xref: /freebsd/sys/kern/kern_proc.c (revision a4dc509f723944821bcfcc52005ff87c9a5dee5b)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int",
96     "void *", "int");
97 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int",
98     "void *", "int");
99 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int",
100     "void *", "struct thread *");
101 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int",
102     "void *");
103 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int",
104     "int");
105 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int",
106     "int");
107 
108 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
109 MALLOC_DEFINE(M_SESSION, "session", "session header");
110 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
111 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
112 
113 static void doenterpgrp(struct proc *, struct pgrp *);
114 static void orphanpg(struct pgrp *pg);
115 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
116 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
117 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
118     int preferthread);
119 static void pgadjustjobc(struct pgrp *pgrp, int entering);
120 static void pgdelete(struct pgrp *);
121 static int proc_ctor(void *mem, int size, void *arg, int flags);
122 static void proc_dtor(void *mem, int size, void *arg);
123 static int proc_init(void *mem, int size, int flags);
124 static void proc_fini(void *mem, int size);
125 static void pargs_free(struct pargs *pa);
126 static struct proc *zpfind_locked(pid_t pid);
127 
128 /*
129  * Other process lists
130  */
131 struct pidhashhead *pidhashtbl;
132 u_long pidhash;
133 struct pgrphashhead *pgrphashtbl;
134 u_long pgrphash;
135 struct proclist allproc;
136 struct proclist zombproc;
137 struct sx allproc_lock;
138 struct sx proctree_lock;
139 struct mtx ppeers_lock;
140 uma_zone_t proc_zone;
141 
142 int kstack_pages = KSTACK_PAGES;
143 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
144     "Kernel stack size in pages");
145 static int vmmap_skip_res_cnt = 0;
146 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
147     &vmmap_skip_res_cnt, 0,
148     "Skip calculation of the pages resident count in kern.proc.vmmap");
149 
150 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
151 #ifdef COMPAT_FREEBSD32
152 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
153 #endif
154 
155 /*
156  * Initialize global process hashing structures.
157  */
158 void
159 procinit()
160 {
161 
162 	sx_init(&allproc_lock, "allproc");
163 	sx_init(&proctree_lock, "proctree");
164 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
165 	LIST_INIT(&allproc);
166 	LIST_INIT(&zombproc);
167 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
168 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
169 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
170 	    proc_ctor, proc_dtor, proc_init, proc_fini,
171 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
172 	uihashinit();
173 }
174 
175 /*
176  * Prepare a proc for use.
177  */
178 static int
179 proc_ctor(void *mem, int size, void *arg, int flags)
180 {
181 	struct proc *p;
182 
183 	p = (struct proc *)mem;
184 	SDT_PROBE4(proc, kernel, ctor , entry, p, size, arg, flags);
185 	EVENTHANDLER_INVOKE(process_ctor, p);
186 	SDT_PROBE4(proc, kernel, ctor , return, p, size, arg, flags);
187 	return (0);
188 }
189 
190 /*
191  * Reclaim a proc after use.
192  */
193 static void
194 proc_dtor(void *mem, int size, void *arg)
195 {
196 	struct proc *p;
197 	struct thread *td;
198 
199 	/* INVARIANTS checks go here */
200 	p = (struct proc *)mem;
201 	td = FIRST_THREAD_IN_PROC(p);
202 	SDT_PROBE4(proc, kernel, dtor, entry, p, size, arg, td);
203 	if (td != NULL) {
204 #ifdef INVARIANTS
205 		KASSERT((p->p_numthreads == 1),
206 		    ("bad number of threads in exiting process"));
207 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
208 #endif
209 		/* Free all OSD associated to this thread. */
210 		osd_thread_exit(td);
211 	}
212 	EVENTHANDLER_INVOKE(process_dtor, p);
213 	if (p->p_ksi != NULL)
214 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
215 	SDT_PROBE3(proc, kernel, dtor, return, p, size, arg);
216 }
217 
218 /*
219  * Initialize type-stable parts of a proc (when newly created).
220  */
221 static int
222 proc_init(void *mem, int size, int flags)
223 {
224 	struct proc *p;
225 
226 	p = (struct proc *)mem;
227 	SDT_PROBE3(proc, kernel, init, entry, p, size, flags);
228 	p->p_sched = (struct p_sched *)&p[1];
229 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
230 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
231 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
232 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
233 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
234 	cv_init(&p->p_pwait, "ppwait");
235 	cv_init(&p->p_dbgwait, "dbgwait");
236 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
237 	EVENTHANDLER_INVOKE(process_init, p);
238 	p->p_stats = pstats_alloc();
239 	SDT_PROBE3(proc, kernel, init, return, p, size, flags);
240 	return (0);
241 }
242 
243 /*
244  * UMA should ensure that this function is never called.
245  * Freeing a proc structure would violate type stability.
246  */
247 static void
248 proc_fini(void *mem, int size)
249 {
250 #ifdef notnow
251 	struct proc *p;
252 
253 	p = (struct proc *)mem;
254 	EVENTHANDLER_INVOKE(process_fini, p);
255 	pstats_free(p->p_stats);
256 	thread_free(FIRST_THREAD_IN_PROC(p));
257 	mtx_destroy(&p->p_mtx);
258 	if (p->p_ksi != NULL)
259 		ksiginfo_free(p->p_ksi);
260 #else
261 	panic("proc reclaimed");
262 #endif
263 }
264 
265 /*
266  * Is p an inferior of the current process?
267  */
268 int
269 inferior(struct proc *p)
270 {
271 
272 	sx_assert(&proctree_lock, SX_LOCKED);
273 	PROC_LOCK_ASSERT(p, MA_OWNED);
274 	for (; p != curproc; p = proc_realparent(p)) {
275 		if (p->p_pid == 0)
276 			return (0);
277 	}
278 	return (1);
279 }
280 
281 struct proc *
282 pfind_locked(pid_t pid)
283 {
284 	struct proc *p;
285 
286 	sx_assert(&allproc_lock, SX_LOCKED);
287 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
288 		if (p->p_pid == pid) {
289 			PROC_LOCK(p);
290 			if (p->p_state == PRS_NEW) {
291 				PROC_UNLOCK(p);
292 				p = NULL;
293 			}
294 			break;
295 		}
296 	}
297 	return (p);
298 }
299 
300 /*
301  * Locate a process by number; return only "live" processes -- i.e., neither
302  * zombies nor newly born but incompletely initialized processes.  By not
303  * returning processes in the PRS_NEW state, we allow callers to avoid
304  * testing for that condition to avoid dereferencing p_ucred, et al.
305  */
306 struct proc *
307 pfind(pid_t pid)
308 {
309 	struct proc *p;
310 
311 	sx_slock(&allproc_lock);
312 	p = pfind_locked(pid);
313 	sx_sunlock(&allproc_lock);
314 	return (p);
315 }
316 
317 static struct proc *
318 pfind_tid_locked(pid_t tid)
319 {
320 	struct proc *p;
321 	struct thread *td;
322 
323 	sx_assert(&allproc_lock, SX_LOCKED);
324 	FOREACH_PROC_IN_SYSTEM(p) {
325 		PROC_LOCK(p);
326 		if (p->p_state == PRS_NEW) {
327 			PROC_UNLOCK(p);
328 			continue;
329 		}
330 		FOREACH_THREAD_IN_PROC(p, td) {
331 			if (td->td_tid == tid)
332 				goto found;
333 		}
334 		PROC_UNLOCK(p);
335 	}
336 found:
337 	return (p);
338 }
339 
340 /*
341  * Locate a process group by number.
342  * The caller must hold proctree_lock.
343  */
344 struct pgrp *
345 pgfind(pgid)
346 	register pid_t pgid;
347 {
348 	register struct pgrp *pgrp;
349 
350 	sx_assert(&proctree_lock, SX_LOCKED);
351 
352 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
353 		if (pgrp->pg_id == pgid) {
354 			PGRP_LOCK(pgrp);
355 			return (pgrp);
356 		}
357 	}
358 	return (NULL);
359 }
360 
361 /*
362  * Locate process and do additional manipulations, depending on flags.
363  */
364 int
365 pget(pid_t pid, int flags, struct proc **pp)
366 {
367 	struct proc *p;
368 	int error;
369 
370 	sx_slock(&allproc_lock);
371 	if (pid <= PID_MAX) {
372 		p = pfind_locked(pid);
373 		if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
374 			p = zpfind_locked(pid);
375 	} else if ((flags & PGET_NOTID) == 0) {
376 		p = pfind_tid_locked(pid);
377 	} else {
378 		p = NULL;
379 	}
380 	sx_sunlock(&allproc_lock);
381 	if (p == NULL)
382 		return (ESRCH);
383 	if ((flags & PGET_CANSEE) != 0) {
384 		error = p_cansee(curthread, p);
385 		if (error != 0)
386 			goto errout;
387 	}
388 	if ((flags & PGET_CANDEBUG) != 0) {
389 		error = p_candebug(curthread, p);
390 		if (error != 0)
391 			goto errout;
392 	}
393 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
394 		error = EPERM;
395 		goto errout;
396 	}
397 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
398 		error = ESRCH;
399 		goto errout;
400 	}
401 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
402 		/*
403 		 * XXXRW: Not clear ESRCH is the right error during proc
404 		 * execve().
405 		 */
406 		error = ESRCH;
407 		goto errout;
408 	}
409 	if ((flags & PGET_HOLD) != 0) {
410 		_PHOLD(p);
411 		PROC_UNLOCK(p);
412 	}
413 	*pp = p;
414 	return (0);
415 errout:
416 	PROC_UNLOCK(p);
417 	return (error);
418 }
419 
420 /*
421  * Create a new process group.
422  * pgid must be equal to the pid of p.
423  * Begin a new session if required.
424  */
425 int
426 enterpgrp(p, pgid, pgrp, sess)
427 	register struct proc *p;
428 	pid_t pgid;
429 	struct pgrp *pgrp;
430 	struct session *sess;
431 {
432 
433 	sx_assert(&proctree_lock, SX_XLOCKED);
434 
435 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
436 	KASSERT(p->p_pid == pgid,
437 	    ("enterpgrp: new pgrp and pid != pgid"));
438 	KASSERT(pgfind(pgid) == NULL,
439 	    ("enterpgrp: pgrp with pgid exists"));
440 	KASSERT(!SESS_LEADER(p),
441 	    ("enterpgrp: session leader attempted setpgrp"));
442 
443 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
444 
445 	if (sess != NULL) {
446 		/*
447 		 * new session
448 		 */
449 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
450 		PROC_LOCK(p);
451 		p->p_flag &= ~P_CONTROLT;
452 		PROC_UNLOCK(p);
453 		PGRP_LOCK(pgrp);
454 		sess->s_leader = p;
455 		sess->s_sid = p->p_pid;
456 		refcount_init(&sess->s_count, 1);
457 		sess->s_ttyvp = NULL;
458 		sess->s_ttydp = NULL;
459 		sess->s_ttyp = NULL;
460 		bcopy(p->p_session->s_login, sess->s_login,
461 			    sizeof(sess->s_login));
462 		pgrp->pg_session = sess;
463 		KASSERT(p == curproc,
464 		    ("enterpgrp: mksession and p != curproc"));
465 	} else {
466 		pgrp->pg_session = p->p_session;
467 		sess_hold(pgrp->pg_session);
468 		PGRP_LOCK(pgrp);
469 	}
470 	pgrp->pg_id = pgid;
471 	LIST_INIT(&pgrp->pg_members);
472 
473 	/*
474 	 * As we have an exclusive lock of proctree_lock,
475 	 * this should not deadlock.
