1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ddb.h" 34 #include "opt_ktrace.h" 35 #include "opt_kstack_pages.h" 36 #include "opt_stack.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bitstring.h> 41 #include <sys/conf.h> 42 #include <sys/elf.h> 43 #include <sys/eventhandler.h> 44 #include <sys/exec.h> 45 #include <sys/fcntl.h> 46 #include <sys/ipc.h> 47 #include <sys/jail.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/lock.h> 51 #include <sys/loginclass.h> 52 #include <sys/malloc.h> 53 #include <sys/mman.h> 54 #include <sys/mount.h> 55 #include <sys/mutex.h> 56 #include <sys/namei.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/shm.h> 66 #include <sys/smp.h> 67 #include <sys/stack.h> 68 #include <sys/stat.h> 69 #include <sys/dtrace_bsd.h> 70 #include <sys/sysctl.h> 71 #include <sys/filedesc.h> 72 #include <sys/tty.h> 73 #include <sys/signalvar.h> 74 #include <sys/sdt.h> 75 #include <sys/sx.h> 76 #include <sys/user.h> 77 #include <sys/vnode.h> 78 #include <sys/wait.h> 79 #ifdef KTRACE 80 #include <sys/ktrace.h> 81 #endif 82 83 #ifdef DDB 84 #include <ddb/ddb.h> 85 #endif 86 87 #include <vm/vm.h> 88 #include <vm/vm_param.h> 89 #include <vm/vm_extern.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_object.h> 93 #include <vm/vm_page.h> 94 #include <vm/uma.h> 95 96 #include <fs/devfs/devfs.h> 97 98 #ifdef COMPAT_FREEBSD32 99 #include <compat/freebsd32/freebsd32.h> 100 #include <compat/freebsd32/freebsd32_util.h> 101 #endif 102 103 SDT_PROVIDER_DEFINE(proc); 104 105 MALLOC_DEFINE(M_SESSION, "session", "session header"); 106 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 107 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 108 109 static void doenterpgrp(struct proc *, struct pgrp *); 110 static void orphanpg(struct pgrp *pg); 111 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 112 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 114 int preferthread); 115 static void pgdelete(struct pgrp *); 116 static int pgrp_init(void *mem, int size, int flags); 117 static int proc_ctor(void *mem, int size, void *arg, int flags); 118 static void proc_dtor(void *mem, int size, void *arg); 119 static int proc_init(void *mem, int size, int flags); 120 static void proc_fini(void *mem, int size); 121 static void pargs_free(struct pargs *pa); 122 123 /* 124 * Other process lists 125 */ 126 struct pidhashhead *pidhashtbl = NULL; 127 struct sx *pidhashtbl_lock; 128 u_long pidhash; 129 u_long pidhashlock; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); 133 struct sx __exclusive_cache_line allproc_lock; 134 struct sx __exclusive_cache_line proctree_lock; 135 struct mtx __exclusive_cache_line ppeers_lock; 136 struct mtx __exclusive_cache_line procid_lock; 137 uma_zone_t proc_zone; 138 uma_zone_t pgrp_zone; 139 140 /* 141 * The offset of various fields in struct proc and struct thread. 142 * These are used by kernel debuggers to enumerate kernel threads and 143 * processes. 144 */ 145 const int proc_off_p_pid = offsetof(struct proc, p_pid); 146 const int proc_off_p_comm = offsetof(struct proc, p_comm); 147 const int proc_off_p_list = offsetof(struct proc, p_list); 148 const int proc_off_p_hash = offsetof(struct proc, p_hash); 149 const int proc_off_p_threads = offsetof(struct proc, p_threads); 150 const int thread_off_td_tid = offsetof(struct thread, td_tid); 151 const int thread_off_td_name = offsetof(struct thread, td_name); 152 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 153 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 154 const int thread_off_td_plist = offsetof(struct thread, td_plist); 155 156 EVENTHANDLER_LIST_DEFINE(process_ctor); 157 EVENTHANDLER_LIST_DEFINE(process_dtor); 158 EVENTHANDLER_LIST_DEFINE(process_init); 159 EVENTHANDLER_LIST_DEFINE(process_fini); 160 EVENTHANDLER_LIST_DEFINE(process_exit); 161 EVENTHANDLER_LIST_DEFINE(process_fork); 162 EVENTHANDLER_LIST_DEFINE(process_exec); 163 164 int kstack_pages = KSTACK_PAGES; 165 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 166 &kstack_pages, 0, 167 "Kernel stack size in pages"); 168 static int vmmap_skip_res_cnt = 0; 169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 170 &vmmap_skip_res_cnt, 0, 171 "Skip calculation of the pages resident count in kern.proc.vmmap"); 172 173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 174 #ifdef COMPAT_FREEBSD32 175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 176 #endif 177 178 /* 179 * Initialize global process hashing structures. 180 */ 181 void 182 procinit(void) 183 { 184 u_long i; 185 186 sx_init(&allproc_lock, "allproc"); 187 sx_init(&proctree_lock, "proctree"); 188 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 189 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 190 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 191 pidhashlock = (pidhash + 1) / 64; 192 if (pidhashlock > 0) 193 pidhashlock--; 194 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 195 M_PROC, M_WAITOK | M_ZERO); 196 for (i = 0; i < pidhashlock + 1; i++) 197 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 198 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 199 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 200 proc_ctor, proc_dtor, proc_init, proc_fini, 201 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, 203 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 204 uihashinit(); 205 } 206 207 /* 208 * Prepare a proc for use. 209 */ 210 static int 211 proc_ctor(void *mem, int size, void *arg, int flags) 212 { 213 struct proc *p; 214 struct thread *td; 215 216 p = (struct proc *)mem; 217 #ifdef KDTRACE_HOOKS 218 kdtrace_proc_ctor(p); 219 #endif 220 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 221 td = FIRST_THREAD_IN_PROC(p); 222 if (td != NULL) { 223 /* Make sure all thread constructors are executed */ 224 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 225 } 226 return (0); 227 } 228 229 /* 230 * Reclaim a proc after use. 231 */ 232 static void 233 proc_dtor(void *mem, int size, void *arg) 234 { 235 struct proc *p; 236 struct thread *td; 237 238 /* INVARIANTS checks go here */ 239 p = (struct proc *)mem; 240 td = FIRST_THREAD_IN_PROC(p); 241 if (td != NULL) { 242 #ifdef INVARIANTS 243 KASSERT((p->p_numthreads == 1), 244 ("bad number of threads in exiting process")); 245 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 246 #endif 247 /* Free all OSD associated to this thread. */ 248 osd_thread_exit(td); 249 ast_kclear(td); 250 251 /* Make sure all thread destructors are executed */ 252 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 253 } 254 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 255 #ifdef KDTRACE_HOOKS 256 kdtrace_proc_dtor(p); 257 #endif 258 if (p->p_ksi != NULL) 259 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 260 } 261 262 /* 263 * Initialize type-stable parts of a proc (when newly created). 264 */ 265 static int 266 proc_init(void *mem, int size, int flags) 267 { 268 struct proc *p; 269 270 p = (struct proc *)mem; 271 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 272 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 273 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 274 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 275 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 276 cv_init(&p->p_pwait, "ppwait"); 277 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 278 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 279 p->p_stats = pstats_alloc(); 280 p->p_pgrp = NULL; 281 TAILQ_INIT(&p->p_kqtim_stop); 282 return (0); 283 } 284 285 /* 286 * UMA should ensure that this function is never called. 287 * Freeing a proc structure would violate type stability. 288 */ 289 static void 290 proc_fini(void *mem, int size) 291 { 292 #ifdef notnow 293 struct proc *p; 294 295 p = (struct proc *)mem; 296 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 297 pstats_free(p->p_stats); 298 thread_free(FIRST_THREAD_IN_PROC(p)); 299 mtx_destroy(&p->p_mtx); 300 if (p->p_ksi != NULL) 301 ksiginfo_free(p->p_ksi); 302 #else 303 panic("proc reclaimed"); 304 #endif 305 } 306 307 static int 308 pgrp_init(void *mem, int size, int flags) 309 { 310 struct pgrp *pg; 311 312 pg = mem; 313 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 314 sx_init(&pg->pg_killsx, "killpg racer"); 315 return (0); 316 } 317 318 /* 319 * PID space management. 320 * 321 * These bitmaps are used by fork_findpid. 322 */ 323 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 324 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 325 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 326 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 327 328 static bitstr_t *proc_id_array[] = { 329 proc_id_pidmap, 330 proc_id_grpidmap, 331 proc_id_sessidmap, 332 proc_id_reapmap, 333 }; 334 335 void 336 proc_id_set(int type, pid_t id) 337 { 338 339 KASSERT(type >= 0 && type < nitems(proc_id_array), 340 ("invalid type %d\n", type)); 341 mtx_lock(&procid_lock); 342 KASSERT(bit_test(proc_id_array[type], id) == 0, 343 ("bit %d already set in %d\n", id, type)); 344 bit_set(proc_id_array[type], id); 345 mtx_unlock(&procid_lock); 346 } 347 348 void 349 proc_id_set_cond(int type, pid_t id) 350 { 351 352 KASSERT(type >= 0 && type < nitems(proc_id_array), 353 ("invalid type %d\n", type)); 354 if (bit_test(proc_id_array[type], id)) 355 return; 356 mtx_lock(&procid_lock); 357 bit_set(proc_id_array[type], id); 358 mtx_unlock(&procid_lock); 359 } 360 361 void 362 proc_id_clear(int type, pid_t id) 363 { 364 365 KASSERT(type >= 0 && type < nitems(proc_id_array), 366 ("invalid type %d\n", type)); 367 mtx_lock(&procid_lock); 368 KASSERT(bit_test(proc_id_array[type], id) != 0, 369 ("bit %d not set in %d\n", id, type)); 370 bit_clear(proc_id_array[type], id); 371 mtx_unlock(&procid_lock); 372 } 373 374 /* 375 * Is p an inferior of the current process? 376 */ 377 int 378 inferior(struct proc *p) 379 { 380 381 sx_assert(&proctree_lock, SX_LOCKED); 382 PROC_LOCK_ASSERT(p, MA_OWNED); 383 for (; p != curproc; p = proc_realparent(p)) { 384 if (p->p_pid == 0) 385 return (0); 386 } 387 return (1); 388 } 389 390 /* 391 * Shared lock all the pid hash lists. 392 */ 393 void 394 pidhash_slockall(void) 395 { 396 u_long i; 397 398 for (i = 0; i < pidhashlock + 1; i++) 399 sx_slock(&pidhashtbl_lock[i]); 400 } 401 402 /* 403 * Shared unlock all the pid hash lists. 404 */ 405 void 406 pidhash_sunlockall(void) 407 { 408 u_long i; 409 410 for (i = 0; i < pidhashlock + 1; i++) 411 sx_sunlock(&pidhashtbl_lock[i]); 412 } 413 414 /* 415 * Similar to pfind_any(), this function finds zombies. 416 */ 417 struct proc * 418 pfind_any_locked(pid_t pid) 419 { 420 struct proc *p; 421 422 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 423 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 424 if (p->p_pid == pid) { 425 PROC_LOCK(p); 426 if (p->p_state == PRS_NEW) { 427 PROC_UNLOCK(p); 428 p = NULL; 429 } 430 break; 431 } 432 } 433 return (p); 434 } 435 436 /* 437 * Locate a process by number. 438 * 439 * By not returning processes in the PRS_NEW state, we allow callers to avoid 440 * testing for that condition to avoid dereferencing p_ucred, et al. 441 */ 442 static __always_inline struct proc * 443 _pfind(pid_t pid, bool zombie) 444 { 445 struct proc *p; 446 447 p = curproc; 448 if (p->p_pid == pid) { 449 PROC_LOCK(p); 450 return (p); 451 } 452 sx_slock(PIDHASHLOCK(pid)); 453 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 454 if (p->p_pid == pid) { 455 PROC_LOCK(p); 456 if (p->p_state == PRS_NEW || 457 (!zombie && p->p_state == PRS_ZOMBIE)) { 458 PROC_UNLOCK(p); 459 p = NULL; 460 } 461 break; 462 } 463 } 464 sx_sunlock(PIDHASHLOCK(pid)); 465 return (p); 466 } 467 468 struct proc * 469 pfind(pid_t pid) 470 { 471 472 return (_pfind(pid, false)); 473 } 474 475 /* 476 * Same as pfind but allow zombies. 477 */ 478 struct proc * 479 pfind_any(pid_t pid) 480 { 481 482 return (_pfind(pid, true)); 483 } 484 485 /* 486 * Locate a process group by number. 487 * The caller must hold proctree_lock. 488 */ 489 struct pgrp * 490 pgfind(pid_t pgid) 491 { 492 struct pgrp *pgrp; 493 494 sx_assert(&proctree_lock, SX_LOCKED); 495 496 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 497 if (pgrp->pg_id == pgid) { 498 PGRP_LOCK(pgrp); 499 return (pgrp); 500 } 501 } 502 return (NULL); 503 } 504 505 /* 506 * Locate process and do additional manipulations, depending on flags. 