1329 PROC_UNLOCK(p); 1330 return (error); 1331 } 1332 sv_name = p->p_sysent->sv_name; 1333 PROC_UNLOCK(p); 1334 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1335 } 1336 1337 static int 1338 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1339 { 1340 vm_map_entry_t entry, tmp_entry; 1341 unsigned int last_timestamp; 1342 char *fullpath, *freepath; 1343 struct kinfo_vmentry *kve; 1344 struct vattr va; 1345 struct ucred *cred; 1346 int error, *name; 1347 struct vnode *vp; 1348 struct proc *p; 1349 vm_map_t map; 1350 1351 name = (int *)arg1; 1352 if ((p = pfind((pid_t)name[0])) == NULL) 1353 return (ESRCH); 1354 if (p->p_flag & P_WEXIT) { 1355 PROC_UNLOCK(p); 1356 return (ESRCH); 1357 } 1358 if ((error = p_candebug(curthread, p))) { 1359 PROC_UNLOCK(p); 1360 return (error); 1361 } 1362 _PHOLD(p); 1363 PROC_UNLOCK(p); 1364 1365 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1366 1367 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1368 vm_map_lock_read(map); 1369 for (entry = map->header.next; entry != &map->header; 1370 entry = entry->next) { 1371 vm_object_t obj, tobj, lobj; 1372 vm_offset_t addr; 1373 int vfslocked; 1374 1375 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1376 continue; 1377 1378 bzero(kve, sizeof(*kve)); 1379 kve->kve_structsize = sizeof(*kve); 1380 1381 kve->kve_private_resident = 0; 1382 obj = entry->object.vm_object; 1383 if (obj != NULL) { 1384 VM_OBJECT_LOCK(obj); 1385 if (obj->shadow_count == 1) 1386 kve->kve_private_resident = 1387 obj->resident_page_count; 1388 } 1389 kve->kve_resident = 0; 1390 addr = entry->start; 1391 while (addr < entry->end) { 1392 if (pmap_extract(map->pmap, addr)) 1393 kve->kve_resident++; 1394 addr += PAGE_SIZE; 1395 } 1396 1397 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1398 if (tobj != obj) 1399 VM_OBJECT_LOCK(tobj); 1400 if (lobj != obj) 1401 VM_OBJECT_UNLOCK(lobj); 1402 lobj = tobj; 1403 } 1404 1405 kve->kve_fileid = 0; 1406 kve->kve_fsid = 0; 1407 freepath = NULL; 1408 fullpath = ""; 1409 if (lobj) { 1410 vp = NULL; 1411 switch(lobj->type) { 1412 case OBJT_DEFAULT: 1413 kve->kve_type = KVME_TYPE_DEFAULT; 1414 break; 1415 case OBJT_VNODE: 1416 kve->kve_type = KVME_TYPE_VNODE; 1417 vp = lobj->handle; 1418 vref(vp); 1419 break; 1420 case OBJT_SWAP: 1421 kve->kve_type = KVME_TYPE_SWAP; 1422 break; 1423 case OBJT_DEVICE: 1424 kve->kve_type = KVME_TYPE_DEVICE; 1425 break; 1426 case OBJT_PHYS: 1427 kve->kve_type = KVME_TYPE_PHYS; 1428 break; 1429 case OBJT_DEAD: 1430 kve->kve_type = KVME_TYPE_DEAD; 1431 break; 1432 default: 1433 kve->kve_type = KVME_TYPE_UNKNOWN; 1434 break; 1435 } 1436 if (lobj != obj) 1437 VM_OBJECT_UNLOCK(lobj); 1438 1439 kve->kve_ref_count = obj->ref_count; 1440 kve->kve_shadow_count = obj->shadow_count; 1441 VM_OBJECT_UNLOCK(obj); 1442 if (vp != NULL) { 1443 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1444 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1445 vn_fullpath(curthread, vp, &fullpath, 1446 &freepath); 1447 cred = curthread->td_ucred; 1448 if (VOP_GETATTR(vp, &va, cred) == 0) { 1449 kve->kve_fileid = va.va_fileid; 1450 kve->kve_fsid = va.va_fsid; 1451 } 1452 vput(vp); 1453 VFS_UNLOCK_GIANT(vfslocked); 1454 } 1455 } else { 1456 kve->kve_type = KVME_TYPE_NONE; 1457 kve->kve_ref_count = 0; 1458 kve->kve_shadow_count = 0; 1459 } 1460 1461 kve->kve_start = (void*)entry->start; 1462 kve->kve_end = (void*)entry->end; 1463 kve->kve_offset = (off_t)entry->offset; 1464 1465 if (entry->protection & VM_PROT_READ) 1466 kve->kve_protection |= KVME_PROT_READ; 1467 if (entry->protection & VM_PROT_WRITE) 1468 kve->kve_protection |= KVME_PROT_WRITE; 1469 if (entry->protection & VM_PROT_EXECUTE) 1470 kve->kve_protection |= KVME_PROT_EXEC; 1471 1472 if (entry->eflags & MAP_ENTRY_COW) 1473 kve->kve_flags |= KVME_FLAG_COW; 1474 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1475 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1476 1477 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1478 if (freepath != NULL) 1479 free(freepath, M_TEMP); 1480 1481 last_timestamp = map->timestamp; 1482 vm_map_unlock_read(map); 1483 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1484 vm_map_lock_read(map); 1485 if (error) 1486 break; 1487 if (last_timestamp + 1 != map->timestamp) { 1488 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1489 entry = tmp_entry; 1490 } 1491 } 1492 vm_map_unlock_read(map); 1493 PRELE(p); 1494 free(kve, M_TEMP); 1495 return (error); 1496 } 1497 1498 #if defined(STACK) || defined(DDB) 1499 static int 1500 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1501 { 1502 struct kinfo_kstack *kkstp; 1503 int error, i, *name, numthreads; 1504 lwpid_t *lwpidarray; 1505 struct thread *td; 1506 struct stack *st; 1507 struct sbuf sb; 1508 struct proc *p; 1509 1510 name = (int *)arg1; 1511 if ((p = pfind((pid_t)name[0])) == NULL) 1512 return (ESRCH); 1513 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1514 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1515 PROC_UNLOCK(p); 1516 return (ESRCH); 1517 } 1518 if ((error = p_candebug(curthread, p))) { 1519 PROC_UNLOCK(p); 1520 return (error); 1521 } 1522 _PHOLD(p); 1523 PROC_UNLOCK(p); 1524 1525 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1526 st = stack_create(); 1527 1528 lwpidarray = NULL; 1529 numthreads = 0; 1530 PROC_LOCK(p); 1531 repeat: 1532 if (numthreads < p->p_numthreads) { 1533 if (lwpidarray != NULL) { 1534 free(lwpidarray, M_TEMP); 1535 lwpidarray = NULL; 1536 } 1537 numthreads = p->p_numthreads; 1538 PROC_UNLOCK(p); 1539 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1540 M_WAITOK | M_ZERO); 1541 PROC_LOCK(p); 1542 goto repeat; 1543 } 1544 i = 0; 1545 1546 /* 1547 * XXXRW: During the below loop, execve(2) and countless other sorts 1548 * of changes could have taken place. Should we check to see if the 1549 * vmspace has been replaced, or the like, in order to prevent 1550 * giving a snapshot that spans, say, execve(2), with some threads 1551 * before and some after? Among other things, the credentials could 1552 * have changed, in which case the right to extract debug info might 1553 * no longer be assured. 1554 */ 1555 FOREACH_THREAD_IN_PROC(p, td) { 1556 KASSERT(i < numthreads, 1557 ("sysctl_kern_proc_kstack: numthreads")); 1558 lwpidarray[i] = td->td_tid; 1559 i++; 1560 } 1561 numthreads = i; 1562 for (i = 0; i < numthreads; i++) { 1563 td = thread_find(p, lwpidarray[i]); 1564 if (td == NULL) { 1565 continue; 1566 } 1567 bzero(kkstp, sizeof(*kkstp)); 1568 (void)sbuf_new(&sb, kkstp->kkst_trace, 1569 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1570 thread_lock(td); 1571 kkstp->kkst_tid = td->td_tid; 1572 if (TD_IS_SWAPPED(td)) 1573 kkstp->kkst_state = KKST_STATE_SWAPPED; 1574 else if (TD_IS_RUNNING(td)) 1575 kkstp->kkst_state = KKST_STATE_RUNNING; 1576 else { 1577 kkstp->kkst_state = KKST_STATE_STACKOK; 1578 stack_save_td(st, td); 1579 } 1580 thread_unlock(td); 1581 PROC_UNLOCK(p); 1582 stack_sbuf_print(&sb, st); 1583 sbuf_finish(&sb); 1584 sbuf_delete(&sb); 1585 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1586 PROC_LOCK(p); 1587 if (error) 1588 break; 1589 } 1590 _PRELE(p); 1591 PROC_UNLOCK(p); 1592 if (lwpidarray != NULL) 1593 free(lwpidarray, M_TEMP); 1594 stack_destroy(st); 1595 free(kkstp, M_TEMP); 1596 return (error); 1597 } 1598 #endif 1599 1600 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1601 1602 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1603 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1604 1605 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1606 sysctl_kern_proc, "Process table"); 1607 1608 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1609 sysctl_kern_proc, "Process table"); 1610 1611 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1612 sysctl_kern_proc, "Process table"); 1613 1614 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1615 sysctl_kern_proc, "Process table"); 1616 1617 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1618 sysctl_kern_proc, "Process table"); 1619 1620 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1621 sysctl_kern_proc, "Process table"); 1622 1623 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1624 sysctl_kern_proc, "Process table"); 1625 1626 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1627 sysctl_kern_proc, "Process table"); 1628 1629 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1630 sysctl_kern_proc, "Return process table, no threads"); 1631 1632 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1633 CTLFLAG_RW | CTLFLAG_ANYBODY, 1634 sysctl_kern_proc_args, "Process argument list"); 1635 1636 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1637 sysctl_kern_proc_pathname, "Process executable path"); 1638 1639 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1640 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1641 1642 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1643 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1644 1645 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1646 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1647 1648 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1649 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1650 1651 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1652 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1653 1654 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1655 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1656 1657 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1658 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1659 1660 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1661 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1662 1663 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1664 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1665 1666 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1667 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1668 1669 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1670 sysctl_kern_proc_vmmap, "Process vm map entries"); 1671 1672 #if defined(STACK) || defined(DDB) 1673 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1674 sysctl_kern_proc_kstack, "Process kernel stacks"); 1675 #endif 1676