476 	 */
477 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
478 	pgrp->pg_jobc = 0;
479 	SLIST_INIT(&pgrp->pg_sigiolst);
480 	PGRP_UNLOCK(pgrp);
481 
482 	doenterpgrp(p, pgrp);
483 
484 	return (0);
485 }
486 
487 /*
488  * Move p to an existing process group
489  */
490 int
491 enterthispgrp(p, pgrp)
492 	register struct proc *p;
493 	struct pgrp *pgrp;
494 {
495 
496 	sx_assert(&proctree_lock, SX_XLOCKED);
497 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
498 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
499 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
500 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
501 	KASSERT(pgrp->pg_session == p->p_session,
502 		("%s: pgrp's session %p, p->p_session %p.\n",
503 		__func__,
504 		pgrp->pg_session,
505 		p->p_session));
506 	KASSERT(pgrp != p->p_pgrp,
507 		("%s: p belongs to pgrp.", __func__));
508 
509 	doenterpgrp(p, pgrp);
510 
511 	return (0);
512 }
513 
514 /*
515  * Move p to a process group
516  */
517 static void
518 doenterpgrp(p, pgrp)
519 	struct proc *p;
520 	struct pgrp *pgrp;
521 {
522 	struct pgrp *savepgrp;
523 
524 	sx_assert(&proctree_lock, SX_XLOCKED);
525 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
526 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
527 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
528 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
529 
530 	savepgrp = p->p_pgrp;
531 
532 	/*
533 	 * Adjust eligibility of affected pgrps to participate in job control.
534 	 * Increment eligibility counts before decrementing, otherwise we
535 	 * could reach 0 spuriously during the first call.
536 	 */
537 	fixjobc(p, pgrp, 1);
538 	fixjobc(p, p->p_pgrp, 0);
539 
540 	PGRP_LOCK(pgrp);
541 	PGRP_LOCK(savepgrp);
542 	PROC_LOCK(p);
543 	LIST_REMOVE(p, p_pglist);
544 	p->p_pgrp = pgrp;
545 	PROC_UNLOCK(p);
546 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
547 	PGRP_UNLOCK(savepgrp);
548 	PGRP_UNLOCK(pgrp);
549 	if (LIST_EMPTY(&savepgrp->pg_members))
550 		pgdelete(savepgrp);
551 }
552 
553 /*
554  * remove process from process group
555  */
556 int
557 leavepgrp(p)
558 	register struct proc *p;
559 {
560 	struct pgrp *savepgrp;
561 
562 	sx_assert(&proctree_lock, SX_XLOCKED);
563 	savepgrp = p->p_pgrp;
564 	PGRP_LOCK(savepgrp);
565 	PROC_LOCK(p);
566 	LIST_REMOVE(p, p_pglist);
567 	p->p_pgrp = NULL;
568 	PROC_UNLOCK(p);
569 	PGRP_UNLOCK(savepgrp);
570 	if (LIST_EMPTY(&savepgrp->pg_members))
571 		pgdelete(savepgrp);
572 	return (0);
573 }
574 
575 /*
576  * delete a process group
577  */
578 static void
579 pgdelete(pgrp)
580 	register struct pgrp *pgrp;
581 {
582 	struct session *savesess;
583 	struct tty *tp;
584 
585 	sx_assert(&proctree_lock, SX_XLOCKED);
586 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
587 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
588 
589 	/*
590 	 * Reset any sigio structures pointing to us as a result of
591 	 * F_SETOWN with our pgid.
592 	 */
593 	funsetownlst(&pgrp->pg_sigiolst);
594 
595 	PGRP_LOCK(pgrp);
596 	tp = pgrp->pg_session->s_ttyp;
597 	LIST_REMOVE(pgrp, pg_hash);
598 	savesess = pgrp->pg_session;
599 	PGRP_UNLOCK(pgrp);
600 
601 	/* Remove the reference to the pgrp before deallocating it. */
602 	if (tp != NULL) {
603 		tty_lock(tp);
604 		tty_rel_pgrp(tp, pgrp);
605 	}
606 
607 	mtx_destroy(&pgrp->pg_mtx);
608 	free(pgrp, M_PGRP);
609 	sess_release(savesess);
610 }
611 
612 static void
613 pgadjustjobc(pgrp, entering)
614 	struct pgrp *pgrp;
615 	int entering;
616 {
617 
618 	PGRP_LOCK(pgrp);
619 	if (entering)
620 		pgrp->pg_jobc++;
621 	else {
622 		--pgrp->pg_jobc;
623 		if (pgrp->pg_jobc == 0)
624 			orphanpg(pgrp);
625 	}
626 	PGRP_UNLOCK(pgrp);
627 }
628 
629 /*
630  * Adjust pgrp jobc counters when specified process changes process group.
631  * We count the number of processes in each process group that "qualify"
632  * the group for terminal job control (those with a parent in a different
633  * process group of the same session).  If that count reaches zero, the
634  * process group becomes orphaned.  Check both the specified process'
635  * process group and that of its children.
636  * entering == 0 => p is leaving specified group.
637  * entering == 1 => p is entering specified group.
638  */
639 void
640 fixjobc(p, pgrp, entering)
641 	register struct proc *p;
642 	register struct pgrp *pgrp;
643 	int entering;
644 {
645 	register struct pgrp *hispgrp;
646 	register struct session *mysession;
647 
648 	sx_assert(&proctree_lock, SX_LOCKED);
649 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
650 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
651 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
652 
653 	/*
654 	 * Check p's parent to see whether p qualifies its own process
655 	 * group; if so, adjust count for p's process group.
656 	 */
657 	mysession = pgrp->pg_session;
658 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
659 	    hispgrp->pg_session == mysession)
660 		pgadjustjobc(pgrp, entering);
661 
662 	/*
663 	 * Check this process' children to see whether they qualify
664 	 * their process groups; if so, adjust counts for children's
665 	 * process groups.
666 	 */
667 	LIST_FOREACH(p, &p->p_children, p_sibling) {
668 		hispgrp = p->p_pgrp;
669 		if (hispgrp == pgrp ||
670 		    hispgrp->pg_session != mysession)
671 			continue;
672 		PROC_LOCK(p);
673 		if (p->p_state == PRS_ZOMBIE) {
674 			PROC_UNLOCK(p);
675 			continue;
676 		}
677 		PROC_UNLOCK(p);
678 		pgadjustjobc(hispgrp, entering);
679 	}
680 }
681 
682 /*
683  * A process group has become orphaned;
684  * if there are any stopped processes in the group,
685  * hang-up all process in that group.
686  */
687 static void
688 orphanpg(pg)
689 	struct pgrp *pg;
690 {
691 	register struct proc *p;
692 
693 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
694 
695 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
696 		PROC_LOCK(p);
697 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
698 			PROC_UNLOCK(p);
699 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
700 				PROC_LOCK(p);
701 				kern_psignal(p, SIGHUP);
702 				kern_psignal(p, SIGCONT);
703 				PROC_UNLOCK(p);
704 			}
705 			return;
706 		}
707 		PROC_UNLOCK(p);
708 	}
709 }
710 
711 void
712 sess_hold(struct session *s)
713 {
714 
715 	refcount_acquire(&s->s_count);
716 }
717 
718 void
719 sess_release(struct session *s)
720 {
721 
722 	if (refcount_release(&s->s_count)) {
723 		if (s->s_ttyp != NULL) {
724 			tty_lock(s->s_ttyp);
725 			tty_rel_sess(s->s_ttyp, s);
726 		}
727 		mtx_destroy(&s->s_mtx);
728 		free(s, M_SESSION);
729 	}
730 }
731 
732 #ifdef DDB
733 
734 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
735 {
736 	register struct pgrp *pgrp;
737 	register struct proc *p;
738 	register int i;
739 
740 	for (i = 0; i <= pgrphash; i++) {
741 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
742 			printf("\tindx %d\n", i);
743 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
744 				printf(
745 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
746 				    (void *)pgrp, (long)pgrp->pg_id,
747 				    (void *)pgrp->pg_session,
748 				    pgrp->pg_session->s_count,
749 				    (void *)LIST_FIRST(&pgrp->pg_members));
750 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
751 					printf("\t\tpid %ld addr %p pgrp %p\n",
752 					    (long)p->p_pid, (void *)p,
753 					    (void *)p->p_pgrp);
754 				}
755 			}
756 		}
757 	}
758 }
759 #endif /* DDB */
760 
761 /*
762  * Calculate the kinfo_proc members which contain process-wide
763  * informations.
764  * Must be called with the target process locked.
765  */
766 static void
767 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
768 {
769 	struct thread *td;
770 
771 	PROC_LOCK_ASSERT(p, MA_OWNED);
772 
773 	kp->ki_estcpu = 0;
774 	kp->ki_pctcpu = 0;
775 	FOREACH_THREAD_IN_PROC(p, td) {
776 		thread_lock(td);
777 		kp->ki_pctcpu += sched_pctcpu(td);
778 		kp->ki_estcpu += td->td_estcpu;
779 		thread_unlock(td);
780 	}
781 }
782 
783 /*
784  * Clear kinfo_proc and fill in any information that is common
785  * to all threads in the process.
786  * Must be called with the target process locked.