507 */ 508 int 509 pget(pid_t pid, int flags, struct proc **pp) 510 { 511 struct proc *p; 512 struct thread *td1; 513 int error; 514 515 p = curproc; 516 if (p->p_pid == pid) { 517 PROC_LOCK(p); 518 } else { 519 p = NULL; 520 if (pid <= PID_MAX) { 521 if ((flags & PGET_NOTWEXIT) == 0) 522 p = pfind_any(pid); 523 else 524 p = pfind(pid); 525 } else if ((flags & PGET_NOTID) == 0) { 526 td1 = tdfind(pid, -1); 527 if (td1 != NULL) 528 p = td1->td_proc; 529 } 530 if (p == NULL) 531 return (ESRCH); 532 if ((flags & PGET_CANSEE) != 0) { 533 error = p_cansee(curthread, p); 534 if (error != 0) 535 goto errout; 536 } 537 } 538 if ((flags & PGET_CANDEBUG) != 0) { 539 error = p_candebug(curthread, p); 540 if (error != 0) 541 goto errout; 542 } 543 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 544 error = EPERM; 545 goto errout; 546 } 547 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 548 error = ESRCH; 549 goto errout; 550 } 551 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 552 /* 553 * XXXRW: Not clear ESRCH is the right error during proc 554 * execve(). 555 */ 556 error = ESRCH; 557 goto errout; 558 } 559 if ((flags & PGET_HOLD) != 0) { 560 _PHOLD(p); 561 PROC_UNLOCK(p); 562 } 563 *pp = p; 564 return (0); 565 errout: 566 PROC_UNLOCK(p); 567 return (error); 568 } 569 570 /* 571 * Create a new process group. 572 * pgid must be equal to the pid of p. 573 * Begin a new session if required. 574 */ 575 int 576 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 577 { 578 struct pgrp *old_pgrp; 579 580 sx_assert(&proctree_lock, SX_XLOCKED); 581 582 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 583 KASSERT(p->p_pid == pgid, 584 ("enterpgrp: new pgrp and pid != pgid")); 585 KASSERT(pgfind(pgid) == NULL, 586 ("enterpgrp: pgrp with pgid exists")); 587 KASSERT(!SESS_LEADER(p), 588 ("enterpgrp: session leader attempted setpgrp")); 589 590 old_pgrp = p->p_pgrp; 591 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 592 sx_xunlock(&proctree_lock); 593 sx_xlock(&old_pgrp->pg_killsx); 594 sx_xunlock(&old_pgrp->pg_killsx); 595 return (ERESTART); 596 } 597 MPASS(old_pgrp == p->p_pgrp); 598 599 if (sess != NULL) { 600 /* 601 * new session 602 */ 603 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 604 PROC_LOCK(p); 605 p->p_flag &= ~P_CONTROLT; 606 PROC_UNLOCK(p); 607 PGRP_LOCK(pgrp); 608 sess->s_leader = p; 609 sess->s_sid = p->p_pid; 610 proc_id_set(PROC_ID_SESSION, p->p_pid); 611 refcount_init(&sess->s_count, 1); 612 sess->s_ttyvp = NULL; 613 sess->s_ttydp = NULL; 614 sess->s_ttyp = NULL; 615 bcopy(p->p_session->s_login, sess->s_login, 616 sizeof(sess->s_login)); 617 pgrp->pg_session = sess; 618 KASSERT(p == curproc, 619 ("enterpgrp: mksession and p != curproc")); 620 } else { 621 pgrp->pg_session = p->p_session; 622 sess_hold(pgrp->pg_session); 623 PGRP_LOCK(pgrp); 624 } 625 pgrp->pg_id = pgid; 626 proc_id_set(PROC_ID_GROUP, p->p_pid); 627 LIST_INIT(&pgrp->pg_members); 628 pgrp->pg_flags = 0; 629 630 /* 631 * As we have an exclusive lock of proctree_lock, 632 * this should not deadlock. 633 */ 634 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 635 SLIST_INIT(&pgrp->pg_sigiolst); 636 PGRP_UNLOCK(pgrp); 637 638 doenterpgrp(p, pgrp); 639 640 sx_xunlock(&old_pgrp->pg_killsx); 641 return (0); 642 } 643 644 /* 645 * Move p to an existing process group 646 */ 647 int 648 enterthispgrp(struct proc *p, struct pgrp *pgrp) 649 { 650 struct pgrp *old_pgrp; 651 652 sx_assert(&proctree_lock, SX_XLOCKED); 653 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 654 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 655 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 656 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 657 KASSERT(pgrp->pg_session == p->p_session, 658 ("%s: pgrp's session %p, p->p_session %p proc %p\n", 659 __func__, pgrp->pg_session, p->p_session, p)); 660 KASSERT(pgrp != p->p_pgrp, 661 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); 662 663 old_pgrp = p->p_pgrp; 664 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 665 sx_xunlock(&proctree_lock); 666 sx_xlock(&old_pgrp->pg_killsx); 667 sx_xunlock(&old_pgrp->pg_killsx); 668 return (ERESTART); 669 } 670 MPASS(old_pgrp == p->p_pgrp); 671 if (!sx_try_xlock(&pgrp->pg_killsx)) { 672 sx_xunlock(&old_pgrp->pg_killsx); 673 sx_xunlock(&proctree_lock); 674 sx_xlock(&pgrp->pg_killsx); 675 sx_xunlock(&pgrp->pg_killsx); 676 return (ERESTART); 677 } 678 679 doenterpgrp(p, pgrp); 680 681 sx_xunlock(&pgrp->pg_killsx); 682 sx_xunlock(&old_pgrp->pg_killsx); 683 return (0); 684 } 685 686 /* 687 * If true, any child of q which belongs to group pgrp, qualifies the 688 * process group pgrp as not orphaned. 689 */ 690 static bool 691 isjobproc(struct proc *q, struct pgrp *pgrp) 692 { 693 sx_assert(&proctree_lock, SX_LOCKED); 694 695 return (q->p_pgrp != pgrp && 696 q->p_pgrp->pg_session == pgrp->pg_session); 697 } 698 699 static struct proc * 700 jobc_reaper(struct proc *p) 701 { 702 struct proc *pp; 703 704 sx_assert(&proctree_lock, SA_LOCKED); 705 706 for (pp = p;;) { 707 pp = pp->p_reaper; 708 if (pp->p_reaper == pp || 709 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 710 return (pp); 711 } 712 } 713 714 static struct proc * 715 jobc_parent(struct proc *p, struct proc *p_exiting) 716 { 717 struct proc *pp; 718 719 sx_assert(&proctree_lock, SA_LOCKED); 720 721 pp = proc_realparent(p); 722 if (pp->p_pptr == NULL || pp == p_exiting || 723 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 724 return (pp); 725 return (jobc_reaper(pp)); 726 } 727 728 static int 729 pgrp_calc_jobc(struct pgrp *pgrp) 730 { 731 struct proc *q; 732 int cnt; 733 734 #ifdef INVARIANTS 735 if (!mtx_owned(&pgrp->pg_mtx)) 736 sx_assert(&proctree_lock, SA_LOCKED); 737 #endif 738 739 cnt = 0; 740 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 741 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 742 q->p_pptr == NULL) 743 continue; 744 if (isjobproc(jobc_parent(q, NULL), pgrp)) 745 cnt++; 746 } 747 return (cnt); 748 } 749 750 /* 751 * Move p to a process group 752 */ 753 static void 754 doenterpgrp(struct proc *p, struct pgrp *pgrp) 755 { 756 struct pgrp *savepgrp; 757 struct proc *pp; 758 759 sx_assert(&proctree_lock, SX_XLOCKED); 760 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 761 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 762 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 763 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 764 765 savepgrp = p->p_pgrp; 766 pp = jobc_parent(p, NULL); 767 768 PGRP_LOCK(pgrp); 769 PGRP_LOCK(savepgrp); 770 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) 771 orphanpg(savepgrp); 772 PROC_LOCK(p); 773 LIST_REMOVE(p, p_pglist); 774 p->p_pgrp = pgrp; 775 PROC_UNLOCK(p); 776 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 777 if (isjobproc(pp, pgrp)) 778 pgrp->pg_flags &= ~PGRP_ORPHANED; 779 PGRP_UNLOCK(savepgrp); 780 PGRP_UNLOCK(pgrp); 781 if (LIST_EMPTY(&savepgrp->pg_members)) 782 pgdelete(savepgrp); 783 } 784 785 /* 786 * remove process from process group 787 */ 788 int 789 leavepgrp(struct proc *p) 790 { 791 struct pgrp *savepgrp; 792 793 sx_assert(&proctree_lock, SX_XLOCKED); 794 savepgrp = p->p_pgrp; 795 PGRP_LOCK(savepgrp); 796 PROC_LOCK(p); 797 LIST_REMOVE(p, p_pglist); 798 p->p_pgrp = NULL; 799 PROC_UNLOCK(p); 800 PGRP_UNLOCK(savepgrp); 801 if (LIST_EMPTY(&savepgrp->pg_members)) 802 pgdelete(savepgrp); 803 return (0); 804 } 805 806 /* 807 * delete a process group 808 */ 809 static void 810 pgdelete(struct pgrp *pgrp) 811 { 812 struct session *savesess; 813 struct tty *tp; 814 815 sx_assert(&proctree_lock, SX_XLOCKED); 816 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 817 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 818 819 /* 820 * Reset any sigio structures pointing to us as a result of 821 * F_SETOWN with our pgid. The proctree lock ensures that 822 * new sigio structures will not be added after this point. 823 */ 824 funsetownlst(&pgrp->pg_sigiolst); 825 826 PGRP_LOCK(pgrp); 827 tp = pgrp->pg_session->s_ttyp; 828 LIST_REMOVE(pgrp, pg_hash); 829 savesess = pgrp->pg_session; 830 PGRP_UNLOCK(pgrp); 831 832 /* Remove the reference to the pgrp before deallocating it. */ 833 if (tp != NULL) { 834 tty_lock(tp); 835 tty_rel_pgrp(tp, pgrp); 836 } 837 838 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 839 uma_zfree(pgrp_zone, pgrp); 840 sess_release(savesess); 841 } 842 843 844 static void 845 fixjobc_kill(struct proc *p) 846 { 847 struct proc *q; 848 struct pgrp *pgrp; 849 850 sx_assert(&proctree_lock, SX_LOCKED); 851 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 852 pgrp = p->p_pgrp; 853 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 854 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 855 856 /* 857 * p no longer affects process group orphanage for children. 858 * It is marked by the flag because p is only physically 859 * removed from its process group on wait(2). 860 */ 861 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 862 p->p_treeflag |= P_TREE_GRPEXITED; 863 864 /* 865 * Check if exiting p orphans its own group. 866 */ 867 pgrp = p->p_pgrp; 868 if (isjobproc(jobc_parent(p, NULL), pgrp)) { 869 PGRP_LOCK(pgrp); 870 if (pgrp_calc_jobc(pgrp) == 0) 871 orphanpg(pgrp); 872 PGRP_UNLOCK(pgrp); 873 } 874 875 /* 876 * Check this process' children to see whether they qualify 877 * their process groups after reparenting to reaper. 878 */ 879 LIST_FOREACH(q, &p->p_children, p_sibling) { 880 pgrp = q->p_pgrp; 881 PGRP_LOCK(pgrp); 882 if (pgrp_calc_jobc(pgrp) == 0) { 883 /* 884 * We want to handle exactly the children that 885 * has p as realparent. Then, when calculating 886 * jobc_parent for children, we should ignore 887 * P_TREE_GRPEXITED flag already set on p. 888 */ 889 if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) 890 orphanpg(pgrp); 891 } else 892 pgrp->pg_flags &= ~PGRP_ORPHANED; 893 PGRP_UNLOCK(pgrp); 894 } 895 LIST_FOREACH(q, &p->p_orphans, p_orphan) { 896 pgrp = q->p_pgrp; 897 PGRP_LOCK(pgrp); 898 if (pgrp_calc_jobc(pgrp) == 0) { 899 if (isjobproc(p, pgrp)) 900 orphanpg(pgrp); 901 } else 902 pgrp->pg_flags &= ~PGRP_ORPHANED; 903 PGRP_UNLOCK(pgrp); 904 } 905 } 906 907 void 908 killjobc(void) 909 { 910 struct session *sp; 911 struct tty *tp; 912 struct proc *p; 913 struct vnode *ttyvp; 914 915 p = curproc; 916 MPASS(p->p_flag & P_WEXIT); 917 sx_assert(&proctree_lock, SX_LOCKED); 918 919 if (SESS_LEADER(p)) { 920 sp = p->p_session; 921 922 /* 923 * s_ttyp is not zero'd; we use this to indicate that 924 * the session once had a controlling terminal. (for 925 * logging and informational purposes) 926 */ 927 SESS_LOCK(sp); 928 ttyvp = sp->s_ttyvp; 929 tp = sp->s_ttyp; 930 sp->s_ttyvp = NULL; 931 sp->s_ttydp = NULL; 932 sp->s_leader = NULL; 933 SESS_UNLOCK(sp); 934 935 /* 936 * Signal foreground pgrp and revoke access to 937 * controlling terminal if it has not been revoked 938 * already. 939 * 940 * Because the TTY may have been revoked in the mean 941 * time and could already have a new session associated 942 * with it, make sure we don't send a SIGHUP to a 943 * foreground process group that does not belong to this 944 * session. 945 */ 946 947 if (tp != NULL) { 948 tty_lock(tp); 949 if (tp->t_session == sp) 950 tty_signal_pgrp(tp, SIGHUP); 951 tty_unlock(tp); 952 } 953 954 if (ttyvp != NULL) { 955 sx_xunlock(&proctree_lock); 956 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 957 VOP_REVOKE(ttyvp, REVOKEALL); 958 VOP_UNLOCK(ttyvp); 959 } 960 devfs_ctty_unref(ttyvp); 961 sx_xlock(&proctree_lock); 962 } 963 } 964 fixjobc_kill(p); 965 } 966 967 /* 968 * A process group has become orphaned, mark it as such for signal 969 * delivery code. If there are any stopped processes in the group, 970 * hang-up all process in that group. 