1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/eventhandler.h> 46 #include <sys/exec.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/proc.h> 57 #include <sys/ptrace.h> 58 #include <sys/refcount.h> 59 #include <sys/resourcevar.h> 60 #include <sys/rwlock.h> 61 #include <sys/sbuf.h> 62 #include <sys/sysent.h> 63 #include <sys/sched.h> 64 #include <sys/smp.h> 65 #include <sys/stack.h> 66 #include <sys/stat.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #endif 80 81 #include <vm/vm.h> 82 #include <vm/vm_param.h> 83 #include <vm/vm_extern.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/uma.h> 89 90 #ifdef COMPAT_FREEBSD32 91 #include <compat/freebsd32/freebsd32.h> 92 #include <compat/freebsd32/freebsd32_util.h> 93 #endif 94 95 SDT_PROVIDER_DEFINE(proc); 96 97 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 98 MALLOC_DEFINE(M_SESSION, "session", "session header"); 99 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 100 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 101 102 static void doenterpgrp(struct proc *, struct pgrp *); 103 static void orphanpg(struct pgrp *pg); 104 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 105 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 106 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 107 int preferthread); 108 static void pgadjustjobc(struct pgrp *pgrp, int entering); 109 static void pgdelete(struct pgrp *); 110 static int proc_ctor(void *mem, int size, void *arg, int flags); 111 static void proc_dtor(void *mem, int size, void *arg); 112 static int proc_init(void *mem, int size, int flags); 113 static void proc_fini(void *mem, int size); 114 static void pargs_free(struct pargs *pa); 115 116 /* 117 * Other process lists 118 */ 119 struct pidhashhead *pidhashtbl; 120 struct sx *pidhashtbl_lock; 121 u_long pidhash; 122 u_long pidhashlock; 123 struct pgrphashhead *pgrphashtbl; 124 u_long pgrphash; 125 struct proclist allproc; 126 struct proclist zombproc; 127 struct sx __exclusive_cache_line allproc_lock; 128 struct sx __exclusive_cache_line zombproc_lock; 129 struct sx __exclusive_cache_line proctree_lock; 130 struct mtx __exclusive_cache_line ppeers_lock; 131 uma_zone_t proc_zone; 132 133 /* 134 * The offset of various fields in struct proc and struct thread. 135 * These are used by kernel debuggers to enumerate kernel threads and 136 * processes. 137 */ 138 const int proc_off_p_pid = offsetof(struct proc, p_pid); 139 const int proc_off_p_comm = offsetof(struct proc, p_comm); 140 const int proc_off_p_list = offsetof(struct proc, p_list); 141 const int proc_off_p_threads = offsetof(struct proc, p_threads); 142 const int thread_off_td_tid = offsetof(struct thread, td_tid); 143 const int thread_off_td_name = offsetof(struct thread, td_name); 144 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 145 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 146 const int thread_off_td_plist = offsetof(struct thread, td_plist); 147 148 EVENTHANDLER_LIST_DEFINE(process_ctor); 149 EVENTHANDLER_LIST_DEFINE(process_dtor); 150 EVENTHANDLER_LIST_DEFINE(process_init); 151 EVENTHANDLER_LIST_DEFINE(process_fini); 152 EVENTHANDLER_LIST_DEFINE(process_exit); 153 EVENTHANDLER_LIST_DEFINE(process_fork); 154 EVENTHANDLER_LIST_DEFINE(process_exec); 155 156 EVENTHANDLER_LIST_DECLARE(thread_ctor); 157 EVENTHANDLER_LIST_DECLARE(thread_dtor); 158 159 int kstack_pages = KSTACK_PAGES; 160 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 161 "Kernel stack size in pages"); 162 static int vmmap_skip_res_cnt = 0; 163 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 164 &vmmap_skip_res_cnt, 0, 165 "Skip calculation of the pages resident count in kern.proc.vmmap"); 166 167 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 168 #ifdef COMPAT_FREEBSD32 169 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 170 #endif 171 172 /* 173 * Initialize global process hashing structures. 174 */ 175 void 176 procinit(void) 177 { 178 u_long i; 179 180 sx_init(&allproc_lock, "allproc"); 181 sx_init(&zombproc_lock, "zombproc"); 182 sx_init(&proctree_lock, "proctree"); 183 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 184 LIST_INIT(&allproc); 185 LIST_INIT(&zombproc); 186 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 187 pidhashlock = (pidhash + 1) / 64; 188 if (pidhashlock > 0) 189 pidhashlock--; 190 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 191 M_PROC, M_WAITOK | M_ZERO); 192 for (i = 0; i < pidhashlock + 1; i++) 193 sx_init(&pidhashtbl_lock[i], "pidhash"); 194 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 195 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 196 proc_ctor, proc_dtor, proc_init, proc_fini, 197 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 198 uihashinit(); 199 } 200 201 /* 202 * Prepare a proc for use. 203 */ 204 static int 205 proc_ctor(void *mem, int size, void *arg, int flags) 206 { 207 struct proc *p; 208 struct thread *td; 209 210 p = (struct proc *)mem; 211 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 212 td = FIRST_THREAD_IN_PROC(p); 213 if (td != NULL) { 214 /* Make sure all thread constructors are executed */ 215 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 216 } 217 return (0); 218 } 219 220 /* 221 * Reclaim a proc after use. 222 */ 223 static void 224 proc_dtor(void *mem, int size, void *arg) 225 { 226 struct proc *p; 227 struct thread *td; 228 229 /* INVARIANTS checks go here */ 230 p = (struct proc *)mem; 231 td = FIRST_THREAD_IN_PROC(p); 232 if (td != NULL) { 233 #ifdef INVARIANTS 234 KASSERT((p->p_numthreads == 1), 235 ("bad number of threads in exiting process")); 236 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 237 #endif 238 /* Free all OSD associated to this thread. */ 239 osd_thread_exit(td); 240 td_softdep_cleanup(td); 241 MPASS(td->td_su == NULL); 242 243 /* Make sure all thread destructors are executed */ 244 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 245 } 246 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 247 if (p->p_ksi != NULL) 248 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 249 } 250 251 /* 252 * Initialize type-stable parts of a proc (when newly created). 253 */ 254 static int 255 proc_init(void *mem, int size, int flags) 256 { 257 struct proc *p; 258 259 p = (struct proc *)mem; 260 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 261 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 262 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 263 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 264 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 265 cv_init(&p->p_pwait, "ppwait"); 266 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 267 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 268 p->p_stats = pstats_alloc(); 269 p->p_pgrp = NULL; 270 return (0); 271 } 272 273 /* 274 * UMA should ensure that this function is never called. 275 * Freeing a proc structure would violate type stability. 276 */ 277 static void 278 proc_fini(void *mem, int size) 279 { 280 #ifdef notnow 281 struct proc *p; 282 283 p = (struct proc *)mem; 284 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 285 pstats_free(p->p_stats); 286 thread_free(FIRST_THREAD_IN_PROC(p)); 287 mtx_destroy(&p->p_mtx); 288 if (p->p_ksi != NULL) 289 ksiginfo_free(p->p_ksi); 290 #else 291 panic("proc reclaimed"); 292 #endif 293 } 294 295 /* 296 * Is p an inferior of the current process? 297 */ 298 int 299 inferior(struct proc *p) 300 { 301 302 sx_assert(&proctree_lock, SX_LOCKED); 303 PROC_LOCK_ASSERT(p, MA_OWNED); 304 for (; p != curproc; p = proc_realparent(p)) { 305 if (p->p_pid == 0) 306 return (0); 307 } 308 return (1); 309 } 310 311 /* 312 * Locate a process by number. 313 * 314 * By not returning processes in the PRS_NEW state, we allow callers to avoid 315 * testing for that condition to avoid dereferencing p_ucred, et al. 316 */ 317 static __always_inline struct proc * 318 _pfind(pid_t pid, bool zombie) 319 { 320 struct proc *p; 321 322 p = curproc; 323 if (p->p_pid == pid) { 324 PROC_LOCK(p); 325 return (p); 326 } 327 sx_slock(PIDHASHLOCK(pid)); 328 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 329 if (p->p_pid == pid) { 330 PROC_LOCK(p); 331 if (p->p_state == PRS_NEW || 332 (zombie && p->p_state == PRS_ZOMBIE)) { 333 PROC_UNLOCK(p); 334 p = NULL; 335 } 336 break; 337 } 338 } 339 sx_sunlock(PIDHASHLOCK(pid)); 340 return (p); 341 } 342 343 struct proc * 344 pfind(pid_t pid) 345 { 346 347 return (_pfind(pid, false)); 348 } 349 350 /* 351 * Same as pfind but allow zombies. 352 */ 353 struct proc * 354 pfind_any(pid_t pid) 355 { 356 357 return (_pfind(pid, true)); 358 } 359 360 static struct proc * 361 pfind_tid(pid_t tid) 362 { 363 struct proc *p; 364 struct thread *td; 365 366 sx_slock(&allproc_lock); 367 FOREACH_PROC_IN_SYSTEM(p) { 368 PROC_LOCK(p); 369 if (p->p_state == PRS_NEW) { 370 PROC_UNLOCK(p); 371 continue; 372 } 373 FOREACH_THREAD_IN_PROC(p, td) { 374 if (td->td_tid == tid) 375 goto found; 376 } 377 PROC_UNLOCK(p); 378 } 379 found: 380 sx_sunlock(&allproc_lock); 381 return (p); 382 } 383 384 /* 385 * Locate a process group by number. 386 * The caller must hold proctree_lock. 387 */ 388 struct pgrp * 389 pgfind(pid_t pgid) 390 { 391 struct pgrp *pgrp; 392 393 sx_assert(&proctree_lock, SX_LOCKED); 394 395 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 396 if (pgrp->pg_id == pgid) { 397 PGRP_LOCK(pgrp); 398 return (pgrp); 399 } 400 } 401 return (NULL); 402 } 403 404 /* 405 * Locate process and do additional manipulations, depending on flags. 406 */ 407 int 408 pget(pid_t pid, int flags, struct proc **pp) 409 { 410 struct proc *p; 411 int error; 412 413 p = curproc; 414 if (p->p_pid == pid) { 415 PROC_LOCK(p); 416 } else { 417 p = NULL; 418 if (pid <= PID_MAX) { 419 if ((flags & PGET_NOTWEXIT) == 0) 420 p = pfind_any(pid); 421 else 422 p = pfind(pid); 423 } else if ((flags & PGET_NOTID) == 0) { 424 p = pfind_tid(pid); 425 } 426 if (p == NULL) 427 return (ESRCH); 428 if ((flags & PGET_CANSEE) != 0) { 429 error = p_cansee(curthread, p); 430 if (error != 0) 431 goto errout; 432 } 433 } 434 if ((flags & PGET_CANDEBUG) != 0) { 435 error = p_candebug(curthread, p); 436 if (error != 0) 437 goto errout; 438 } 439 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 440 error = EPERM; 441 goto errout; 442 } 443 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 444 error = ESRCH; 445 goto errout; 446 } 447 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 448 /* 449 * XXXRW: Not clear ESRCH is the right error during proc 450 * execve(). 