787  */
788 static void
789 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
790 {
791 	struct thread *td0;
792 	struct tty *tp;
793 	struct session *sp;
794 	struct ucred *cred;
795 	struct sigacts *ps;
796 
797 	/* For proc_realparent. */
798 	sx_assert(&proctree_lock, SX_LOCKED);
799 	PROC_LOCK_ASSERT(p, MA_OWNED);
800 	bzero(kp, sizeof(*kp));
801 
802 	kp->ki_structsize = sizeof(*kp);
803 	kp->ki_paddr = p;
804 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
805 	kp->ki_args = p->p_args;
806 	kp->ki_textvp = p->p_textvp;
807 #ifdef KTRACE
808 	kp->ki_tracep = p->p_tracevp;
809 	kp->ki_traceflag = p->p_traceflag;
810 #endif
811 	kp->ki_fd = p->p_fd;
812 	kp->ki_vmspace = p->p_vmspace;
813 	kp->ki_flag = p->p_flag;
814 	kp->ki_flag2 = p->p_flag2;
815 	cred = p->p_ucred;
816 	if (cred) {
817 		kp->ki_uid = cred->cr_uid;
818 		kp->ki_ruid = cred->cr_ruid;
819 		kp->ki_svuid = cred->cr_svuid;
820 		kp->ki_cr_flags = 0;
821 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
822 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
823 		/* XXX bde doesn't like KI_NGROUPS */
824 		if (cred->cr_ngroups > KI_NGROUPS) {
825 			kp->ki_ngroups = KI_NGROUPS;
826 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
827 		} else
828 			kp->ki_ngroups = cred->cr_ngroups;
829 		bcopy(cred->cr_groups, kp->ki_groups,
830 		    kp->ki_ngroups * sizeof(gid_t));
831 		kp->ki_rgid = cred->cr_rgid;
832 		kp->ki_svgid = cred->cr_svgid;
833 		/* If jailed(cred), emulate the old P_JAILED flag. */
834 		if (jailed(cred)) {
835 			kp->ki_flag |= P_JAILED;
836 			/* If inside the jail, use 0 as a jail ID. */
837 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
838 				kp->ki_jid = cred->cr_prison->pr_id;
839 		}
840 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
841 		    sizeof(kp->ki_loginclass));
842 	}
843 	ps = p->p_sigacts;
844 	if (ps) {
845 		mtx_lock(&ps->ps_mtx);
846 		kp->ki_sigignore = ps->ps_sigignore;
847 		kp->ki_sigcatch = ps->ps_sigcatch;
848 		mtx_unlock(&ps->ps_mtx);
849 	}
850 	if (p->p_state != PRS_NEW &&
851 	    p->p_state != PRS_ZOMBIE &&
852 	    p->p_vmspace != NULL) {
853 		struct vmspace *vm = p->p_vmspace;
854 
855 		kp->ki_size = vm->vm_map.size;
856 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
857 		FOREACH_THREAD_IN_PROC(p, td0) {
858 			if (!TD_IS_SWAPPED(td0))
859 				kp->ki_rssize += td0->td_kstack_pages;
860 		}
861 		kp->ki_swrss = vm->vm_swrss;
862 		kp->ki_tsize = vm->vm_tsize;
863 		kp->ki_dsize = vm->vm_dsize;
864 		kp->ki_ssize = vm->vm_ssize;
865 	} else if (p->p_state == PRS_ZOMBIE)
866 		kp->ki_stat = SZOMB;
867 	if (kp->ki_flag & P_INMEM)
868 		kp->ki_sflag = PS_INMEM;
869 	else
870 		kp->ki_sflag = 0;
871 	/* Calculate legacy swtime as seconds since 'swtick'. */
872 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
873 	kp->ki_pid = p->p_pid;
874 	kp->ki_nice = p->p_nice;
875 	kp->ki_fibnum = p->p_fibnum;
876 	kp->ki_start = p->p_stats->p_start;
877 	timevaladd(&kp->ki_start, &boottime);
878 	PROC_STATLOCK(p);
879 	rufetch(p, &kp->ki_rusage);
880 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
881 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
882 	PROC_STATUNLOCK(p);
883 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
884 	/* Some callers want child times in a single value. */
885 	kp->ki_childtime = kp->ki_childstime;
886 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
887 
888 	FOREACH_THREAD_IN_PROC(p, td0)
889 		kp->ki_cow += td0->td_cow;
890 
891 	tp = NULL;
892 	if (p->p_pgrp) {
893 		kp->ki_pgid = p->p_pgrp->pg_id;
894 		kp->ki_jobc = p->p_pgrp->pg_jobc;
895 		sp = p->p_pgrp->pg_session;
896 
897 		if (sp != NULL) {
898 			kp->ki_sid = sp->s_sid;
899 			SESS_LOCK(sp);
900 			strlcpy(kp->ki_login, sp->s_login,
901 			    sizeof(kp->ki_login));
902 			if (sp->s_ttyvp)
903 				kp->ki_kiflag |= KI_CTTY;
904 			if (SESS_LEADER(p))
905 				kp->ki_kiflag |= KI_SLEADER;
906 			/* XXX proctree_lock */
907 			tp = sp->s_ttyp;
908 			SESS_UNLOCK(sp);
909 		}
910 	}
911 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
912 		kp->ki_tdev = tty_udev(tp);
913 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
914 		if (tp->t_session)
915 			kp->ki_tsid = tp->t_session->s_sid;
916 	} else
917 		kp->ki_tdev = NODEV;
918 	if (p->p_comm[0] != '\0')
919 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
920 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
921 	    p->p_sysent->sv_name[0] != '\0')
922 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
923 	kp->ki_siglist = p->p_siglist;
924 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
925 	kp->ki_acflag = p->p_acflag;
926 	kp->ki_lock = p->p_lock;
927 	if (p->p_pptr) {
928 		kp->ki_ppid = proc_realparent(p)->p_pid;
929 		if (p->p_flag & P_TRACED)
930 			kp->ki_tracer = p->p_pptr->p_pid;
931 	}
932 }
933 
934 /*
935  * Fill in information that is thread specific.  Must be called with
936  * target process locked.  If 'preferthread' is set, overwrite certain
937  * process-related fields that are maintained for both threads and
938  * processes.
939  */
940 static void
941 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
942 {
943 	struct proc *p;
944 
945 	p = td->td_proc;
946 	kp->ki_tdaddr = td;
947 	PROC_LOCK_ASSERT(p, MA_OWNED);
948 
949 	if (preferthread)
950 		PROC_STATLOCK(p);
951 	thread_lock(td);
952 	if (td->td_wmesg != NULL)
953 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
954 	else
955 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
956 	strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname));
957 	if (TD_ON_LOCK(td)) {
958 		kp->ki_kiflag |= KI_LOCKBLOCK;
959 		strlcpy(kp->ki_lockname, td->td_lockname,
960 		    sizeof(kp->ki_lockname));
961 	} else {
962 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
963 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
964 	}
965 
966 	if (p->p_state == PRS_NORMAL) { /* approximate. */
967 		if (TD_ON_RUNQ(td) ||
968 		    TD_CAN_RUN(td) ||
969 		    TD_IS_RUNNING(td)) {
970 			kp->ki_stat = SRUN;
971 		} else if (P_SHOULDSTOP(p)) {
972 			kp->ki_stat = SSTOP;
973 		} else if (TD_IS_SLEEPING(td)) {
974 			kp->ki_stat = SSLEEP;
975 		} else if (TD_ON_LOCK(td)) {
976 			kp->ki_stat = SLOCK;
977 		} else {
978 			kp->ki_stat = SWAIT;
979 		}
980 	} else if (p->p_state == PRS_ZOMBIE) {
981 		kp->ki_stat = SZOMB;
982 	} else {
983 		kp->ki_stat = SIDL;
984 	}
985 
986 	/* Things in the thread */
987 	kp->ki_wchan = td->td_wchan;
988 	kp->ki_pri.pri_level = td->td_priority;
989 	kp->ki_pri.pri_native = td->td_base_pri;
990 
991 	/*
992 	 * Note: legacy fields; clamp at the old NOCPU value and/or
993 	 * the maximum u_char CPU value.
994 	 */
995 	if (td->td_lastcpu == NOCPU)
996 		kp->ki_lastcpu_old = NOCPU_OLD;
997 	else if (td->td_lastcpu > MAXCPU_OLD)
998 		kp->ki_lastcpu_old = MAXCPU_OLD;
999 	else
1000 		kp->ki_lastcpu_old = td->td_lastcpu;
1001 
1002 	if (td->td_oncpu == NOCPU)
1003 		kp->ki_oncpu_old = NOCPU_OLD;
1004 	else if (td->td_oncpu > MAXCPU_OLD)
1005 		kp->ki_oncpu_old = MAXCPU_OLD;
1006 	else
1007 		kp->ki_oncpu_old = td->td_oncpu;
1008 
1009 	kp->ki_lastcpu = td->td_lastcpu;
1010 	kp->ki_oncpu = td->td_oncpu;
1011 	kp->ki_tdflags = td->td_flags;
1012 	kp->ki_tid = td->td_tid;
1013 	kp->ki_numthreads = p->p_numthreads;
1014 	kp->ki_pcb = td->td_pcb;
1015 	kp->ki_kstack = (void *)td->td_kstack;
1016 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1017 	kp->ki_pri.pri_class = td->td_pri_class;
1018 	kp->ki_pri.pri_user = td->td_user_pri;
1019 
1020 	if (preferthread) {
1021 		rufetchtd(td, &kp->ki_rusage);
1022 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1023 		kp->ki_pctcpu = sched_pctcpu(td);
1024 		kp->ki_estcpu = td->td_estcpu;
1025 		kp->ki_cow = td->td_cow;
1026 	}
1027 
1028 	/* We can't get this anymore but ps etc never used it anyway. */
1029 	kp->ki_rqindex = 0;
1030 
1031 	if (preferthread)
1032 		kp->ki_siglist = td->td_siglist;
1033 	kp->ki_sigmask = td->td_sigmask;
1034 	thread_unlock(td);
1035 	if (preferthread)
1036 		PROC_STATUNLOCK(p);
1037 }
1038 
1039 /*
1040  * Fill in a kinfo_proc structure for the specified process.
1041  * Must be called with the target process locked.
1042  */
1043 void
1044 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1045 {
1046 
1047 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1048 
1049 	fill_kinfo_proc_only(p, kp);
1050 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1051 	fill_kinfo_aggregate(p, kp);
1052 }
1053 
1054 struct pstats *
1055 pstats_alloc(void)
1056 {
1057 
1058 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1059 }
1060 
1061 /*
1062  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1063  */
1064 void
1065 pstats_fork(struct pstats *src, struct pstats *dst)
1066 {
1067 
1068 	bzero(&dst->pstat_startzero,
1069 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1070 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1071 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1072 }
1073 
1074 void
1075 pstats_free(struct pstats *ps)
1076 {
1077 
1078 	free(ps, M_SUBPROC);
1079 }
1080 
1081 static struct proc *
1082 zpfind_locked(pid_t pid)
1083 {
1084 	struct proc *p;
1085 
1086 	sx_assert(&allproc_lock, SX_LOCKED);
1087 	LIST_FOREACH(p, &zombproc, p_list) {
1088 		if (p->p_pid == pid) {
1089 			PROC_LOCK(p);
1090 			break;
1091 		}
1092 	}
1093 	return (p);
1094 }
1095 
1096 /*
1097  * Locate a zombie process by number
1098  */
1099 struct proc *
1100 zpfind(pid_t pid)
1101 {
1102 	struct proc *p;
1103 
1104 	sx_slock(&allproc_lock);
1105 	p = zpfind_locked(pid);
1106 	sx_sunlock(&allproc_lock);
1107 	return (p);
1108 }
1109 
1110 #ifdef COMPAT_FREEBSD32
1111 
1112 /*
1113  * This function is typically used to copy out the kernel address, so
1114  * it can be replaced by assignment of zero.