971 */ 972 static void 973 orphanpg(struct pgrp *pg) 974 { 975 struct proc *p; 976 977 PGRP_LOCK_ASSERT(pg, MA_OWNED); 978 979 pg->pg_flags |= PGRP_ORPHANED; 980 981 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 982 PROC_LOCK(p); 983 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 984 PROC_UNLOCK(p); 985 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 986 PROC_LOCK(p); 987 kern_psignal(p, SIGHUP); 988 kern_psignal(p, SIGCONT); 989 PROC_UNLOCK(p); 990 } 991 return; 992 } 993 PROC_UNLOCK(p); 994 } 995 } 996 997 void 998 sess_hold(struct session *s) 999 { 1000 1001 refcount_acquire(&s->s_count); 1002 } 1003 1004 void 1005 sess_release(struct session *s) 1006 { 1007 1008 if (refcount_release(&s->s_count)) { 1009 if (s->s_ttyp != NULL) { 1010 tty_lock(s->s_ttyp); 1011 tty_rel_sess(s->s_ttyp, s); 1012 } 1013 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1014 mtx_destroy(&s->s_mtx); 1015 free(s, M_SESSION); 1016 } 1017 } 1018 1019 #ifdef DDB 1020 1021 static void 1022 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1023 { 1024 db_printf( 1025 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1026 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1027 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1028 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1029 } 1030 1031 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) 1032 { 1033 struct pgrp *pgrp; 1034 struct proc *p; 1035 int i; 1036 1037 for (i = 0; i <= pgrphash; i++) { 1038 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1039 db_printf("indx %d\n", i); 1040 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1041 db_printf( 1042 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1043 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1044 pgrp->pg_session->s_count, 1045 LIST_FIRST(&pgrp->pg_members)); 1046 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1047 db_print_pgrp_one(pgrp, p); 1048 } 1049 } 1050 } 1051 } 1052 #endif /* DDB */ 1053 1054 /* 1055 * Calculate the kinfo_proc members which contain process-wide 1056 * informations. 1057 * Must be called with the target process locked. 1058 */ 1059 static void 1060 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1061 { 1062 struct thread *td; 1063 1064 PROC_LOCK_ASSERT(p, MA_OWNED); 1065 1066 kp->ki_estcpu = 0; 1067 kp->ki_pctcpu = 0; 1068 FOREACH_THREAD_IN_PROC(p, td) { 1069 thread_lock(td); 1070 kp->ki_pctcpu += sched_pctcpu(td); 1071 kp->ki_estcpu += sched_estcpu(td); 1072 thread_unlock(td); 1073 } 1074 } 1075 1076 /* 1077 * Fill in any information that is common to all threads in the process. 1078 * Must be called with the target process locked. 1079 */ 1080 static void 1081 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1082 { 1083 struct thread *td0; 1084 struct ucred *cred; 1085 struct sigacts *ps; 1086 struct timeval boottime; 1087 1088 PROC_LOCK_ASSERT(p, MA_OWNED); 1089 1090 kp->ki_structsize = sizeof(*kp); 1091 kp->ki_paddr = p; 1092 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1093 kp->ki_args = p->p_args; 1094 kp->ki_textvp = p->p_textvp; 1095 #ifdef KTRACE 1096 kp->ki_tracep = ktr_get_tracevp(p, false); 1097 kp->ki_traceflag = p->p_traceflag; 1098 #endif 1099 kp->ki_fd = p->p_fd; 1100 kp->ki_pd = p->p_pd; 1101 kp->ki_vmspace = p->p_vmspace; 1102 kp->ki_flag = p->p_flag; 1103 kp->ki_flag2 = p->p_flag2; 1104 cred = p->p_ucred; 1105 if (cred) { 1106 kp->ki_uid = cred->cr_uid; 1107 kp->ki_ruid = cred->cr_ruid; 1108 kp->ki_svuid = cred->cr_svuid; 1109 kp->ki_cr_flags = 0; 1110 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1111 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1112 /* XXX bde doesn't like KI_NGROUPS */ 1113 if (cred->cr_ngroups > KI_NGROUPS) { 1114 kp->ki_ngroups = KI_NGROUPS; 1115 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1116 } else 1117 kp->ki_ngroups = cred->cr_ngroups; 1118 bcopy(cred->cr_groups, kp->ki_groups, 1119 kp->ki_ngroups * sizeof(gid_t)); 1120 kp->ki_rgid = cred->cr_rgid; 1121 kp->ki_svgid = cred->cr_svgid; 1122 /* If jailed(cred), emulate the old P_JAILED flag. */ 1123 if (jailed(cred)) { 1124 kp->ki_flag |= P_JAILED; 1125 /* If inside the jail, use 0 as a jail ID. */ 1126 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1127 kp->ki_jid = cred->cr_prison->pr_id; 1128 } 1129 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1130 sizeof(kp->ki_loginclass)); 1131 } 1132 ps = p->p_sigacts; 1133 if (ps) { 1134 mtx_lock(&ps->ps_mtx); 1135 kp->ki_sigignore = ps->ps_sigignore; 1136 kp->ki_sigcatch = ps->ps_sigcatch; 1137 mtx_unlock(&ps->ps_mtx); 1138 } 1139 if (p->p_state != PRS_NEW && 1140 p->p_state != PRS_ZOMBIE && 1141 p->p_vmspace != NULL) { 1142 struct vmspace *vm = p->p_vmspace; 1143 1144 kp->ki_size = vm->vm_map.size; 1145 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1146 FOREACH_THREAD_IN_PROC(p, td0) 1147 kp->ki_rssize += td0->td_kstack_pages; 1148 kp->ki_swrss = vm->vm_swrss; 1149 kp->ki_tsize = vm->vm_tsize; 1150 kp->ki_dsize = vm->vm_dsize; 1151 kp->ki_ssize = vm->vm_ssize; 1152 } else if (p->p_state == PRS_ZOMBIE) 1153 kp->ki_stat = SZOMB; 1154 kp->ki_sflag = PS_INMEM; 1155 /* Calculate legacy swtime as seconds since 'swtick'. */ 1156 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1157 kp->ki_pid = p->p_pid; 1158 kp->ki_nice = p->p_nice; 1159 kp->ki_fibnum = p->p_fibnum; 1160 kp->ki_start = p->p_stats->p_start; 1161 getboottime(&boottime); 1162 timevaladd(&kp->ki_start, &boottime); 1163 PROC_STATLOCK(p); 1164 rufetch(p, &kp->ki_rusage); 1165 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1166 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1167 PROC_STATUNLOCK(p); 1168 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1169 /* Some callers want child times in a single value. */ 1170 kp->ki_childtime = kp->ki_childstime; 1171 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1172 1173 FOREACH_THREAD_IN_PROC(p, td0) 1174 kp->ki_cow += td0->td_cow; 1175 1176 if (p->p_comm[0] != '\0') 1177 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1178 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1179 p->p_sysent->sv_name[0] != '\0') 1180 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1181 kp->ki_siglist = p->p_siglist; 1182 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1183 kp->ki_acflag = p->p_acflag; 1184 kp->ki_lock = p->p_lock; 1185 if (p->p_pptr) { 1186 kp->ki_ppid = p->p_oppid; 1187 if (p->p_flag & P_TRACED) 1188 kp->ki_tracer = p->p_pptr->p_pid; 1189 } 1190 } 1191 1192 /* 1193 * Fill job-related process information. 1194 */ 1195 static void 1196 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) 1197 { 1198 struct tty *tp; 1199 struct session *sp; 1200 struct pgrp *pgrp; 1201 1202 sx_assert(&proctree_lock, SA_LOCKED); 1203 PROC_LOCK_ASSERT(p, MA_OWNED); 1204 1205 pgrp = p->p_pgrp; 1206 if (pgrp == NULL) 1207 return; 1208 1209 kp->ki_pgid = pgrp->pg_id; 1210 kp->ki_jobc = pgrp_calc_jobc(pgrp); 1211 1212 sp = pgrp->pg_session; 1213 tp = NULL; 1214 1215 if (sp != NULL) { 1216 kp->ki_sid = sp->s_sid; 1217 SESS_LOCK(sp); 1218 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); 1219 if (sp->s_ttyvp) 1220 kp->ki_kiflag |= KI_CTTY; 1221 if (SESS_LEADER(p)) 1222 kp->ki_kiflag |= KI_SLEADER; 1223 tp = sp->s_ttyp; 1224 SESS_UNLOCK(sp); 1225 } 1226 1227 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1228 kp->ki_tdev = tty_udev(tp); 1229 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1230 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1231 if (tp->t_session) 1232 kp->ki_tsid = tp->t_session->s_sid; 1233 } else { 1234 kp->ki_tdev = NODEV; 1235 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1236 } 1237 } 1238 1239 /* 1240 * Fill in information that is thread specific. Must be called with 1241 * target process locked. If 'preferthread' is set, overwrite certain 1242 * process-related fields that are maintained for both threads and 1243 * processes. 1244 */ 1245 static void 1246 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1247 { 1248 struct proc *p; 1249 1250 p = td->td_proc; 1251 kp->ki_tdaddr = td; 1252 PROC_LOCK_ASSERT(p, MA_OWNED); 1253 1254 if (preferthread) 1255 PROC_STATLOCK(p); 1256 thread_lock(td); 1257 if (td->td_wmesg != NULL) 1258 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1259 else 1260 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1261 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1262 sizeof(kp->ki_tdname)) { 1263 strlcpy(kp->ki_moretdname, 1264 td->td_name + sizeof(kp->ki_tdname) - 1, 1265 sizeof(kp->ki_moretdname)); 1266 } else { 1267 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1268 } 1269 if (TD_ON_LOCK(td)) { 1270 kp->ki_kiflag |= KI_LOCKBLOCK; 1271 strlcpy(kp->ki_lockname, td->td_lockname, 1272 sizeof(kp->ki_lockname)); 1273 } else { 1274 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1275 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1276 } 1277 1278 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1279 if (TD_ON_RUNQ(td) || 1280 TD_CAN_RUN(td) || 1281 TD_IS_RUNNING(td)) { 1282 kp->ki_stat = SRUN; 1283 } else if (P_SHOULDSTOP(p)) { 1284 kp->ki_stat = SSTOP; 1285 } else if (TD_IS_SLEEPING(td)) { 1286 kp->ki_stat = SSLEEP; 1287 } else if (TD_ON_LOCK(td)) { 1288 kp->ki_stat = SLOCK; 1289 } else { 1290 kp->ki_stat = SWAIT; 1291 } 1292 } else if (p->p_state == PRS_ZOMBIE) { 1293 kp->ki_stat = SZOMB; 1294 } else { 1295 kp->ki_stat = SIDL; 1296 } 1297 1298 /* Things in the thread */ 1299 kp->ki_wchan = td->td_wchan; 1300 kp->ki_pri.pri_level = td->td_priority; 1301 kp->ki_pri.pri_native = td->td_base_pri; 1302 1303 /* 1304 * Note: legacy fields; clamp at the old NOCPU value and/or 1305 * the maximum u_char CPU value. 1306 */ 1307 if (td->td_lastcpu == NOCPU) 1308 kp->ki_lastcpu_old = NOCPU_OLD; 1309 else if (td->td_lastcpu > MAXCPU_OLD) 1310 kp->ki_lastcpu_old = MAXCPU_OLD; 1311 else 1312 kp->ki_lastcpu_old = td->td_lastcpu; 1313 1314 if (td->td_oncpu == NOCPU) 1315 kp->ki_oncpu_old = NOCPU_OLD; 1316 else if (td->td_oncpu > MAXCPU_OLD) 1317 kp->ki_oncpu_old = MAXCPU_OLD; 1318 else 1319 kp->ki_oncpu_old = td->td_oncpu; 1320 1321 kp->ki_lastcpu = td->td_lastcpu; 1322 kp->ki_oncpu = td->td_oncpu; 1323 kp->ki_tdflags = td->td_flags; 1324 kp->ki_tid = td->td_tid; 1325 kp->ki_numthreads = p->p_numthreads; 1326 kp->ki_pcb = td->td_pcb; 1327 kp->ki_kstack = (void *)td->td_kstack; 1328 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1329 kp->ki_pri.pri_class = td->td_pri_class; 1330 kp->ki_pri.pri_user = td->td_user_pri; 1331 1332 if (preferthread) { 1333 rufetchtd(td, &kp->ki_rusage); 1334 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1335 kp->ki_pctcpu = sched_pctcpu(td); 1336 kp->ki_estcpu = sched_estcpu(td); 1337 kp->ki_cow = td->td_cow; 1338 } 1339 1340 /* We can't get this anymore but ps etc never used it anyway. */ 1341 kp->ki_rqindex = 0; 1342 1343 if (preferthread) 1344 kp->ki_siglist = td->td_siglist; 1345 kp->ki_sigmask = td->td_sigmask; 1346 thread_unlock(td); 1347 if (preferthread) 1348 PROC_STATUNLOCK(p); 1349 } 1350 1351 /* 1352 * Fill in a kinfo_proc structure for the specified process. 1353 * Must be called with the target process locked. 1354 */ 1355 void 1356 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1357 { 1358 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1359 1360 bzero(kp, sizeof(*kp)); 1361 1362 fill_kinfo_proc_pgrp(p,kp); 1363 fill_kinfo_proc_only(p, kp); 1364 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1365 fill_kinfo_aggregate(p, kp); 1366 } 1367 1368 struct pstats * 1369 pstats_alloc(void) 1370 { 1371 1372 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1373 } 1374 1375 /* 1376 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1377 */ 1378 void 1379 pstats_fork(struct pstats *src, struct pstats *dst) 1380 { 1381 1382 bzero(&dst->pstat_startzero, 1383 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1384 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1385 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1386 } 1387 1388 void 1389 pstats_free(struct pstats *ps) 1390 { 1391 1392 free(ps, M_SUBPROC); 1393 } 1394 1395 #ifdef COMPAT_FREEBSD32 1396 1397 /* 1398 * This function is typically used to copy out the kernel address, so 1399 * it can be replaced by assignment of zero. 1400 */ 1401 static inline uint32_t 1402 ptr32_trim(const void *ptr) 1403 { 1404 uintptr_t uptr; 1405 1406 uptr = (uintptr_t)ptr; 1407 return ((uptr > UINT_MAX) ? 