1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/limits.h> 46 #include <sys/lock.h> 47 #include <sys/malloc.h> 48 #include <sys/mount.h> 49 #include <sys/mutex.h> 50 #include <sys/proc.h> 51 #include <sys/refcount.h> 52 #include <sys/sbuf.h> 53 #include <sys/sysent.h> 54 #include <sys/sched.h> 55 #include <sys/smp.h> 56 #include <sys/stack.h> 57 #include <sys/sysctl.h> 58 #include <sys/filedesc.h> 59 #include <sys/tty.h> 60 #include <sys/signalvar.h> 61 #include <sys/sdt.h> 62 #include <sys/sx.h> 63 #include <sys/user.h> 64 #include <sys/jail.h> 65 #include <sys/vnode.h> 66 #include <sys/eventhandler.h> 67 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/uma.h> 78 79 #ifdef COMPAT_FREEBSD32 80 #include <compat/freebsd32/freebsd32.h> 81 #include <compat/freebsd32/freebsd32_util.h> 82 #endif 83 84 SDT_PROVIDER_DEFINE(proc); 85 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 90 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 95 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 100 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 104 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 108 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 110 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 112 113 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 114 MALLOC_DEFINE(M_SESSION, "session", "session header"); 115 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 116 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 117 118 static void doenterpgrp(struct proc *, struct pgrp *); 119 static void orphanpg(struct pgrp *pg); 120 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 121 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 122 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 123 int preferthread); 124 static void pgadjustjobc(struct pgrp *pgrp, int entering); 125 static void pgdelete(struct pgrp *); 126 static int proc_ctor(void *mem, int size, void *arg, int flags); 127 static void proc_dtor(void *mem, int size, void *arg); 128 static int proc_init(void *mem, int size, int flags); 129 static void proc_fini(void *mem, int size); 130 static void pargs_free(struct pargs *pa); 131 132 /* 133 * Other process lists 134 */ 135 struct pidhashhead *pidhashtbl; 136 u_long pidhash; 137 struct pgrphashhead *pgrphashtbl; 138 u_long pgrphash; 139 struct proclist allproc; 140 struct proclist zombproc; 141 struct sx allproc_lock; 142 struct sx proctree_lock; 143 struct mtx ppeers_lock; 144 uma_zone_t proc_zone; 145 146 int kstack_pages = KSTACK_PAGES; 147 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 233 EVENTHANDLER_INVOKE(process_init, p); 234 p->p_stats = pstats_alloc(); 235 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 236 return (0); 237 } 238 239 /* 240 * UMA should ensure that this function is never called. 241 * Freeing a proc structure would violate type stability. 242 */ 243 static void 244 proc_fini(void *mem, int size) 245 { 246 #ifdef notnow 247 struct proc *p; 248 249 p = (struct proc *)mem; 250 EVENTHANDLER_INVOKE(process_fini, p); 251 pstats_free(p->p_stats); 252 thread_free(FIRST_THREAD_IN_PROC(p)); 253 mtx_destroy(&p->p_mtx); 254 if (p->p_ksi != NULL) 255 ksiginfo_free(p->p_ksi); 256 #else 257 panic("proc reclaimed"); 258 #endif 259 } 260 261 /* 262 * Is p an inferior of the current process? 263 */ 264 int 265 inferior(p) 266 register struct proc *p; 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 for (; p != curproc; p = p->p_pptr) 271 if (p->p_pid == 0) 272 return (0); 273 return (1); 274 } 275 276 /* 277 * Locate a process by number; return only "live" processes -- i.e., neither 278 * zombies nor newly born but incompletely initialized processes. By not 279 * returning processes in the PRS_NEW state, we allow callers to avoid 280 * testing for that condition to avoid dereferencing p_ucred, et al. 281 */ 282 struct proc * 283 pfind(pid) 284 register pid_t pid; 285 { 286 register struct proc *p; 287 288 sx_slock(&allproc_lock); 289 LIST_FOREACH(p, PIDHASH(pid), p_hash) 290 if (p->p_pid == pid) { 291 if (p->p_state == PRS_NEW) { 292 p = NULL; 293 break; 294 } 295 PROC_LOCK(p); 296 break; 297 } 298 sx_sunlock(&allproc_lock); 299 return (p); 300 } 301 302 /* 303 * Locate a process group by number. 304 * The caller must hold proctree_lock. 305 */ 306 struct pgrp * 307 pgfind(pgid) 308 register pid_t pgid; 309 { 310 register struct pgrp *pgrp; 311 312 sx_assert(&proctree_lock, SX_LOCKED); 313 314 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 315 if (pgrp->pg_id == pgid) { 316 PGRP_LOCK(pgrp); 317 return (pgrp); 318 } 319 } 320 return (NULL); 321 } 322 323 /* 324 * Create a new process group. 325 * pgid must be equal to the pid of p. 326 * Begin a new session if required. 327 */ 328 int 329 enterpgrp(p, pgid, pgrp, sess) 330 register struct proc *p; 331 pid_t pgid; 332 struct pgrp *pgrp; 333 struct session *sess; 334 { 335 struct pgrp *pgrp2; 336 337 sx_assert(&proctree_lock, SX_XLOCKED); 338 339 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 340 KASSERT(p->p_pid == pgid, 341 ("enterpgrp: new pgrp and pid != pgid")); 342 343 pgrp2 = pgfind(pgid); 344 345 KASSERT(pgrp2 == NULL, 346 ("enterpgrp: pgrp with pgid exists")); 347 KASSERT(!SESS_LEADER(p), 348 ("enterpgrp: session leader attempted setpgrp")); 349 350 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 351 352 if (sess != NULL) { 353 /* 354 * new session 355 */ 356 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 357 PROC_LOCK(p); 358 p->p_flag &= ~P_CONTROLT; 359 PROC_UNLOCK(p); 360 PGRP_LOCK(pgrp); 361 sess->s_leader = p; 362 sess->s_sid = p->p_pid; 363 refcount_init(&sess->s_count, 1); 364 sess->s_ttyvp = NULL; 365 sess->s_ttydp = NULL; 366 sess->s_ttyp = NULL; 367 bcopy(p->p_session->s_login, sess->s_login, 368 sizeof(sess->s_login)); 369 pgrp->pg_session = sess; 370 KASSERT(p == curproc, 371 ("enterpgrp: mksession and p != curproc")); 372 } else { 373 pgrp->pg_session = p->p_session; 374 sess_hold(pgrp->pg_session); 375 PGRP_LOCK(pgrp); 376 } 377 pgrp->pg_id = pgid; 378 LIST_INIT(&pgrp->pg_members); 379 380 /* 381 * As we have an exclusive lock of proctree_lock, 382 * this should not deadlock. 