1115  */
1116 static inline uint32_t
1117 ptr32_trim(void *ptr)
1118 {
1119 	uintptr_t uptr;
1120 
1121 	uptr = (uintptr_t)ptr;
1122 	return ((uptr > UINT_MAX) ? 0 : uptr);
1123 }
1124 
1125 #define PTRTRIM_CP(src,dst,fld) \
1126 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1127 
1128 static void
1129 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1130 {
1131 	int i;
1132 
1133 	bzero(ki32, sizeof(struct kinfo_proc32));
1134 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1135 	CP(*ki, *ki32, ki_layout);
1136 	PTRTRIM_CP(*ki, *ki32, ki_args);
1137 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1138 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1139 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1140 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1141 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1142 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1143 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1144 	CP(*ki, *ki32, ki_pid);
1145 	CP(*ki, *ki32, ki_ppid);
1146 	CP(*ki, *ki32, ki_pgid);
1147 	CP(*ki, *ki32, ki_tpgid);
1148 	CP(*ki, *ki32, ki_sid);
1149 	CP(*ki, *ki32, ki_tsid);
1150 	CP(*ki, *ki32, ki_jobc);
1151 	CP(*ki, *ki32, ki_tdev);
1152 	CP(*ki, *ki32, ki_siglist);
1153 	CP(*ki, *ki32, ki_sigmask);
1154 	CP(*ki, *ki32, ki_sigignore);
1155 	CP(*ki, *ki32, ki_sigcatch);
1156 	CP(*ki, *ki32, ki_uid);
1157 	CP(*ki, *ki32, ki_ruid);
1158 	CP(*ki, *ki32, ki_svuid);
1159 	CP(*ki, *ki32, ki_rgid);
1160 	CP(*ki, *ki32, ki_svgid);
1161 	CP(*ki, *ki32, ki_ngroups);
1162 	for (i = 0; i < KI_NGROUPS; i++)
1163 		CP(*ki, *ki32, ki_groups[i]);
1164 	CP(*ki, *ki32, ki_size);
1165 	CP(*ki, *ki32, ki_rssize);
1166 	CP(*ki, *ki32, ki_swrss);
1167 	CP(*ki, *ki32, ki_tsize);
1168 	CP(*ki, *ki32, ki_dsize);
1169 	CP(*ki, *ki32, ki_ssize);
1170 	CP(*ki, *ki32, ki_xstat);
1171 	CP(*ki, *ki32, ki_acflag);
1172 	CP(*ki, *ki32, ki_pctcpu);
1173 	CP(*ki, *ki32, ki_estcpu);
1174 	CP(*ki, *ki32, ki_slptime);
1175 	CP(*ki, *ki32, ki_swtime);
1176 	CP(*ki, *ki32, ki_cow);
1177 	CP(*ki, *ki32, ki_runtime);
1178 	TV_CP(*ki, *ki32, ki_start);
1179 	TV_CP(*ki, *ki32, ki_childtime);
1180 	CP(*ki, *ki32, ki_flag);
1181 	CP(*ki, *ki32, ki_kiflag);
1182 	CP(*ki, *ki32, ki_traceflag);
1183 	CP(*ki, *ki32, ki_stat);
1184 	CP(*ki, *ki32, ki_nice);
1185 	CP(*ki, *ki32, ki_lock);
1186 	CP(*ki, *ki32, ki_rqindex);
1187 	CP(*ki, *ki32, ki_oncpu);
1188 	CP(*ki, *ki32, ki_lastcpu);
1189 
1190 	/* XXX TODO: wrap cpu value as appropriate */
1191 	CP(*ki, *ki32, ki_oncpu_old);
1192 	CP(*ki, *ki32, ki_lastcpu_old);
1193 
1194 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1195 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1196 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1197 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1198 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1199 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1200 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1201 	CP(*ki, *ki32, ki_tracer);
1202 	CP(*ki, *ki32, ki_flag2);
1203 	CP(*ki, *ki32, ki_fibnum);
1204 	CP(*ki, *ki32, ki_cr_flags);
1205 	CP(*ki, *ki32, ki_jid);
1206 	CP(*ki, *ki32, ki_numthreads);
1207 	CP(*ki, *ki32, ki_tid);
1208 	CP(*ki, *ki32, ki_pri);
1209 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1210 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1211 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1212 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1213 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1214 	CP(*ki, *ki32, ki_sflag);
1215 	CP(*ki, *ki32, ki_tdflags);
1216 }
1217 #endif
1218 
1219 int
1220 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1221 {
1222 	struct thread *td;
1223 	struct kinfo_proc ki;
1224 #ifdef COMPAT_FREEBSD32
1225 	struct kinfo_proc32 ki32;
1226 #endif
1227 	int error;
1228 
1229 	PROC_LOCK_ASSERT(p, MA_OWNED);
1230 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1231 
1232 	error = 0;
1233 	fill_kinfo_proc(p, &ki);
1234 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1235 #ifdef COMPAT_FREEBSD32
1236 		if ((flags & KERN_PROC_MASK32) != 0) {
1237 			freebsd32_kinfo_proc_out(&ki, &ki32);
1238 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1239 				error = ENOMEM;
1240 		} else
1241 #endif
1242 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1243 				error = ENOMEM;
1244 	} else {
1245 		FOREACH_THREAD_IN_PROC(p, td) {
1246 			fill_kinfo_thread(td, &ki, 1);
1247 #ifdef COMPAT_FREEBSD32
1248 			if ((flags & KERN_PROC_MASK32) != 0) {
1249 				freebsd32_kinfo_proc_out(&ki, &ki32);
1250 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1251 					error = ENOMEM;
1252 			} else
1253 #endif
1254 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1255 					error = ENOMEM;
1256 			if (error != 0)
1257 				break;
1258 		}
1259 	}
1260 	PROC_UNLOCK(p);
1261 	return (error);
1262 }
1263 
1264 static int
1265 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1266     int doingzomb)
1267 {
1268 	struct sbuf sb;
1269 	struct kinfo_proc ki;
1270 	struct proc *np;
1271 	int error, error2;
1272 	pid_t pid;
1273 
1274 	pid = p->p_pid;
1275 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1276 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1277 	error = kern_proc_out(p, &sb, flags);
1278 	error2 = sbuf_finish(&sb);
1279 	sbuf_delete(&sb);
1280 	if (error != 0)
1281 		return (error);
1282 	else if (error2 != 0)
1283 		return (error2);
1284 	if (doingzomb)
1285 		np = zpfind(pid);
1286 	else {
1287 		if (pid == 0)
1288 			return (0);
1289 		np = pfind(pid);
1290 	}
1291 	if (np == NULL)
1292 		return (ESRCH);
1293 	if (np != p) {
1294 		PROC_UNLOCK(np);
1295 		return (ESRCH);
1296 	}
1297 	PROC_UNLOCK(np);
1298 	return (0);
1299 }
1300 
1301 static int
1302 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1303 {
1304 	int *name = (int *)arg1;
1305 	u_int namelen = arg2;
1306 	struct proc *p;
1307 	int flags, doingzomb, oid_number;
1308 	int error = 0;
1309 
1310 	oid_number = oidp->oid_number;
1311 	if (oid_number != KERN_PROC_ALL &&
1312 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1313 		flags = KERN_PROC_NOTHREADS;
1314 	else {
1315 		flags = 0;
1316 		oid_number &= ~KERN_PROC_INC_THREAD;
1317 	}
1318 #ifdef COMPAT_FREEBSD32
1319 	if (req->flags & SCTL_MASK32)
1320 		flags |= KERN_PROC_MASK32;
1321 #endif
1322 	if (oid_number == KERN_PROC_PID) {
1323 		if (namelen != 1)
1324 			return (EINVAL);
1325 		error = sysctl_wire_old_buffer(req, 0);
1326 		if (error)
1327 			return (error);
1328 		sx_slock(&proctree_lock);
1329 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1330 		if (error == 0)
1331 			error = sysctl_out_proc(p, req, flags, 0);
1332 		sx_sunlock(&proctree_lock);
1333 		return (error);
1334 	}
1335 
1336 	switch (oid_number) {
1337 	case KERN_PROC_ALL:
1338 		if (namelen != 0)
1339 			return (EINVAL);
1340 		break;
1341 	case KERN_PROC_PROC:
1342 		if (namelen != 0 && namelen != 1)
1343 			return (EINVAL);
1344 		break;
1345 	default:
1346 		if (namelen != 1)
1347 			return (EINVAL);
1348 		break;
1349 	}
1350 
1351 	if (!req->oldptr) {
1352 		/* overestimate by 5 procs */
1353 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1354 		if (error)
1355 			return (error);
1356 	}
1357 	error = sysctl_wire_old_buffer(req, 0);
1358 	if (error != 0)
1359 		return (error);
1360 	sx_slock(&proctree_lock);
1361 	sx_slock(&allproc_lock);
1362 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1363 		if (!doingzomb)
1364 			p = LIST_FIRST(&allproc);
1365 		else
1366 			p = LIST_FIRST(&zombproc);
1367 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1368 			/*
1369 			 * Skip embryonic processes.
1370 			 */
1371 			PROC_LOCK(p);
1372 			if (p->p_state == PRS_NEW) {
1373 				PROC_UNLOCK(p);
1374 				continue;
1375 			}
1376 			KASSERT(p->p_ucred != NULL,
1377 			    ("process credential is NULL for non-NEW proc"));
1378 			/*
1379 			 * Show a user only appropriate processes.
1380 			 */
1381 			if (p_cansee(curthread, p)) {
1382 				PROC_UNLOCK(p);
1383 				continue;
1384 			}
1385 			/*
1386 			 * TODO - make more efficient (see notes below).
1387 			 * do by session.
1388 			 */
1389 			switch (oid_number) {
1390 
1391 			case KERN_PROC_GID:
1392 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1393 					PROC_UNLOCK(p);
1394 					continue;
1395 				}
1396 				break;
1397 
1398 			case KERN_PROC_PGRP:
1399 				/* could do this by traversing pgrp */
1400 				if (p->p_pgrp == NULL ||
1401 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1402 					PROC_UNLOCK(p);
1403 					continue;
1404 				}
1405 				break;
1406 
1407 			case KERN_PROC_RGID:
1408 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1409 					PROC_UNLOCK(p);
1410 					continue;
1411 				}
1412 				break;
1413 
1414 			case KERN_PROC_SESSION:
1415 				if (p->p_session == NULL ||
1416 				    p->p_session->s_sid != (pid_t)name[0]) {
1417 					PROC_UNLOCK(p);
1418 					continue;
1419 				}
1420 				break;
1421 
1422 			case KERN_PROC_TTY:
1423 				if ((p->p_flag & P_CONTROLT) == 0 ||
1424 				    p->p_session == NULL) {
1425 					PROC_UNLOCK(p);
1426 					continue;
1427 				}
1428 				/* XXX proctree_lock */
1429 				SESS_LOCK(p->p_session);
1430 				if (p->p_session->s_ttyp == NULL ||
1431 				    tty_udev(p->p_session->s_ttyp) !=
1432 				    (dev_t)name[0]) {
1433 					SESS_UNLOCK(p->p_session);
1434 					PROC_UNLOCK(p);
1435 					continue;
1436 				}
1437 				SESS_UNLOCK(p->p_session);
1438 				break;
1439 
1440 			case KERN_PROC_UID:
1441 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1442 					PROC_UNLOCK(p);
1443 					continue;
1444 				}
1445 				break;
1446 
1447 			case KERN_PROC_RUID:
1448 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1449 					PROC_UNLOCK(p);
1450 					continue;
1451 				}
1452 				break;
1453 
1454 			case KERN_PROC_PROC:
1455 				break;
1456 
1457 			default:
1458 				break;
1459 
1460 			}
1461 
1462 			error = sysctl_out_proc(p, req, flags, doingzomb);
1463 			if (error) {
1464 				sx_sunlock(&allproc_lock);
1465 				sx_sunlock(&proctree_lock);
1466 				return (error);
1467 			}
1468 		}
1469 	}
1470 	sx_sunlock(&allproc_lock);
1471 	sx_sunlock(&proctree_lock);
1472 	return (0);
1473 }
1474 
1475 struct pargs *
1476 pargs_alloc(int len)
1477 {
1478 	struct pargs *pa;
1479 
1480 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1481 		M_WAITOK);
1482 	refcount_init(&pa->ar_ref, 1);
1483 	pa->ar_length = len;
1484 	return (pa);
1485 }
1486 
1487 static void
1488 pargs_free(struct pargs *pa)
1489 {
1490 
1491 	free(pa, M_PARGS);
1492 }
1493 
1494 void
1495 pargs_hold(struct pargs *pa)
1496 {
1497 
1498 	if (pa == NULL)
1499 		return;
1500 	refcount_acquire(&pa->ar_ref);
1501 }
1502 
1503 void
1504 pargs_drop(struct pargs *pa)
1505 {
1506 
1507 	if (pa == NULL)
1508 		return;
1509 	if (refcount_release(&pa->ar_ref))
1510 		pargs_free(pa);
1511 }
1512 
1513 static int
1514 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf,
1515     size_t len)
1516 {
1517 	struct iovec iov;
1518 	struct uio uio;
1519 
1520 	iov.iov_base = (caddr_t)buf;
1521 	iov.iov_len = len;
1522 	uio.uio_iov = &iov;
1523 	uio.uio_iovcnt = 1;
1524 	uio.uio_offset = offset;
1525 	uio.uio_resid = (ssize_t)len;
1526 	uio.uio_segflg = UIO_SYSSPACE;
1527 	uio.uio_rw = UIO_READ;
1528 	uio.uio_td = td;
1529 
1530 	return (proc_rwmem(p, &uio));
1531 }
1532 
1533 static int
1534 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1535     size_t len)
1536 {
1537 	size_t i;
1538 	int error;
1539 
1540 	error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len);
1541 	/*
1542 	 * Reading the chunk may validly return EFAULT if the string is shorter
1543 	 * than the chunk and is aligned at the end of the page, assuming the
1544 	 * next page is not mapped.  So if EFAULT is returned do a fallback to
1545 	 * one byte read loop.