0 : uptr); 1408 } 1409 1410 #define PTRTRIM_CP(src,dst,fld) \ 1411 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1412 1413 static void 1414 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1415 { 1416 int i; 1417 1418 bzero(ki32, sizeof(struct kinfo_proc32)); 1419 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1420 CP(*ki, *ki32, ki_layout); 1421 PTRTRIM_CP(*ki, *ki32, ki_args); 1422 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1423 PTRTRIM_CP(*ki, *ki32, ki_addr); 1424 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1425 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1426 PTRTRIM_CP(*ki, *ki32, ki_fd); 1427 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1428 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1429 CP(*ki, *ki32, ki_pid); 1430 CP(*ki, *ki32, ki_ppid); 1431 CP(*ki, *ki32, ki_pgid); 1432 CP(*ki, *ki32, ki_tpgid); 1433 CP(*ki, *ki32, ki_sid); 1434 CP(*ki, *ki32, ki_tsid); 1435 CP(*ki, *ki32, ki_jobc); 1436 CP(*ki, *ki32, ki_tdev); 1437 CP(*ki, *ki32, ki_tdev_freebsd11); 1438 CP(*ki, *ki32, ki_siglist); 1439 CP(*ki, *ki32, ki_sigmask); 1440 CP(*ki, *ki32, ki_sigignore); 1441 CP(*ki, *ki32, ki_sigcatch); 1442 CP(*ki, *ki32, ki_uid); 1443 CP(*ki, *ki32, ki_ruid); 1444 CP(*ki, *ki32, ki_svuid); 1445 CP(*ki, *ki32, ki_rgid); 1446 CP(*ki, *ki32, ki_svgid); 1447 CP(*ki, *ki32, ki_ngroups); 1448 for (i = 0; i < KI_NGROUPS; i++) 1449 CP(*ki, *ki32, ki_groups[i]); 1450 CP(*ki, *ki32, ki_size); 1451 CP(*ki, *ki32, ki_rssize); 1452 CP(*ki, *ki32, ki_swrss); 1453 CP(*ki, *ki32, ki_tsize); 1454 CP(*ki, *ki32, ki_dsize); 1455 CP(*ki, *ki32, ki_ssize); 1456 CP(*ki, *ki32, ki_xstat); 1457 CP(*ki, *ki32, ki_acflag); 1458 CP(*ki, *ki32, ki_pctcpu); 1459 CP(*ki, *ki32, ki_estcpu); 1460 CP(*ki, *ki32, ki_slptime); 1461 CP(*ki, *ki32, ki_swtime); 1462 CP(*ki, *ki32, ki_cow); 1463 CP(*ki, *ki32, ki_runtime); 1464 TV_CP(*ki, *ki32, ki_start); 1465 TV_CP(*ki, *ki32, ki_childtime); 1466 CP(*ki, *ki32, ki_flag); 1467 CP(*ki, *ki32, ki_kiflag); 1468 CP(*ki, *ki32, ki_traceflag); 1469 CP(*ki, *ki32, ki_stat); 1470 CP(*ki, *ki32, ki_nice); 1471 CP(*ki, *ki32, ki_lock); 1472 CP(*ki, *ki32, ki_rqindex); 1473 CP(*ki, *ki32, ki_oncpu); 1474 CP(*ki, *ki32, ki_lastcpu); 1475 1476 /* XXX TODO: wrap cpu value as appropriate */ 1477 CP(*ki, *ki32, ki_oncpu_old); 1478 CP(*ki, *ki32, ki_lastcpu_old); 1479 1480 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1481 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1482 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1483 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1484 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1485 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1486 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1487 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1488 CP(*ki, *ki32, ki_tracer); 1489 CP(*ki, *ki32, ki_flag2); 1490 CP(*ki, *ki32, ki_fibnum); 1491 CP(*ki, *ki32, ki_cr_flags); 1492 CP(*ki, *ki32, ki_jid); 1493 CP(*ki, *ki32, ki_numthreads); 1494 CP(*ki, *ki32, ki_tid); 1495 CP(*ki, *ki32, ki_pri); 1496 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1497 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1498 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1499 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1500 PTRTRIM_CP(*ki, *ki32, ki_udata); 1501 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1502 CP(*ki, *ki32, ki_sflag); 1503 CP(*ki, *ki32, ki_tdflags); 1504 } 1505 #endif 1506 1507 static ssize_t 1508 kern_proc_out_size(struct proc *p, int flags) 1509 { 1510 ssize_t size = 0; 1511 1512 PROC_LOCK_ASSERT(p, MA_OWNED); 1513 1514 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1515 #ifdef COMPAT_FREEBSD32 1516 if ((flags & KERN_PROC_MASK32) != 0) { 1517 size += sizeof(struct kinfo_proc32); 1518 } else 1519 #endif 1520 size += sizeof(struct kinfo_proc); 1521 } else { 1522 #ifdef COMPAT_FREEBSD32 1523 if ((flags & KERN_PROC_MASK32) != 0) 1524 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1525 else 1526 #endif 1527 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1528 } 1529 PROC_UNLOCK(p); 1530 return (size); 1531 } 1532 1533 int 1534 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1535 { 1536 struct thread *td; 1537 struct kinfo_proc ki; 1538 #ifdef COMPAT_FREEBSD32 1539 struct kinfo_proc32 ki32; 1540 #endif 1541 int error; 1542 1543 PROC_LOCK_ASSERT(p, MA_OWNED); 1544 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1545 1546 error = 0; 1547 fill_kinfo_proc(p, &ki); 1548 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1549 #ifdef COMPAT_FREEBSD32 1550 if ((flags & KERN_PROC_MASK32) != 0) { 1551 freebsd32_kinfo_proc_out(&ki, &ki32); 1552 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1553 error = ENOMEM; 1554 } else 1555 #endif 1556 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1557 error = ENOMEM; 1558 } else { 1559 FOREACH_THREAD_IN_PROC(p, td) { 1560 fill_kinfo_thread(td, &ki, 1); 1561 #ifdef COMPAT_FREEBSD32 1562 if ((flags & KERN_PROC_MASK32) != 0) { 1563 freebsd32_kinfo_proc_out(&ki, &ki32); 1564 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1565 error = ENOMEM; 1566 } else 1567 #endif 1568 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1569 error = ENOMEM; 1570 if (error != 0) 1571 break; 1572 } 1573 } 1574 PROC_UNLOCK(p); 1575 return (error); 1576 } 1577 1578 static int 1579 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1580 { 1581 struct sbuf sb; 1582 struct kinfo_proc ki; 1583 int error, error2; 1584 1585 if (req->oldptr == NULL) 1586 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1587 1588 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1589 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1590 error = kern_proc_out(p, &sb, flags); 1591 error2 = sbuf_finish(&sb); 1592 sbuf_delete(&sb); 1593 if (error != 0) 1594 return (error); 1595 else if (error2 != 0) 1596 return (error2); 1597 return (0); 1598 } 1599 1600 int 1601 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1602 { 1603 struct proc *p; 1604 int error, i, j; 1605 1606 for (i = 0; i < pidhashlock + 1; i++) { 1607 sx_slock(&proctree_lock); 1608 sx_slock(&pidhashtbl_lock[i]); 1609 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1610 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1611 if (p->p_state == PRS_NEW) 1612 continue; 1613 error = cb(p, cbarg); 1614 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1615 if (error != 0) { 1616 sx_sunlock(&pidhashtbl_lock[i]); 1617 sx_sunlock(&proctree_lock); 1618 return (error); 1619 } 1620 } 1621 } 1622 sx_sunlock(&pidhashtbl_lock[i]); 1623 sx_sunlock(&proctree_lock); 1624 } 1625 return (0); 1626 } 1627 1628 struct kern_proc_out_args { 1629 struct sysctl_req *req; 1630 int flags; 1631 int oid_number; 1632 int *name; 1633 }; 1634 1635 static int 1636 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1637 { 1638 struct kern_proc_out_args *arg = origarg; 1639 int *name = arg->name; 1640 int oid_number = arg->oid_number; 1641 int flags = arg->flags; 1642 struct sysctl_req *req = arg->req; 1643 int error = 0; 1644 1645 PROC_LOCK(p); 1646 1647 KASSERT(p->p_ucred != NULL, 1648 ("process credential is NULL for non-NEW proc")); 1649 /* 1650 * Show a user only appropriate processes. 1651 */ 1652 if (p_cansee(curthread, p)) 1653 goto skip; 1654 /* 1655 * TODO - make more efficient (see notes below). 1656 * do by session. 1657 */ 1658 switch (oid_number) { 1659 case KERN_PROC_GID: 1660 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1661 goto skip; 1662 break; 1663 1664 case KERN_PROC_PGRP: 1665 /* could do this by traversing pgrp */ 1666 if (p->p_pgrp == NULL || 1667 p->p_pgrp->pg_id != (pid_t)name[0]) 1668 goto skip; 1669 break; 1670 1671 case KERN_PROC_RGID: 1672 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1673 goto skip; 1674 break; 1675 1676 case KERN_PROC_SESSION: 1677 if (p->p_session == NULL || 1678 p->p_session->s_sid != (pid_t)name[0]) 1679 goto skip; 1680 break; 1681 1682 case KERN_PROC_TTY: 1683 if ((p->p_flag & P_CONTROLT) == 0 || 1684 p->p_session == NULL) 1685 goto skip; 1686 /* XXX proctree_lock */ 1687 SESS_LOCK(p->p_session); 1688 if (p->p_session->s_ttyp == NULL || 1689 tty_udev(p->p_session->s_ttyp) != 1690 (dev_t)name[0]) { 1691 SESS_UNLOCK(p->p_session); 1692 goto skip; 1693 } 1694 SESS_UNLOCK(p->p_session); 1695 break; 1696 1697 case KERN_PROC_UID: 1698 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1699 goto skip; 1700 break; 1701 1702 case KERN_PROC_RUID: 1703 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1704 goto skip; 1705 break; 1706 1707 case KERN_PROC_PROC: 1708 break; 1709 1710 default: 1711 break; 1712 } 1713 error = sysctl_out_proc(p, req, flags); 1714 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1715 return (error); 1716 skip: 1717 PROC_UNLOCK(p); 1718 return (0); 1719 } 1720 1721 static int 1722 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1723 { 1724 struct kern_proc_out_args iterarg; 1725 int *name = (int *)arg1; 1726 u_int namelen = arg2; 1727 struct proc *p; 1728 int flags, oid_number; 1729 int error = 0; 1730 1731 oid_number = oidp->oid_number; 1732 if (oid_number != KERN_PROC_ALL && 1733 (oid_number & KERN_PROC_INC_THREAD) == 0) 1734 flags = KERN_PROC_NOTHREADS; 1735 else { 1736 flags = 0; 1737 oid_number &= ~KERN_PROC_INC_THREAD; 1738 } 1739 #ifdef COMPAT_FREEBSD32 1740 if (req->flags & SCTL_MASK32) 1741 flags |= KERN_PROC_MASK32; 1742 #endif 1743 if (oid_number == KERN_PROC_PID) { 1744 if (namelen != 1) 1745 return (EINVAL); 1746 error = sysctl_wire_old_buffer(req, 0); 1747 if (error) 1748 return (error); 1749 sx_slock(&proctree_lock); 1750 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1751 if (error == 0) 1752 error = sysctl_out_proc(p, req, flags); 1753 sx_sunlock(&proctree_lock); 1754 return (error); 1755 } 1756 1757 switch (oid_number) { 1758 case KERN_PROC_ALL: 1759 if (namelen != 0) 1760 return (EINVAL); 1761 break; 1762 case KERN_PROC_PROC: 1763 if (namelen != 0 && namelen != 1) 1764 return (EINVAL); 1765 break; 1766 default: 1767 if (namelen != 1) 1768 return (EINVAL); 1769 break; 1770 } 1771 1772 if (req->oldptr == NULL) { 1773 /* overestimate by 5 procs */ 1774 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1775 if (error) 1776 return (error); 1777 } else { 1778 error = sysctl_wire_old_buffer(req, 0); 1779 if (error != 0) 1780 return (error); 1781 } 1782 iterarg.flags = flags; 1783 iterarg.oid_number = oid_number; 1784 iterarg.req = req; 1785 iterarg.name = name; 1786 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1787 return (error); 1788 } 1789 1790 struct pargs * 1791 pargs_alloc(int len) 1792 { 1793 struct pargs *pa; 1794 1795 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1796 M_WAITOK); 1797 refcount_init(&pa->ar_ref, 1); 1798 pa->ar_length = len; 1799 return (pa); 1800 } 1801 1802 static void 1803 pargs_free(struct pargs *pa) 1804 { 1805 1806 free(pa, M_PARGS); 1807 } 1808 1809 void 1810 pargs_hold(struct pargs *pa) 1811 { 1812 1813 if (pa == NULL) 1814 return; 1815 refcount_acquire(&pa->ar_ref); 1816 } 1817 1818 void 1819 pargs_drop(struct pargs *pa) 1820 { 1821 1822 if (pa == NULL) 1823 return; 1824 if (refcount_release(&pa->ar_ref)) 1825 pargs_free(pa); 1826 } 1827 1828 static int 1829 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1830 size_t len) 1831 { 1832 ssize_t n; 1833 1834 /* 1835 * This may return a short read if the string is shorter than the chunk 1836 * and is aligned at the end of the page, and the following page is not 1837 * mapped. 