451 */ 452 error = ESRCH; 453 goto errout; 454 } 455 if ((flags & PGET_HOLD) != 0) { 456 _PHOLD(p); 457 PROC_UNLOCK(p); 458 } 459 *pp = p; 460 return (0); 461 errout: 462 PROC_UNLOCK(p); 463 return (error); 464 } 465 466 /* 467 * Create a new process group. 468 * pgid must be equal to the pid of p. 469 * Begin a new session if required. 470 */ 471 int 472 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 473 { 474 475 sx_assert(&proctree_lock, SX_XLOCKED); 476 477 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 478 KASSERT(p->p_pid == pgid, 479 ("enterpgrp: new pgrp and pid != pgid")); 480 KASSERT(pgfind(pgid) == NULL, 481 ("enterpgrp: pgrp with pgid exists")); 482 KASSERT(!SESS_LEADER(p), 483 ("enterpgrp: session leader attempted setpgrp")); 484 485 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 486 487 if (sess != NULL) { 488 /* 489 * new session 490 */ 491 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 492 PROC_LOCK(p); 493 p->p_flag &= ~P_CONTROLT; 494 PROC_UNLOCK(p); 495 PGRP_LOCK(pgrp); 496 sess->s_leader = p; 497 sess->s_sid = p->p_pid; 498 refcount_init(&sess->s_count, 1); 499 sess->s_ttyvp = NULL; 500 sess->s_ttydp = NULL; 501 sess->s_ttyp = NULL; 502 bcopy(p->p_session->s_login, sess->s_login, 503 sizeof(sess->s_login)); 504 pgrp->pg_session = sess; 505 KASSERT(p == curproc, 506 ("enterpgrp: mksession and p != curproc")); 507 } else { 508 pgrp->pg_session = p->p_session; 509 sess_hold(pgrp->pg_session); 510 PGRP_LOCK(pgrp); 511 } 512 pgrp->pg_id = pgid; 513 LIST_INIT(&pgrp->pg_members); 514 515 /* 516 * As we have an exclusive lock of proctree_lock, 517 * this should not deadlock. 518 */ 519 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 520 pgrp->pg_jobc = 0; 521 SLIST_INIT(&pgrp->pg_sigiolst); 522 PGRP_UNLOCK(pgrp); 523 524 doenterpgrp(p, pgrp); 525 526 return (0); 527 } 528 529 /* 530 * Move p to an existing process group 531 */ 532 int 533 enterthispgrp(struct proc *p, struct pgrp *pgrp) 534 { 535 536 sx_assert(&proctree_lock, SX_XLOCKED); 537 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 538 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 539 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 540 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 541 KASSERT(pgrp->pg_session == p->p_session, 542 ("%s: pgrp's session %p, p->p_session %p.\n", 543 __func__, 544 pgrp->pg_session, 545 p->p_session)); 546 KASSERT(pgrp != p->p_pgrp, 547 ("%s: p belongs to pgrp.", __func__)); 548 549 doenterpgrp(p, pgrp); 550 551 return (0); 552 } 553 554 /* 555 * Move p to a process group 556 */ 557 static void 558 doenterpgrp(struct proc *p, struct pgrp *pgrp) 559 { 560 struct pgrp *savepgrp; 561 562 sx_assert(&proctree_lock, SX_XLOCKED); 563 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 564 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 565 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 566 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 567 568 savepgrp = p->p_pgrp; 569 570 /* 571 * Adjust eligibility of affected pgrps to participate in job control. 572 * Increment eligibility counts before decrementing, otherwise we 573 * could reach 0 spuriously during the first call. 574 */ 575 fixjobc(p, pgrp, 1); 576 fixjobc(p, p->p_pgrp, 0); 577 578 PGRP_LOCK(pgrp); 579 PGRP_LOCK(savepgrp); 580 PROC_LOCK(p); 581 LIST_REMOVE(p, p_pglist); 582 p->p_pgrp = pgrp; 583 PROC_UNLOCK(p); 584 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 585 PGRP_UNLOCK(savepgrp); 586 PGRP_UNLOCK(pgrp); 587 if (LIST_EMPTY(&savepgrp->pg_members)) 588 pgdelete(savepgrp); 589 } 590 591 /* 592 * remove process from process group 593 */ 594 int 595 leavepgrp(struct proc *p) 596 { 597 struct pgrp *savepgrp; 598 599 sx_assert(&proctree_lock, SX_XLOCKED); 600 savepgrp = p->p_pgrp; 601 PGRP_LOCK(savepgrp); 602 PROC_LOCK(p); 603 LIST_REMOVE(p, p_pglist); 604 p->p_pgrp = NULL; 605 PROC_UNLOCK(p); 606 PGRP_UNLOCK(savepgrp); 607 if (LIST_EMPTY(&savepgrp->pg_members)) 608 pgdelete(savepgrp); 609 return (0); 610 } 611 612 /* 613 * delete a process group 614 */ 615 static void 616 pgdelete(struct pgrp *pgrp) 617 { 618 struct session *savesess; 619 struct tty *tp; 620 621 sx_assert(&proctree_lock, SX_XLOCKED); 622 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 623 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 624 625 /* 626 * Reset any sigio structures pointing to us as a result of 627 * F_SETOWN with our pgid. 628 */ 629 funsetownlst(&pgrp->pg_sigiolst); 630 631 PGRP_LOCK(pgrp); 632 tp = pgrp->pg_session->s_ttyp; 633 LIST_REMOVE(pgrp, pg_hash); 634 savesess = pgrp->pg_session; 635 PGRP_UNLOCK(pgrp); 636 637 /* Remove the reference to the pgrp before deallocating it. */ 638 if (tp != NULL) { 639 tty_lock(tp); 640 tty_rel_pgrp(tp, pgrp); 641 } 642 643 mtx_destroy(&pgrp->pg_mtx); 644 free(pgrp, M_PGRP); 645 sess_release(savesess); 646 } 647 648 static void 649 pgadjustjobc(struct pgrp *pgrp, int entering) 650 { 651 652 PGRP_LOCK(pgrp); 653 if (entering) 654 pgrp->pg_jobc++; 655 else { 656 --pgrp->pg_jobc; 657 if (pgrp->pg_jobc == 0) 658 orphanpg(pgrp); 659 } 660 PGRP_UNLOCK(pgrp); 661 } 662 663 /* 664 * Adjust pgrp jobc counters when specified process changes process group. 665 * We count the number of processes in each process group that "qualify" 666 * the group for terminal job control (those with a parent in a different 667 * process group of the same session). If that count reaches zero, the 668 * process group becomes orphaned. Check both the specified process' 669 * process group and that of its children. 670 * entering == 0 => p is leaving specified group. 671 * entering == 1 => p is entering specified group. 672 */ 673 void 674 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 675 { 676 struct pgrp *hispgrp; 677 struct session *mysession; 678 struct proc *q; 679 680 sx_assert(&proctree_lock, SX_LOCKED); 681 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 682 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 683 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 684 685 /* 686 * Check p's parent to see whether p qualifies its own process 687 * group; if so, adjust count for p's process group. 688 */ 689 mysession = pgrp->pg_session; 690 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 691 hispgrp->pg_session == mysession) 692 pgadjustjobc(pgrp, entering); 693 694 /* 695 * Check this process' children to see whether they qualify 696 * their process groups; if so, adjust counts for children's 697 * process groups. 698 */ 699 LIST_FOREACH(q, &p->p_children, p_sibling) { 700 hispgrp = q->p_pgrp; 701 if (hispgrp == pgrp || 702 hispgrp->pg_session != mysession) 703 continue; 704 if (q->p_state == PRS_ZOMBIE) 705 continue; 706 pgadjustjobc(hispgrp, entering); 707 } 708 } 709 710 void 711 killjobc(void) 712 { 713 struct session *sp; 714 struct tty *tp; 715 struct proc *p; 716 struct vnode *ttyvp; 717 718 p = curproc; 719 MPASS(p->p_flag & P_WEXIT); 720 /* 721 * Do a quick check to see if there is anything to do with the 722 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 723 */ 724 PROC_LOCK(p); 725 if (!SESS_LEADER(p) && 726 (p->p_pgrp == p->p_pptr->p_pgrp) && 727 LIST_EMPTY(&p->p_children)) { 728 PROC_UNLOCK(p); 729 return; 730 } 731 PROC_UNLOCK(p); 732 733 sx_xlock(&proctree_lock); 734 if (SESS_LEADER(p)) { 735 sp = p->p_session; 736 737 /* 738 * s_ttyp is not zero'd; we use this to indicate that 739 * the session once had a controlling terminal. (for 740 * logging and informational purposes) 741 */ 742 SESS_LOCK(sp); 743 ttyvp = sp->s_ttyvp; 744 tp = sp->s_ttyp; 745 sp->s_ttyvp = NULL; 746 sp->s_ttydp = NULL; 747 sp->s_leader = NULL; 748 SESS_UNLOCK(sp); 749 750 /* 751 * Signal foreground pgrp and revoke access to 752 * controlling terminal if it has not been revoked 753 * already. 754 * 755 * Because the TTY may have been revoked in the mean 756 * time and could already have a new session associated 757 * with it, make sure we don't send a SIGHUP to a 758 * foreground process group that does not belong to this 759 * session. 760 */ 761 762 if (tp != NULL) { 763 tty_lock(tp); 764 if (tp->t_session == sp) 765 tty_signal_pgrp(tp, SIGHUP); 766 tty_unlock(tp); 767 } 768 769 if (ttyvp != NULL) { 770 sx_xunlock(&proctree_lock); 771 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 772 VOP_REVOKE(ttyvp, REVOKEALL); 773 VOP_UNLOCK(ttyvp, 0); 774 } 775 vrele(ttyvp); 776 sx_xlock(&proctree_lock); 777 } 778 } 779 fixjobc(p, p->p_pgrp, 0); 780 sx_xunlock(&proctree_lock); 781 } 782 783 /* 784 * A process group has become orphaned; 785 * if there are any stopped processes in the group, 786 * hang-up all process in that group. 787 */ 788 static void 789 orphanpg(struct pgrp *pg) 790 { 791 struct proc *p; 792 793 PGRP_LOCK_ASSERT(pg, MA_OWNED); 794 795 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 796 PROC_LOCK(p); 797 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 798 PROC_UNLOCK(p); 799 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 800 PROC_LOCK(p); 801 kern_psignal(p, SIGHUP); 802 kern_psignal(p, SIGCONT); 803 PROC_UNLOCK(p); 804 } 805 return; 806 } 807 PROC_UNLOCK(p); 808 } 809 } 810 811 void 812 sess_hold(struct session *s) 813 { 814 815 refcount_acquire(&s->s_count); 816 } 817 818 void 819 sess_release(struct session *s) 820 { 821 822 if (refcount_release(&s->s_count)) { 823 if (s->s_ttyp != NULL) { 824 tty_lock(s->s_ttyp); 825 tty_rel_sess(s->s_ttyp, s); 826 } 827 mtx_destroy(&s->s_mtx); 828 free(s, M_SESSION); 829 } 830 } 831 832 #ifdef DDB 833 834 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 835 { 836 struct pgrp *pgrp; 837 struct proc *p; 838 int i; 839 840 for (i = 0; i <= pgrphash; i++) { 841 if (!LIST_EMPTY(&pgrphashtbl[i])) { 842 printf("\tindx %d\n", i); 843 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 844 printf( 845 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 846 (void *)pgrp, (long)pgrp->pg_id, 847 (void *)pgrp->pg_session, 848 pgrp->pg_session->s_count, 849 (void *)LIST_FIRST(&pgrp->pg_members)); 850 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 851 printf("\t\tpid %ld addr %p pgrp %p\n", 852 (long)p->p_pid, (void *)p, 853 (void *)p->p_pgrp); 854 } 855 } 856 } 857 } 858 } 859 #endif /* DDB */ 860 861 /* 862 * Calculate the kinfo_proc members which contain process-wide 863 * informations. 864 * Must be called with the target process locked. 