383 */ 384 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 385 pgrp->pg_jobc = 0; 386 SLIST_INIT(&pgrp->pg_sigiolst); 387 PGRP_UNLOCK(pgrp); 388 389 doenterpgrp(p, pgrp); 390 391 return (0); 392 } 393 394 /* 395 * Move p to an existing process group 396 */ 397 int 398 enterthispgrp(p, pgrp) 399 register struct proc *p; 400 struct pgrp *pgrp; 401 { 402 403 sx_assert(&proctree_lock, SX_XLOCKED); 404 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 405 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 406 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 407 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 408 KASSERT(pgrp->pg_session == p->p_session, 409 ("%s: pgrp's session %p, p->p_session %p.\n", 410 __func__, 411 pgrp->pg_session, 412 p->p_session)); 413 KASSERT(pgrp != p->p_pgrp, 414 ("%s: p belongs to pgrp.", __func__)); 415 416 doenterpgrp(p, pgrp); 417 418 return (0); 419 } 420 421 /* 422 * Move p to a process group 423 */ 424 static void 425 doenterpgrp(p, pgrp) 426 struct proc *p; 427 struct pgrp *pgrp; 428 { 429 struct pgrp *savepgrp; 430 431 sx_assert(&proctree_lock, SX_XLOCKED); 432 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 433 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 434 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 435 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 436 437 savepgrp = p->p_pgrp; 438 439 /* 440 * Adjust eligibility of affected pgrps to participate in job control. 441 * Increment eligibility counts before decrementing, otherwise we 442 * could reach 0 spuriously during the first call. 443 */ 444 fixjobc(p, pgrp, 1); 445 fixjobc(p, p->p_pgrp, 0); 446 447 PGRP_LOCK(pgrp); 448 PGRP_LOCK(savepgrp); 449 PROC_LOCK(p); 450 LIST_REMOVE(p, p_pglist); 451 p->p_pgrp = pgrp; 452 PROC_UNLOCK(p); 453 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 454 PGRP_UNLOCK(savepgrp); 455 PGRP_UNLOCK(pgrp); 456 if (LIST_EMPTY(&savepgrp->pg_members)) 457 pgdelete(savepgrp); 458 } 459 460 /* 461 * remove process from process group 462 */ 463 int 464 leavepgrp(p) 465 register struct proc *p; 466 { 467 struct pgrp *savepgrp; 468 469 sx_assert(&proctree_lock, SX_XLOCKED); 470 savepgrp = p->p_pgrp; 471 PGRP_LOCK(savepgrp); 472 PROC_LOCK(p); 473 LIST_REMOVE(p, p_pglist); 474 p->p_pgrp = NULL; 475 PROC_UNLOCK(p); 476 PGRP_UNLOCK(savepgrp); 477 if (LIST_EMPTY(&savepgrp->pg_members)) 478 pgdelete(savepgrp); 479 return (0); 480 } 481 482 /* 483 * delete a process group 484 */ 485 static void 486 pgdelete(pgrp) 487 register struct pgrp *pgrp; 488 { 489 struct session *savesess; 490 struct tty *tp; 491 492 sx_assert(&proctree_lock, SX_XLOCKED); 493 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 494 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 495 496 /* 497 * Reset any sigio structures pointing to us as a result of 498 * F_SETOWN with our pgid. 499 */ 500 funsetownlst(&pgrp->pg_sigiolst); 501 502 PGRP_LOCK(pgrp); 503 tp = pgrp->pg_session->s_ttyp; 504 LIST_REMOVE(pgrp, pg_hash); 505 savesess = pgrp->pg_session; 506 PGRP_UNLOCK(pgrp); 507 508 /* Remove the reference to the pgrp before deallocating it. */ 509 if (tp != NULL) { 510 tty_lock(tp); 511 tty_rel_pgrp(tp, pgrp); 512 } 513 514 mtx_destroy(&pgrp->pg_mtx); 515 free(pgrp, M_PGRP); 516 sess_release(savesess); 517 } 518 519 static void 520 pgadjustjobc(pgrp, entering) 521 struct pgrp *pgrp; 522 int entering; 523 { 524 525 PGRP_LOCK(pgrp); 526 if (entering) 527 pgrp->pg_jobc++; 528 else { 529 --pgrp->pg_jobc; 530 if (pgrp->pg_jobc == 0) 531 orphanpg(pgrp); 532 } 533 PGRP_UNLOCK(pgrp); 534 } 535 536 /* 537 * Adjust pgrp jobc counters when specified process changes process group. 538 * We count the number of processes in each process group that "qualify" 539 * the group for terminal job control (those with a parent in a different 540 * process group of the same session). If that count reaches zero, the 541 * process group becomes orphaned. Check both the specified process' 542 * process group and that of its children. 543 * entering == 0 => p is leaving specified group. 544 * entering == 1 => p is entering specified group. 545 */ 546 void 547 fixjobc(p, pgrp, entering) 548 register struct proc *p; 549 register struct pgrp *pgrp; 550 int entering; 551 { 552 register struct pgrp *hispgrp; 553 register struct session *mysession; 554 555 sx_assert(&proctree_lock, SX_LOCKED); 556 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 557 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 558 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 559 560 /* 561 * Check p's parent to see whether p qualifies its own process 562 * group; if so, adjust count for p's process group. 563 */ 564 mysession = pgrp->pg_session; 565 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 566 hispgrp->pg_session == mysession) 567 pgadjustjobc(pgrp, entering); 568 569 /* 570 * Check this process' children to see whether they qualify 571 * their process groups; if so, adjust counts for children's 572 * process groups. 573 */ 574 LIST_FOREACH(p, &p->p_children, p_sibling) { 575 hispgrp = p->p_pgrp; 576 if (hispgrp == pgrp || 577 hispgrp->pg_session != mysession) 578 continue; 579 PROC_LOCK(p); 580 if (p->p_state == PRS_ZOMBIE) { 581 PROC_UNLOCK(p); 582 continue; 583 } 584 PROC_UNLOCK(p); 585 pgadjustjobc(hispgrp, entering); 586 } 587 } 588 589 /* 590 * A process group has become orphaned; 591 * if there are any stopped processes in the group, 592 * hang-up all process in that group. 593 */ 594 static void 595 orphanpg(pg) 596 struct pgrp *pg; 597 { 598 register struct proc *p; 599 600 PGRP_LOCK_ASSERT(pg, MA_OWNED); 601 602 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 603 PROC_LOCK(p); 604 if (P_SHOULDSTOP(p)) { 605 PROC_UNLOCK(p); 606 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 607 PROC_LOCK(p); 608 psignal(p, SIGHUP); 609 psignal(p, SIGCONT); 610 PROC_UNLOCK(p); 611 } 612 return; 613 } 614 PROC_UNLOCK(p); 615 } 616 } 617 618 void 619 sess_hold(struct session *s) 620 { 621 622 refcount_acquire(&s->s_count); 623 } 624 625 void 626 sess_release(struct session *s) 627 { 628 629 if (refcount_release(&s->s_count)) { 630 if (s->s_ttyp != NULL) { 631 tty_lock(s->s_ttyp); 632 tty_rel_sess(s->s_ttyp, s); 633 } 634 mtx_destroy(&s->s_mtx); 635 free(s, M_SESSION); 636 } 637 } 638 639 #include "opt_ddb.h" 640 #ifdef DDB 641 #include <ddb/ddb.h> 642 643 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 644 { 645 register struct pgrp *pgrp; 646 register struct proc *p; 647 register int i; 648 649 for (i = 0; i <= pgrphash; i++) { 650 if (!LIST_EMPTY(&pgrphashtbl[i])) { 651 printf("\tindx %d\n", i); 652 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 653 printf( 654 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 655 (void *)pgrp, (long)pgrp->pg_id, 656 (void *)pgrp->pg_session, 657 pgrp->pg_session->s_count, 658 (void *)LIST_FIRST(&pgrp->pg_members)); 659 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 660 printf("\t\tpid %ld addr %p pgrp %p\n", 661 (long)p->p_pid, (void *)p, 662 (void *)p->p_pgrp); 663 } 664 } 665 } 666 } 667 } 668 #endif /* DDB */ 669 670 /* 671 * Calculate the kinfo_proc members which contain process-wide 672 * informations. 