1546 	 */
1547 	if (error == EFAULT) {
1548 		for (i = 0; i < len; i++, buf++, sptr++) {
1549 			error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1);
1550 			if (error != 0)
1551 				return (error);
1552 			if (*buf == '\0')
1553 				break;
1554 		}
1555 		error = 0;
1556 	}
1557 	return (error);
1558 }
1559 
1560 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1561 
1562 enum proc_vector_type {
1563 	PROC_ARG,
1564 	PROC_ENV,
1565 	PROC_AUX,
1566 };
1567 
1568 #ifdef COMPAT_FREEBSD32
1569 static int
1570 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1571     size_t *vsizep, enum proc_vector_type type)
1572 {
1573 	struct freebsd32_ps_strings pss;
1574 	Elf32_Auxinfo aux;
1575 	vm_offset_t vptr, ptr;
1576 	uint32_t *proc_vector32;
1577 	char **proc_vector;
1578 	size_t vsize, size;
1579 	int i, error;
1580 
1581 	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1582 	    &pss, sizeof(pss));
1583 	if (error != 0)
1584 		return (error);
1585 	switch (type) {
1586 	case PROC_ARG:
1587 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1588 		vsize = pss.ps_nargvstr;
1589 		if (vsize > ARG_MAX)
1590 			return (ENOEXEC);
1591 		size = vsize * sizeof(int32_t);
1592 		break;
1593 	case PROC_ENV:
1594 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1595 		vsize = pss.ps_nenvstr;
1596 		if (vsize > ARG_MAX)
1597 			return (ENOEXEC);
1598 		size = vsize * sizeof(int32_t);
1599 		break;
1600 	case PROC_AUX:
1601 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1602 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1603 		if (vptr % 4 != 0)
1604 			return (ENOEXEC);
1605 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1606 			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1607 			if (error != 0)
1608 				return (error);
1609 			if (aux.a_type == AT_NULL)
1610 				break;
1611 			ptr += sizeof(aux);
1612 		}
1613 		if (aux.a_type != AT_NULL)
1614 			return (ENOEXEC);
1615 		vsize = i + 1;
1616 		size = vsize * sizeof(aux);
1617 		break;
1618 	default:
1619 		KASSERT(0, ("Wrong proc vector type: %d", type));
1620 		return (EINVAL);
1621 	}
1622 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1623 	error = proc_read_mem(td, p, vptr, proc_vector32, size);
1624 	if (error != 0)
1625 		goto done;
1626 	if (type == PROC_AUX) {
1627 		*proc_vectorp = (char **)proc_vector32;
1628 		*vsizep = vsize;
1629 		return (0);
1630 	}
1631 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1632 	for (i = 0; i < (int)vsize; i++)
1633 		proc_vector[i] = PTRIN(proc_vector32[i]);
1634 	*proc_vectorp = proc_vector;
1635 	*vsizep = vsize;
1636 done:
1637 	free(proc_vector32, M_TEMP);
1638 	return (error);
1639 }
1640 #endif
1641 
1642 static int
1643 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1644     size_t *vsizep, enum proc_vector_type type)
1645 {
1646 	struct ps_strings pss;
1647 	Elf_Auxinfo aux;
1648 	vm_offset_t vptr, ptr;
1649 	char **proc_vector;
1650 	size_t vsize, size;
1651 	int error, i;
1652 
1653 #ifdef COMPAT_FREEBSD32
1654 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1655 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1656 #endif
1657 	error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings),
1658 	    &pss, sizeof(pss));
1659 	if (error != 0)
1660 		return (error);
1661 	switch (type) {
1662 	case PROC_ARG:
1663 		vptr = (vm_offset_t)pss.ps_argvstr;
1664 		vsize = pss.ps_nargvstr;
1665 		if (vsize > ARG_MAX)
1666 			return (ENOEXEC);
1667 		size = vsize * sizeof(char *);
1668 		break;
1669 	case PROC_ENV:
1670 		vptr = (vm_offset_t)pss.ps_envstr;
1671 		vsize = pss.ps_nenvstr;
1672 		if (vsize > ARG_MAX)
1673 			return (ENOEXEC);
1674 		size = vsize * sizeof(char *);
1675 		break;
1676 	case PROC_AUX:
1677 		/*
1678 		 * The aux array is just above env array on the stack. Check
1679 		 * that the address is naturally aligned.
1680 		 */
1681 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1682 		    * sizeof(char *);
1683 #if __ELF_WORD_SIZE == 64
1684 		if (vptr % sizeof(uint64_t) != 0)
1685 #else
1686 		if (vptr % sizeof(uint32_t) != 0)
1687 #endif
1688 			return (ENOEXEC);
1689 		/*
1690 		 * We count the array size reading the aux vectors from the
1691 		 * stack until AT_NULL vector is returned.  So (to keep the code
1692 		 * simple) we read the process stack twice: the first time here
1693 		 * to find the size and the second time when copying the vectors
1694 		 * to the allocated proc_vector.
1695 		 */
1696 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1697 			error = proc_read_mem(td, p, ptr, &aux, sizeof(aux));
1698 			if (error != 0)
1699 				return (error);
1700 			if (aux.a_type == AT_NULL)
1701 				break;
1702 			ptr += sizeof(aux);
1703 		}
1704 		/*
1705 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1706 		 * not reached AT_NULL, it is most likely we are reading wrong
1707 		 * data: either the process doesn't have auxv array or data has
1708 		 * been modified. Return the error in this case.
1709 		 */
1710 		if (aux.a_type != AT_NULL)
1711 			return (ENOEXEC);
1712 		vsize = i + 1;
1713 		size = vsize * sizeof(aux);
1714 		break;
1715 	default:
1716 		KASSERT(0, ("Wrong proc vector type: %d", type));
1717 		return (EINVAL); /* In case we are built without INVARIANTS. */
1718 	}
1719 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1720 	if (proc_vector == NULL)
1721 		return (ENOMEM);
1722 	error = proc_read_mem(td, p, vptr, proc_vector, size);
1723 	if (error != 0) {
1724 		free(proc_vector, M_TEMP);
1725 		return (error);
1726 	}
1727 	*proc_vectorp = proc_vector;
1728 	*vsizep = vsize;
1729 
1730 	return (0);
1731 }
1732 
1733 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1734 
1735 static int
1736 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1737     enum proc_vector_type type)
1738 {
1739 	size_t done, len, nchr, vsize;
1740 	int error, i;
1741 	char **proc_vector, *sptr;
1742 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1743 
1744 	PROC_ASSERT_HELD(p);
1745 
1746 	/*
1747 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1748 	 */
1749 	nchr = 2 * (PATH_MAX + ARG_MAX);
1750 
1751 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1752 	if (error != 0)
1753 		return (error);
1754 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1755 		/*
1756 		 * The program may have scribbled into its argv array, e.g. to
1757 		 * remove some arguments.  If that has happened, break out
1758 		 * before trying to read from NULL.
1759 		 */
1760 		if (proc_vector[i] == NULL)
1761 			break;
1762 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1763 			error = proc_read_string(td, p, sptr, pss_string,
1764 			    sizeof(pss_string));
1765 			if (error != 0)
1766 				goto done;
1767 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1768 			if (done + len >= nchr)
1769 				len = nchr - done - 1;
1770 			sbuf_bcat(sb, pss_string, len);
1771 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1772 				break;
1773 			done += GET_PS_STRINGS_CHUNK_SZ;
1774 		}
1775 		sbuf_bcat(sb, "", 1);
1776 		done += len + 1;
1777 	}
1778 done:
1779 	free(proc_vector, M_TEMP);
1780 	return (error);
1781 }
1782 
1783 int
1784 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1785 {
1786 
1787 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1788 }
1789 
1790 int
1791 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1792 {
1793 
1794 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1795 }
1796 
1797 int
1798 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1799 {
1800 	size_t vsize, size;
1801 	char **auxv;
1802 	int error;
1803 
1804 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1805 	if (error == 0) {
1806 #ifdef COMPAT_FREEBSD32
1807 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1808 			size = vsize * sizeof(Elf32_Auxinfo);
1809 		else
1810 #endif
1811 			size = vsize * sizeof(Elf_Auxinfo);
1812 		if (sbuf_bcat(sb, auxv, size) != 0)
1813 			error = ENOMEM;
1814 		free(auxv, M_TEMP);
1815 	}
1816 	return (error);
1817 }
1818 
1819 /*
1820  * This sysctl allows a process to retrieve the argument list or process
1821  * title for another process without groping around in the address space
1822  * of the other process.  It also allow a process to set its own "process
1823  * title to a string of its own choice.
1824  */
1825 static int
1826 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1827 {
1828 	int *name = (int *)arg1;
1829 	u_int namelen = arg2;
1830 	struct pargs *newpa, *pa;
1831 	struct proc *p;
1832 	struct sbuf sb;
1833 	int flags, error = 0, error2;
1834 
1835 	if (namelen != 1)
1836 		return (EINVAL);
1837 
1838 	flags = PGET_CANSEE;
1839 	if (req->newptr != NULL)
1840 		flags |= PGET_ISCURRENT;
1841 	error = pget((pid_t)name[0], flags, &p);
1842 	if (error)
1843 		return (error);
1844 
1845 	pa = p->p_args;
1846 	if (pa != NULL) {
1847 		pargs_hold(pa);
1848 		PROC_UNLOCK(p);
1849 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1850 		pargs_drop(pa);
1851 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1852 		_PHOLD(p);
1853 		PROC_UNLOCK(p);
1854 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1855 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1856 		error = proc_getargv(curthread, p, &sb);
1857 		error2 = sbuf_finish(&sb);
1858 		PRELE(p);
1859 		sbuf_delete(&sb);
1860 		if (error == 0 && error2 != 0)
1861 			error = error2;
1862 	} else {
1863 		PROC_UNLOCK(p);
1864 	}
1865 	if (error != 0 || req->newptr == NULL)
1866 		return (error);
1867 
1868 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1869 		return (ENOMEM);
1870 	newpa = pargs_alloc(req->newlen);
1871 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1872 	if (error != 0) {
1873 		pargs_free(newpa);
1874 		return (error);
1875 	}
1876 	PROC_LOCK(p);
1877 	pa = p->p_args;
1878 	p->p_args = newpa;
1879 	PROC_UNLOCK(p);
1880 	pargs_drop(pa);
1881 	return (0);
1882 }
1883 
1884 /*
1885  * This sysctl allows a process to retrieve environment of another process.
1886  */
1887 static int
1888 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1889 {
1890 	int *name = (int *)arg1;
1891 	u_int namelen = arg2;
1892 	struct proc *p;
1893 	struct sbuf sb;
1894 	int error, error2;
1895 
1896 	if (namelen != 1)
1897 		return (EINVAL);
1898 
1899 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1900 	if (error != 0)
1901 		return (error);
1902 	if ((p->p_flag & P_SYSTEM) != 0) {
1903 		PRELE(p);
1904 		return (0);
1905 	}
1906 
1907 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1908 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1909 	error = proc_getenvv(curthread, p, &sb);
1910 	error2 = sbuf_finish(&sb);
1911 	PRELE(p);
1912 	sbuf_delete(&sb);
1913 	return (error != 0 ? error : error2);
1914 }
1915 
1916 /*
1917  * This sysctl allows a process to retrieve ELF auxiliary vector of
1918  * another process.