865 */ 866 static void 867 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 868 { 869 struct thread *td; 870 871 PROC_LOCK_ASSERT(p, MA_OWNED); 872 873 kp->ki_estcpu = 0; 874 kp->ki_pctcpu = 0; 875 FOREACH_THREAD_IN_PROC(p, td) { 876 thread_lock(td); 877 kp->ki_pctcpu += sched_pctcpu(td); 878 kp->ki_estcpu += sched_estcpu(td); 879 thread_unlock(td); 880 } 881 } 882 883 /* 884 * Clear kinfo_proc and fill in any information that is common 885 * to all threads in the process. 886 * Must be called with the target process locked. 887 */ 888 static void 889 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 890 { 891 struct thread *td0; 892 struct tty *tp; 893 struct session *sp; 894 struct ucred *cred; 895 struct sigacts *ps; 896 struct timeval boottime; 897 898 PROC_LOCK_ASSERT(p, MA_OWNED); 899 bzero(kp, sizeof(*kp)); 900 901 kp->ki_structsize = sizeof(*kp); 902 kp->ki_paddr = p; 903 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 904 kp->ki_args = p->p_args; 905 kp->ki_textvp = p->p_textvp; 906 #ifdef KTRACE 907 kp->ki_tracep = p->p_tracevp; 908 kp->ki_traceflag = p->p_traceflag; 909 #endif 910 kp->ki_fd = p->p_fd; 911 kp->ki_vmspace = p->p_vmspace; 912 kp->ki_flag = p->p_flag; 913 kp->ki_flag2 = p->p_flag2; 914 cred = p->p_ucred; 915 if (cred) { 916 kp->ki_uid = cred->cr_uid; 917 kp->ki_ruid = cred->cr_ruid; 918 kp->ki_svuid = cred->cr_svuid; 919 kp->ki_cr_flags = 0; 920 if (cred->cr_flags & CRED_FLAG_CAPMODE) 921 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 922 /* XXX bde doesn't like KI_NGROUPS */ 923 if (cred->cr_ngroups > KI_NGROUPS) { 924 kp->ki_ngroups = KI_NGROUPS; 925 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 926 } else 927 kp->ki_ngroups = cred->cr_ngroups; 928 bcopy(cred->cr_groups, kp->ki_groups, 929 kp->ki_ngroups * sizeof(gid_t)); 930 kp->ki_rgid = cred->cr_rgid; 931 kp->ki_svgid = cred->cr_svgid; 932 /* If jailed(cred), emulate the old P_JAILED flag. */ 933 if (jailed(cred)) { 934 kp->ki_flag |= P_JAILED; 935 /* If inside the jail, use 0 as a jail ID. */ 936 if (cred->cr_prison != curthread->td_ucred->cr_prison) 937 kp->ki_jid = cred->cr_prison->pr_id; 938 } 939 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 940 sizeof(kp->ki_loginclass)); 941 } 942 ps = p->p_sigacts; 943 if (ps) { 944 mtx_lock(&ps->ps_mtx); 945 kp->ki_sigignore = ps->ps_sigignore; 946 kp->ki_sigcatch = ps->ps_sigcatch; 947 mtx_unlock(&ps->ps_mtx); 948 } 949 if (p->p_state != PRS_NEW && 950 p->p_state != PRS_ZOMBIE && 951 p->p_vmspace != NULL) { 952 struct vmspace *vm = p->p_vmspace; 953 954 kp->ki_size = vm->vm_map.size; 955 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 956 FOREACH_THREAD_IN_PROC(p, td0) { 957 if (!TD_IS_SWAPPED(td0)) 958 kp->ki_rssize += td0->td_kstack_pages; 959 } 960 kp->ki_swrss = vm->vm_swrss; 961 kp->ki_tsize = vm->vm_tsize; 962 kp->ki_dsize = vm->vm_dsize; 963 kp->ki_ssize = vm->vm_ssize; 964 } else if (p->p_state == PRS_ZOMBIE) 965 kp->ki_stat = SZOMB; 966 if (kp->ki_flag & P_INMEM) 967 kp->ki_sflag = PS_INMEM; 968 else 969 kp->ki_sflag = 0; 970 /* Calculate legacy swtime as seconds since 'swtick'. */ 971 kp->ki_swtime = (ticks - p->p_swtick) / hz; 972 kp->ki_pid = p->p_pid; 973 kp->ki_nice = p->p_nice; 974 kp->ki_fibnum = p->p_fibnum; 975 kp->ki_start = p->p_stats->p_start; 976 getboottime(&boottime); 977 timevaladd(&kp->ki_start, &boottime); 978 PROC_STATLOCK(p); 979 rufetch(p, &kp->ki_rusage); 980 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 981 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 982 PROC_STATUNLOCK(p); 983 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 984 /* Some callers want child times in a single value. */ 985 kp->ki_childtime = kp->ki_childstime; 986 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 987 988 FOREACH_THREAD_IN_PROC(p, td0) 989 kp->ki_cow += td0->td_cow; 990 991 tp = NULL; 992 if (p->p_pgrp) { 993 kp->ki_pgid = p->p_pgrp->pg_id; 994 kp->ki_jobc = p->p_pgrp->pg_jobc; 995 sp = p->p_pgrp->pg_session; 996 997 if (sp != NULL) { 998 kp->ki_sid = sp->s_sid; 999 SESS_LOCK(sp); 1000 strlcpy(kp->ki_login, sp->s_login, 1001 sizeof(kp->ki_login)); 1002 if (sp->s_ttyvp) 1003 kp->ki_kiflag |= KI_CTTY; 1004 if (SESS_LEADER(p)) 1005 kp->ki_kiflag |= KI_SLEADER; 1006 /* XXX proctree_lock */ 1007 tp = sp->s_ttyp; 1008 SESS_UNLOCK(sp); 1009 } 1010 } 1011 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1012 kp->ki_tdev = tty_udev(tp); 1013 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1014 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1015 if (tp->t_session) 1016 kp->ki_tsid = tp->t_session->s_sid; 1017 } else { 1018 kp->ki_tdev = NODEV; 1019 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1020 } 1021 if (p->p_comm[0] != '\0') 1022 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1023 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1024 p->p_sysent->sv_name[0] != '\0') 1025 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1026 kp->ki_siglist = p->p_siglist; 1027 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1028 kp->ki_acflag = p->p_acflag; 1029 kp->ki_lock = p->p_lock; 1030 if (p->p_pptr) { 1031 kp->ki_ppid = p->p_oppid; 1032 if (p->p_flag & P_TRACED) 1033 kp->ki_tracer = p->p_pptr->p_pid; 1034 } 1035 } 1036 1037 /* 1038 * Fill in information that is thread specific. Must be called with 1039 * target process locked. If 'preferthread' is set, overwrite certain 1040 * process-related fields that are maintained for both threads and 1041 * processes. 1042 */ 1043 static void 1044 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1045 { 1046 struct proc *p; 1047 1048 p = td->td_proc; 1049 kp->ki_tdaddr = td; 1050 PROC_LOCK_ASSERT(p, MA_OWNED); 1051 1052 if (preferthread) 1053 PROC_STATLOCK(p); 1054 thread_lock(td); 1055 if (td->td_wmesg != NULL) 1056 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1057 else 1058 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1059 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1060 sizeof(kp->ki_tdname)) { 1061 strlcpy(kp->ki_moretdname, 1062 td->td_name + sizeof(kp->ki_tdname) - 1, 1063 sizeof(kp->ki_moretdname)); 1064 } else { 1065 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1066 } 1067 if (TD_ON_LOCK(td)) { 1068 kp->ki_kiflag |= KI_LOCKBLOCK; 1069 strlcpy(kp->ki_lockname, td->td_lockname, 1070 sizeof(kp->ki_lockname)); 1071 } else { 1072 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1073 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1074 } 1075 1076 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1077 if (TD_ON_RUNQ(td) || 1078 TD_CAN_RUN(td) || 1079 TD_IS_RUNNING(td)) { 1080 kp->ki_stat = SRUN; 1081 } else if (P_SHOULDSTOP(p)) { 1082 kp->ki_stat = SSTOP; 1083 } else if (TD_IS_SLEEPING(td)) { 1084 kp->ki_stat = SSLEEP; 1085 } else if (TD_ON_LOCK(td)) { 1086 kp->ki_stat = SLOCK; 1087 } else { 1088 kp->ki_stat = SWAIT; 1089 } 1090 } else if (p->p_state == PRS_ZOMBIE) { 1091 kp->ki_stat = SZOMB; 1092 } else { 1093 kp->ki_stat = SIDL; 1094 } 1095 1096 /* Things in the thread */ 1097 kp->ki_wchan = td->td_wchan; 1098 kp->ki_pri.pri_level = td->td_priority; 1099 kp->ki_pri.pri_native = td->td_base_pri; 1100 1101 /* 1102 * Note: legacy fields; clamp at the old NOCPU value and/or 1103 * the maximum u_char CPU value. 1104 */ 1105 if (td->td_lastcpu == NOCPU) 1106 kp->ki_lastcpu_old = NOCPU_OLD; 1107 else if (td->td_lastcpu > MAXCPU_OLD) 1108 kp->ki_lastcpu_old = MAXCPU_OLD; 1109 else 1110 kp->ki_lastcpu_old = td->td_lastcpu; 1111 1112 if (td->td_oncpu == NOCPU) 1113 kp->ki_oncpu_old = NOCPU_OLD; 1114 else if (td->td_oncpu > MAXCPU_OLD) 1115 kp->ki_oncpu_old = MAXCPU_OLD; 1116 else 1117 kp->ki_oncpu_old = td->td_oncpu; 1118 1119 kp->ki_lastcpu = td->td_lastcpu; 1120 kp->ki_oncpu = td->td_oncpu; 1121 kp->ki_tdflags = td->td_flags; 1122 kp->ki_tid = td->td_tid; 1123 kp->ki_numthreads = p->p_numthreads; 1124 kp->ki_pcb = td->td_pcb; 1125 kp->ki_kstack = (void *)td->td_kstack; 1126 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1127 kp->ki_pri.pri_class = td->td_pri_class; 1128 kp->ki_pri.pri_user = td->td_user_pri; 1129 1130 if (preferthread) { 1131 rufetchtd(td, &kp->ki_rusage); 1132 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1133 kp->ki_pctcpu = sched_pctcpu(td); 1134 kp->ki_estcpu = sched_estcpu(td); 1135 kp->ki_cow = td->td_cow; 1136 } 1137 1138 /* We can't get this anymore but ps etc never used it anyway. */ 1139 kp->ki_rqindex = 0; 1140 1141 if (preferthread) 1142 kp->ki_siglist = td->td_siglist; 1143 kp->ki_sigmask = td->td_sigmask; 1144 thread_unlock(td); 1145 if (preferthread) 1146 PROC_STATUNLOCK(p); 1147 } 1148 1149 /* 1150 * Fill in a kinfo_proc structure for the specified process. 1151 * Must be called with the target process locked. 1152 */ 1153 void 1154 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1155 { 1156 1157 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1158 1159 fill_kinfo_proc_only(p, kp); 1160 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1161 fill_kinfo_aggregate(p, kp); 1162 } 1163 1164 struct pstats * 1165 pstats_alloc(void) 1166 { 1167 1168 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1169 } 1170 1171 /* 1172 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1173 */ 1174 void 1175 pstats_fork(struct pstats *src, struct pstats *dst) 1176 { 1177 1178 bzero(&dst->pstat_startzero, 1179 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1180 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1181 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1182 } 1183 1184 void 1185 pstats_free(struct pstats *ps) 1186 { 1187 1188 free(ps, M_SUBPROC); 1189 } 1190 1191 /* 1192 * Locate a zombie process by number 1193 */ 1194 struct proc * 1195 zpfind(pid_t pid) 1196 { 1197 struct proc *p; 1198 1199 sx_slock(&zombproc_lock); 1200 LIST_FOREACH(p, &zombproc, p_list) { 1201 if (p->p_pid == pid) { 1202 PROC_LOCK(p); 1203 break; 1204 } 1205 } 1206 sx_sunlock(&zombproc_lock); 1207 return (p); 1208 } 1209 1210 #ifdef COMPAT_FREEBSD32 1211 1212 /* 1213 * This function is typically used to copy out the kernel address, so 1214 * it can be replaced by assignment of zero. 1215 */ 1216 static inline uint32_t 1217 ptr32_trim(void *ptr) 1218 { 1219 uintptr_t uptr; 1220 1221 uptr = (uintptr_t)ptr; 1222 return ((uptr > UINT_MAX) ? 