673 * Must be called with the target process locked. 674 */ 675 static void 676 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 677 { 678 struct thread *td; 679 680 PROC_LOCK_ASSERT(p, MA_OWNED); 681 682 kp->ki_estcpu = 0; 683 kp->ki_pctcpu = 0; 684 FOREACH_THREAD_IN_PROC(p, td) { 685 thread_lock(td); 686 kp->ki_pctcpu += sched_pctcpu(td); 687 kp->ki_estcpu += td->td_estcpu; 688 thread_unlock(td); 689 } 690 } 691 692 /* 693 * Clear kinfo_proc and fill in any information that is common 694 * to all threads in the process. 695 * Must be called with the target process locked. 696 */ 697 static void 698 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 699 { 700 struct thread *td0; 701 struct tty *tp; 702 struct session *sp; 703 struct ucred *cred; 704 struct sigacts *ps; 705 706 PROC_LOCK_ASSERT(p, MA_OWNED); 707 bzero(kp, sizeof(*kp)); 708 709 kp->ki_structsize = sizeof(*kp); 710 kp->ki_paddr = p; 711 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 712 kp->ki_args = p->p_args; 713 kp->ki_textvp = p->p_textvp; 714 #ifdef KTRACE 715 kp->ki_tracep = p->p_tracevp; 716 kp->ki_traceflag = p->p_traceflag; 717 #endif 718 kp->ki_fd = p->p_fd; 719 kp->ki_vmspace = p->p_vmspace; 720 kp->ki_flag = p->p_flag; 721 cred = p->p_ucred; 722 if (cred) { 723 kp->ki_uid = cred->cr_uid; 724 kp->ki_ruid = cred->cr_ruid; 725 kp->ki_svuid = cred->cr_svuid; 726 kp->ki_cr_flags = cred->cr_flags; 727 /* XXX bde doesn't like KI_NGROUPS */ 728 if (cred->cr_ngroups > KI_NGROUPS) { 729 kp->ki_ngroups = KI_NGROUPS; 730 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 731 } else 732 kp->ki_ngroups = cred->cr_ngroups; 733 bcopy(cred->cr_groups, kp->ki_groups, 734 kp->ki_ngroups * sizeof(gid_t)); 735 kp->ki_rgid = cred->cr_rgid; 736 kp->ki_svgid = cred->cr_svgid; 737 /* If jailed(cred), emulate the old P_JAILED flag. */ 738 if (jailed(cred)) { 739 kp->ki_flag |= P_JAILED; 740 /* If inside the jail, use 0 as a jail ID. */ 741 if (cred->cr_prison != curthread->td_ucred->cr_prison) 742 kp->ki_jid = cred->cr_prison->pr_id; 743 } 744 } 745 ps = p->p_sigacts; 746 if (ps) { 747 mtx_lock(&ps->ps_mtx); 748 kp->ki_sigignore = ps->ps_sigignore; 749 kp->ki_sigcatch = ps->ps_sigcatch; 750 mtx_unlock(&ps->ps_mtx); 751 } 752 PROC_SLOCK(p); 753 if (p->p_state != PRS_NEW && 754 p->p_state != PRS_ZOMBIE && 755 p->p_vmspace != NULL) { 756 struct vmspace *vm = p->p_vmspace; 757 758 kp->ki_size = vm->vm_map.size; 759 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 760 FOREACH_THREAD_IN_PROC(p, td0) { 761 if (!TD_IS_SWAPPED(td0)) 762 kp->ki_rssize += td0->td_kstack_pages; 763 } 764 kp->ki_swrss = vm->vm_swrss; 765 kp->ki_tsize = vm->vm_tsize; 766 kp->ki_dsize = vm->vm_dsize; 767 kp->ki_ssize = vm->vm_ssize; 768 } else if (p->p_state == PRS_ZOMBIE) 769 kp->ki_stat = SZOMB; 770 if (kp->ki_flag & P_INMEM) 771 kp->ki_sflag = PS_INMEM; 772 else 773 kp->ki_sflag = 0; 774 /* Calculate legacy swtime as seconds since 'swtick'. */ 775 kp->ki_swtime = (ticks - p->p_swtick) / hz; 776 kp->ki_pid = p->p_pid; 777 kp->ki_nice = p->p_nice; 778 rufetch(p, &kp->ki_rusage); 779 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 780 PROC_SUNLOCK(p); 781 kp->ki_start = p->p_stats->p_start; 782 timevaladd(&kp->ki_start, &boottime); 783 PROC_SLOCK(p); 784 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 785 PROC_SUNLOCK(p); 786 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 787 788 /* Some callers want child-times in a single value */ 789 kp->ki_childtime = kp->ki_childstime; 790 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 791 tp = NULL; 792 if (p->p_pgrp) { 793 kp->ki_pgid = p->p_pgrp->pg_id; 794 kp->ki_jobc = p->p_pgrp->pg_jobc; 795 sp = p->p_pgrp->pg_session; 796 797 if (sp != NULL) { 798 kp->ki_sid = sp->s_sid; 799 SESS_LOCK(sp); 800 strlcpy(kp->ki_login, sp->s_login, 801 sizeof(kp->ki_login)); 802 if (sp->s_ttyvp) 803 kp->ki_kiflag |= KI_CTTY; 804 if (SESS_LEADER(p)) 805 kp->ki_kiflag |= KI_SLEADER; 806 /* XXX proctree_lock */ 807 tp = sp->s_ttyp; 808 SESS_UNLOCK(sp); 809 } 810 } 811 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 812 kp->ki_tdev = tty_udev(tp); 813 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 814 if (tp->t_session) 815 kp->ki_tsid = tp->t_session->s_sid; 816 } else 817 kp->ki_tdev = NODEV; 818 if (p->p_comm[0] != '\0') 819 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 820 if (p->p_sysent && p->p_sysent->sv_name != NULL && 821 p->p_sysent->sv_name[0] != '\0') 822 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 823 kp->ki_siglist = p->p_siglist; 824 kp->ki_xstat = p->p_xstat; 825 kp->ki_acflag = p->p_acflag; 826 kp->ki_lock = p->p_lock; 827 if (p->p_pptr) 828 kp->ki_ppid = p->p_pptr->p_pid; 829 } 830 831 /* 832 * Fill in information that is thread specific. Must be called with 833 * target process locked. If 'preferthread' is set, overwrite certain 834 * process-related fields that are maintained for both threads and 835 * processes. 