1919  */
1920 static int
1921 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1922 {
1923 	int *name = (int *)arg1;
1924 	u_int namelen = arg2;
1925 	struct proc *p;
1926 	struct sbuf sb;
1927 	int error, error2;
1928 
1929 	if (namelen != 1)
1930 		return (EINVAL);
1931 
1932 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1933 	if (error != 0)
1934 		return (error);
1935 	if ((p->p_flag & P_SYSTEM) != 0) {
1936 		PRELE(p);
1937 		return (0);
1938 	}
1939 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1940 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1941 	error = proc_getauxv(curthread, p, &sb);
1942 	error2 = sbuf_finish(&sb);
1943 	PRELE(p);
1944 	sbuf_delete(&sb);
1945 	return (error != 0 ? error : error2);
1946 }
1947 
1948 /*
1949  * This sysctl allows a process to retrieve the path of the executable for
1950  * itself or another process.
1951  */
1952 static int
1953 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1954 {
1955 	pid_t *pidp = (pid_t *)arg1;
1956 	unsigned int arglen = arg2;
1957 	struct proc *p;
1958 	struct vnode *vp;
1959 	char *retbuf, *freebuf;
1960 	int error;
1961 
1962 	if (arglen != 1)
1963 		return (EINVAL);
1964 	if (*pidp == -1) {	/* -1 means this process */
1965 		p = req->td->td_proc;
1966 	} else {
1967 		error = pget(*pidp, PGET_CANSEE, &p);
1968 		if (error != 0)
1969 			return (error);
1970 	}
1971 
1972 	vp = p->p_textvp;
1973 	if (vp == NULL) {
1974 		if (*pidp != -1)
1975 			PROC_UNLOCK(p);
1976 		return (0);
1977 	}
1978 	vref(vp);
1979 	if (*pidp != -1)
1980 		PROC_UNLOCK(p);
1981 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1982 	vrele(vp);
1983 	if (error)
1984 		return (error);
1985 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1986 	free(freebuf, M_TEMP);
1987 	return (error);
1988 }
1989 
1990 static int
1991 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1992 {
1993 	struct proc *p;
1994 	char *sv_name;
1995 	int *name;
1996 	int namelen;
1997 	int error;
1998 
1999 	namelen = arg2;
2000 	if (namelen != 1)
2001 		return (EINVAL);
2002 
2003 	name = (int *)arg1;
2004 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2005 	if (error != 0)
2006 		return (error);
2007 	sv_name = p->p_sysent->sv_name;
2008 	PROC_UNLOCK(p);
2009 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2010 }
2011 
2012 #ifdef KINFO_OVMENTRY_SIZE
2013 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2014 #endif
2015 
2016 #ifdef COMPAT_FREEBSD7
2017 static int
2018 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2019 {
2020 	vm_map_entry_t entry, tmp_entry;
2021 	unsigned int last_timestamp;
2022 	char *fullpath, *freepath;
2023 	struct kinfo_ovmentry *kve;
2024 	struct vattr va;
2025 	struct ucred *cred;
2026 	int error, *name;
2027 	struct vnode *vp;
2028 	struct proc *p;
2029 	vm_map_t map;
2030 	struct vmspace *vm;
2031 
2032 	name = (int *)arg1;
2033 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2034 	if (error != 0)
2035 		return (error);
2036 	vm = vmspace_acquire_ref(p);
2037 	if (vm == NULL) {
2038 		PRELE(p);
2039 		return (ESRCH);
2040 	}
2041 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2042 
2043 	map = &vm->vm_map;
2044 	vm_map_lock_read(map);
2045 	for (entry = map->header.next; entry != &map->header;
2046 	    entry = entry->next) {
2047 		vm_object_t obj, tobj, lobj;
2048 		vm_offset_t addr;
2049 
2050 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2051 			continue;
2052 
2053 		bzero(kve, sizeof(*kve));
2054 		kve->kve_structsize = sizeof(*kve);
2055 
2056 		kve->kve_private_resident = 0;
2057 		obj = entry->object.vm_object;
2058 		if (obj != NULL) {
2059 			VM_OBJECT_RLOCK(obj);
2060 			if (obj->shadow_count == 1)
2061 				kve->kve_private_resident =
2062 				    obj->resident_page_count;
2063 		}
2064 		kve->kve_resident = 0;
2065 		addr = entry->start;
2066 		while (addr < entry->end) {
2067 			if (pmap_extract(map->pmap, addr))
2068 				kve->kve_resident++;
2069 			addr += PAGE_SIZE;
2070 		}
2071 
2072 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2073 			if (tobj != obj)
2074 				VM_OBJECT_RLOCK(tobj);
2075 			if (lobj != obj)
2076 				VM_OBJECT_RUNLOCK(lobj);
2077 			lobj = tobj;
2078 		}
2079 
2080 		kve->kve_start = (void*)entry->start;
2081 		kve->kve_end = (void*)entry->end;
2082 		kve->kve_offset = (off_t)entry->offset;
2083 
2084 		if (entry->protection & VM_PROT_READ)
2085 			kve->kve_protection |= KVME_PROT_READ;
2086 		if (entry->protection & VM_PROT_WRITE)
2087 			kve->kve_protection |= KVME_PROT_WRITE;
2088 		if (entry->protection & VM_PROT_EXECUTE)
2089 			kve->kve_protection |= KVME_PROT_EXEC;
2090 
2091 		if (entry->eflags & MAP_ENTRY_COW)
2092 			kve->kve_flags |= KVME_FLAG_COW;
2093 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2094 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2095 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2096 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2097 
2098 		last_timestamp = map->timestamp;
2099 		vm_map_unlock_read(map);
2100 
2101 		kve->kve_fileid = 0;
2102 		kve->kve_fsid = 0;
2103 		freepath = NULL;
2104 		fullpath = "";
2105 		if (lobj) {
2106 			vp = NULL;
2107 			switch (lobj->type) {
2108 			case OBJT_DEFAULT:
2109 				kve->kve_type = KVME_TYPE_DEFAULT;
2110 				break;
2111 			case OBJT_VNODE:
2112 				kve->kve_type = KVME_TYPE_VNODE;
2113 				vp = lobj->handle;
2114 				vref(vp);
2115 				break;
2116 			case OBJT_SWAP:
2117 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2118 					kve->kve_type = KVME_TYPE_VNODE;
2119 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2120 						vp = lobj->un_pager.swp.swp_tmpfs;
2121 						vref(vp);
2122 					}
2123 				} else {
2124 					kve->kve_type = KVME_TYPE_SWAP;
2125 				}
2126 				break;
2127 			case OBJT_DEVICE:
2128 				kve->kve_type = KVME_TYPE_DEVICE;
2129 				break;
2130 			case OBJT_PHYS:
2131 				kve->kve_type = KVME_TYPE_PHYS;
2132 				break;
2133 			case OBJT_DEAD:
2134 				kve->kve_type = KVME_TYPE_DEAD;
2135 				break;
2136 			case OBJT_SG:
2137 				kve->kve_type = KVME_TYPE_SG;
2138 				break;
2139 			default:
2140 				kve->kve_type = KVME_TYPE_UNKNOWN;
2141 				break;
2142 			}
2143 			if (lobj != obj)
2144 				VM_OBJECT_RUNLOCK(lobj);
2145 
2146 			kve->kve_ref_count = obj->ref_count;
2147 			kve->kve_shadow_count = obj->shadow_count;
2148 			VM_OBJECT_RUNLOCK(obj);
2149 			if (vp != NULL) {
2150 				vn_fullpath(curthread, vp, &fullpath,
2151 				    &freepath);
2152 				cred = curthread->td_ucred;
2153 				vn_lock(vp, LK_SHARED | LK_RETRY);
2154 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2155 					kve->kve_fileid = va.va_fileid;
2156 					kve->kve_fsid = va.va_fsid;
2157 				}
2158 				vput(vp);
2159 			}
2160 		} else {
2161 			kve->kve_type = KVME_TYPE_NONE;
2162 			kve->kve_ref_count = 0;
2163 			kve->kve_shadow_count = 0;
2164 		}
2165 
2166 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2167 		if (freepath != NULL)
2168 			free(freepath, M_TEMP);
2169 
2170 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2171 		vm_map_lock_read(map);
2172 		if (error)
2173 			break;
2174 		if (last_timestamp != map->timestamp) {
2175 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2176 			entry = tmp_entry;
2177 		}
2178 	}
2179 	vm_map_unlock_read(map);
2180 	vmspace_free(vm);
2181 	PRELE(p);
2182 	free(kve, M_TEMP);
2183 	return (error);
2184 }
2185 #endif	/* COMPAT_FREEBSD7 */
2186 
2187 #ifdef KINFO_VMENTRY_SIZE
2188 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2189 #endif
2190 
2191 static void
2192 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2193     struct kinfo_vmentry *kve)
2194 {
2195 	vm_object_t obj, tobj;
2196 	vm_page_t m, m_adv;
2197 	vm_offset_t addr;
2198 	vm_paddr_t locked_pa;
2199 	vm_pindex_t pi, pi_adv, pindex;
2200 
2201 	locked_pa = 0;
2202 	obj = entry->object.vm_object;
2203 	addr = entry->start;
2204 	m_adv = NULL;
2205 	pi = OFF_TO_IDX(entry->offset);
2206 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2207 		if (m_adv != NULL) {
2208 			m = m_adv;
2209 		} else {
2210 			pi_adv = OFF_TO_IDX(entry->end - addr);
2211 			pindex = pi;
2212 			for (tobj = obj;; tobj = tobj->backing_object) {
2213 				m = vm_page_find_least(tobj, pindex);
2214 				if (m != NULL) {
2215 					if (m->pindex == pindex)
2216 						break;
2217 					if (pi_adv > m->pindex - pindex) {
2218 						pi_adv = m->pindex - pindex;
2219 						m_adv = m;
2220 					}
2221 				}
2222 				if (tobj->backing_object == NULL)
2223 					goto next;
2224 				pindex += OFF_TO_IDX(tobj->
2225 				    backing_object_offset);
2226 			}
2227 		}
2228 		m_adv = NULL;
2229 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2230 		    (addr & (pagesizes[1] - 1)) == 0 &&
2231 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2232 		    MINCORE_SUPER) != 0) {
2233 			kve->kve_flags |= KVME_FLAG_SUPER;
2234 			pi_adv = OFF_TO_IDX(pagesizes[1]);
2235 		} else {
2236 			/*
2237 			 * We do not test the found page on validity.
2238 			 * Either the page is busy and being paged in,
2239 			 * or it was invalidated.  The first case
2240 			 * should be counted as resident, the second
2241 			 * is not so clear; we do account both.
2242 			 */
2243 			pi_adv = 1;
2244 		}
2245 		kve->kve_resident += pi_adv;
2246 next:;
2247 	}
2248 	PA_UNLOCK_COND(locked_pa);
2249 }
2250 
2251 /*
2252  * Must be called with the process locked and will return unlocked.