0 : uptr); 1223 } 1224 1225 #define PTRTRIM_CP(src,dst,fld) \ 1226 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1227 1228 static void 1229 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1230 { 1231 int i; 1232 1233 bzero(ki32, sizeof(struct kinfo_proc32)); 1234 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1235 CP(*ki, *ki32, ki_layout); 1236 PTRTRIM_CP(*ki, *ki32, ki_args); 1237 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1238 PTRTRIM_CP(*ki, *ki32, ki_addr); 1239 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1240 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1241 PTRTRIM_CP(*ki, *ki32, ki_fd); 1242 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1243 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1244 CP(*ki, *ki32, ki_pid); 1245 CP(*ki, *ki32, ki_ppid); 1246 CP(*ki, *ki32, ki_pgid); 1247 CP(*ki, *ki32, ki_tpgid); 1248 CP(*ki, *ki32, ki_sid); 1249 CP(*ki, *ki32, ki_tsid); 1250 CP(*ki, *ki32, ki_jobc); 1251 CP(*ki, *ki32, ki_tdev); 1252 CP(*ki, *ki32, ki_tdev_freebsd11); 1253 CP(*ki, *ki32, ki_siglist); 1254 CP(*ki, *ki32, ki_sigmask); 1255 CP(*ki, *ki32, ki_sigignore); 1256 CP(*ki, *ki32, ki_sigcatch); 1257 CP(*ki, *ki32, ki_uid); 1258 CP(*ki, *ki32, ki_ruid); 1259 CP(*ki, *ki32, ki_svuid); 1260 CP(*ki, *ki32, ki_rgid); 1261 CP(*ki, *ki32, ki_svgid); 1262 CP(*ki, *ki32, ki_ngroups); 1263 for (i = 0; i < KI_NGROUPS; i++) 1264 CP(*ki, *ki32, ki_groups[i]); 1265 CP(*ki, *ki32, ki_size); 1266 CP(*ki, *ki32, ki_rssize); 1267 CP(*ki, *ki32, ki_swrss); 1268 CP(*ki, *ki32, ki_tsize); 1269 CP(*ki, *ki32, ki_dsize); 1270 CP(*ki, *ki32, ki_ssize); 1271 CP(*ki, *ki32, ki_xstat); 1272 CP(*ki, *ki32, ki_acflag); 1273 CP(*ki, *ki32, ki_pctcpu); 1274 CP(*ki, *ki32, ki_estcpu); 1275 CP(*ki, *ki32, ki_slptime); 1276 CP(*ki, *ki32, ki_swtime); 1277 CP(*ki, *ki32, ki_cow); 1278 CP(*ki, *ki32, ki_runtime); 1279 TV_CP(*ki, *ki32, ki_start); 1280 TV_CP(*ki, *ki32, ki_childtime); 1281 CP(*ki, *ki32, ki_flag); 1282 CP(*ki, *ki32, ki_kiflag); 1283 CP(*ki, *ki32, ki_traceflag); 1284 CP(*ki, *ki32, ki_stat); 1285 CP(*ki, *ki32, ki_nice); 1286 CP(*ki, *ki32, ki_lock); 1287 CP(*ki, *ki32, ki_rqindex); 1288 CP(*ki, *ki32, ki_oncpu); 1289 CP(*ki, *ki32, ki_lastcpu); 1290 1291 /* XXX TODO: wrap cpu value as appropriate */ 1292 CP(*ki, *ki32, ki_oncpu_old); 1293 CP(*ki, *ki32, ki_lastcpu_old); 1294 1295 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1296 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1297 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1298 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1299 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1300 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1301 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1302 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1303 CP(*ki, *ki32, ki_tracer); 1304 CP(*ki, *ki32, ki_flag2); 1305 CP(*ki, *ki32, ki_fibnum); 1306 CP(*ki, *ki32, ki_cr_flags); 1307 CP(*ki, *ki32, ki_jid); 1308 CP(*ki, *ki32, ki_numthreads); 1309 CP(*ki, *ki32, ki_tid); 1310 CP(*ki, *ki32, ki_pri); 1311 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1312 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1313 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1314 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1315 PTRTRIM_CP(*ki, *ki32, ki_udata); 1316 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1317 CP(*ki, *ki32, ki_sflag); 1318 CP(*ki, *ki32, ki_tdflags); 1319 } 1320 #endif 1321 1322 static ssize_t 1323 kern_proc_out_size(struct proc *p, int flags) 1324 { 1325 ssize_t size = 0; 1326 1327 PROC_LOCK_ASSERT(p, MA_OWNED); 1328 1329 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1330 #ifdef COMPAT_FREEBSD32 1331 if ((flags & KERN_PROC_MASK32) != 0) { 1332 size += sizeof(struct kinfo_proc32); 1333 } else 1334 #endif 1335 size += sizeof(struct kinfo_proc); 1336 } else { 1337 #ifdef COMPAT_FREEBSD32 1338 if ((flags & KERN_PROC_MASK32) != 0) 1339 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1340 else 1341 #endif 1342 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1343 } 1344 PROC_UNLOCK(p); 1345 return (size); 1346 } 1347 1348 int 1349 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1350 { 1351 struct thread *td; 1352 struct kinfo_proc ki; 1353 #ifdef COMPAT_FREEBSD32 1354 struct kinfo_proc32 ki32; 1355 #endif 1356 int error; 1357 1358 PROC_LOCK_ASSERT(p, MA_OWNED); 1359 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1360 1361 error = 0; 1362 fill_kinfo_proc(p, &ki); 1363 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1364 #ifdef COMPAT_FREEBSD32 1365 if ((flags & KERN_PROC_MASK32) != 0) { 1366 freebsd32_kinfo_proc_out(&ki, &ki32); 1367 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1368 error = ENOMEM; 1369 } else 1370 #endif 1371 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1372 error = ENOMEM; 1373 } else { 1374 FOREACH_THREAD_IN_PROC(p, td) { 1375 fill_kinfo_thread(td, &ki, 1); 1376 #ifdef COMPAT_FREEBSD32 1377 if ((flags & KERN_PROC_MASK32) != 0) { 1378 freebsd32_kinfo_proc_out(&ki, &ki32); 1379 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1380 error = ENOMEM; 1381 } else 1382 #endif 1383 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1384 error = ENOMEM; 1385 if (error != 0) 1386 break; 1387 } 1388 } 1389 PROC_UNLOCK(p); 1390 return (error); 1391 } 1392 1393 static int 1394 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1395 { 1396 struct sbuf sb; 1397 struct kinfo_proc ki; 1398 int error, error2; 1399 1400 if (req->oldptr == NULL) 1401 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1402 1403 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1404 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1405 error = kern_proc_out(p, &sb, flags); 1406 error2 = sbuf_finish(&sb); 1407 sbuf_delete(&sb); 1408 if (error != 0) 1409 return (error); 1410 else if (error2 != 0) 1411 return (error2); 1412 return (0); 1413 } 1414 1415 int 1416 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1417 { 1418 struct proc *p; 1419 int error, i, j; 1420 1421 for (i = 0; i < pidhashlock + 1; i++) { 1422 sx_slock(&pidhashtbl_lock[i]); 1423 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1424 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1425 if (p->p_state == PRS_NEW) 1426 continue; 1427 error = cb(p, cbarg); 1428 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1429 if (error != 0) { 1430 sx_sunlock(&pidhashtbl_lock[i]); 1431 return (error); 1432 } 1433 } 1434 } 1435 sx_sunlock(&pidhashtbl_lock[i]); 1436 } 1437 return (0); 1438 } 1439 1440 struct kern_proc_out_args { 1441 struct sysctl_req *req; 1442 int flags; 1443 int oid_number; 1444 int *name; 1445 }; 1446 1447 static int 1448 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1449 { 1450 struct kern_proc_out_args *arg = origarg; 1451 int *name = arg->name; 1452 int oid_number = arg->oid_number; 1453 int flags = arg->flags; 1454 struct sysctl_req *req = arg->req; 1455 int error = 0; 1456 1457 PROC_LOCK(p); 1458 1459 KASSERT(p->p_ucred != NULL, 1460 ("process credential is NULL for non-NEW proc")); 1461 /* 1462 * Show a user only appropriate processes. 1463 */ 1464 if (p_cansee(curthread, p)) 1465 goto skip; 1466 /* 1467 * TODO - make more efficient (see notes below). 1468 * do by session. 1469 */ 1470 switch (oid_number) { 1471 1472 case KERN_PROC_GID: 1473 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1474 goto skip; 1475 break; 1476 1477 case KERN_PROC_PGRP: 1478 /* could do this by traversing pgrp */ 1479 if (p->p_pgrp == NULL || 1480 p->p_pgrp->pg_id != (pid_t)name[0]) 1481 goto skip; 1482 break; 1483 1484 case KERN_PROC_RGID: 1485 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1486 goto skip; 1487 break; 1488 1489 case KERN_PROC_SESSION: 1490 if (p->p_session == NULL || 1491 p->p_session->s_sid != (pid_t)name[0]) 1492 goto skip; 1493 break; 1494 1495 case KERN_PROC_TTY: 1496 if ((p->p_flag & P_CONTROLT) == 0 || 1497 p->p_session == NULL) 1498 goto skip; 1499 /* XXX proctree_lock */ 1500 SESS_LOCK(p->p_session); 1501 if (p->p_session->s_ttyp == NULL || 1502 tty_udev(p->p_session->s_ttyp) != 1503 (dev_t)name[0]) { 1504 SESS_UNLOCK(p->p_session); 1505 goto skip; 1506 } 1507 SESS_UNLOCK(p->p_session); 1508 break; 1509 1510 case KERN_PROC_UID: 1511 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1512 goto skip; 1513 break; 1514 1515 case KERN_PROC_RUID: 1516 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1517 goto skip; 1518 break; 1519 1520 case KERN_PROC_PROC: 1521 break; 1522 1523 default: 1524 break; 1525 1526 } 1527 error = sysctl_out_proc(p, req, flags); 1528 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1529 return (error); 1530 skip: 1531 PROC_UNLOCK(p); 1532 return (0); 1533 } 1534 1535 static int 1536 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1537 { 1538 struct kern_proc_out_args iterarg; 1539 int *name = (int *)arg1; 1540 u_int namelen = arg2; 1541 struct proc *p; 1542 int flags, oid_number; 1543 int error = 0; 1544 1545 oid_number = oidp->oid_number; 1546 if (oid_number != KERN_PROC_ALL && 1547 (oid_number & KERN_PROC_INC_THREAD) == 0) 1548 flags = KERN_PROC_NOTHREADS; 1549 else { 1550 flags = 0; 1551 oid_number &= ~KERN_PROC_INC_THREAD; 1552 } 1553 #ifdef COMPAT_FREEBSD32 1554 if (req->flags & SCTL_MASK32) 1555 flags |= KERN_PROC_MASK32; 1556 #endif 1557 if (oid_number == KERN_PROC_PID) { 1558 if (namelen != 1) 1559 return (EINVAL); 1560 error = sysctl_wire_old_buffer(req, 0); 1561 if (error) 1562 return (error); 1563 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1564 if (error == 0) 1565 error = sysctl_out_proc(p, req, flags); 1566 return (error); 1567 } 1568 1569 switch (oid_number) { 1570 case KERN_PROC_ALL: 1571 if (namelen != 0) 1572 return (EINVAL); 1573 break; 1574 case KERN_PROC_PROC: 1575 if (namelen != 0 && namelen != 1) 1576 return (EINVAL); 1577 break; 1578 default: 1579 if (namelen != 1) 1580 return (EINVAL); 1581 break; 1582 } 1583 1584 if (req->oldptr == NULL) { 1585 /* overestimate by 5 procs */ 1586 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1587 if (error) 1588 return (error); 1589 } else { 1590 error = sysctl_wire_old_buffer(req, 0); 1591 if (error != 0) 1592 return (error); 1593 } 1594 iterarg.flags = flags; 1595 iterarg.oid_number = oid_number; 1596 iterarg.req = req; 1597 iterarg.name = name; 1598 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1599 return (error); 1600 } 1601 1602 struct pargs * 1603 pargs_alloc(int len) 1604 { 1605 struct pargs *pa; 1606 1607 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1608 M_WAITOK); 1609 refcount_init(&pa->ar_ref, 1); 1610 pa->ar_length = len; 1611 return (pa); 1612 } 1613 1614 static void 1615 pargs_free(struct pargs *pa) 1616 { 1617 1618 free(pa, M_PARGS); 1619 } 1620 1621 void 1622 pargs_hold(struct pargs *pa) 1623 { 1624 1625 if (pa == NULL) 1626 return; 1627 refcount_acquire(&pa->ar_ref); 1628 } 1629 1630 void 1631 pargs_drop(struct pargs *pa) 1632 { 1633 1634 if (pa == NULL) 1635 return; 1636 if (refcount_release(&pa->ar_ref)) 1637 pargs_free(pa); 1638 } 1639 1640 static int 1641 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1642 size_t len) 1643 { 1644 ssize_t n; 1645 1646 /* 1647 * This may return a short read if the string is shorter than the chunk 1648 * and is aligned at the end of the page, and the following page is not 1649 * mapped. 