836 */ 837 static void 838 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 839 { 840 struct proc *p; 841 842 p = td->td_proc; 843 kp->ki_tdaddr = td; 844 PROC_LOCK_ASSERT(p, MA_OWNED); 845 846 thread_lock(td); 847 if (td->td_wmesg != NULL) 848 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 849 else 850 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 851 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 852 if (TD_ON_LOCK(td)) { 853 kp->ki_kiflag |= KI_LOCKBLOCK; 854 strlcpy(kp->ki_lockname, td->td_lockname, 855 sizeof(kp->ki_lockname)); 856 } else { 857 kp->ki_kiflag &= ~KI_LOCKBLOCK; 858 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 859 } 860 861 if (p->p_state == PRS_NORMAL) { /* approximate. */ 862 if (TD_ON_RUNQ(td) || 863 TD_CAN_RUN(td) || 864 TD_IS_RUNNING(td)) { 865 kp->ki_stat = SRUN; 866 } else if (P_SHOULDSTOP(p)) { 867 kp->ki_stat = SSTOP; 868 } else if (TD_IS_SLEEPING(td)) { 869 kp->ki_stat = SSLEEP; 870 } else if (TD_ON_LOCK(td)) { 871 kp->ki_stat = SLOCK; 872 } else { 873 kp->ki_stat = SWAIT; 874 } 875 } else if (p->p_state == PRS_ZOMBIE) { 876 kp->ki_stat = SZOMB; 877 } else { 878 kp->ki_stat = SIDL; 879 } 880 881 /* Things in the thread */ 882 kp->ki_wchan = td->td_wchan; 883 kp->ki_pri.pri_level = td->td_priority; 884 kp->ki_pri.pri_native = td->td_base_pri; 885 kp->ki_lastcpu = td->td_lastcpu; 886 kp->ki_oncpu = td->td_oncpu; 887 kp->ki_tdflags = td->td_flags; 888 kp->ki_tid = td->td_tid; 889 kp->ki_numthreads = p->p_numthreads; 890 kp->ki_pcb = td->td_pcb; 891 kp->ki_kstack = (void *)td->td_kstack; 892 kp->ki_slptime = (ticks - td->td_slptick) / hz; 893 kp->ki_pri.pri_class = td->td_pri_class; 894 kp->ki_pri.pri_user = td->td_user_pri; 895 896 if (preferthread) { 897 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 898 kp->ki_pctcpu = sched_pctcpu(td); 899 kp->ki_estcpu = td->td_estcpu; 900 } 901 902 /* We can't get this anymore but ps etc never used it anyway. */ 903 kp->ki_rqindex = 0; 904 905 if (preferthread) 906 kp->ki_siglist = td->td_siglist; 907 kp->ki_sigmask = td->td_sigmask; 908 thread_unlock(td); 909 } 910 911 /* 912 * Fill in a kinfo_proc structure for the specified process. 913 * Must be called with the target process locked. 914 */ 915 void 916 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 917 { 918 919 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 920 921 fill_kinfo_proc_only(p, kp); 922 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 923 fill_kinfo_aggregate(p, kp); 924 } 925 926 struct pstats * 927 pstats_alloc(void) 928 { 929 930 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 931 } 932 933 /* 934 * Copy parts of p_stats; zero the rest of p_stats (statistics). 935 */ 936 void 937 pstats_fork(struct pstats *src, struct pstats *dst) 938 { 939 940 bzero(&dst->pstat_startzero, 941 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 942 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 943 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 944 } 945 946 void 947 pstats_free(struct pstats *ps) 948 { 949 950 free(ps, M_SUBPROC); 951 } 952 953 /* 954 * Locate a zombie process by number 955 */ 956 struct proc * 957 zpfind(pid_t pid) 958 { 959 struct proc *p; 960 961 sx_slock(&allproc_lock); 962 LIST_FOREACH(p, &zombproc, p_list) 963 if (p->p_pid == pid) { 964 PROC_LOCK(p); 965 break; 966 } 967 sx_sunlock(&allproc_lock); 968 return (p); 969 } 970 971 #define KERN_PROC_ZOMBMASK 0x3 972 #define KERN_PROC_NOTHREADS 0x4 973 974 #ifdef COMPAT_FREEBSD32 975 976 /* 977 * This function is typically used to copy out the kernel address, so 978 * it can be replaced by assignment of zero. 979 */ 980 static inline uint32_t 981 ptr32_trim(void *ptr) 982 { 983 uintptr_t uptr; 984 985 uptr = (uintptr_t)ptr; 986 return ((uptr > UINT_MAX) ? 0 : uptr); 987 } 988 989 #define PTRTRIM_CP(src,dst,fld) \ 990 do { (dst).fld = ptr32_trim((src).fld); } while (0) 991 992 static void 993 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 994 { 995 int i; 996 997 bzero(ki32, sizeof(struct kinfo_proc32)); 998 ki32->ki_structsize = sizeof(struct kinfo_proc32); 999 CP(*ki, *ki32, ki_layout); 1000 PTRTRIM_CP(*ki, *ki32, ki_args); 1001 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1002 PTRTRIM_CP(*ki, *ki32, ki_addr); 1003 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1004 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1005 PTRTRIM_CP(*ki, *ki32, ki_fd); 1006 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1007 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1008 CP(*ki, *ki32, ki_pid); 1009 CP(*ki, *ki32, ki_ppid); 1010 CP(*ki, *ki32, ki_pgid); 1011 CP(*ki, *ki32, ki_tpgid); 1012 CP(*ki, *ki32, ki_sid); 1013 CP(*ki, *ki32, ki_tsid); 1014 CP(*ki, *ki32, ki_jobc); 1015 CP(*ki, *ki32, ki_tdev); 1016 CP(*ki, *ki32, ki_siglist); 1017 CP(*ki, *ki32, ki_sigmask); 1018 CP(*ki, *ki32, ki_sigignore); 1019 CP(*ki, *ki32, ki_sigcatch); 1020 CP(*ki, *ki32, ki_uid); 1021 CP(*ki, *ki32, ki_ruid); 1022 CP(*ki, *ki32, ki_svuid); 1023 CP(*ki, *ki32, ki_rgid); 1024 CP(*ki, *ki32, ki_svgid); 1025 CP(*ki, *ki32, ki_ngroups); 1026 for (i = 0; i < KI_NGROUPS; i++) 1027 CP(*ki, *ki32, ki_groups[i]); 1028 CP(*ki, *ki32, ki_size); 1029 CP(*ki, *ki32, ki_rssize); 1030 CP(*ki, *ki32, ki_swrss); 1031 CP(*ki, *ki32, ki_tsize); 1032 CP(*ki, *ki32, ki_dsize); 1033 CP(*ki, *ki32, ki_ssize); 1034 CP(*ki, *ki32, ki_xstat); 1035 CP(*ki, *ki32, ki_acflag); 1036 CP(*ki, *ki32, ki_pctcpu); 1037 CP(*ki, *ki32, ki_estcpu); 1038 CP(*ki, *ki32, ki_slptime); 1039 CP(*ki, *ki32, ki_swtime); 1040 CP(*ki, *ki32, ki_runtime); 1041 TV_CP(*ki, *ki32, ki_start); 1042 TV_CP(*ki, *ki32, ki_childtime); 1043 CP(*ki, *ki32, ki_flag); 1044 CP(*ki, *ki32, ki_kiflag); 1045 CP(*ki, *ki32, ki_traceflag); 1046 CP(*ki, *ki32, ki_stat); 1047 CP(*ki, *ki32, ki_nice); 1048 CP(*ki, *ki32, ki_lock); 1049 CP(*ki, *ki32, ki_rqindex); 1050 CP(*ki, *ki32, ki_oncpu); 1051 CP(*ki, *ki32, ki_lastcpu); 1052 bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1); 1053 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1054 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1055 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1056 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1057 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1058 CP(*ki, *ki32, ki_cr_flags); 1059 CP(*ki, *ki32, ki_jid); 1060 CP(*ki, *ki32, ki_numthreads); 1061 CP(*ki, *ki32, ki_tid); 1062 CP(*ki, *ki32, ki_pri); 1063 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1064 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1065 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1066 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1067 PTRTRIM_CP(*ki, *ki32, ki_udata); 1068 CP(*ki, *ki32, ki_sflag); 1069 CP(*ki, *ki32, ki_tdflags); 1070 } 1071 1072 static int 1073 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1074 { 1075 struct kinfo_proc32 ki32; 1076 int error; 1077 1078 if (req->flags & SCTL_MASK32) { 1079 freebsd32_kinfo_proc_out(ki, &ki32); 1080 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1081 } else 1082 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1083 return (error); 1084 } 1085 #else 1086 static int 1087 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1088 { 1089 1090 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1091 } 1092 #endif 1093 1094 /* 1095 * Must be called with the process locked and will return with it unlocked. 