2253  */
2254 int
2255 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2256 {
2257 	vm_map_entry_t entry, tmp_entry;
2258 	struct vattr va;
2259 	vm_map_t map;
2260 	vm_object_t obj, tobj, lobj;
2261 	char *fullpath, *freepath;
2262 	struct kinfo_vmentry *kve;
2263 	struct ucred *cred;
2264 	struct vnode *vp;
2265 	struct vmspace *vm;
2266 	vm_offset_t addr;
2267 	unsigned int last_timestamp;
2268 	int error;
2269 
2270 	PROC_LOCK_ASSERT(p, MA_OWNED);
2271 
2272 	_PHOLD(p);
2273 	PROC_UNLOCK(p);
2274 	vm = vmspace_acquire_ref(p);
2275 	if (vm == NULL) {
2276 		PRELE(p);
2277 		return (ESRCH);
2278 	}
2279 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2280 
2281 	error = 0;
2282 	map = &vm->vm_map;
2283 	vm_map_lock_read(map);
2284 	for (entry = map->header.next; entry != &map->header;
2285 	    entry = entry->next) {
2286 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2287 			continue;
2288 
2289 		addr = entry->end;
2290 		bzero(kve, sizeof(*kve));
2291 		obj = entry->object.vm_object;
2292 		if (obj != NULL) {
2293 			for (tobj = obj; tobj != NULL;
2294 			    tobj = tobj->backing_object) {
2295 				VM_OBJECT_RLOCK(tobj);
2296 				lobj = tobj;
2297 			}
2298 			if (obj->backing_object == NULL)
2299 				kve->kve_private_resident =
2300 				    obj->resident_page_count;
2301 			if (!vmmap_skip_res_cnt)
2302 				kern_proc_vmmap_resident(map, entry, kve);
2303 			for (tobj = obj; tobj != NULL;
2304 			    tobj = tobj->backing_object) {
2305 				if (tobj != obj && tobj != lobj)
2306 					VM_OBJECT_RUNLOCK(tobj);
2307 			}
2308 		} else {
2309 			lobj = NULL;
2310 		}
2311 
2312 		kve->kve_start = entry->start;
2313 		kve->kve_end = entry->end;
2314 		kve->kve_offset = entry->offset;
2315 
2316 		if (entry->protection & VM_PROT_READ)
2317 			kve->kve_protection |= KVME_PROT_READ;
2318 		if (entry->protection & VM_PROT_WRITE)
2319 			kve->kve_protection |= KVME_PROT_WRITE;
2320 		if (entry->protection & VM_PROT_EXECUTE)
2321 			kve->kve_protection |= KVME_PROT_EXEC;
2322 
2323 		if (entry->eflags & MAP_ENTRY_COW)
2324 			kve->kve_flags |= KVME_FLAG_COW;
2325 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2326 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2327 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2328 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2329 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2330 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2331 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2332 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2333 
2334 		last_timestamp = map->timestamp;
2335 		vm_map_unlock_read(map);
2336 
2337 		freepath = NULL;
2338 		fullpath = "";
2339 		if (lobj != NULL) {
2340 			vp = NULL;
2341 			switch (lobj->type) {
2342 			case OBJT_DEFAULT:
2343 				kve->kve_type = KVME_TYPE_DEFAULT;
2344 				break;
2345 			case OBJT_VNODE:
2346 				kve->kve_type = KVME_TYPE_VNODE;
2347 				vp = lobj->handle;
2348 				vref(vp);
2349 				break;
2350 			case OBJT_SWAP:
2351 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2352 					kve->kve_type = KVME_TYPE_VNODE;
2353 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2354 						vp = lobj->un_pager.swp.swp_tmpfs;
2355 						vref(vp);
2356 					}
2357 				} else {
2358 					kve->kve_type = KVME_TYPE_SWAP;
2359 				}
2360 				break;
2361 			case OBJT_DEVICE:
2362 				kve->kve_type = KVME_TYPE_DEVICE;
2363 				break;
2364 			case OBJT_PHYS:
2365 				kve->kve_type = KVME_TYPE_PHYS;
2366 				break;
2367 			case OBJT_DEAD:
2368 				kve->kve_type = KVME_TYPE_DEAD;
2369 				break;
2370 			case OBJT_SG:
2371 				kve->kve_type = KVME_TYPE_SG;
2372 				break;
2373 			case OBJT_MGTDEVICE:
2374 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2375 				break;
2376 			default:
2377 				kve->kve_type = KVME_TYPE_UNKNOWN;
2378 				break;
2379 			}
2380 			if (lobj != obj)
2381 				VM_OBJECT_RUNLOCK(lobj);
2382 
2383 			kve->kve_ref_count = obj->ref_count;
2384 			kve->kve_shadow_count = obj->shadow_count;
2385 			VM_OBJECT_RUNLOCK(obj);
2386 			if (vp != NULL) {
2387 				vn_fullpath(curthread, vp, &fullpath,
2388 				    &freepath);
2389 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2390 				cred = curthread->td_ucred;
2391 				vn_lock(vp, LK_SHARED | LK_RETRY);
2392 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2393 					kve->kve_vn_fileid = va.va_fileid;
2394 					kve->kve_vn_fsid = va.va_fsid;
2395 					kve->kve_vn_mode =
2396 					    MAKEIMODE(va.va_type, va.va_mode);
2397 					kve->kve_vn_size = va.va_size;
2398 					kve->kve_vn_rdev = va.va_rdev;
2399 					kve->kve_status = KF_ATTR_VALID;
2400 				}
2401 				vput(vp);
2402 			}
2403 		} else {
2404 			kve->kve_type = KVME_TYPE_NONE;
2405 			kve->kve_ref_count = 0;
2406 			kve->kve_shadow_count = 0;
2407 		}
2408 
2409 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2410 		if (freepath != NULL)
2411 			free(freepath, M_TEMP);
2412 
2413 		/* Pack record size down */
2414 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2415 			kve->kve_structsize =
2416 			    offsetof(struct kinfo_vmentry, kve_path) +
2417 			    strlen(kve->kve_path) + 1;
2418 		else
2419 			kve->kve_structsize = sizeof(*kve);
2420 		kve->kve_structsize = roundup(kve->kve_structsize,
2421 		    sizeof(uint64_t));
2422 
2423 		/* Halt filling and truncate rather than exceeding maxlen */
2424 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2425 			error = 0;
2426 			vm_map_lock_read(map);
2427 			break;
2428 		} else if (maxlen != -1)
2429 			maxlen -= kve->kve_structsize;
2430 
2431 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2432 			error = ENOMEM;
2433 		vm_map_lock_read(map);
2434 		if (error != 0)
2435 			break;
2436 		if (last_timestamp != map->timestamp) {
2437 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2438 			entry = tmp_entry;
2439 		}
2440 	}
2441 	vm_map_unlock_read(map);
2442 	vmspace_free(vm);
2443 	PRELE(p);
2444 	free(kve, M_TEMP);
2445 	return (error);
2446 }
2447 
2448 static int
2449 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2450 {
2451 	struct proc *p;
2452 	struct sbuf sb;
2453 	int error, error2, *name;
2454 
2455 	name = (int *)arg1;
2456 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2457 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2458 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2459 	if (error != 0) {
2460 		sbuf_delete(&sb);
2461 		return (error);
2462 	}
2463 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2464 	error2 = sbuf_finish(&sb);
2465 	sbuf_delete(&sb);
2466 	return (error != 0 ? error : error2);
2467 }
2468 
2469 #if defined(STACK) || defined(DDB)
2470 static int
2471 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2472 {
2473 	struct kinfo_kstack *kkstp;
2474 	int error, i, *name, numthreads;
2475 	lwpid_t *lwpidarray;
2476 	struct thread *td;
2477 	struct stack *st;
2478 	struct sbuf sb;
2479 	struct proc *p;
2480 
2481 	name = (int *)arg1;
2482 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2483 	if (error != 0)
2484 		return (error);
2485 
2486 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2487 	st = stack_create();
2488 
2489 	lwpidarray = NULL;
2490 	numthreads = 0;
2491 	PROC_LOCK(p);
2492 repeat:
2493 	if (numthreads < p->p_numthreads) {
2494 		if (lwpidarray != NULL) {
2495 			free(lwpidarray, M_TEMP);
2496 			lwpidarray = NULL;
2497 		}
2498 		numthreads = p->p_numthreads;
2499 		PROC_UNLOCK(p);
2500 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2501 		    M_WAITOK | M_ZERO);
2502 		PROC_LOCK(p);
2503 		goto repeat;
2504 	}
2505 	i = 0;
2506 
2507 	/*
2508 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2509 	 * of changes could have taken place.  Should we check to see if the
2510 	 * vmspace has been replaced, or the like, in order to prevent
2511 	 * giving a snapshot that spans, say, execve(2), with some threads
2512 	 * before and some after?  Among other things, the credentials could
2513 	 * have changed, in which case the right to extract debug info might
2514 	 * no longer be assured.
2515 	 */
2516 	FOREACH_THREAD_IN_PROC(p, td) {
2517 		KASSERT(i < numthreads,
2518 		    ("sysctl_kern_proc_kstack: numthreads"));
2519 		lwpidarray[i] = td->td_tid;
2520 		i++;
2521 	}
2522 	numthreads = i;
2523 	for (i = 0; i < numthreads; i++) {
2524 		td = thread_find(p, lwpidarray[i]);
2525 		if (td == NULL) {
2526 			continue;
2527 		}
2528 		bzero(kkstp, sizeof(*kkstp));
2529 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2530 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2531 		thread_lock(td);
2532 		kkstp->kkst_tid = td->td_tid;
2533 		if (TD_IS_SWAPPED(td)) {
2534 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2535 		} else if (TD_IS_RUNNING(td)) {
2536 			if (stack_save_td_running(st, td) == 0)
2537 				kkstp->kkst_state = KKST_STATE_STACKOK;
2538 			else
2539 				kkstp->kkst_state = KKST_STATE_RUNNING;
2540 		} else {
2541 			kkstp->kkst_state = KKST_STATE_STACKOK;
2542 			stack_save_td(st, td);
2543 		}
2544 		thread_unlock(td);
2545 		PROC_UNLOCK(p);
2546 		stack_sbuf_print(&sb, st);
2547 		sbuf_finish(&sb);
2548 		sbuf_delete(&sb);
2549 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2550 		PROC_LOCK(p);
2551 		if (error)
2552 			break;
2553 	}
2554 	_PRELE(p);
2555 	PROC_UNLOCK(p);
2556 	if (lwpidarray != NULL)
2557 		free(lwpidarray, M_TEMP);
2558 	stack_destroy(st);
2559 	free(kkstp, M_TEMP);
2560 	return (error);
2561 }
2562 #endif
2563 
2564 /*
2565  * This sysctl allows a process to retrieve the full list of groups from
2566  * itself or another process.
2567  */
2568 static int
2569 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2570 {
2571 	pid_t *pidp = (pid_t *)arg1;
2572 	unsigned int arglen = arg2;
2573 	struct proc *p;
2574 	struct ucred *cred;
2575 	int error;
2576 
2577 	if (arglen != 1)
2578 		return (EINVAL);
2579 	if (*pidp == -1) {	/* -1 means this process */
2580 		p = req->td->td_proc;
2581 		PROC_LOCK(p);
2582 	} else {
2583 		error = pget(*pidp, PGET_CANSEE, &p);
2584 		if (error != 0)
2585 			return (error);
2586 	}
2587 
2588 	cred = crhold(p->p_ucred);
2589 	PROC_UNLOCK(p);
2590 
2591 	error = SYSCTL_OUT(req, cred->cr_groups,
2592 	    cred->cr_ngroups * sizeof(gid_t));
2593 	crfree(cred);
2594 	return (error);
2595 }
2596 
2597 /*
2598  * This sysctl allows a process to retrieve or/and set the resource limit for
2599  * another process.
2600  */
2601 static int
2602 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2603 {
2604 	int *name = (int *)arg1;
2605 	u_int namelen = arg2;
2606 	struct rlimit rlim;
2607 	struct proc *p;
2608 	u_int which;
2609 	int flags, error;
2610 
2611 	if (namelen != 2)
2612 		return (EINVAL);
2613 
2614 	which = (u_int)name[1];
2615 	if (which >= RLIM_NLIMITS)
2616 		return (EINVAL);
2617 
2618 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2619 		return (EINVAL);
2620 
2621 	flags = PGET_HOLD | PGET_NOTWEXIT;
2622 	if (req->newptr != NULL)
2623 		flags |= PGET_CANDEBUG;
2624 	else
2625 		flags |= PGET_CANSEE;
2626 	error = pget((pid_t)name[0], flags, &p);
2627 	if (error != 0)
2628 		return (error);
2629 
2630 	/*
2631 	 * Retrieve limit.