1838 */ 1839 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1840 if (n <= 0) 1841 return (ENOMEM); 1842 return (0); 1843 } 1844 1845 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1846 1847 enum proc_vector_type { 1848 PROC_ARG, 1849 PROC_ENV, 1850 PROC_AUX, 1851 }; 1852 1853 #ifdef COMPAT_FREEBSD32 1854 static int 1855 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1856 size_t *vsizep, enum proc_vector_type type) 1857 { 1858 struct freebsd32_ps_strings pss; 1859 Elf32_Auxinfo aux; 1860 vm_offset_t vptr, ptr; 1861 uint32_t *proc_vector32; 1862 char **proc_vector; 1863 size_t vsize, size; 1864 int i, error; 1865 1866 error = 0; 1867 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1868 sizeof(pss)) 1869 return (ENOMEM); 1870 switch (type) { 1871 case PROC_ARG: 1872 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1873 vsize = pss.ps_nargvstr; 1874 if (vsize > ARG_MAX) 1875 return (ENOEXEC); 1876 size = vsize * sizeof(int32_t); 1877 break; 1878 case PROC_ENV: 1879 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1880 vsize = pss.ps_nenvstr; 1881 if (vsize > ARG_MAX) 1882 return (ENOEXEC); 1883 size = vsize * sizeof(int32_t); 1884 break; 1885 case PROC_AUX: 1886 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1887 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1888 if (vptr % 4 != 0) 1889 return (ENOEXEC); 1890 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1891 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1892 sizeof(aux)) 1893 return (ENOMEM); 1894 if (aux.a_type == AT_NULL) 1895 break; 1896 ptr += sizeof(aux); 1897 } 1898 if (aux.a_type != AT_NULL) 1899 return (ENOEXEC); 1900 vsize = i + 1; 1901 size = vsize * sizeof(aux); 1902 break; 1903 default: 1904 KASSERT(0, ("Wrong proc vector type: %d", type)); 1905 return (EINVAL); 1906 } 1907 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1908 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1909 error = ENOMEM; 1910 goto done; 1911 } 1912 if (type == PROC_AUX) { 1913 *proc_vectorp = (char **)proc_vector32; 1914 *vsizep = vsize; 1915 return (0); 1916 } 1917 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1918 for (i = 0; i < (int)vsize; i++) 1919 proc_vector[i] = PTRIN(proc_vector32[i]); 1920 *proc_vectorp = proc_vector; 1921 *vsizep = vsize; 1922 done: 1923 free(proc_vector32, M_TEMP); 1924 return (error); 1925 } 1926 #endif 1927 1928 static int 1929 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1930 size_t *vsizep, enum proc_vector_type type) 1931 { 1932 struct ps_strings pss; 1933 Elf_Auxinfo aux; 1934 vm_offset_t vptr, ptr; 1935 char **proc_vector; 1936 size_t vsize, size; 1937 int i; 1938 1939 #ifdef COMPAT_FREEBSD32 1940 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1941 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1942 #endif 1943 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1944 sizeof(pss)) 1945 return (ENOMEM); 1946 switch (type) { 1947 case PROC_ARG: 1948 vptr = (vm_offset_t)pss.ps_argvstr; 1949 vsize = pss.ps_nargvstr; 1950 if (vsize > ARG_MAX) 1951 return (ENOEXEC); 1952 size = vsize * sizeof(char *); 1953 break; 1954 case PROC_ENV: 1955 vptr = (vm_offset_t)pss.ps_envstr; 1956 vsize = pss.ps_nenvstr; 1957 if (vsize > ARG_MAX) 1958 return (ENOEXEC); 1959 size = vsize * sizeof(char *); 1960 break; 1961 case PROC_AUX: 1962 /* 1963 * The aux array is just above env array on the stack. Check 1964 * that the address is naturally aligned. 1965 */ 1966 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1967 * sizeof(char *); 1968 #if __ELF_WORD_SIZE == 64 1969 if (vptr % sizeof(uint64_t) != 0) 1970 #else 1971 if (vptr % sizeof(uint32_t) != 0) 1972 #endif 1973 return (ENOEXEC); 1974 /* 1975 * We count the array size reading the aux vectors from the 1976 * stack until AT_NULL vector is returned. So (to keep the code 1977 * simple) we read the process stack twice: the first time here 1978 * to find the size and the second time when copying the vectors 1979 * to the allocated proc_vector. 1980 */ 1981 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1982 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1983 sizeof(aux)) 1984 return (ENOMEM); 1985 if (aux.a_type == AT_NULL) 1986 break; 1987 ptr += sizeof(aux); 1988 } 1989 /* 1990 * If the PROC_AUXV_MAX entries are iterated over, and we have 1991 * not reached AT_NULL, it is most likely we are reading wrong 1992 * data: either the process doesn't have auxv array or data has 1993 * been modified. Return the error in this case. 1994 */ 1995 if (aux.a_type != AT_NULL) 1996 return (ENOEXEC); 1997 vsize = i + 1; 1998 size = vsize * sizeof(aux); 1999 break; 2000 default: 2001 KASSERT(0, ("Wrong proc vector type: %d", type)); 2002 return (EINVAL); /* In case we are built without INVARIANTS. */ 2003 } 2004 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2005 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2006 free(proc_vector, M_TEMP); 2007 return (ENOMEM); 2008 } 2009 *proc_vectorp = proc_vector; 2010 *vsizep = vsize; 2011 2012 return (0); 2013 } 2014 2015 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2016 2017 static int 2018 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2019 enum proc_vector_type type) 2020 { 2021 size_t done, len, nchr, vsize; 2022 int error, i; 2023 char **proc_vector, *sptr; 2024 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2025 2026 PROC_ASSERT_HELD(p); 2027 2028 /* 2029 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2030 */ 2031 nchr = 2 * (PATH_MAX + ARG_MAX); 2032 2033 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2034 if (error != 0) 2035 return (error); 2036 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2037 /* 2038 * The program may have scribbled into its argv array, e.g. to 2039 * remove some arguments. If that has happened, break out 2040 * before trying to read from NULL. 2041 */ 2042 if (proc_vector[i] == NULL) 2043 break; 2044 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2045 error = proc_read_string(td, p, sptr, pss_string, 2046 sizeof(pss_string)); 2047 if (error != 0) 2048 goto done; 2049 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2050 if (done + len >= nchr) 2051 len = nchr - done - 1; 2052 sbuf_bcat(sb, pss_string, len); 2053 if (len != GET_PS_STRINGS_CHUNK_SZ) 2054 break; 2055 done += GET_PS_STRINGS_CHUNK_SZ; 2056 } 2057 sbuf_bcat(sb, "", 1); 2058 done += len + 1; 2059 } 2060 done: 2061 free(proc_vector, M_TEMP); 2062 return (error); 2063 } 2064 2065 int 2066 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2067 { 2068 2069 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2070 } 2071 2072 int 2073 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2074 { 2075 2076 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2077 } 2078 2079 int 2080 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2081 { 2082 size_t vsize, size; 2083 char **auxv; 2084 int error; 2085 2086 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2087 if (error == 0) { 2088 #ifdef COMPAT_FREEBSD32 2089 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2090 size = vsize * sizeof(Elf32_Auxinfo); 2091 else 2092 #endif 2093 size = vsize * sizeof(Elf_Auxinfo); 2094 if (sbuf_bcat(sb, auxv, size) != 0) 2095 error = ENOMEM; 2096 free(auxv, M_TEMP); 2097 } 2098 return (error); 2099 } 2100 2101 /* 2102 * This sysctl allows a process to retrieve the argument list or process 2103 * title for another process without groping around in the address space 2104 * of the other process. It also allow a process to set its own "process 2105 * title to a string of its own choice. 2106 */ 2107 static int 2108 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2109 { 2110 int *name = (int *)arg1; 2111 u_int namelen = arg2; 2112 struct pargs *newpa, *pa; 2113 struct proc *p; 2114 struct sbuf sb; 2115 int flags, error = 0, error2; 2116 pid_t pid; 2117 2118 if (namelen != 1) 2119 return (EINVAL); 2120 2121 p = curproc; 2122 pid = (pid_t)name[0]; 2123 if (pid == -1) { 2124 pid = p->p_pid; 2125 } 2126 2127 /* 2128 * If the query is for this process and it is single-threaded, there 2129 * is nobody to modify pargs, thus we can just read. 2130 */ 2131 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2132 (pa = p->p_args) != NULL) 2133 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2134 2135 flags = PGET_CANSEE; 2136 if (req->newptr != NULL) 2137 flags |= PGET_ISCURRENT; 2138 error = pget(pid, flags, &p); 2139 if (error) 2140 return (error); 2141 2142 pa = p->p_args; 2143 if (pa != NULL) { 2144 pargs_hold(pa); 2145 PROC_UNLOCK(p); 2146 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2147 pargs_drop(pa); 2148 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2149 _PHOLD(p); 2150 PROC_UNLOCK(p); 2151 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2152 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2153 error = proc_getargv(curthread, p, &sb); 2154 error2 = sbuf_finish(&sb); 2155 PRELE(p); 2156 sbuf_delete(&sb); 2157 if (error == 0 && error2 != 0) 2158 error = error2; 2159 } else { 2160 PROC_UNLOCK(p); 2161 } 2162 if (error != 0 || req->newptr == NULL) 2163 return (error); 2164 2165 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2166 return (ENOMEM); 2167 2168 if (req->newlen == 0) { 2169 /* 2170 * Clear the argument pointer, so that we'll fetch arguments 2171 * with proc_getargv() until further notice. 2172 */ 2173 newpa = NULL; 2174 } else { 2175 newpa = pargs_alloc(req->newlen); 2176 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2177 if (error != 0) { 2178 pargs_free(newpa); 2179 return (error); 2180 } 2181 } 2182 PROC_LOCK(p); 2183 pa = p->p_args; 2184 p->p_args = newpa; 2185 PROC_UNLOCK(p); 2186 pargs_drop(pa); 2187 return (0); 2188 } 2189 2190 /* 2191 * This sysctl allows a process to retrieve environment of another process. 2192 */ 2193 static int 2194 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2195 { 2196 int *name = (int *)arg1; 2197 u_int namelen = arg2; 2198 struct proc *p; 2199 struct sbuf sb; 2200 int error, error2; 2201 2202 if (namelen != 1) 2203 return (EINVAL); 2204 2205 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2206 if (error != 0) 2207 return (error); 2208 if ((p->p_flag & P_SYSTEM) != 0) { 2209 PRELE(p); 2210 return (0); 2211 } 2212 2213 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2214 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2215 error = proc_getenvv(curthread, p, &sb); 2216 error2 = sbuf_finish(&sb); 2217 PRELE(p); 2218 sbuf_delete(&sb); 2219 return (error != 0 ? error : error2); 2220 } 2221 2222 /* 2223 * This sysctl allows a process to retrieve ELF auxiliary vector of 2224 * another process. 2225 */ 2226 static int 2227 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2228 { 2229 int *name = (int *)arg1; 2230 u_int namelen = arg2; 2231 struct proc *p; 2232 struct sbuf sb; 2233 int error, error2; 2234 2235 if (namelen != 1) 2236 return (EINVAL); 2237 2238 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2239 if (error != 0) 2240 return (error); 2241 if ((p->p_flag & P_SYSTEM) != 0) { 2242 PRELE(p); 2243 return (0); 2244 } 2245 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2246 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2247 error = proc_getauxv(curthread, p, &sb); 2248 error2 = sbuf_finish(&sb); 2249 PRELE(p); 2250 sbuf_delete(&sb); 2251 return (error != 0 ? error : error2); 2252 } 2253 2254 /* 2255 * Look up the canonical executable path running in the specified process. 2256 * It tries to return the same hardlink name as was used for execve(2). 2257 * This allows the programs that modify their behavior based on their progname, 2258 * to operate correctly. 2259 * 2260 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() 2261 * calling conventions. 2262 * binname is a pointer to temporary string buffer of length MAXPATHLEN, 2263 * allocated and freed by caller. 2264 * freebuf should be freed by caller, from the M_TEMP malloc type. 2265 */ 2266 int 2267 proc_get_binpath(struct proc *p, char *binname, char **retbuf, 2268 char **freebuf) 2269 { 2270 struct nameidata nd; 2271 struct vnode *vp, *dvp; 2272 size_t freepath_size; 2273 int error; 2274 bool do_fullpath; 2275 2276 PROC_LOCK_ASSERT(p, MA_OWNED); 2277 2278 vp = p->p_textvp; 2279 if (vp == NULL) { 2280 PROC_UNLOCK(p); 2281 *retbuf = ""; 2282 *freebuf = NULL; 2283 return (0); 2284 } 2285 vref(vp); 2286 dvp = p->p_textdvp; 2287 if (dvp != NULL) 2288 vref(dvp); 2289 if (p->p_binname != NULL) 2290 strlcpy(binname, p->p_binname, MAXPATHLEN); 2291 PROC_UNLOCK(p); 2292 2293 do_fullpath = true; 2294 *freebuf = NULL; 2295 if (dvp != NULL && binname[0] != '\0') { 2296 freepath_size = MAXPATHLEN; 2297 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), 2298 retbuf, freebuf, &freepath_size) == 0) { 2299 /* 2300 * Recheck the looked up path. The binary 2301 * might have been renamed or replaced, in 2302 * which case we should not report old name. 2303 */ 2304 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); 2305 error = namei(&nd); 2306 if (error == 0) { 2307 if (nd.ni_vp == vp) 2308 do_fullpath = false; 2309 vrele(nd.ni_vp); 2310 NDFREE_PNBUF(&nd); 2311 } 2312 } 2313 } 2314 if (do_fullpath) { 2315 free(*freebuf, M_TEMP); 2316 *freebuf = NULL; 2317 error = vn_fullpath(vp, retbuf, freebuf); 2318 } 2319 vrele(vp); 2320 if (dvp != NULL) 2321 vrele(dvp); 2322 return (error); 2323 } 2324 2325 /* 2326 * This sysctl allows a process to retrieve the path of the executable for 2327 * itself or another process. 