1096 */ 1097 static int 1098 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1099 { 1100 struct thread *td; 1101 struct kinfo_proc kinfo_proc; 1102 int error = 0; 1103 struct proc *np; 1104 pid_t pid = p->p_pid; 1105 1106 PROC_LOCK_ASSERT(p, MA_OWNED); 1107 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1108 1109 fill_kinfo_proc(p, &kinfo_proc); 1110 if (flags & KERN_PROC_NOTHREADS) 1111 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1112 else { 1113 FOREACH_THREAD_IN_PROC(p, td) { 1114 fill_kinfo_thread(td, &kinfo_proc, 1); 1115 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1116 if (error) 1117 break; 1118 } 1119 } 1120 PROC_UNLOCK(p); 1121 if (error) 1122 return (error); 1123 if (flags & KERN_PROC_ZOMBMASK) 1124 np = zpfind(pid); 1125 else { 1126 if (pid == 0) 1127 return (0); 1128 np = pfind(pid); 1129 } 1130 if (np == NULL) 1131 return (ESRCH); 1132 if (np != p) { 1133 PROC_UNLOCK(np); 1134 return (ESRCH); 1135 } 1136 PROC_UNLOCK(np); 1137 return (0); 1138 } 1139 1140 static int 1141 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1142 { 1143 int *name = (int*) arg1; 1144 u_int namelen = arg2; 1145 struct proc *p; 1146 int flags, doingzomb, oid_number; 1147 int error = 0; 1148 1149 oid_number = oidp->oid_number; 1150 if (oid_number != KERN_PROC_ALL && 1151 (oid_number & KERN_PROC_INC_THREAD) == 0) 1152 flags = KERN_PROC_NOTHREADS; 1153 else { 1154 flags = 0; 1155 oid_number &= ~KERN_PROC_INC_THREAD; 1156 } 1157 if (oid_number == KERN_PROC_PID) { 1158 if (namelen != 1) 1159 return (EINVAL); 1160 error = sysctl_wire_old_buffer(req, 0); 1161 if (error) 1162 return (error); 1163 p = pfind((pid_t)name[0]); 1164 if (!p) 1165 return (ESRCH); 1166 if ((error = p_cansee(curthread, p))) { 1167 PROC_UNLOCK(p); 1168 return (error); 1169 } 1170 error = sysctl_out_proc(p, req, flags); 1171 return (error); 1172 } 1173 1174 switch (oid_number) { 1175 case KERN_PROC_ALL: 1176 if (namelen != 0) 1177 return (EINVAL); 1178 break; 1179 case KERN_PROC_PROC: 1180 if (namelen != 0 && namelen != 1) 1181 return (EINVAL); 1182 break; 1183 default: 1184 if (namelen != 1) 1185 return (EINVAL); 1186 break; 1187 } 1188 1189 if (!req->oldptr) { 1190 /* overestimate by 5 procs */ 1191 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1192 if (error) 1193 return (error); 1194 } 1195 error = sysctl_wire_old_buffer(req, 0); 1196 if (error != 0) 1197 return (error); 1198 sx_slock(&allproc_lock); 1199 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1200 if (!doingzomb) 1201 p = LIST_FIRST(&allproc); 1202 else 1203 p = LIST_FIRST(&zombproc); 1204 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1205 /* 1206 * Skip embryonic processes. 1207 */ 1208 PROC_SLOCK(p); 1209 if (p->p_state == PRS_NEW) { 1210 PROC_SUNLOCK(p); 1211 continue; 1212 } 1213 PROC_SUNLOCK(p); 1214 PROC_LOCK(p); 1215 KASSERT(p->p_ucred != NULL, 1216 ("process credential is NULL for non-NEW proc")); 1217 /* 1218 * Show a user only appropriate processes. 1219 */ 1220 if (p_cansee(curthread, p)) { 1221 PROC_UNLOCK(p); 1222 continue; 1223 } 1224 /* 1225 * TODO - make more efficient (see notes below). 1226 * do by session. 1227 */ 1228 switch (oid_number) { 1229 1230 case KERN_PROC_GID: 1231 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1232 PROC_UNLOCK(p); 1233 continue; 1234 } 1235 break; 1236 1237 case KERN_PROC_PGRP: 1238 /* could do this by traversing pgrp */ 1239 if (p->p_pgrp == NULL || 1240 p->p_pgrp->pg_id != (pid_t)name[0]) { 1241 PROC_UNLOCK(p); 1242 continue; 1243 } 1244 break; 1245 1246 case KERN_PROC_RGID: 1247 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1248 PROC_UNLOCK(p); 1249 continue; 1250 } 1251 break; 1252 1253 case KERN_PROC_SESSION: 1254 if (p->p_session == NULL || 1255 p->p_session->s_sid != (pid_t)name[0]) { 1256 PROC_UNLOCK(p); 1257 continue; 1258 } 1259 break; 1260 1261 case KERN_PROC_TTY: 1262 if ((p->p_flag & P_CONTROLT) == 0 || 1263 p->p_session == NULL) { 1264 PROC_UNLOCK(p); 1265 continue; 1266 } 1267 /* XXX proctree_lock */ 1268 SESS_LOCK(p->p_session); 1269 if (p->p_session->s_ttyp == NULL || 1270 tty_udev(p->p_session->s_ttyp) != 1271 (dev_t)name[0]) { 1272 SESS_UNLOCK(p->p_session); 1273 PROC_UNLOCK(p); 1274 continue; 1275 } 1276 SESS_UNLOCK(p->p_session); 1277 break; 1278 1279 case KERN_PROC_UID: 1280 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1281 PROC_UNLOCK(p); 1282 continue; 1283 } 1284 break; 1285 1286 case KERN_PROC_RUID: 1287 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1288 PROC_UNLOCK(p); 1289 continue; 1290 } 1291 break; 1292 1293 case KERN_PROC_PROC: 1294 break; 1295 1296 default: 1297 break; 1298 1299 } 1300 1301 error = sysctl_out_proc(p, req, flags | doingzomb); 1302 if (error) { 1303 sx_sunlock(&allproc_lock); 1304 return (error); 1305 } 1306 } 1307 } 1308 sx_sunlock(&allproc_lock); 1309 return (0); 1310 } 1311 1312 struct pargs * 1313 pargs_alloc(int len) 1314 { 1315 struct pargs *pa; 1316 1317 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1318 M_WAITOK); 1319 refcount_init(&pa->ar_ref, 1); 1320 pa->ar_length = len; 1321 return (pa); 1322 } 1323 1324 static void 1325 pargs_free(struct pargs *pa) 1326 { 1327 1328 free(pa, M_PARGS); 1329 } 1330 1331 void 1332 pargs_hold(struct pargs *pa) 1333 { 1334 1335 if (pa == NULL) 1336 return; 1337 refcount_acquire(&pa->ar_ref); 1338 } 1339 1340 void 1341 pargs_drop(struct pargs *pa) 1342 { 1343 1344 if (pa == NULL) 1345 return; 1346 if (refcount_release(&pa->ar_ref)) 1347 pargs_free(pa); 1348 } 1349 1350 /* 1351 * This sysctl allows a process to retrieve the argument list or process 1352 * title for another process without groping around in the address space 1353 * of the other process. It also allow a process to set its own "process 1354 * title to a string of its own choice. 