1650 */ 1651 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1652 if (n <= 0) 1653 return (ENOMEM); 1654 return (0); 1655 } 1656 1657 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1658 1659 enum proc_vector_type { 1660 PROC_ARG, 1661 PROC_ENV, 1662 PROC_AUX, 1663 }; 1664 1665 #ifdef COMPAT_FREEBSD32 1666 static int 1667 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1668 size_t *vsizep, enum proc_vector_type type) 1669 { 1670 struct freebsd32_ps_strings pss; 1671 Elf32_Auxinfo aux; 1672 vm_offset_t vptr, ptr; 1673 uint32_t *proc_vector32; 1674 char **proc_vector; 1675 size_t vsize, size; 1676 int i, error; 1677 1678 error = 0; 1679 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1680 sizeof(pss)) != sizeof(pss)) 1681 return (ENOMEM); 1682 switch (type) { 1683 case PROC_ARG: 1684 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1685 vsize = pss.ps_nargvstr; 1686 if (vsize > ARG_MAX) 1687 return (ENOEXEC); 1688 size = vsize * sizeof(int32_t); 1689 break; 1690 case PROC_ENV: 1691 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1692 vsize = pss.ps_nenvstr; 1693 if (vsize > ARG_MAX) 1694 return (ENOEXEC); 1695 size = vsize * sizeof(int32_t); 1696 break; 1697 case PROC_AUX: 1698 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1699 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1700 if (vptr % 4 != 0) 1701 return (ENOEXEC); 1702 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1703 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1704 sizeof(aux)) 1705 return (ENOMEM); 1706 if (aux.a_type == AT_NULL) 1707 break; 1708 ptr += sizeof(aux); 1709 } 1710 if (aux.a_type != AT_NULL) 1711 return (ENOEXEC); 1712 vsize = i + 1; 1713 size = vsize * sizeof(aux); 1714 break; 1715 default: 1716 KASSERT(0, ("Wrong proc vector type: %d", type)); 1717 return (EINVAL); 1718 } 1719 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1720 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1721 error = ENOMEM; 1722 goto done; 1723 } 1724 if (type == PROC_AUX) { 1725 *proc_vectorp = (char **)proc_vector32; 1726 *vsizep = vsize; 1727 return (0); 1728 } 1729 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1730 for (i = 0; i < (int)vsize; i++) 1731 proc_vector[i] = PTRIN(proc_vector32[i]); 1732 *proc_vectorp = proc_vector; 1733 *vsizep = vsize; 1734 done: 1735 free(proc_vector32, M_TEMP); 1736 return (error); 1737 } 1738 #endif 1739 1740 static int 1741 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1742 size_t *vsizep, enum proc_vector_type type) 1743 { 1744 struct ps_strings pss; 1745 Elf_Auxinfo aux; 1746 vm_offset_t vptr, ptr; 1747 char **proc_vector; 1748 size_t vsize, size; 1749 int i; 1750 1751 #ifdef COMPAT_FREEBSD32 1752 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1753 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1754 #endif 1755 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1756 sizeof(pss)) != sizeof(pss)) 1757 return (ENOMEM); 1758 switch (type) { 1759 case PROC_ARG: 1760 vptr = (vm_offset_t)pss.ps_argvstr; 1761 vsize = pss.ps_nargvstr; 1762 if (vsize > ARG_MAX) 1763 return (ENOEXEC); 1764 size = vsize * sizeof(char *); 1765 break; 1766 case PROC_ENV: 1767 vptr = (vm_offset_t)pss.ps_envstr; 1768 vsize = pss.ps_nenvstr; 1769 if (vsize > ARG_MAX) 1770 return (ENOEXEC); 1771 size = vsize * sizeof(char *); 1772 break; 1773 case PROC_AUX: 1774 /* 1775 * The aux array is just above env array on the stack. Check 1776 * that the address is naturally aligned. 1777 */ 1778 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1779 * sizeof(char *); 1780 #if __ELF_WORD_SIZE == 64 1781 if (vptr % sizeof(uint64_t) != 0) 1782 #else 1783 if (vptr % sizeof(uint32_t) != 0) 1784 #endif 1785 return (ENOEXEC); 1786 /* 1787 * We count the array size reading the aux vectors from the 1788 * stack until AT_NULL vector is returned. So (to keep the code 1789 * simple) we read the process stack twice: the first time here 1790 * to find the size and the second time when copying the vectors 1791 * to the allocated proc_vector. 1792 */ 1793 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1794 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1795 sizeof(aux)) 1796 return (ENOMEM); 1797 if (aux.a_type == AT_NULL) 1798 break; 1799 ptr += sizeof(aux); 1800 } 1801 /* 1802 * If the PROC_AUXV_MAX entries are iterated over, and we have 1803 * not reached AT_NULL, it is most likely we are reading wrong 1804 * data: either the process doesn't have auxv array or data has 1805 * been modified. Return the error in this case. 1806 */ 1807 if (aux.a_type != AT_NULL) 1808 return (ENOEXEC); 1809 vsize = i + 1; 1810 size = vsize * sizeof(aux); 1811 break; 1812 default: 1813 KASSERT(0, ("Wrong proc vector type: %d", type)); 1814 return (EINVAL); /* In case we are built without INVARIANTS. */ 1815 } 1816 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1817 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1818 free(proc_vector, M_TEMP); 1819 return (ENOMEM); 1820 } 1821 *proc_vectorp = proc_vector; 1822 *vsizep = vsize; 1823 1824 return (0); 1825 } 1826 1827 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1828 1829 static int 1830 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1831 enum proc_vector_type type) 1832 { 1833 size_t done, len, nchr, vsize; 1834 int error, i; 1835 char **proc_vector, *sptr; 1836 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1837 1838 PROC_ASSERT_HELD(p); 1839 1840 /* 1841 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1842 */ 1843 nchr = 2 * (PATH_MAX + ARG_MAX); 1844 1845 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1846 if (error != 0) 1847 return (error); 1848 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1849 /* 1850 * The program may have scribbled into its argv array, e.g. to 1851 * remove some arguments. If that has happened, break out 1852 * before trying to read from NULL. 1853 */ 1854 if (proc_vector[i] == NULL) 1855 break; 1856 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1857 error = proc_read_string(td, p, sptr, pss_string, 1858 sizeof(pss_string)); 1859 if (error != 0) 1860 goto done; 1861 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1862 if (done + len >= nchr) 1863 len = nchr - done - 1; 1864 sbuf_bcat(sb, pss_string, len); 1865 if (len != GET_PS_STRINGS_CHUNK_SZ) 1866 break; 1867 done += GET_PS_STRINGS_CHUNK_SZ; 1868 } 1869 sbuf_bcat(sb, "", 1); 1870 done += len + 1; 1871 } 1872 done: 1873 free(proc_vector, M_TEMP); 1874 return (error); 1875 } 1876 1877 int 1878 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1879 { 1880 1881 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1882 } 1883 1884 int 1885 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1886 { 1887 1888 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1889 } 1890 1891 int 1892 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1893 { 1894 size_t vsize, size; 1895 char **auxv; 1896 int error; 1897 1898 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1899 if (error == 0) { 1900 #ifdef COMPAT_FREEBSD32 1901 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1902 size = vsize * sizeof(Elf32_Auxinfo); 1903 else 1904 #endif 1905 size = vsize * sizeof(Elf_Auxinfo); 1906 if (sbuf_bcat(sb, auxv, size) != 0) 1907 error = ENOMEM; 1908 free(auxv, M_TEMP); 1909 } 1910 return (error); 1911 } 1912 1913 /* 1914 * This sysctl allows a process to retrieve the argument list or process 1915 * title for another process without groping around in the address space 1916 * of the other process. It also allow a process to set its own "process 1917 * title to a string of its own choice. 1918 */ 1919 static int 1920 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1921 { 1922 int *name = (int *)arg1; 1923 u_int namelen = arg2; 1924 struct pargs *newpa, *pa; 1925 struct proc *p; 1926 struct sbuf sb; 1927 int flags, error = 0, error2; 1928 pid_t pid; 1929 1930 if (namelen != 1) 1931 return (EINVAL); 1932 1933 pid = (pid_t)name[0]; 1934 /* 1935 * If the query is for this process and it is single-threaded, there 1936 * is nobody to modify pargs, thus we can just read. 1937 */ 1938 p = curproc; 1939 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 1940 (pa = p->p_args) != NULL) 1941 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 1942 1943 flags = PGET_CANSEE; 1944 if (req->newptr != NULL) 1945 flags |= PGET_ISCURRENT; 1946 error = pget(pid, flags, &p); 1947 if (error) 1948 return (error); 1949 1950 pa = p->p_args; 1951 if (pa != NULL) { 1952 pargs_hold(pa); 1953 PROC_UNLOCK(p); 1954 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1955 pargs_drop(pa); 1956 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1957 _PHOLD(p); 1958 PROC_UNLOCK(p); 1959 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1960 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1961 error = proc_getargv(curthread, p, &sb); 1962 error2 = sbuf_finish(&sb); 1963 PRELE(p); 1964 sbuf_delete(&sb); 1965 if (error == 0 && error2 != 0) 1966 error = error2; 1967 } else { 1968 PROC_UNLOCK(p); 1969 } 1970 if (error != 0 || req->newptr == NULL) 1971 return (error); 1972 1973 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 1974 return (ENOMEM); 1975 1976 if (req->newlen == 0) { 1977 /* 1978 * Clear the argument pointer, so that we'll fetch arguments 1979 * with proc_getargv() until further notice. 1980 */ 1981 newpa = NULL; 1982 } else { 1983 newpa = pargs_alloc(req->newlen); 1984 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1985 if (error != 0) { 1986 pargs_free(newpa); 1987 return (error); 1988 } 1989 } 1990 PROC_LOCK(p); 1991 pa = p->p_args; 1992 p->p_args = newpa; 1993 PROC_UNLOCK(p); 1994 pargs_drop(pa); 1995 return (0); 1996 } 1997 1998 /* 1999 * This sysctl allows a process to retrieve environment of another process. 