2328 */ 2329 static int 2330 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2331 { 2332 pid_t *pidp = (pid_t *)arg1; 2333 unsigned int arglen = arg2; 2334 struct proc *p; 2335 char *retbuf, *freebuf, *binname; 2336 int error; 2337 2338 if (arglen != 1) 2339 return (EINVAL); 2340 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2341 binname[0] = '\0'; 2342 if (*pidp == -1) { /* -1 means this process */ 2343 error = 0; 2344 p = req->td->td_proc; 2345 PROC_LOCK(p); 2346 } else { 2347 error = pget(*pidp, PGET_CANSEE, &p); 2348 } 2349 2350 if (error == 0) 2351 error = proc_get_binpath(p, binname, &retbuf, &freebuf); 2352 free(binname, M_TEMP); 2353 if (error != 0) 2354 return (error); 2355 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2356 free(freebuf, M_TEMP); 2357 return (error); 2358 } 2359 2360 static int 2361 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2362 { 2363 struct proc *p; 2364 char *sv_name; 2365 int *name; 2366 int namelen; 2367 int error; 2368 2369 namelen = arg2; 2370 if (namelen != 1) 2371 return (EINVAL); 2372 2373 name = (int *)arg1; 2374 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2375 if (error != 0) 2376 return (error); 2377 sv_name = p->p_sysent->sv_name; 2378 PROC_UNLOCK(p); 2379 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2380 } 2381 2382 #ifdef KINFO_OVMENTRY_SIZE 2383 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2384 #endif 2385 2386 #ifdef COMPAT_FREEBSD7 2387 static int 2388 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2389 { 2390 vm_map_entry_t entry, tmp_entry; 2391 unsigned int last_timestamp, namelen; 2392 char *fullpath, *freepath; 2393 struct kinfo_ovmentry *kve; 2394 struct vattr va; 2395 struct ucred *cred; 2396 int error, *name; 2397 struct vnode *vp; 2398 struct proc *p; 2399 vm_map_t map; 2400 struct vmspace *vm; 2401 2402 namelen = arg2; 2403 if (namelen != 1) 2404 return (EINVAL); 2405 2406 name = (int *)arg1; 2407 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2408 if (error != 0) 2409 return (error); 2410 vm = vmspace_acquire_ref(p); 2411 if (vm == NULL) { 2412 PRELE(p); 2413 return (ESRCH); 2414 } 2415 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2416 2417 map = &vm->vm_map; 2418 vm_map_lock_read(map); 2419 VM_MAP_ENTRY_FOREACH(entry, map) { 2420 vm_object_t obj, tobj, lobj; 2421 vm_offset_t addr; 2422 2423 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2424 continue; 2425 2426 bzero(kve, sizeof(*kve)); 2427 kve->kve_structsize = sizeof(*kve); 2428 2429 kve->kve_private_resident = 0; 2430 obj = entry->object.vm_object; 2431 if (obj != NULL) { 2432 VM_OBJECT_RLOCK(obj); 2433 if (obj->shadow_count == 1) 2434 kve->kve_private_resident = 2435 obj->resident_page_count; 2436 } 2437 kve->kve_resident = 0; 2438 addr = entry->start; 2439 while (addr < entry->end) { 2440 if (pmap_extract(map->pmap, addr)) 2441 kve->kve_resident++; 2442 addr += PAGE_SIZE; 2443 } 2444 2445 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2446 if (tobj != obj) { 2447 VM_OBJECT_RLOCK(tobj); 2448 kve->kve_offset += tobj->backing_object_offset; 2449 } 2450 if (lobj != obj) 2451 VM_OBJECT_RUNLOCK(lobj); 2452 lobj = tobj; 2453 } 2454 2455 kve->kve_start = (void*)entry->start; 2456 kve->kve_end = (void*)entry->end; 2457 kve->kve_offset += (off_t)entry->offset; 2458 2459 if (entry->protection & VM_PROT_READ) 2460 kve->kve_protection |= KVME_PROT_READ; 2461 if (entry->protection & VM_PROT_WRITE) 2462 kve->kve_protection |= KVME_PROT_WRITE; 2463 if (entry->protection & VM_PROT_EXECUTE) 2464 kve->kve_protection |= KVME_PROT_EXEC; 2465 2466 if (entry->eflags & MAP_ENTRY_COW) 2467 kve->kve_flags |= KVME_FLAG_COW; 2468 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2469 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2470 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2471 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2472 2473 last_timestamp = map->timestamp; 2474 vm_map_unlock_read(map); 2475 2476 kve->kve_fileid = 0; 2477 kve->kve_fsid = 0; 2478 freepath = NULL; 2479 fullpath = ""; 2480 if (lobj) { 2481 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2482 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2483 kve->kve_type = KVME_TYPE_UNKNOWN; 2484 if (vp != NULL) 2485 vref(vp); 2486 if (lobj != obj) 2487 VM_OBJECT_RUNLOCK(lobj); 2488 2489 kve->kve_ref_count = obj->ref_count; 2490 kve->kve_shadow_count = obj->shadow_count; 2491 VM_OBJECT_RUNLOCK(obj); 2492 if (vp != NULL) { 2493 vn_fullpath(vp, &fullpath, &freepath); 2494 cred = curthread->td_ucred; 2495 vn_lock(vp, LK_SHARED | LK_RETRY); 2496 if (VOP_GETATTR(vp, &va, cred) == 0) { 2497 kve->kve_fileid = va.va_fileid; 2498 /* truncate */ 2499 kve->kve_fsid = va.va_fsid; 2500 } 2501 vput(vp); 2502 } 2503 } else { 2504 kve->kve_type = KVME_TYPE_NONE; 2505 kve->kve_ref_count = 0; 2506 kve->kve_shadow_count = 0; 2507 } 2508 2509 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2510 if (freepath != NULL) 2511 free(freepath, M_TEMP); 2512 2513 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2514 vm_map_lock_read(map); 2515 if (error) 2516 break; 2517 if (last_timestamp != map->timestamp) { 2518 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2519 entry = tmp_entry; 2520 } 2521 } 2522 vm_map_unlock_read(map); 2523 vmspace_free(vm); 2524 PRELE(p); 2525 free(kve, M_TEMP); 2526 return (error); 2527 } 2528 #endif /* COMPAT_FREEBSD7 */ 2529 2530 #ifdef KINFO_VMENTRY_SIZE 2531 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2532 #endif 2533 2534 void 2535 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2536 int *resident_count, bool *super) 2537 { 2538 vm_object_t obj, tobj; 2539 vm_page_t m, m_adv; 2540 vm_offset_t addr; 2541 vm_paddr_t pa; 2542 vm_pindex_t pi, pi_adv, pindex; 2543 int incore; 2544 2545 *super = false; 2546 *resident_count = 0; 2547 if (vmmap_skip_res_cnt) 2548 return; 2549 2550 pa = 0; 2551 obj = entry->object.vm_object; 2552 addr = entry->start; 2553 m_adv = NULL; 2554 pi = OFF_TO_IDX(entry->offset); 2555 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2556 if (m_adv != NULL) { 2557 m = m_adv; 2558 } else { 2559 pi_adv = atop(entry->end - addr); 2560 pindex = pi; 2561 for (tobj = obj;; tobj = tobj->backing_object) { 2562 m = vm_page_find_least(tobj, pindex); 2563 if (m != NULL) { 2564 if (m->pindex == pindex) 2565 break; 2566 if (pi_adv > m->pindex - pindex) { 2567 pi_adv = m->pindex - pindex; 2568 m_adv = m; 2569 } 2570 } 2571 if (tobj->backing_object == NULL) 2572 goto next; 2573 pindex += OFF_TO_IDX(tobj-> 2574 backing_object_offset); 2575 } 2576 } 2577 m_adv = NULL; 2578 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2579 (addr & (pagesizes[1] - 1)) == 0 && (incore = 2580 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2581 *super = true; 2582 /* 2583 * The virtual page might be smaller than the physical 2584 * page, so we use the page size reported by the pmap 2585 * rather than m->psind. 2586 */ 2587 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]); 2588 } else { 2589 /* 2590 * We do not test the found page on validity. 2591 * Either the page is busy and being paged in, 2592 * or it was invalidated. The first case 2593 * should be counted as resident, the second 2594 * is not so clear; we do account both. 2595 */ 2596 pi_adv = 1; 2597 } 2598 *resident_count += pi_adv; 2599 next:; 2600 } 2601 } 2602 2603 /* 2604 * Must be called with the process locked and will return unlocked. 2605 */ 2606 int 2607 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2608 { 2609 vm_map_entry_t entry, tmp_entry; 2610 struct vattr va; 2611 vm_map_t map; 2612 vm_object_t lobj, nobj, obj, tobj; 2613 char *fullpath, *freepath; 2614 struct kinfo_vmentry *kve; 2615 struct ucred *cred; 2616 struct vnode *vp; 2617 struct vmspace *vm; 2618 struct cdev *cdev; 2619 struct cdevsw *csw; 2620 vm_offset_t addr; 2621 unsigned int last_timestamp; 2622 int error, ref; 2623 key_t key; 2624 unsigned short seq; 2625 bool guard, super; 2626 2627 PROC_LOCK_ASSERT(p, MA_OWNED); 2628 2629 _PHOLD(p); 2630 PROC_UNLOCK(p); 2631 vm = vmspace_acquire_ref(p); 2632 if (vm == NULL) { 2633 PRELE(p); 2634 return (ESRCH); 2635 } 2636 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2637 2638 error = 0; 2639 map = &vm->vm_map; 2640 vm_map_lock_read(map); 2641 VM_MAP_ENTRY_FOREACH(entry, map) { 2642 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2643 continue; 2644 2645 addr = entry->end; 2646 bzero(kve, sizeof(*kve)); 2647 obj = entry->object.vm_object; 2648 if (obj != NULL) { 2649 if ((obj->flags & OBJ_ANON) != 0) 2650 kve->kve_obj = (uintptr_t)obj; 2651 2652 for (tobj = obj; tobj != NULL; 2653 tobj = tobj->backing_object) { 2654 VM_OBJECT_RLOCK(tobj); 2655 kve->kve_offset += tobj->backing_object_offset; 2656 lobj = tobj; 2657 } 2658 if (obj->backing_object == NULL) 2659 kve->kve_private_resident = 2660 obj->resident_page_count; 2661 kern_proc_vmmap_resident(map, entry, 2662 &kve->kve_resident, &super); 2663 if (super) 2664 kve->kve_flags |= KVME_FLAG_SUPER; 2665 for (tobj = obj; tobj != NULL; tobj = nobj) { 2666 nobj = tobj->backing_object; 2667 if (tobj != obj && tobj != lobj) 2668 VM_OBJECT_RUNLOCK(tobj); 2669 } 2670 } else { 2671 lobj = NULL; 2672 } 2673 2674 kve->kve_start = entry->start; 2675 kve->kve_end = entry->end; 2676 kve->kve_offset += entry->offset; 2677 2678 if (entry->protection & VM_PROT_READ) 2679 kve->kve_protection |= KVME_PROT_READ; 2680 if (entry->protection & VM_PROT_WRITE) 2681 kve->kve_protection |= KVME_PROT_WRITE; 2682 if (entry->protection & VM_PROT_EXECUTE) 2683 kve->kve_protection |= KVME_PROT_EXEC; 2684 if (entry->max_protection & VM_PROT_READ) 2685 kve->kve_protection |= KVME_MAX_PROT_READ; 2686 if (entry->max_protection & VM_PROT_WRITE) 2687 kve->kve_protection |= KVME_MAX_PROT_WRITE; 2688 if (entry->max_protection & VM_PROT_EXECUTE) 2689 kve->kve_protection |= KVME_MAX_PROT_EXEC; 2690 2691 if (entry->eflags & MAP_ENTRY_COW) 2692 kve->kve_flags |= KVME_FLAG_COW; 2693 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2694 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2695 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2696 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2697 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2698 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2699 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2700 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2701 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2702 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2703 2704 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; 2705 2706 last_timestamp = map->timestamp; 2707 vm_map_unlock_read(map); 2708 2709 freepath = NULL; 2710 fullpath = ""; 2711 if (lobj != NULL) { 2712 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2713 if (vp != NULL) 2714 vref(vp); 2715 if (lobj != obj) 2716 VM_OBJECT_RUNLOCK(lobj); 2717 2718 kve->kve_ref_count = obj->ref_count; 2719 kve->kve_shadow_count = obj->shadow_count; 2720 if (obj->type == OBJT_DEVICE || 2721 obj->type == OBJT_MGTDEVICE) { 2722 cdev = obj->un_pager.devp.dev; 2723 if (cdev != NULL) { 2724 csw = dev_refthread(cdev, &ref); 2725 if (csw != NULL) { 2726 strlcpy(kve->kve_path, 2727 cdev->si_name, sizeof( 2728 kve->kve_path)); 2729 dev_relthread(cdev, ref); 2730 } 2731 } 2732 } 2733 VM_OBJECT_RUNLOCK(obj); 2734 if ((lobj->flags & OBJ_SYSVSHM) != 0) { 2735 kve->kve_flags |= KVME_FLAG_SYSVSHM; 2736 shmobjinfo(lobj, &key, &seq); 2737 kve->kve_vn_fileid = key; 2738 kve->kve_vn_fsid_freebsd11 = seq; 2739 } 2740 if ((lobj->flags & OBJ_POSIXSHM) != 0) { 2741 kve->kve_flags |= KVME_FLAG_POSIXSHM; 2742 shm_get_path(lobj, kve->kve_path, 2743 sizeof(kve->kve_path)); 2744 } 2745 if (vp != NULL) { 2746 vn_fullpath(vp, &fullpath, &freepath); 2747 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2748 cred = curthread->td_ucred; 2749 vn_lock(vp, LK_SHARED | LK_RETRY); 2750 if (VOP_GETATTR(vp, &va, cred) == 0) { 2751 kve->kve_vn_fileid = va.va_fileid; 2752 kve->kve_vn_fsid = va.va_fsid; 2753 kve->kve_vn_fsid_freebsd11 = 2754 kve->kve_vn_fsid; /* truncate */ 2755 kve->kve_vn_mode = 2756 MAKEIMODE(va.va_type, va.va_mode); 2757 kve->kve_vn_size = va.va_size; 2758 kve->kve_vn_rdev = va.va_rdev; 2759 kve->kve_vn_rdev_freebsd11 = 2760 kve->kve_vn_rdev; /* truncate */ 2761 kve->kve_status = KF_ATTR_VALID; 2762 } 2763 vput(vp); 2764 strlcpy(kve->kve_path, fullpath, sizeof( 2765 kve->kve_path)); 2766 free(freepath, M_TEMP); 2767 } 2768 } else { 2769 kve->kve_type = guard ? KVME_TYPE_GUARD : 2770 KVME_TYPE_NONE; 