1355 */ 1356 static int 1357 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1358 { 1359 int *name = (int*) arg1; 1360 u_int namelen = arg2; 1361 struct pargs *newpa, *pa; 1362 struct proc *p; 1363 int error = 0; 1364 1365 if (namelen != 1) 1366 return (EINVAL); 1367 1368 p = pfind((pid_t)name[0]); 1369 if (!p) 1370 return (ESRCH); 1371 1372 if ((error = p_cansee(curthread, p)) != 0) { 1373 PROC_UNLOCK(p); 1374 return (error); 1375 } 1376 1377 if (req->newptr && curproc != p) { 1378 PROC_UNLOCK(p); 1379 return (EPERM); 1380 } 1381 1382 pa = p->p_args; 1383 pargs_hold(pa); 1384 PROC_UNLOCK(p); 1385 if (req->oldptr != NULL && pa != NULL) 1386 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1387 pargs_drop(pa); 1388 if (error != 0 || req->newptr == NULL) 1389 return (error); 1390 1391 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1392 return (ENOMEM); 1393 newpa = pargs_alloc(req->newlen); 1394 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1395 if (error != 0) { 1396 pargs_free(newpa); 1397 return (error); 1398 } 1399 PROC_LOCK(p); 1400 pa = p->p_args; 1401 p->p_args = newpa; 1402 PROC_UNLOCK(p); 1403 pargs_drop(pa); 1404 return (0); 1405 } 1406 1407 /* 1408 * This sysctl allows a process to retrieve the path of the executable for 1409 * itself or another process. 1410 */ 1411 static int 1412 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1413 { 1414 pid_t *pidp = (pid_t *)arg1; 1415 unsigned int arglen = arg2; 1416 struct proc *p; 1417 struct vnode *vp; 1418 char *retbuf, *freebuf; 1419 int error, vfslocked; 1420 1421 if (arglen != 1) 1422 return (EINVAL); 1423 if (*pidp == -1) { /* -1 means this process */ 1424 p = req->td->td_proc; 1425 } else { 1426 p = pfind(*pidp); 1427 if (p == NULL) 1428 return (ESRCH); 1429 if ((error = p_cansee(curthread, p)) != 0) { 1430 PROC_UNLOCK(p); 1431 return (error); 1432 } 1433 } 1434 1435 vp = p->p_textvp; 1436 if (vp == NULL) { 1437 if (*pidp != -1) 1438 PROC_UNLOCK(p); 1439 return (0); 1440 } 1441 vref(vp); 1442 if (*pidp != -1) 1443 PROC_UNLOCK(p); 1444 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1445 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1446 vrele(vp); 1447 VFS_UNLOCK_GIANT(vfslocked); 1448 if (error) 1449 return (error); 1450 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1451 free(freebuf, M_TEMP); 1452 return (error); 1453 } 1454 1455 static int 1456 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1457 { 1458 struct proc *p; 1459 char *sv_name; 1460 int *name; 1461 int namelen; 1462 int error; 1463 1464 namelen = arg2; 1465 if (namelen != 1) 1466 return (EINVAL); 1467 1468 name = (int *)arg1; 1469 if ((p = pfind((pid_t)name[0])) == NULL) 1470 return (ESRCH); 1471 if ((error = p_cansee(curthread, p))) { 1472 PROC_UNLOCK(p); 1473 return (error); 1474 } 1475 sv_name = p->p_sysent->sv_name; 1476 PROC_UNLOCK(p); 1477 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1478 } 1479 1480 #ifdef KINFO_OVMENTRY_SIZE 1481 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1482 #endif 1483 1484 #ifdef COMPAT_FREEBSD7 1485 static int 1486 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1487 { 1488 vm_map_entry_t entry, tmp_entry; 1489 unsigned int last_timestamp; 1490 char *fullpath, *freepath; 1491 struct kinfo_ovmentry *kve; 1492 struct vattr va; 1493 struct ucred *cred; 1494 int error, *name; 1495 struct vnode *vp; 1496 struct proc *p; 1497 vm_map_t map; 1498 struct vmspace *vm; 1499 1500 name = (int *)arg1; 1501 if ((p = pfind((pid_t)name[0])) == NULL) 1502 return (ESRCH); 1503 if (p->p_flag & P_WEXIT) { 1504 PROC_UNLOCK(p); 1505 return (ESRCH); 1506 } 1507 if ((error = p_candebug(curthread, p))) { 1508 PROC_UNLOCK(p); 1509 return (error); 1510 } 1511 _PHOLD(p); 1512 PROC_UNLOCK(p); 1513 vm = vmspace_acquire_ref(p); 1514 if (vm == NULL) { 1515 PRELE(p); 1516 return (ESRCH); 1517 } 1518 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1519 1520 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1521 vm_map_lock_read(map); 1522 for (entry = map->header.next; entry != &map->header; 1523 entry = entry->next) { 1524 vm_object_t obj, tobj, lobj; 1525 vm_offset_t addr; 1526 int vfslocked; 1527 1528 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1529 continue; 1530 1531 bzero(kve, sizeof(*kve)); 1532 kve->kve_structsize = sizeof(*kve); 1533 1534 kve->kve_private_resident = 0; 1535 obj = entry->object.vm_object; 1536 if (obj != NULL) { 1537 VM_OBJECT_LOCK(obj); 1538 if (obj->shadow_count == 1) 1539 kve->kve_private_resident = 1540 obj->resident_page_count; 1541 } 1542 kve->kve_resident = 0; 1543 addr = entry->start; 1544 while (addr < entry->end) { 1545 if (pmap_extract(map->pmap, addr)) 1546 kve->kve_resident++; 1547 addr += PAGE_SIZE; 1548 } 1549 1550 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1551 if (tobj != obj) 1552 VM_OBJECT_LOCK(tobj); 1553 if (lobj != obj) 1554 VM_OBJECT_UNLOCK(lobj); 1555 lobj = tobj; 1556 } 1557 1558 kve->kve_start = (void*)entry->start; 1559 kve->kve_end = (void*)entry->end; 1560 kve->kve_offset = (off_t)entry->offset; 1561 1562 if (entry->protection & VM_PROT_READ) 1563 kve->kve_protection |= KVME_PROT_READ; 1564 if (entry->protection & VM_PROT_WRITE) 1565 kve->kve_protection |= KVME_PROT_WRITE; 1566 if (entry->protection & VM_PROT_EXECUTE) 1567 kve->kve_protection |= KVME_PROT_EXEC; 1568 1569 if (entry->eflags & MAP_ENTRY_COW) 1570 kve->kve_flags |= KVME_FLAG_COW; 1571 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1572 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1573 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1574 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1575 1576 last_timestamp = map->timestamp; 1577 vm_map_unlock_read(map); 1578 1579 kve->kve_fileid = 0; 1580 kve->kve_fsid = 0; 1581 freepath = NULL; 1582 fullpath = ""; 1583 if (lobj) { 1584 vp = NULL; 1585 switch (lobj->type) { 1586 case OBJT_DEFAULT: 1587 kve->kve_type = KVME_TYPE_DEFAULT; 1588 break; 1589 case OBJT_VNODE: 1590 kve->kve_type = KVME_TYPE_VNODE; 1591 vp = lobj->handle; 1592 vref(vp); 1593 break; 1594 case OBJT_SWAP: 1595 kve->kve_type = KVME_TYPE_SWAP; 1596 break; 1597 case OBJT_DEVICE: 1598 kve->kve_type = KVME_TYPE_DEVICE; 1599 break; 1600 case OBJT_PHYS: 1601 kve->kve_type = KVME_TYPE_PHYS; 1602 break; 1603 case OBJT_DEAD: 1604 kve->kve_type = KVME_TYPE_DEAD; 1605 break; 1606 case OBJT_SG: 1607 kve->kve_type = KVME_TYPE_SG; 1608 break; 1609 default: 1610 kve->kve_type = KVME_TYPE_UNKNOWN; 1611 break; 1612 } 1613 if (lobj != obj) 1614 VM_OBJECT_UNLOCK(lobj); 1615 1616 kve->kve_ref_count = obj->ref_count; 1617 kve->kve_shadow_count = obj->shadow_count; 1618 VM_OBJECT_UNLOCK(obj); 1619 if (vp != NULL) { 1620 vn_fullpath(curthread, vp, &fullpath, 1621 &freepath); 1622 cred = curthread->td_ucred; 1623 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1624 vn_lock(vp, LK_SHARED | LK_RETRY); 1625 if (VOP_GETATTR(vp, &va, cred) == 0) { 1626 kve->kve_fileid = va.va_fileid; 1627 kve->kve_fsid = va.va_fsid; 1628 } 1629 vput(vp); 1630 VFS_UNLOCK_GIANT(vfslocked); 1631 } 1632 } else { 1633 kve->kve_type = KVME_TYPE_NONE; 1634 kve->kve_ref_count = 0; 1635 kve->kve_shadow_count = 0; 1636 } 1637 1638 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1639 if (freepath != NULL) 1640 free(freepath, M_TEMP); 1641 1642 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1643 vm_map_lock_read(map); 1644 if (error) 1645 break; 1646 if (last_timestamp != map->timestamp) { 1647 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1648 entry = tmp_entry; 1649 } 1650 } 1651 vm_map_unlock_read(map); 1652 vmspace_free(vm); 1653 PRELE(p); 1654 free(kve, M_TEMP); 1655 return (error); 1656 } 1657 #endif /* COMPAT_FREEBSD7 */ 1658 1659 #ifdef KINFO_VMENTRY_SIZE 1660 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 1661 #endif 1662 1663 static int 1664 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1665 { 1666 vm_map_entry_t entry, tmp_entry; 1667 unsigned int last_timestamp; 1668 char *fullpath, *freepath; 1669 struct kinfo_vmentry *kve; 1670 struct vattr va; 1671 struct ucred *cred; 1672 int error, *name; 1673 struct vnode *vp; 1674 struct proc *p; 1675 struct vmspace *vm; 1676 vm_map_t map; 1677 1678 name = (int *)arg1; 1679 if ((p = pfind((pid_t)name[0])) == NULL) 1680 return (ESRCH); 1681 if (p->p_flag & P_WEXIT) { 1682 PROC_UNLOCK(p); 1683 return (ESRCH); 1684 } 1685 if ((error = p_candebug(curthread, p))) { 1686 PROC_UNLOCK(p); 1687 return (error); 1688 } 1689 _PHOLD(p); 1690 PROC_UNLOCK(p); 1691 vm = vmspace_acquire_ref(p); 1692 if (vm == NULL) { 1693 PRELE(p); 1694 return (ESRCH); 1695 } 1696 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1697 1698 map = &vm->vm_map; /* XXXRW: More locking required? */ 1699 vm_map_lock_read(map); 1700 for (entry = map->header.next; entry != &map->header; 1701 entry = entry->next) { 1702 vm_object_t obj, tobj, lobj; 1703 vm_offset_t addr; 1704 int vfslocked; 1705 1706 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1707 continue; 1708 1709 bzero(kve, sizeof(*kve)); 1710 1711 kve->kve_private_resident = 0; 1712 obj = entry->object.vm_object; 1713 if (obj != NULL) { 1714 VM_OBJECT_LOCK(obj); 1715 if (obj->shadow_count == 1) 1716 kve->kve_private_resident = 1717 obj->resident_page_count; 1718 } 1719 kve->kve_resident = 0; 1720 addr = entry->start; 1721 while (addr < entry->end) { 1722 if (pmap_extract(map->pmap, addr)) 1723 kve->kve_resident++; 1724 addr += PAGE_SIZE; 1725 } 1726 1727 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1728 if (tobj != obj) 1729 VM_OBJECT_LOCK(tobj); 1730 if (lobj != obj) 1731 VM_OBJECT_UNLOCK(lobj); 1732 lobj = tobj; 1733 } 1734 1735 kve->kve_start = entry->start; 1736 kve->kve_end = entry->end; 1737 kve->kve_offset = entry->offset; 1738 1739 if (entry->protection & VM_PROT_READ) 1740 kve->kve_protection |= KVME_PROT_READ; 1741 if (entry->protection & VM_PROT_WRITE) 1742 kve->kve_protection |= KVME_PROT_WRITE; 1743 if (entry->protection & VM_PROT_EXECUTE) 1744 kve->kve_protection |= KVME_PROT_EXEC; 1745 1746 if (entry->eflags & MAP_ENTRY_COW) 1747 kve->kve_flags |= KVME_FLAG_COW; 1748 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1749 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1750 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 1751 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 1752 1753 last_timestamp = map->timestamp; 1754 vm_map_unlock_read(map); 1755 1756 kve->kve_fileid = 0; 1757 kve->kve_fsid = 0; 1758 freepath = NULL; 1759 fullpath = ""; 1760 if (lobj) { 1761 vp = NULL; 1762 switch (lobj->type) { 1763 case OBJT_DEFAULT: 1764 kve->kve_type = KVME_TYPE_DEFAULT; 1765 break; 1766 case OBJT_VNODE: 1767 kve->kve_type = KVME_TYPE_VNODE; 1768 vp = lobj->handle; 1769 vref(vp); 1770 break; 1771 case OBJT_SWAP: 1772 kve->kve_type = KVME_TYPE_SWAP; 1773 break; 1774 case OBJT_DEVICE: 1775 kve->kve_type = KVME_TYPE_DEVICE; 1776 break; 1777 case OBJT_PHYS: 1778 kve->kve_type = KVME_TYPE_PHYS; 1779 break; 1780 case OBJT_DEAD: 1781 kve->kve_type = KVME_TYPE_DEAD; 1782 break; 1783 case OBJT_SG: 1784 kve->kve_type = KVME_TYPE_SG; 1785 break; 1786 default: 1787 kve->kve_type = KVME_TYPE_UNKNOWN; 1788 break; 1789 } 1790 if (lobj != obj) 1791 VM_OBJECT_UNLOCK(lobj); 1792 1793 kve->kve_ref_count = obj->ref_count; 1794 kve->kve_shadow_count = obj->shadow_count; 1795 VM_OBJECT_UNLOCK(obj); 1796 if (vp != NULL) { 1797 vn_fullpath(curthread, vp, &fullpath, 1798 &freepath); 1799 cred = curthread->td_ucred; 1800 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1801 vn_lock(vp, LK_SHARED | LK_RETRY); 1802 if (VOP_GETATTR(vp, &va, cred) == 0) { 1803 kve->kve_fileid = va.va_fileid; 1804 kve->kve_fsid = va.va_fsid; 1805 } 1806 vput(vp); 1807 VFS_UNLOCK_GIANT(vfslocked); 1808 } 1809 } else { 1810 kve->kve_type = KVME_TYPE_NONE; 1811 kve->kve_ref_count = 0; 1812 kve->kve_shadow_count = 0; 1813 } 1814 1815 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1816 if (freepath != NULL) 1817 free(freepath, M_TEMP); 1818 1819 /* Pack record size down */ 1820 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 1821 strlen(kve->kve_path) + 1; 1822 kve->kve_structsize = roundup(kve->kve_structsize, 1823 sizeof(uint64_t)); 1824 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 1825 vm_map_lock_read(map); 1826 if (error) 1827 break; 1828 if (last_timestamp != map->timestamp) { 1829 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1830 entry = tmp_entry; 1831 } 1832 } 1833 vm_map_unlock_read(map); 1834 vmspace_free(vm); 1835 PRELE(p); 1836 free(kve, M_TEMP); 1837 return (error); 1838 } 1839 1840 #if defined(STACK) || defined(DDB) 1841 static int 1842 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1843 { 1844 struct kinfo_kstack *kkstp; 1845 int error, i, *name, numthreads; 1846 lwpid_t *lwpidarray; 1847 struct thread *td; 1848 struct stack *st; 1849 struct sbuf sb; 1850 struct proc *p; 1851 1852 name = (int *)arg1; 1853 if ((p = pfind((pid_t)name[0])) == NULL) 1854 return (ESRCH); 1855 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1856 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1857 PROC_UNLOCK(p); 1858 return (ESRCH); 1859 } 1860 if ((error = p_candebug(curthread, p))) { 1861 PROC_UNLOCK(p); 1862 return (error); 1863 } 1864 _PHOLD(p); 1865 PROC_UNLOCK(p); 