2632 	 */
2633 	if (req->oldptr != NULL) {
2634 		PROC_LOCK(p);
2635 		lim_rlimit_proc(p, which, &rlim);
2636 		PROC_UNLOCK(p);
2637 	}
2638 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2639 	if (error != 0)
2640 		goto errout;
2641 
2642 	/*
2643 	 * Set limit.
2644 	 */
2645 	if (req->newptr != NULL) {
2646 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2647 		if (error == 0)
2648 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2649 	}
2650 
2651 errout:
2652 	PRELE(p);
2653 	return (error);
2654 }
2655 
2656 /*
2657  * This sysctl allows a process to retrieve ps_strings structure location of
2658  * another process.
2659  */
2660 static int
2661 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2662 {
2663 	int *name = (int *)arg1;
2664 	u_int namelen = arg2;
2665 	struct proc *p;
2666 	vm_offset_t ps_strings;
2667 	int error;
2668 #ifdef COMPAT_FREEBSD32
2669 	uint32_t ps_strings32;
2670 #endif
2671 
2672 	if (namelen != 1)
2673 		return (EINVAL);
2674 
2675 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2676 	if (error != 0)
2677 		return (error);
2678 #ifdef COMPAT_FREEBSD32
2679 	if ((req->flags & SCTL_MASK32) != 0) {
2680 		/*
2681 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2682 		 * process.
2683 		 */
2684 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2685 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2686 		PROC_UNLOCK(p);
2687 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2688 		return (error);
2689 	}
2690 #endif
2691 	ps_strings = p->p_sysent->sv_psstrings;
2692 	PROC_UNLOCK(p);
2693 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2694 	return (error);
2695 }
2696 
2697 /*
2698  * This sysctl allows a process to retrieve umask of another process.
2699  */
2700 static int
2701 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2702 {
2703 	int *name = (int *)arg1;
2704 	u_int namelen = arg2;
2705 	struct proc *p;
2706 	int error;
2707 	u_short fd_cmask;
2708 
2709 	if (namelen != 1)
2710 		return (EINVAL);
2711 
2712 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2713 	if (error != 0)
2714 		return (error);
2715 
2716 	FILEDESC_SLOCK(p->p_fd);
2717 	fd_cmask = p->p_fd->fd_cmask;
2718 	FILEDESC_SUNLOCK(p->p_fd);
2719 	PRELE(p);
2720 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2721 	return (error);
2722 }
2723 
2724 /*
2725  * This sysctl allows a process to set and retrieve binary osreldate of
2726  * another process.
2727  */
2728 static int
2729 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2730 {
2731 	int *name = (int *)arg1;
2732 	u_int namelen = arg2;
2733 	struct proc *p;
2734 	int flags, error, osrel;
2735 
2736 	if (namelen != 1)
2737 		return (EINVAL);
2738 
2739 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2740 		return (EINVAL);
2741 
2742 	flags = PGET_HOLD | PGET_NOTWEXIT;
2743 	if (req->newptr != NULL)
2744 		flags |= PGET_CANDEBUG;
2745 	else
2746 		flags |= PGET_CANSEE;
2747 	error = pget((pid_t)name[0], flags, &p);
2748 	if (error != 0)
2749 		return (error);
2750 
2751 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2752 	if (error != 0)
2753 		goto errout;
2754 
2755 	if (req->newptr != NULL) {
2756 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2757 		if (error != 0)
2758 			goto errout;
2759 		if (osrel < 0) {
2760 			error = EINVAL;
2761 			goto errout;
2762 		}
2763 		p->p_osrel = osrel;
2764 	}
2765 errout:
2766 	PRELE(p);
2767 	return (error);
2768 }
2769 
2770 static int
2771 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2772 {
2773 	int *name = (int *)arg1;
2774 	u_int namelen = arg2;
2775 	struct proc *p;
2776 	struct kinfo_sigtramp kst;
2777 	const struct sysentvec *sv;
2778 	int error;
2779 #ifdef COMPAT_FREEBSD32
2780 	struct kinfo_sigtramp32 kst32;
2781 #endif
2782 
2783 	if (namelen != 1)
2784 		return (EINVAL);
2785 
2786 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2787 	if (error != 0)
2788 		return (error);
2789 	sv = p->p_sysent;
2790 #ifdef COMPAT_FREEBSD32
2791 	if ((req->flags & SCTL_MASK32) != 0) {
2792 		bzero(&kst32, sizeof(kst32));
2793 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2794 			if (sv->sv_sigcode_base != 0) {
2795 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2796 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2797 				    *sv->sv_szsigcode;
2798 			} else {
2799 				kst32.ksigtramp_start = sv->sv_psstrings -
2800 				    *sv->sv_szsigcode;
2801 				kst32.ksigtramp_end = sv->sv_psstrings;
2802 			}
2803 		}
2804 		PROC_UNLOCK(p);
2805 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2806 		return (error);
2807 	}
2808 #endif
2809 	bzero(&kst, sizeof(kst));
2810 	if (sv->sv_sigcode_base != 0) {
2811 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2812 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2813 		    *sv->sv_szsigcode;
2814 	} else {
2815 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2816 		    *sv->sv_szsigcode;
2817 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2818 	}
2819 	PROC_UNLOCK(p);
2820 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2821 	return (error);
2822 }
2823 
2824 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2825 
2826 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2827 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2828 	"Return entire process table");
2829 
2830 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2831 	sysctl_kern_proc, "Process table");
2832 
2833 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2834 	sysctl_kern_proc, "Process table");
2835 
2836 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2837 	sysctl_kern_proc, "Process table");
2838 
2839 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2840 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2841 
2842 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2843 	sysctl_kern_proc, "Process table");
2844 
2845 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2846 	sysctl_kern_proc, "Process table");
2847 
2848 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2849 	sysctl_kern_proc, "Process table");
2850 
2851 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2852 	sysctl_kern_proc, "Process table");
2853 
2854 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2855 	sysctl_kern_proc, "Return process table, no threads");
2856 
2857 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2858 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2859 	sysctl_kern_proc_args, "Process argument list");
2860 
2861 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2862 	sysctl_kern_proc_env, "Process environment");
2863 
2864 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2865 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2866 
2867 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2868 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2869 
2870 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2871 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2872 	"Process syscall vector name (ABI type)");
2873 
2874 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2875 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2876 
2877 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2878 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2879 
2880 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2881 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2882 
2883 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2884 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2885 
2886 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2887 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2888 
2889 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2890 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2891 
2892 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2893 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2894 
2895 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2896 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2897 
2898 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2899 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2900 	"Return process table, no threads");
2901 
2902 #ifdef COMPAT_FREEBSD7
2903 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2904 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2905 #endif
2906 
2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2908 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2909 
2910 #if defined(STACK) || defined(DDB)
2911 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2912 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2913 #endif
2914 
2915 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2916 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2917 
2918 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
2919 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
2920 	"Process resource limits");
2921 
2922 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
2923 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
2924 	"Process ps_strings location");
2925 
2926 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
2927 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
2928 
2929 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
2930 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
2931 	"Process binary osreldate");
2932 
2933 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
2934 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
2935 	"Process signal trampoline location");
2936 
2937 int allproc_gen;
2938 
2939 void
2940 stop_all_proc(void)
2941 {
2942 	struct proc *cp, *p;
2943 	int r, gen;
2944 	bool restart, seen_stopped, seen_exiting, stopped_some;
2945 
2946 	cp = curproc;
2947 	/*
2948 	 * stop_all_proc() assumes that all process which have
2949 	 * usermode must be stopped, except current process, for
2950 	 * obvious reasons.  Since other threads in the process
2951 	 * establishing global stop could unstop something, disable
2952 	 * calls from multithreaded processes as precaution.  The
2953 	 * service must not be user-callable anyway.
2954 	 */
2955 	KASSERT((cp->p_flag & P_HADTHREADS) == 0 ||
2956 	    (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc"));
2957 
2958 allproc_loop:
2959 	sx_xlock(&allproc_lock);
2960 	gen = allproc_gen;
2961 	seen_exiting = seen_stopped = stopped_some = restart = false;
2962 	LIST_REMOVE(cp, p_list);
2963 	LIST_INSERT_HEAD(&allproc, cp, p_list);
2964 	for (;;) {
2965 		p = LIST_NEXT(cp, p_list);
2966 		if (p == NULL)
2967 			break;
2968 		LIST_REMOVE(cp, p_list);
2969 		LIST_INSERT_AFTER(p, cp, p_list);
2970 		PROC_LOCK(p);
2971 		if ((p->p_flag & (P_KTHREAD | P_SYSTEM |
2972 		    P_TOTAL_STOP)) != 0) {
2973 			PROC_UNLOCK(p);
2974 			continue;
2975 		}
2976 		if ((p->p_flag & P_WEXIT) != 0) {
2977 			seen_exiting = true;
2978 			PROC_UNLOCK(p);
2979 			continue;
2980 		}
2981 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
2982 			/*
2983 			 * Stopped processes are tolerated when there
2984 			 * are no other processes which might continue
2985 			 * them.  P_STOPPED_SINGLE but not
2986 			 * P_TOTAL_STOP process still has at least one
2987 			 * thread running.
2988 			 */
2989 			seen_stopped = true;
2990 			PROC_UNLOCK(p);
2991 			continue;
2992 		}
2993 		_PHOLD(p);
2994 		sx_xunlock(&allproc_lock);
2995 		r = thread_single(p, SINGLE_ALLPROC);
2996 		if (r != 0)
2997 			restart = true;
2998 		else
2999 			stopped_some = true;
3000 		_PRELE(p);
3001 		PROC_UNLOCK(p);
3002 		sx_xlock(&allproc_lock);
3003 	}
3004 	/* Catch forked children we did not see in iteration. */
3005 	if (gen != allproc_gen)
3006 		restart = true;
3007 	sx_xunlock(&allproc_lock);
3008 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3009 		kern_yield(PRI_USER);
3010 		goto allproc_loop;
3011 	}
3012 }
3013 
3014 void
3015 resume_all_proc(void)
3016 {
3017 	struct proc *cp, *p;
3018 
3019 	cp = curproc;
3020 	sx_xlock(&allproc_lock);
3021 	LIST_REMOVE(cp, p_list);
3022 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3023 	for (;;) {
3024 		p = LIST_NEXT(cp, p_list);
3025 		if (p == NULL)
3026 			break;
3027 		LIST_REMOVE(cp, p_list);
3028 		LIST_INSERT_AFTER(p, cp, p_list);
3029 		PROC_LOCK(p);
3030 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3031 			sx_xunlock(&allproc_lock);
3032 			_PHOLD(p);
3033 			thread_single_end(p, SINGLE_ALLPROC);
3034 			_PRELE(p);
3035 			PROC_UNLOCK(p);
3036 			sx_xlock(&allproc_lock);
3037 		} else {
3038 			PROC_UNLOCK(p);
3039 		}
3040 	}
3041 	sx_xunlock(&allproc_lock);
3042 }
3043 
3044 #define	TOTAL_STOP_DEBUG	1
3045 #ifdef TOTAL_STOP_DEBUG
3046 volatile static int ap_resume;
3047 #include <sys/mount.h>
3048 
3049 static int
3050 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3051 {
3052 	int error, val;
3053 
3054 	val = 0;
3055 	ap_resume = 0;
3056 	error = sysctl_handle_int(oidp, &val, 0, req);
3057 	if (error != 0 || req->newptr == NULL)
3058 		return (error);
3059 	if (val != 0) {
3060 		stop_all_proc();
3061 		syncer_suspend();
3062 		while (ap_resume == 0)
3063 			;
3064 		syncer_resume();
3065 		resume_all_proc();
3066 	}
3067 	return (0);
3068 }
3069 
3070 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3071     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3072     sysctl_debug_stop_all_proc, "I",
3073     "");
3074 #endif
3075