2000 */ 2001 static int 2002 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2003 { 2004 int *name = (int *)arg1; 2005 u_int namelen = arg2; 2006 struct proc *p; 2007 struct sbuf sb; 2008 int error, error2; 2009 2010 if (namelen != 1) 2011 return (EINVAL); 2012 2013 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2014 if (error != 0) 2015 return (error); 2016 if ((p->p_flag & P_SYSTEM) != 0) { 2017 PRELE(p); 2018 return (0); 2019 } 2020 2021 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2022 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2023 error = proc_getenvv(curthread, p, &sb); 2024 error2 = sbuf_finish(&sb); 2025 PRELE(p); 2026 sbuf_delete(&sb); 2027 return (error != 0 ? error : error2); 2028 } 2029 2030 /* 2031 * This sysctl allows a process to retrieve ELF auxiliary vector of 2032 * another process. 2033 */ 2034 static int 2035 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2036 { 2037 int *name = (int *)arg1; 2038 u_int namelen = arg2; 2039 struct proc *p; 2040 struct sbuf sb; 2041 int error, error2; 2042 2043 if (namelen != 1) 2044 return (EINVAL); 2045 2046 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2047 if (error != 0) 2048 return (error); 2049 if ((p->p_flag & P_SYSTEM) != 0) { 2050 PRELE(p); 2051 return (0); 2052 } 2053 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2054 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2055 error = proc_getauxv(curthread, p, &sb); 2056 error2 = sbuf_finish(&sb); 2057 PRELE(p); 2058 sbuf_delete(&sb); 2059 return (error != 0 ? error : error2); 2060 } 2061 2062 /* 2063 * This sysctl allows a process to retrieve the path of the executable for 2064 * itself or another process. 2065 */ 2066 static int 2067 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2068 { 2069 pid_t *pidp = (pid_t *)arg1; 2070 unsigned int arglen = arg2; 2071 struct proc *p; 2072 struct vnode *vp; 2073 char *retbuf, *freebuf; 2074 int error; 2075 2076 if (arglen != 1) 2077 return (EINVAL); 2078 if (*pidp == -1) { /* -1 means this process */ 2079 p = req->td->td_proc; 2080 } else { 2081 error = pget(*pidp, PGET_CANSEE, &p); 2082 if (error != 0) 2083 return (error); 2084 } 2085 2086 vp = p->p_textvp; 2087 if (vp == NULL) { 2088 if (*pidp != -1) 2089 PROC_UNLOCK(p); 2090 return (0); 2091 } 2092 vref(vp); 2093 if (*pidp != -1) 2094 PROC_UNLOCK(p); 2095 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2096 vrele(vp); 2097 if (error) 2098 return (error); 2099 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2100 free(freebuf, M_TEMP); 2101 return (error); 2102 } 2103 2104 static int 2105 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2106 { 2107 struct proc *p; 2108 char *sv_name; 2109 int *name; 2110 int namelen; 2111 int error; 2112 2113 namelen = arg2; 2114 if (namelen != 1) 2115 return (EINVAL); 2116 2117 name = (int *)arg1; 2118 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2119 if (error != 0) 2120 return (error); 2121 sv_name = p->p_sysent->sv_name; 2122 PROC_UNLOCK(p); 2123 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2124 } 2125 2126 #ifdef KINFO_OVMENTRY_SIZE 2127 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2128 #endif 2129 2130 #ifdef COMPAT_FREEBSD7 2131 static int 2132 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2133 { 2134 vm_map_entry_t entry, tmp_entry; 2135 unsigned int last_timestamp; 2136 char *fullpath, *freepath; 2137 struct kinfo_ovmentry *kve; 2138 struct vattr va; 2139 struct ucred *cred; 2140 int error, *name; 2141 struct vnode *vp; 2142 struct proc *p; 2143 vm_map_t map; 2144 struct vmspace *vm; 2145 2146 name = (int *)arg1; 2147 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2148 if (error != 0) 2149 return (error); 2150 vm = vmspace_acquire_ref(p); 2151 if (vm == NULL) { 2152 PRELE(p); 2153 return (ESRCH); 2154 } 2155 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2156 2157 map = &vm->vm_map; 2158 vm_map_lock_read(map); 2159 for (entry = map->header.next; entry != &map->header; 2160 entry = entry->next) { 2161 vm_object_t obj, tobj, lobj; 2162 vm_offset_t addr; 2163 2164 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2165 continue; 2166 2167 bzero(kve, sizeof(*kve)); 2168 kve->kve_structsize = sizeof(*kve); 2169 2170 kve->kve_private_resident = 0; 2171 obj = entry->object.vm_object; 2172 if (obj != NULL) { 2173 VM_OBJECT_RLOCK(obj); 2174 if (obj->shadow_count == 1) 2175 kve->kve_private_resident = 2176 obj->resident_page_count; 2177 } 2178 kve->kve_resident = 0; 2179 addr = entry->start; 2180 while (addr < entry->end) { 2181 if (pmap_extract(map->pmap, addr)) 2182 kve->kve_resident++; 2183 addr += PAGE_SIZE; 2184 } 2185 2186 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2187 if (tobj != obj) { 2188 VM_OBJECT_RLOCK(tobj); 2189 kve->kve_offset += tobj->backing_object_offset; 2190 } 2191 if (lobj != obj) 2192 VM_OBJECT_RUNLOCK(lobj); 2193 lobj = tobj; 2194 } 2195 2196 kve->kve_start = (void*)entry->start; 2197 kve->kve_end = (void*)entry->end; 2198 kve->kve_offset += (off_t)entry->offset; 2199 2200 if (entry->protection & VM_PROT_READ) 2201 kve->kve_protection |= KVME_PROT_READ; 2202 if (entry->protection & VM_PROT_WRITE) 2203 kve->kve_protection |= KVME_PROT_WRITE; 2204 if (entry->protection & VM_PROT_EXECUTE) 2205 kve->kve_protection |= KVME_PROT_EXEC; 2206 2207 if (entry->eflags & MAP_ENTRY_COW) 2208 kve->kve_flags |= KVME_FLAG_COW; 2209 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2210 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2211 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2212 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2213 2214 last_timestamp = map->timestamp; 2215 vm_map_unlock_read(map); 2216 2217 kve->kve_fileid = 0; 2218 kve->kve_fsid = 0; 2219 freepath = NULL; 2220 fullpath = ""; 2221 if (lobj) { 2222 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2223 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2224 kve->kve_type = KVME_TYPE_UNKNOWN; 2225 if (vp != NULL) 2226 vref(vp); 2227 if (lobj != obj) 2228 VM_OBJECT_RUNLOCK(lobj); 2229 2230 kve->kve_ref_count = obj->ref_count; 2231 kve->kve_shadow_count = obj->shadow_count; 2232 VM_OBJECT_RUNLOCK(obj); 2233 if (vp != NULL) { 2234 vn_fullpath(curthread, vp, &fullpath, 2235 &freepath); 2236 cred = curthread->td_ucred; 2237 vn_lock(vp, LK_SHARED | LK_RETRY); 2238 if (VOP_GETATTR(vp, &va, cred) == 0) { 2239 kve->kve_fileid = va.va_fileid; 2240 /* truncate */ 2241 kve->kve_fsid = va.va_fsid; 2242 } 2243 vput(vp); 2244 } 2245 } else { 2246 kve->kve_type = KVME_TYPE_NONE; 2247 kve->kve_ref_count = 0; 2248 kve->kve_shadow_count = 0; 2249 } 2250 2251 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2252 if (freepath != NULL) 2253 free(freepath, M_TEMP); 2254 2255 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2256 vm_map_lock_read(map); 2257 if (error) 2258 break; 2259 if (last_timestamp != map->timestamp) { 2260 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2261 entry = tmp_entry; 2262 } 2263 } 2264 vm_map_unlock_read(map); 2265 vmspace_free(vm); 2266 PRELE(p); 2267 free(kve, M_TEMP); 2268 return (error); 2269 } 2270 #endif /* COMPAT_FREEBSD7 */ 2271 2272 #ifdef KINFO_VMENTRY_SIZE 2273 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2274 #endif 2275 2276 void 2277 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2278 int *resident_count, bool *super) 2279 { 2280 vm_object_t obj, tobj; 2281 vm_page_t m, m_adv; 2282 vm_offset_t addr; 2283 vm_paddr_t locked_pa; 2284 vm_pindex_t pi, pi_adv, pindex; 2285 2286 *super = false; 2287 *resident_count = 0; 2288 if (vmmap_skip_res_cnt) 2289 return; 2290 2291 locked_pa = 0; 2292 obj = entry->object.vm_object; 2293 addr = entry->start; 2294 m_adv = NULL; 2295 pi = OFF_TO_IDX(entry->offset); 2296 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2297 if (m_adv != NULL) { 2298 m = m_adv; 2299 } else { 2300 pi_adv = atop(entry->end - addr); 2301 pindex = pi; 2302 for (tobj = obj;; tobj = tobj->backing_object) { 2303 m = vm_page_find_least(tobj, pindex); 2304 if (m != NULL) { 2305 if (m->pindex == pindex) 2306 break; 2307 if (pi_adv > m->pindex - pindex) { 2308 pi_adv = m->pindex - pindex; 2309 m_adv = m; 2310 } 2311 } 2312 if (tobj->backing_object == NULL) 2313 goto next; 2314 pindex += OFF_TO_IDX(tobj-> 2315 backing_object_offset); 2316 } 2317 } 2318 m_adv = NULL; 2319 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2320 (addr & (pagesizes[1] - 1)) == 0 && 2321 (pmap_mincore(map->pmap, addr, &locked_pa) & 2322 MINCORE_SUPER) != 0) { 2323 *super = true; 2324 pi_adv = atop(pagesizes[1]); 2325 } else { 2326 /* 2327 * We do not test the found page on validity. 2328 * Either the page is busy and being paged in, 2329 * or it was invalidated. The first case 2330 * should be counted as resident, the second 2331 * is not so clear; we do account both. 2332 */ 2333 pi_adv = 1; 2334 } 2335 *resident_count += pi_adv; 2336 next:; 2337 } 2338 PA_UNLOCK_COND(locked_pa); 2339 } 2340 2341 /* 2342 * Must be called with the process locked and will return unlocked. 2343 */ 2344 int 2345 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2346 { 2347 vm_map_entry_t entry, tmp_entry; 2348 struct vattr va; 2349 vm_map_t map; 2350 vm_object_t obj, tobj, lobj; 2351 char *fullpath, *freepath; 2352 struct kinfo_vmentry *kve; 2353 struct ucred *cred; 2354 struct vnode *vp; 2355 struct vmspace *vm; 2356 vm_offset_t addr; 2357 unsigned int last_timestamp; 2358 int error; 2359 bool super; 2360 2361 PROC_LOCK_ASSERT(p, MA_OWNED); 2362 2363 _PHOLD(p); 2364 PROC_UNLOCK(p); 2365 vm = vmspace_acquire_ref(p); 2366 if (vm == NULL) { 2367 PRELE(p); 2368 return (ESRCH); 2369 } 2370 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2371 2372 error = 0; 2373 map = &vm->vm_map; 2374 vm_map_lock_read(map); 2375 for (entry = map->header.next; entry != &map->header; 2376 entry = entry->next) { 2377 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2378 continue; 2379 2380 addr = entry->end; 2381 bzero(kve, sizeof(*kve)); 2382 obj = entry->object.vm_object; 2383 if (obj != NULL) { 2384 for (tobj = obj; tobj != NULL; 2385 tobj = tobj->backing_object) { 2386 VM_OBJECT_RLOCK(tobj); 2387 kve->kve_offset += tobj->backing_object_offset; 2388 lobj = tobj; 2389 } 2390 if (obj->backing_object == NULL) 2391 kve->kve_private_resident = 2392 obj->resident_page_count; 2393 kern_proc_vmmap_resident(map, entry, 2394 &kve->kve_resident, &super); 2395 if (super) 2396 kve->kve_flags |= KVME_FLAG_SUPER; 2397 for (tobj = obj; tobj != NULL; 2398 tobj = tobj->backing_object) { 2399 if (tobj != obj && tobj != lobj) 2400 VM_OBJECT_RUNLOCK(tobj); 2401 } 2402 } else { 2403 lobj = NULL; 2404 } 2405 2406 kve->kve_start = entry->start; 2407 kve->kve_end = entry->end; 2408 kve->kve_offset += entry->offset; 2409 2410 if (entry->protection & VM_PROT_READ) 2411 kve->kve_protection |= KVME_PROT_READ; 2412 if (entry->protection & VM_PROT_WRITE) 2413 kve->kve_protection |= KVME_PROT_WRITE; 2414 if (entry->protection & VM_PROT_EXECUTE) 2415 kve->kve_protection |= KVME_PROT_EXEC; 2416 2417 if (entry->eflags & MAP_ENTRY_COW) 2418 kve->kve_flags |= KVME_FLAG_COW; 2419 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2420 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2421 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2422 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2423 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2424 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2425 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2426 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2427 2428 last_timestamp = map->timestamp; 2429 vm_map_unlock_read(map); 2430 2431 freepath = NULL; 2432 fullpath = ""; 2433 if (lobj != NULL) { 2434 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2435 if (vp != NULL) 2436 vref(vp); 2437 if (lobj != obj) 2438 VM_OBJECT_RUNLOCK(lobj); 2439 2440 kve->kve_ref_count = obj->ref_count; 2441 kve->kve_shadow_count = obj->shadow_count; 2442 VM_OBJECT_RUNLOCK(obj); 2443 if (vp != NULL) { 2444 vn_fullpath(curthread, vp, &fullpath, 2445 &freepath); 2446 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2447 cred = curthread->td_ucred; 2448 vn_lock(vp, LK_SHARED | LK_RETRY); 2449 if (VOP_GETATTR(vp, &va, cred) == 0) { 2450 kve->kve_vn_fileid = va.va_fileid; 2451 kve->kve_vn_fsid = va.va_fsid; 2452 kve->kve_vn_fsid_freebsd11 = 2453 kve->kve_vn_fsid; /* truncate */ 2454 kve->kve_vn_mode = 2455 MAKEIMODE(va.va_type, va.va_mode); 2456 kve->kve_vn_size = va.va_size; 2457 kve->kve_vn_rdev = va.va_rdev; 2458 kve->kve_vn_rdev_freebsd11 = 2459 kve->kve_vn_rdev; /* truncate */ 2460 kve->kve_status = KF_ATTR_VALID; 2461 } 2462 vput(vp); 2463 } 2464 } else { 2465 kve->kve_type = KVME_TYPE_NONE; 2466 kve->kve_ref_count = 0; 2467 kve->kve_shadow_count = 0; 2468 } 2469 2470 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2471 if (freepath != NULL) 2472 free(freepath, M_TEMP); 2473 2474 /* Pack record size down */ 2475 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2476 kve->kve_structsize = 2477 offsetof(struct kinfo_vmentry, kve_path) + 2478 strlen(kve->kve_path) + 1; 2479 else 2480 kve->kve_structsize = sizeof(*kve); 2481 kve->kve_structsize = roundup(kve->kve_structsize, 2482 sizeof(uint64_t)); 2483 2484 /* Halt filling and truncate rather than exceeding maxlen */ 2485 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2486 error = 0; 2487 vm_map_lock_read(map); 2488 break; 2489 } else if (maxlen != -1) 2490 maxlen -= kve->kve_structsize; 2491 2492 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2493 error = ENOMEM; 2494 vm_map_lock_read(map); 2495 if (error != 0) 2496 break; 2497 if (last_timestamp != map->timestamp) { 2498 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2499 entry = tmp_entry; 2500 } 2501 } 2502 vm_map_unlock_read(map); 2503 vmspace_free(vm); 2504 PRELE(p); 2505 free(kve, M_TEMP); 2506 return (error); 2507 } 2508 2509 static int 2510 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2511 { 2512 struct proc *p; 2513 struct sbuf sb; 2514 int error, error2, *name; 2515 2516 name = (int *)arg1; 2517 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2518 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2519 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2520 if (error != 0) { 2521 sbuf_delete(&sb); 2522 return (error); 2523 } 2524 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2525 error2 = sbuf_finish(&sb); 2526 sbuf_delete(&sb); 2527 return (error != 0 ? error : error2); 2528 } 2529 2530 #if defined(STACK) || defined(DDB) 2531 static int 2532 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2533 { 2534 struct kinfo_kstack *kkstp; 2535 int error, i, *name, numthreads; 2536 lwpid_t *lwpidarray; 2537 struct thread *td; 2538 struct stack *st; 2539 struct sbuf sb; 2540 struct proc *p; 2541 2542 name = (int *)arg1; 2543 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2544 if (error != 0) 2545 return (error); 2546 2547 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2548 st = stack_create(M_WAITOK); 2549 2550 lwpidarray = NULL; 2551 PROC_LOCK(p); 2552 do { 2553 if (lwpidarray != NULL) { 2554 free(lwpidarray, M_TEMP); 2555 lwpidarray = NULL; 2556 } 2557 numthreads = p->p_numthreads; 2558 PROC_UNLOCK(p); 2559 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2560 M_WAITOK | M_ZERO); 2561 PROC_LOCK(p); 2562 } while (numthreads < p->p_numthreads); 2563 2564 /* 2565 * XXXRW: During the below loop, execve(2) and countless other sorts 2566 * of changes could have taken place. Should we check to see if the 2567 * vmspace has been replaced, or the like, in order to prevent 2568 * giving a snapshot that spans, say, execve(2), with some threads 2569 * before and some after? Among other things, the credentials could 2570 * have changed, in which case the right to extract debug info might 2571 * no longer be assured. 2572 */ 2573 i = 0; 2574 FOREACH_THREAD_IN_PROC(p, td) { 2575 KASSERT(i < numthreads, 2576 ("sysctl_kern_proc_kstack: numthreads")); 2577 lwpidarray[i] = td->td_tid; 2578 i++; 2579 } 2580 numthreads = i; 2581 for (i = 0; i < numthreads; i++) { 2582 td = thread_find(p, lwpidarray[i]); 2583 if (td == NULL) { 2584 continue; 2585 } 2586 bzero(kkstp, sizeof(*kkstp)); 2587 (void)sbuf_new(&sb, kkstp->kkst_trace, 2588 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2589 thread_lock(td); 2590 kkstp->kkst_tid = td->td_tid; 2591 if (TD_IS_SWAPPED(td)) { 2592 kkstp->kkst_state = KKST_STATE_SWAPPED; 2593 } else if (TD_IS_RUNNING(td)) { 2594 if (stack_save_td_running(st, td) == 0) 2595 kkstp->kkst_state = KKST_STATE_STACKOK; 2596 else 2597 kkstp->kkst_state = KKST_STATE_RUNNING; 2598 } else { 2599 kkstp->kkst_state = KKST_STATE_STACKOK; 2600 stack_save_td(st, td); 2601 } 2602 thread_unlock(td); 2603 PROC_UNLOCK(p); 2604 stack_sbuf_print(&sb, st); 2605 sbuf_finish(&sb); 2606 sbuf_delete(&sb); 2607 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2608 PROC_LOCK(p); 2609 if (error) 2610 break; 2611 } 2612 _PRELE(p); 2613 PROC_UNLOCK(p); 2614 if (lwpidarray != NULL) 2615 free(lwpidarray, M_TEMP); 2616 stack_destroy(st); 2617 free(kkstp, M_TEMP); 2618 return (error); 2619 } 2620 #endif 2621 2622 /* 2623 * This sysctl allows a process to retrieve the full list of groups from 2624 * itself or another process. 2625 */ 2626 static int 2627 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2628 { 2629 pid_t *pidp = (pid_t *)arg1; 2630 unsigned int arglen = arg2; 2631 struct proc *p; 2632 struct ucred *cred; 2633 int error; 2634 2635 if (arglen != 1) 2636 return (EINVAL); 2637 if (*pidp == -1) { /* -1 means this process */ 2638 p = req->td->td_proc; 2639 PROC_LOCK(p); 2640 } else { 2641 error = pget(*pidp, PGET_CANSEE, &p); 2642 if (error != 0) 2643 return (error); 2644 } 2645 2646 cred = crhold(p->p_ucred); 2647 PROC_UNLOCK(p); 2648 2649 error = SYSCTL_OUT(req, cred->cr_groups, 2650 cred->cr_ngroups * sizeof(gid_t)); 2651 crfree(cred); 2652 return (error); 2653 } 2654 2655 /* 2656 * This sysctl allows a process to retrieve or/and set the resource limit for 2657 * another process. 2658 */ 2659 static int 2660 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2661 { 2662 int *name = (int *)arg1; 2663 u_int namelen = arg2; 2664 struct rlimit rlim; 2665 struct proc *p; 2666 u_int which; 2667 int flags, error; 2668 2669 if (namelen != 2) 2670 return (EINVAL); 2671 2672 which = (u_int)name[1]; 2673 if (which >= RLIM_NLIMITS) 2674 return (EINVAL); 2675 2676 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2677 return (EINVAL); 2678 2679 flags = PGET_HOLD | PGET_NOTWEXIT; 2680 if (req->newptr != NULL) 2681 flags |= PGET_CANDEBUG; 2682 else 2683 flags |= PGET_CANSEE; 2684 error = pget((pid_t)name[0], flags, &p); 2685 if (error != 0) 2686 return (error); 2687 2688 /* 2689 * Retrieve limit. 2690 */ 2691 if (req->oldptr != NULL) { 2692 PROC_LOCK(p); 2693 lim_rlimit_proc(p, which, &rlim); 2694 PROC_UNLOCK(p); 2695 } 2696 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2697 if (error != 0) 2698 goto errout; 2699 2700 /* 2701 * Set limit. 2702 */ 2703 if (req->newptr != NULL) { 2704 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2705 if (error == 0) 2706 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2707 } 2708 2709 errout: 2710 PRELE(p); 2711 return (error); 2712 } 2713 2714 /* 2715 * This sysctl allows a process to retrieve ps_strings structure location of 2716 * another process. 2717 */ 2718 static int 2719 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2720 { 2721 int *name = (int *)arg1; 2722 u_int namelen = arg2; 2723 struct proc *p; 2724 vm_offset_t ps_strings; 2725 int error; 2726 #ifdef COMPAT_FREEBSD32 2727 uint32_t ps_strings32; 2728 #endif 2729 2730 if (namelen != 1) 2731 return (EINVAL); 2732 2733 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2734 if (error != 0) 2735 return (error); 2736 #ifdef COMPAT_FREEBSD32 2737 if ((req->flags & SCTL_MASK32) != 0) { 2738 /* 2739 * We return 0 if the 32 bit emulation request is for a 64 bit 2740 * process. 2741 */ 2742 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2743 PTROUT(p->p_sysent->sv_psstrings) : 0; 2744 PROC_UNLOCK(p); 2745 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2746 return (error); 2747 } 2748 #endif 2749 ps_strings = p->p_sysent->sv_psstrings; 2750 PROC_UNLOCK(p); 2751 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2752 return (error); 2753 } 2754 2755 /* 2756 * This sysctl allows a process to retrieve umask of another process. 2757 */ 2758 static int 2759 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2760 { 2761 int *name = (int *)arg1; 2762 u_int namelen = arg2; 2763 struct proc *p; 2764 int error; 2765 u_short fd_cmask; 2766 pid_t pid; 2767 2768 if (namelen != 1) 2769 return (EINVAL); 2770 2771 pid = (pid_t)name[0]; 2772 p = curproc; 2773 if (pid == p->p_pid || pid == 0) { 2774 fd_cmask = p->p_fd->fd_cmask; 2775 goto out; 2776 } 2777 2778 error = pget(pid, PGET_WANTREAD, &p); 2779 if (error != 0) 2780 return (error); 2781 2782 fd_cmask = p->p_fd->fd_cmask; 2783 PRELE(p); 2784 out: 2785 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2786 return (error); 2787 } 2788 2789 /* 2790 * This sysctl allows a process to set and retrieve binary osreldate of 2791 * another process. 