1866 1867 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1868 st = stack_create(); 1869 1870 lwpidarray = NULL; 1871 numthreads = 0; 1872 PROC_LOCK(p); 1873 repeat: 1874 if (numthreads < p->p_numthreads) { 1875 if (lwpidarray != NULL) { 1876 free(lwpidarray, M_TEMP); 1877 lwpidarray = NULL; 1878 } 1879 numthreads = p->p_numthreads; 1880 PROC_UNLOCK(p); 1881 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1882 M_WAITOK | M_ZERO); 1883 PROC_LOCK(p); 1884 goto repeat; 1885 } 1886 i = 0; 1887 1888 /* 1889 * XXXRW: During the below loop, execve(2) and countless other sorts 1890 * of changes could have taken place. Should we check to see if the 1891 * vmspace has been replaced, or the like, in order to prevent 1892 * giving a snapshot that spans, say, execve(2), with some threads 1893 * before and some after? Among other things, the credentials could 1894 * have changed, in which case the right to extract debug info might 1895 * no longer be assured. 1896 */ 1897 FOREACH_THREAD_IN_PROC(p, td) { 1898 KASSERT(i < numthreads, 1899 ("sysctl_kern_proc_kstack: numthreads")); 1900 lwpidarray[i] = td->td_tid; 1901 i++; 1902 } 1903 numthreads = i; 1904 for (i = 0; i < numthreads; i++) { 1905 td = thread_find(p, lwpidarray[i]); 1906 if (td == NULL) { 1907 continue; 1908 } 1909 bzero(kkstp, sizeof(*kkstp)); 1910 (void)sbuf_new(&sb, kkstp->kkst_trace, 1911 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1912 thread_lock(td); 1913 kkstp->kkst_tid = td->td_tid; 1914 if (TD_IS_SWAPPED(td)) 1915 kkstp->kkst_state = KKST_STATE_SWAPPED; 1916 else if (TD_IS_RUNNING(td)) 1917 kkstp->kkst_state = KKST_STATE_RUNNING; 1918 else { 1919 kkstp->kkst_state = KKST_STATE_STACKOK; 1920 stack_save_td(st, td); 1921 } 1922 thread_unlock(td); 1923 PROC_UNLOCK(p); 1924 stack_sbuf_print(&sb, st); 1925 sbuf_finish(&sb); 1926 sbuf_delete(&sb); 1927 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1928 PROC_LOCK(p); 1929 if (error) 1930 break; 1931 } 1932 _PRELE(p); 1933 PROC_UNLOCK(p); 1934 if (lwpidarray != NULL) 1935 free(lwpidarray, M_TEMP); 1936 stack_destroy(st); 1937 free(kkstp, M_TEMP); 1938 return (error); 1939 } 1940 #endif 1941 1942 /* 1943 * This sysctl allows a process to retrieve the full list of groups from 1944 * itself or another process. 1945 */ 1946 static int 1947 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 1948 { 1949 pid_t *pidp = (pid_t *)arg1; 1950 unsigned int arglen = arg2; 1951 struct proc *p; 1952 struct ucred *cred; 1953 int error; 1954 1955 if (arglen != 1) 1956 return (EINVAL); 1957 if (*pidp == -1) { /* -1 means this process */ 1958 p = req->td->td_proc; 1959 } else { 1960 p = pfind(*pidp); 1961 if (p == NULL) 1962 return (ESRCH); 1963 if ((error = p_cansee(curthread, p)) != 0) { 1964 PROC_UNLOCK(p); 1965 return (error); 1966 } 1967 } 1968 1969 cred = crhold(p->p_ucred); 1970 if (*pidp != -1) 1971 PROC_UNLOCK(p); 1972 1973 error = SYSCTL_OUT(req, cred->cr_groups, 1974 cred->cr_ngroups * sizeof(gid_t)); 1975 crfree(cred); 1976 return (error); 1977 } 1978 1979 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1980 1981 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 1982 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 1983 "Return entire process table"); 1984 1985 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1986 sysctl_kern_proc, "Process table"); 1987 1988 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 1989 sysctl_kern_proc, "Process table"); 1990 1991 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 1992 sysctl_kern_proc, "Process table"); 1993 1994 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 1995 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 1996 1997 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 1998 sysctl_kern_proc, "Process table"); 1999 2000 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2001 sysctl_kern_proc, "Process table"); 2002 2003 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2004 sysctl_kern_proc, "Process table"); 2005 2006 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2007 sysctl_kern_proc, "Process table"); 2008 2009 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2010 sysctl_kern_proc, "Return process table, no threads"); 2011 2012 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2013 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2014 sysctl_kern_proc_args, "Process argument list"); 2015 2016 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2017 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2018 2019 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2020 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2021 "Process syscall vector name (ABI type)"); 2022 2023 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2024 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2025 2026 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2027 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2028 2029 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2030 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2031 2032 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2033 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2034 2035 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2036 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2037 2038 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2039 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2040 2041 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2042 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2043 2044 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2045 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2046 2047 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2048 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2049 "Return process table, no threads"); 2050 2051 #ifdef COMPAT_FREEBSD7 2052 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2053 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2054 #endif 2055 2056 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2057 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2058 2059 #if defined(STACK) || defined(DDB) 2060 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2061 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2062 #endif 2063 2064 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2065 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2066