2771 kve->kve_ref_count = 0; 2772 kve->kve_shadow_count = 0; 2773 } 2774 2775 /* Pack record size down */ 2776 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2777 kve->kve_structsize = 2778 offsetof(struct kinfo_vmentry, kve_path) + 2779 strlen(kve->kve_path) + 1; 2780 else 2781 kve->kve_structsize = sizeof(*kve); 2782 kve->kve_structsize = roundup(kve->kve_structsize, 2783 sizeof(uint64_t)); 2784 2785 /* Halt filling and truncate rather than exceeding maxlen */ 2786 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2787 error = 0; 2788 vm_map_lock_read(map); 2789 break; 2790 } else if (maxlen != -1) 2791 maxlen -= kve->kve_structsize; 2792 2793 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2794 error = ENOMEM; 2795 vm_map_lock_read(map); 2796 if (error != 0) 2797 break; 2798 if (last_timestamp != map->timestamp) { 2799 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2800 entry = tmp_entry; 2801 } 2802 } 2803 vm_map_unlock_read(map); 2804 vmspace_free(vm); 2805 PRELE(p); 2806 free(kve, M_TEMP); 2807 return (error); 2808 } 2809 2810 static int 2811 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2812 { 2813 struct proc *p; 2814 struct sbuf sb; 2815 u_int namelen; 2816 int error, error2, *name; 2817 2818 namelen = arg2; 2819 if (namelen != 1) 2820 return (EINVAL); 2821 2822 name = (int *)arg1; 2823 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2824 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2825 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2826 if (error != 0) { 2827 sbuf_delete(&sb); 2828 return (error); 2829 } 2830 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2831 error2 = sbuf_finish(&sb); 2832 sbuf_delete(&sb); 2833 return (error != 0 ? error : error2); 2834 } 2835 2836 #if defined(STACK) || defined(DDB) 2837 static int 2838 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2839 { 2840 struct kinfo_kstack *kkstp; 2841 int error, i, *name, numthreads; 2842 lwpid_t *lwpidarray; 2843 struct thread *td; 2844 struct stack *st; 2845 struct sbuf sb; 2846 struct proc *p; 2847 u_int namelen; 2848 2849 namelen = arg2; 2850 if (namelen != 1) 2851 return (EINVAL); 2852 2853 name = (int *)arg1; 2854 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2855 if (error != 0) 2856 return (error); 2857 2858 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2859 st = stack_create(M_WAITOK); 2860 2861 lwpidarray = NULL; 2862 PROC_LOCK(p); 2863 do { 2864 if (lwpidarray != NULL) { 2865 free(lwpidarray, M_TEMP); 2866 lwpidarray = NULL; 2867 } 2868 numthreads = p->p_numthreads; 2869 PROC_UNLOCK(p); 2870 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2871 M_WAITOK | M_ZERO); 2872 PROC_LOCK(p); 2873 } while (numthreads < p->p_numthreads); 2874 2875 /* 2876 * XXXRW: During the below loop, execve(2) and countless other sorts 2877 * of changes could have taken place. Should we check to see if the 2878 * vmspace has been replaced, or the like, in order to prevent 2879 * giving a snapshot that spans, say, execve(2), with some threads 2880 * before and some after? Among other things, the credentials could 2881 * have changed, in which case the right to extract debug info might 2882 * no longer be assured. 2883 */ 2884 i = 0; 2885 FOREACH_THREAD_IN_PROC(p, td) { 2886 KASSERT(i < numthreads, 2887 ("sysctl_kern_proc_kstack: numthreads")); 2888 lwpidarray[i] = td->td_tid; 2889 i++; 2890 } 2891 PROC_UNLOCK(p); 2892 numthreads = i; 2893 for (i = 0; i < numthreads; i++) { 2894 td = tdfind(lwpidarray[i], p->p_pid); 2895 if (td == NULL) { 2896 continue; 2897 } 2898 bzero(kkstp, sizeof(*kkstp)); 2899 (void)sbuf_new(&sb, kkstp->kkst_trace, 2900 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2901 thread_lock(td); 2902 kkstp->kkst_tid = td->td_tid; 2903 if (stack_save_td(st, td) == 0) 2904 kkstp->kkst_state = KKST_STATE_STACKOK; 2905 else 2906 kkstp->kkst_state = KKST_STATE_RUNNING; 2907 thread_unlock(td); 2908 PROC_UNLOCK(p); 2909 stack_sbuf_print(&sb, st); 2910 sbuf_finish(&sb); 2911 sbuf_delete(&sb); 2912 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2913 if (error) 2914 break; 2915 } 2916 PRELE(p); 2917 if (lwpidarray != NULL) 2918 free(lwpidarray, M_TEMP); 2919 stack_destroy(st); 2920 free(kkstp, M_TEMP); 2921 return (error); 2922 } 2923 #endif 2924 2925 /* 2926 * This sysctl allows a process to retrieve the full list of groups from 2927 * itself or another process. 2928 */ 2929 static int 2930 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2931 { 2932 pid_t *pidp = (pid_t *)arg1; 2933 unsigned int arglen = arg2; 2934 struct proc *p; 2935 struct ucred *cred; 2936 int error; 2937 2938 if (arglen != 1) 2939 return (EINVAL); 2940 if (*pidp == -1) { /* -1 means this process */ 2941 p = req->td->td_proc; 2942 PROC_LOCK(p); 2943 } else { 2944 error = pget(*pidp, PGET_CANSEE, &p); 2945 if (error != 0) 2946 return (error); 2947 } 2948 2949 cred = crhold(p->p_ucred); 2950 PROC_UNLOCK(p); 2951 2952 error = SYSCTL_OUT(req, cred->cr_groups, 2953 cred->cr_ngroups * sizeof(gid_t)); 2954 crfree(cred); 2955 return (error); 2956 } 2957 2958 /* 2959 * This sysctl allows a process to retrieve or/and set the resource limit for 2960 * another process. 2961 */ 2962 static int 2963 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2964 { 2965 int *name = (int *)arg1; 2966 u_int namelen = arg2; 2967 struct rlimit rlim; 2968 struct proc *p; 2969 u_int which; 2970 int flags, error; 2971 2972 if (namelen != 2) 2973 return (EINVAL); 2974 2975 which = (u_int)name[1]; 2976 if (which >= RLIM_NLIMITS) 2977 return (EINVAL); 2978 2979 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2980 return (EINVAL); 2981 2982 flags = PGET_HOLD | PGET_NOTWEXIT; 2983 if (req->newptr != NULL) 2984 flags |= PGET_CANDEBUG; 2985 else 2986 flags |= PGET_CANSEE; 2987 error = pget((pid_t)name[0], flags, &p); 2988 if (error != 0) 2989 return (error); 2990 2991 /* 2992 * Retrieve limit. 2993 */ 2994 if (req->oldptr != NULL) { 2995 PROC_LOCK(p); 2996 lim_rlimit_proc(p, which, &rlim); 2997 PROC_UNLOCK(p); 2998 } 2999 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 3000 if (error != 0) 3001 goto errout; 3002 3003 /* 3004 * Set limit. 3005 */ 3006 if (req->newptr != NULL) { 3007 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 3008 if (error == 0) 3009 error = kern_proc_setrlimit(curthread, p, which, &rlim); 3010 } 3011 3012 errout: 3013 PRELE(p); 3014 return (error); 3015 } 3016 3017 /* 3018 * This sysctl allows a process to retrieve ps_strings structure location of 3019 * another process. 3020 */ 3021 static int 3022 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 3023 { 3024 int *name = (int *)arg1; 3025 u_int namelen = arg2; 3026 struct proc *p; 3027 vm_offset_t ps_strings; 3028 int error; 3029 #ifdef COMPAT_FREEBSD32 3030 uint32_t ps_strings32; 3031 #endif 3032 3033 if (namelen != 1) 3034 return (EINVAL); 3035 3036 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3037 if (error != 0) 3038 return (error); 3039 #ifdef COMPAT_FREEBSD32 3040 if ((req->flags & SCTL_MASK32) != 0) { 3041 /* 3042 * We return 0 if the 32 bit emulation request is for a 64 bit 3043 * process. 3044 */ 3045 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 3046 PTROUT(PROC_PS_STRINGS(p)) : 0; 3047 PROC_UNLOCK(p); 3048 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 3049 return (error); 3050 } 3051 #endif 3052 ps_strings = PROC_PS_STRINGS(p); 3053 PROC_UNLOCK(p); 3054 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 3055 return (error); 3056 } 3057 3058 /* 3059 * This sysctl allows a process to retrieve umask of another process. 3060 */ 3061 static int 3062 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 3063 { 3064 int *name = (int *)arg1; 3065 u_int namelen = arg2; 3066 struct proc *p; 3067 int error; 3068 u_short cmask; 3069 pid_t pid; 3070 3071 if (namelen != 1) 3072 return (EINVAL); 3073 3074 pid = (pid_t)name[0]; 3075 p = curproc; 3076 if (pid == p->p_pid || pid == 0) { 3077 cmask = p->p_pd->pd_cmask; 3078 goto out; 3079 } 3080 3081 error = pget(pid, PGET_WANTREAD, &p); 3082 if (error != 0) 3083 return (error); 3084 3085 cmask = p->p_pd->pd_cmask; 3086 PRELE(p); 3087 out: 3088 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3089 return (error); 3090 } 3091 3092 /* 3093 * This sysctl allows a process to set and retrieve binary osreldate of 3094 * another process. 3095 */ 3096 static int 3097 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3098 { 3099 int *name = (int *)arg1; 3100 u_int namelen = arg2; 3101 struct proc *p; 3102 int flags, error, osrel; 3103 3104 if (namelen != 1) 3105 return (EINVAL); 3106 3107 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3108 return (EINVAL); 3109 3110 flags = PGET_HOLD | PGET_NOTWEXIT; 3111 if (req->newptr != NULL) 3112 flags |= PGET_CANDEBUG; 3113 else 3114 flags |= PGET_CANSEE; 3115 error = pget((pid_t)name[0], flags, &p); 3116 if (error != 0) 3117 return (error); 3118 3119 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3120 if (error != 0) 3121 goto errout; 3122 3123 if (req->newptr != NULL) { 3124 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3125 if (error != 0) 3126 goto errout; 3127 if (osrel < 0) { 3128 error = EINVAL; 3129 goto errout; 3130 } 3131 p->p_osrel = osrel; 3132 } 3133 errout: 3134 PRELE(p); 3135 return (error); 3136 } 3137 3138 static int 3139 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3140 { 3141 int *name = (int *)arg1; 3142 u_int namelen = arg2; 3143 struct proc *p; 3144 struct kinfo_sigtramp kst; 3145 const struct sysentvec *sv; 3146 int error; 3147 #ifdef COMPAT_FREEBSD32 3148 struct kinfo_sigtramp32 kst32; 3149 #endif 3150 3151 if (namelen != 1) 3152 return (EINVAL); 3153 3154 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3155 if (error != 0) 3156 return (error); 3157 sv = p->p_sysent; 3158 #ifdef COMPAT_FREEBSD32 3159 if ((req->flags & SCTL_MASK32) != 0) { 3160 bzero(&kst32, sizeof(kst32)); 3161 if (SV_PROC_FLAG(p, SV_ILP32)) { 3162 if (PROC_HAS_SHP(p)) { 3163 kst32.ksigtramp_start = PROC_SIGCODE(p); 3164 kst32.ksigtramp_end = kst32.ksigtramp_start + 3165 ((sv->sv_flags & SV_DSO_SIG) == 0 ? 3166 *sv->sv_szsigcode : 3167 (uintptr_t)sv->sv_szsigcode); 3168 } else { 3169 kst32.ksigtramp_start = PROC_PS_STRINGS(p) - 3170 *sv->sv_szsigcode; 3171 kst32.ksigtramp_end = PROC_PS_STRINGS(p); 3172 } 3173 } 3174 PROC_UNLOCK(p); 3175 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3176 return (error); 3177 } 3178 #endif 3179 bzero(&kst, sizeof(kst)); 3180 if (PROC_HAS_SHP(p)) { 3181 kst.ksigtramp_start = (char *)PROC_SIGCODE(p); 3182 kst.ksigtramp_end = (char *)kst.ksigtramp_start + 3183 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : 3184 (uintptr_t)sv->sv_szsigcode); 3185 } else { 3186 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - 3187 *sv->sv_szsigcode; 3188 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); 3189 } 3190 PROC_UNLOCK(p); 3191 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3192 return (error); 3193 } 3194 3195 static int 3196 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3197 { 3198 int *name = (int *)arg1; 3199 u_int namelen = arg2; 3200 pid_t pid; 3201 struct proc *p; 3202 struct thread *td1; 3203 uintptr_t addr; 3204 #ifdef COMPAT_FREEBSD32 3205 uint32_t addr32; 3206 #endif 3207 int error; 3208 3209 if (namelen != 1 || req->newptr != NULL) 3210 return (EINVAL); 3211 3212 pid = (pid_t)name[0]; 3213 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3214 if (error != 0) 3215 return (error); 3216 3217 PROC_LOCK(p); 3218 #ifdef COMPAT_FREEBSD32 3219 if (SV_CURPROC_FLAG(SV_ILP32)) { 3220 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3221 error = EINVAL; 3222 goto errlocked; 3223 } 3224 } 3225 #endif 3226 if (pid <= PID_MAX) { 3227 td1 = FIRST_THREAD_IN_PROC(p); 3228 } else { 3229 FOREACH_THREAD_IN_PROC(p, td1) { 3230 if (td1->td_tid == pid) 3231 break; 3232 } 3233 } 3234 if (td1 == NULL) { 3235 error = ESRCH; 3236 goto errlocked; 3237 } 3238 /* 3239 * The access to the private thread flags. It is fine as far 3240 * as no out-of-thin-air values are read from td_pflags, and 3241 * usermode read of the td_sigblock_ptr is racy inherently, 3242 * since target process might have already changed it 3243 * meantime. 