2792 */ 2793 static int 2794 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2795 { 2796 int *name = (int *)arg1; 2797 u_int namelen = arg2; 2798 struct proc *p; 2799 int flags, error, osrel; 2800 2801 if (namelen != 1) 2802 return (EINVAL); 2803 2804 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2805 return (EINVAL); 2806 2807 flags = PGET_HOLD | PGET_NOTWEXIT; 2808 if (req->newptr != NULL) 2809 flags |= PGET_CANDEBUG; 2810 else 2811 flags |= PGET_CANSEE; 2812 error = pget((pid_t)name[0], flags, &p); 2813 if (error != 0) 2814 return (error); 2815 2816 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2817 if (error != 0) 2818 goto errout; 2819 2820 if (req->newptr != NULL) { 2821 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2822 if (error != 0) 2823 goto errout; 2824 if (osrel < 0) { 2825 error = EINVAL; 2826 goto errout; 2827 } 2828 p->p_osrel = osrel; 2829 } 2830 errout: 2831 PRELE(p); 2832 return (error); 2833 } 2834 2835 static int 2836 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2837 { 2838 int *name = (int *)arg1; 2839 u_int namelen = arg2; 2840 struct proc *p; 2841 struct kinfo_sigtramp kst; 2842 const struct sysentvec *sv; 2843 int error; 2844 #ifdef COMPAT_FREEBSD32 2845 struct kinfo_sigtramp32 kst32; 2846 #endif 2847 2848 if (namelen != 1) 2849 return (EINVAL); 2850 2851 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2852 if (error != 0) 2853 return (error); 2854 sv = p->p_sysent; 2855 #ifdef COMPAT_FREEBSD32 2856 if ((req->flags & SCTL_MASK32) != 0) { 2857 bzero(&kst32, sizeof(kst32)); 2858 if (SV_PROC_FLAG(p, SV_ILP32)) { 2859 if (sv->sv_sigcode_base != 0) { 2860 kst32.ksigtramp_start = sv->sv_sigcode_base; 2861 kst32.ksigtramp_end = sv->sv_sigcode_base + 2862 *sv->sv_szsigcode; 2863 } else { 2864 kst32.ksigtramp_start = sv->sv_psstrings - 2865 *sv->sv_szsigcode; 2866 kst32.ksigtramp_end = sv->sv_psstrings; 2867 } 2868 } 2869 PROC_UNLOCK(p); 2870 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2871 return (error); 2872 } 2873 #endif 2874 bzero(&kst, sizeof(kst)); 2875 if (sv->sv_sigcode_base != 0) { 2876 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2877 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2878 *sv->sv_szsigcode; 2879 } else { 2880 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2881 *sv->sv_szsigcode; 2882 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2883 } 2884 PROC_UNLOCK(p); 2885 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2886 return (error); 2887 } 2888 2889 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2890 2891 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2892 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2893 "Return entire process table"); 2894 2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2896 sysctl_kern_proc, "Process table"); 2897 2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2899 sysctl_kern_proc, "Process table"); 2900 2901 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2902 sysctl_kern_proc, "Process table"); 2903 2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2905 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2906 2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2908 sysctl_kern_proc, "Process table"); 2909 2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2911 sysctl_kern_proc, "Process table"); 2912 2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2914 sysctl_kern_proc, "Process table"); 2915 2916 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2917 sysctl_kern_proc, "Process table"); 2918 2919 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2920 sysctl_kern_proc, "Return process table, no threads"); 2921 2922 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2923 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2924 sysctl_kern_proc_args, "Process argument list"); 2925 2926 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2927 sysctl_kern_proc_env, "Process environment"); 2928 2929 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2930 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2931 2932 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2933 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2934 2935 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2936 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2937 "Process syscall vector name (ABI type)"); 2938 2939 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2940 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2941 2942 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2943 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2944 2945 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2946 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2947 2948 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2949 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2950 2951 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2952 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2953 2954 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2955 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2956 2957 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2958 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2959 2960 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2961 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2962 2963 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2964 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2965 "Return process table, no threads"); 2966 2967 #ifdef COMPAT_FREEBSD7 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2969 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2970 #endif 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2973 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2974 2975 #if defined(STACK) || defined(DDB) 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2977 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2978 #endif 2979 2980 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2981 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2982 2983 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2984 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2985 "Process resource limits"); 2986 2987 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2988 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2989 "Process ps_strings location"); 2990 2991 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2992 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2993 2994 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2995 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2996 "Process binary osreldate"); 2997 2998 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2999 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3000 "Process signal trampoline location"); 3001 3002 int allproc_gen; 3003 3004 /* 3005 * stop_all_proc() purpose is to stop all process which have usermode, 3006 * except current process for obvious reasons. This makes it somewhat 3007 * unreliable when invoked from multithreaded process. The service 3008 * must not be user-callable anyway. 3009 */ 3010 void 3011 stop_all_proc(void) 3012 { 3013 struct proc *cp, *p; 3014 int r, gen; 3015 bool restart, seen_stopped, seen_exiting, stopped_some; 3016 3017 cp = curproc; 3018 allproc_loop: 3019 sx_xlock(&allproc_lock); 3020 gen = allproc_gen; 3021 seen_exiting = seen_stopped = stopped_some = restart = false; 3022 LIST_REMOVE(cp, p_list); 3023 LIST_INSERT_HEAD(&allproc, cp, p_list); 3024 for (;;) { 3025 p = LIST_NEXT(cp, p_list); 3026 if (p == NULL) 3027 break; 3028 LIST_REMOVE(cp, p_list); 3029 LIST_INSERT_AFTER(p, cp, p_list); 3030 PROC_LOCK(p); 3031 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3032 PROC_UNLOCK(p); 3033 continue; 3034 } 3035 if ((p->p_flag & P_WEXIT) != 0) { 3036 seen_exiting = true; 3037 PROC_UNLOCK(p); 3038 continue; 3039 } 3040 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3041 /* 3042 * Stopped processes are tolerated when there 3043 * are no other processes which might continue 3044 * them. P_STOPPED_SINGLE but not 3045 * P_TOTAL_STOP process still has at least one 3046 * thread running. 3047 */ 3048 seen_stopped = true; 3049 PROC_UNLOCK(p); 3050 continue; 3051 } 3052 _PHOLD(p); 3053 sx_xunlock(&allproc_lock); 3054 r = thread_single(p, SINGLE_ALLPROC); 3055 if (r != 0) 3056 restart = true; 3057 else 3058 stopped_some = true; 3059 _PRELE(p); 3060 PROC_UNLOCK(p); 3061 sx_xlock(&allproc_lock); 3062 } 3063 /* Catch forked children we did not see in iteration. */ 3064 if (gen != allproc_gen) 3065 restart = true; 3066 sx_xunlock(&allproc_lock); 3067 if (restart || stopped_some || seen_exiting || seen_stopped) { 3068 kern_yield(PRI_USER); 3069 goto allproc_loop; 3070 } 3071 } 3072 3073 void 3074 resume_all_proc(void) 3075 { 3076 struct proc *cp, *p; 3077 3078 cp = curproc; 3079 sx_xlock(&allproc_lock); 3080 again: 3081 LIST_REMOVE(cp, p_list); 3082 LIST_INSERT_HEAD(&allproc, cp, p_list); 3083 for (;;) { 3084 p = LIST_NEXT(cp, p_list); 3085 if (p == NULL) 3086 break; 3087 LIST_REMOVE(cp, p_list); 3088 LIST_INSERT_AFTER(p, cp, p_list); 3089 PROC_LOCK(p); 3090 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3091 sx_xunlock(&allproc_lock); 3092 _PHOLD(p); 3093 thread_single_end(p, SINGLE_ALLPROC); 3094 _PRELE(p); 3095 PROC_UNLOCK(p); 3096 sx_xlock(&allproc_lock); 3097 } else { 3098 PROC_UNLOCK(p); 3099 } 3100 } 3101 /* Did the loop above missed any stopped process ? */ 3102 FOREACH_PROC_IN_SYSTEM(p) { 3103 /* No need for proc lock. */ 3104 if ((p->p_flag & P_TOTAL_STOP) != 0) 3105 goto again; 3106 } 3107 sx_xunlock(&allproc_lock); 3108 } 3109 3110 /* #define TOTAL_STOP_DEBUG 1 */ 3111 #ifdef TOTAL_STOP_DEBUG 3112 volatile static int ap_resume; 3113 #include <sys/mount.h> 3114 3115 static int 3116 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3117 { 3118 int error, val; 3119 3120 val = 0; 3121 ap_resume = 0; 3122 error = sysctl_handle_int(oidp, &val, 0, req); 3123 if (error != 0 || req->newptr == NULL) 3124 return (error); 3125 if (val != 0) { 3126 stop_all_proc(); 3127 syncer_suspend(); 3128 while (ap_resume == 0) 3129 ; 3130 syncer_resume(); 3131 resume_all_proc(); 3132 } 3133 return (0); 3134 } 3135 3136 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3137 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3138 sysctl_debug_stop_all_proc, "I", 3139 ""); 3140 #endif 3141