3244 */ 3245 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3246 addr = (uintptr_t)td1->td_sigblock_ptr; 3247 else 3248 error = ENOTTY; 3249 3250 errlocked: 3251 _PRELE(p); 3252 PROC_UNLOCK(p); 3253 if (error != 0) 3254 return (error); 3255 3256 #ifdef COMPAT_FREEBSD32 3257 if (SV_CURPROC_FLAG(SV_ILP32)) { 3258 addr32 = addr; 3259 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3260 } else 3261 #endif 3262 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3263 return (error); 3264 } 3265 3266 static int 3267 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) 3268 { 3269 struct kinfo_vm_layout kvm; 3270 struct proc *p; 3271 struct vmspace *vmspace; 3272 int error, *name; 3273 3274 name = (int *)arg1; 3275 if ((u_int)arg2 != 1) 3276 return (EINVAL); 3277 3278 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3279 if (error != 0) 3280 return (error); 3281 #ifdef COMPAT_FREEBSD32 3282 if (SV_CURPROC_FLAG(SV_ILP32)) { 3283 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3284 PROC_UNLOCK(p); 3285 return (EINVAL); 3286 } 3287 } 3288 #endif 3289 vmspace = vmspace_acquire_ref(p); 3290 PROC_UNLOCK(p); 3291 3292 memset(&kvm, 0, sizeof(kvm)); 3293 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); 3294 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); 3295 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; 3296 kvm.kvm_text_size = vmspace->vm_tsize; 3297 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; 3298 kvm.kvm_data_size = vmspace->vm_dsize; 3299 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; 3300 kvm.kvm_stack_size = vmspace->vm_ssize; 3301 kvm.kvm_shp_addr = vmspace->vm_shp_base; 3302 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; 3303 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) 3304 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; 3305 if ((vmspace->vm_map.flags & MAP_ASLR) != 0) 3306 kvm.kvm_map_flags |= KMAP_FLAG_ASLR; 3307 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) 3308 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; 3309 if ((vmspace->vm_map.flags & MAP_WXORX) != 0) 3310 kvm.kvm_map_flags |= KMAP_FLAG_WXORX; 3311 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) 3312 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; 3313 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && 3314 PROC_HAS_SHP(p)) 3315 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; 3316 3317 #ifdef COMPAT_FREEBSD32 3318 if (SV_CURPROC_FLAG(SV_ILP32)) { 3319 struct kinfo_vm_layout32 kvm32; 3320 3321 memset(&kvm32, 0, sizeof(kvm32)); 3322 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; 3323 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; 3324 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; 3325 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; 3326 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; 3327 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; 3328 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; 3329 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; 3330 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; 3331 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; 3332 kvm32.kvm_map_flags = kvm.kvm_map_flags; 3333 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); 3334 goto out; 3335 } 3336 #endif 3337 3338 error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); 3339 #ifdef COMPAT_FREEBSD32 3340 out: 3341 #endif 3342 vmspace_free(vmspace); 3343 return (error); 3344 } 3345 3346 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3347 "Process table"); 3348 3349 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3350 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3351 "Return entire process table"); 3352 3353 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3354 sysctl_kern_proc, "Process table"); 3355 3356 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3357 sysctl_kern_proc, "Process table"); 3358 3359 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3360 sysctl_kern_proc, "Process table"); 3361 3362 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3363 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3364 3365 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3366 sysctl_kern_proc, "Process table"); 3367 3368 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3369 sysctl_kern_proc, "Process table"); 3370 3371 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3372 sysctl_kern_proc, "Process table"); 3373 3374 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3375 sysctl_kern_proc, "Process table"); 3376 3377 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3378 sysctl_kern_proc, "Return process table, no threads"); 3379 3380 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3381 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3382 sysctl_kern_proc_args, "Process argument list"); 3383 3384 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3385 sysctl_kern_proc_env, "Process environment"); 3386 3387 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3388 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3389 3390 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3391 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3392 3393 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3394 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3395 "Process syscall vector name (ABI type)"); 3396 3397 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3398 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3399 3400 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3401 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3402 3403 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3404 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3405 3406 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3407 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3408 3409 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3410 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3411 3412 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3413 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3414 3415 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3416 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3417 3418 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3419 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3420 3421 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3422 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3423 "Return process table, including threads"); 3424 3425 #ifdef COMPAT_FREEBSD7 3426 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3427 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3428 #endif 3429 3430 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3431 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3432 3433 #if defined(STACK) || defined(DDB) 3434 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3435 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3436 #endif 3437 3438 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3439 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3440 3441 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3442 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3443 "Process resource limits"); 3444 3445 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3446 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3447 "Process ps_strings location"); 3448 3449 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3450 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3451 3452 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3453 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3454 "Process binary osreldate"); 3455 3456 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3457 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3458 "Process signal trampoline location"); 3459 3460 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3461 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3462 "Thread sigfastblock address"); 3463 3464 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | 3465 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, 3466 "Process virtual address space layout info"); 3467 3468 static struct sx stop_all_proc_blocker; 3469 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); 3470 3471 bool 3472 stop_all_proc_block(void) 3473 { 3474 return (sx_xlock_sig(&stop_all_proc_blocker) == 0); 3475 } 3476 3477 void 3478 stop_all_proc_unblock(void) 3479 { 3480 sx_xunlock(&stop_all_proc_blocker); 3481 } 3482 3483 int allproc_gen; 3484 3485 /* 3486 * stop_all_proc() purpose is to stop all process which have usermode, 3487 * except current process for obvious reasons. This makes it somewhat 3488 * unreliable when invoked from multithreaded process. The service 3489 * must not be user-callable anyway. 3490 */ 3491 void 3492 stop_all_proc(void) 3493 { 3494 struct proc *cp, *p; 3495 int r, gen; 3496 bool restart, seen_stopped, seen_exiting, stopped_some; 3497 3498 if (!stop_all_proc_block()) 3499 return; 3500 3501 cp = curproc; 3502 allproc_loop: 3503 sx_xlock(&allproc_lock); 3504 gen = allproc_gen; 3505 seen_exiting = seen_stopped = stopped_some = restart = false; 3506 LIST_REMOVE(cp, p_list); 3507 LIST_INSERT_HEAD(&allproc, cp, p_list); 3508 for (;;) { 3509 p = LIST_NEXT(cp, p_list); 3510 if (p == NULL) 3511 break; 3512 LIST_REMOVE(cp, p_list); 3513 LIST_INSERT_AFTER(p, cp, p_list); 3514 PROC_LOCK(p); 3515 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP | 3516 P_STOPPED_SIG)) != 0) { 3517 PROC_UNLOCK(p); 3518 continue; 3519 } 3520 if ((p->p_flag2 & P2_WEXIT) != 0) { 3521 seen_exiting = true; 3522 PROC_UNLOCK(p); 3523 continue; 3524 } 3525 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3526 /* 3527 * Stopped processes are tolerated when there 3528 * are no other processes which might continue 3529 * them. P_STOPPED_SINGLE but not 3530 * P_TOTAL_STOP process still has at least one 3531 * thread running. 3532 */ 3533 seen_stopped = true; 3534 PROC_UNLOCK(p); 3535 continue; 3536 } 3537 if ((p->p_flag & P_TRACED) != 0) { 3538 /* 3539 * thread_single() below cannot stop traced p, 3540 * so skip it. OTOH, we cannot require 3541 * restart because debugger might be either 3542 * already stopped or traced as well. 3543 */ 3544 PROC_UNLOCK(p); 3545 continue; 3546 } 3547 sx_xunlock(&allproc_lock); 3548 _PHOLD(p); 3549 r = thread_single(p, SINGLE_ALLPROC); 3550 if (r != 0) 3551 restart = true; 3552 else 3553 stopped_some = true; 3554 _PRELE(p); 3555 PROC_UNLOCK(p); 3556 sx_xlock(&allproc_lock); 3557 } 3558 /* Catch forked children we did not see in iteration. */ 3559 if (gen != allproc_gen) 3560 restart = true; 3561 sx_xunlock(&allproc_lock); 3562 if (restart || stopped_some || seen_exiting || seen_stopped) { 3563 kern_yield(PRI_USER); 3564 goto allproc_loop; 3565 } 3566 } 3567 3568 void 3569 resume_all_proc(void) 3570 { 3571 struct proc *cp, *p; 3572 3573 cp = curproc; 3574 sx_xlock(&allproc_lock); 3575 again: 3576 LIST_REMOVE(cp, p_list); 3577 LIST_INSERT_HEAD(&allproc, cp, p_list); 3578 for (;;) { 3579 p = LIST_NEXT(cp, p_list); 3580 if (p == NULL) 3581 break; 3582 LIST_REMOVE(cp, p_list); 3583 LIST_INSERT_AFTER(p, cp, p_list); 3584 PROC_LOCK(p); 3585 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3586 sx_xunlock(&allproc_lock); 3587 _PHOLD(p); 3588 thread_single_end(p, SINGLE_ALLPROC); 3589 _PRELE(p); 3590 PROC_UNLOCK(p); 3591 sx_xlock(&allproc_lock); 3592 } else { 3593 PROC_UNLOCK(p); 3594 } 3595 } 3596 /* Did the loop above missed any stopped process ? */ 3597 FOREACH_PROC_IN_SYSTEM(p) { 3598 /* No need for proc lock. */ 3599 if ((p->p_flag & P_TOTAL_STOP) != 0) 3600 goto again; 3601 } 3602 sx_xunlock(&allproc_lock); 3603 3604 stop_all_proc_unblock(); 3605 } 3606 3607 /* #define TOTAL_STOP_DEBUG 1 */ 3608 #ifdef TOTAL_STOP_DEBUG 3609 volatile static int ap_resume; 3610 #include <sys/mount.h> 3611 3612 static int 3613 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3614 { 3615 int error, val; 3616 3617 val = 0; 3618 ap_resume = 0; 3619 error = sysctl_handle_int(oidp, &val, 0, req); 3620 if (error != 0 || req->newptr == NULL) 3621 return (error); 3622 if (val != 0) { 3623 stop_all_proc(); 3624 syncer_suspend(); 3625 while (ap_resume == 0) 3626 ; 3627 syncer_resume(); 3628 resume_all_proc(); 3629 } 3630 return (0); 3631 } 3632 3633 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3634 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3635 sysctl_debug_stop_all_proc, "I", 3636 ""); 3637 #endif 3638