xref: /freebsd/sys/kern/kern_proc.c (revision a3cf0ef5a295c885c895fabfd56470c0d1db322d)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/malloc.h>
48 #include <sys/mount.h>
49 #include <sys/mutex.h>
50 #include <sys/proc.h>
51 #include <sys/refcount.h>
52 #include <sys/sbuf.h>
53 #include <sys/sysent.h>
54 #include <sys/sched.h>
55 #include <sys/smp.h>
56 #include <sys/stack.h>
57 #include <sys/sysctl.h>
58 #include <sys/filedesc.h>
59 #include <sys/tty.h>
60 #include <sys/signalvar.h>
61 #include <sys/sdt.h>
62 #include <sys/sx.h>
63 #include <sys/user.h>
64 #include <sys/jail.h>
65 #include <sys/vnode.h>
66 #include <sys/eventhandler.h>
67 
68 #ifdef DDB
69 #include <ddb/ddb.h>
70 #endif
71 
72 #include <vm/vm.h>
73 #include <vm/vm_extern.h>
74 #include <vm/pmap.h>
75 #include <vm/vm_map.h>
76 #include <vm/vm_object.h>
77 #include <vm/uma.h>
78 
79 #ifdef COMPAT_FREEBSD32
80 #include <compat/freebsd32/freebsd32.h>
81 #include <compat/freebsd32/freebsd32_util.h>
82 #endif
83 
84 SDT_PROVIDER_DEFINE(proc);
85 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
86 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
90 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
91 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
95 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
96 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
100 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
101 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
104 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
105 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
106 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
108 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
109 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
110 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
112 
113 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
114 MALLOC_DEFINE(M_SESSION, "session", "session header");
115 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
116 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
117 
118 static void doenterpgrp(struct proc *, struct pgrp *);
119 static void orphanpg(struct pgrp *pg);
120 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
121 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
122 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
123     int preferthread);
124 static void pgadjustjobc(struct pgrp *pgrp, int entering);
125 static void pgdelete(struct pgrp *);
126 static int proc_ctor(void *mem, int size, void *arg, int flags);
127 static void proc_dtor(void *mem, int size, void *arg);
128 static int proc_init(void *mem, int size, int flags);
129 static void proc_fini(void *mem, int size);
130 static void pargs_free(struct pargs *pa);
131 
132 /*
133  * Other process lists
134  */
135 struct pidhashhead *pidhashtbl;
136 u_long pidhash;
137 struct pgrphashhead *pgrphashtbl;
138 u_long pgrphash;
139 struct proclist allproc;
140 struct proclist zombproc;
141 struct sx allproc_lock;
142 struct sx proctree_lock;
143 struct mtx ppeers_lock;
144 uma_zone_t proc_zone;
145 
146 int kstack_pages = KSTACK_PAGES;
147 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
148 
149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
150 #ifdef COMPAT_FREEBSD32
151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
152 #endif
153 
154 /*
155  * Initialize global process hashing structures.
156  */
157 void
158 procinit()
159 {
160 
161 	sx_init(&allproc_lock, "allproc");
162 	sx_init(&proctree_lock, "proctree");
163 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
164 	LIST_INIT(&allproc);
165 	LIST_INIT(&zombproc);
166 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
167 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
168 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
169 	    proc_ctor, proc_dtor, proc_init, proc_fini,
170 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
171 	uihashinit();
172 }
173 
174 /*
175  * Prepare a proc for use.
176  */
177 static int
178 proc_ctor(void *mem, int size, void *arg, int flags)
179 {
180 	struct proc *p;
181 
182 	p = (struct proc *)mem;
183 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
184 	EVENTHANDLER_INVOKE(process_ctor, p);
185 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
186 	return (0);
187 }
188 
189 /*
190  * Reclaim a proc after use.
191  */
192 static void
193 proc_dtor(void *mem, int size, void *arg)
194 {
195 	struct proc *p;
196 	struct thread *td;
197 
198 	/* INVARIANTS checks go here */
199 	p = (struct proc *)mem;
200 	td = FIRST_THREAD_IN_PROC(p);
201 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
202 	if (td != NULL) {
203 #ifdef INVARIANTS
204 		KASSERT((p->p_numthreads == 1),
205 		    ("bad number of threads in exiting process"));
206 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
207 #endif
208 		/* Free all OSD associated to this thread. */
209 		osd_thread_exit(td);
210 	}
211 	EVENTHANDLER_INVOKE(process_dtor, p);
212 	if (p->p_ksi != NULL)
213 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
214 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
215 }
216 
217 /*
218  * Initialize type-stable parts of a proc (when newly created).
219  */
220 static int
221 proc_init(void *mem, int size, int flags)
222 {
223 	struct proc *p;
224 
225 	p = (struct proc *)mem;
226 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
227 	p->p_sched = (struct p_sched *)&p[1];
228 	bzero(&p->p_mtx, sizeof(struct mtx));
229 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
230 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
231 	cv_init(&p->p_pwait, "ppwait");
232 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
233 	EVENTHANDLER_INVOKE(process_init, p);
234 	p->p_stats = pstats_alloc();
235 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
236 	return (0);
237 }
238 
239 /*
240  * UMA should ensure that this function is never called.
241  * Freeing a proc structure would violate type stability.
242  */
243 static void
244 proc_fini(void *mem, int size)
245 {
246 #ifdef notnow
247 	struct proc *p;
248 
249 	p = (struct proc *)mem;
250 	EVENTHANDLER_INVOKE(process_fini, p);
251 	pstats_free(p->p_stats);
252 	thread_free(FIRST_THREAD_IN_PROC(p));
253 	mtx_destroy(&p->p_mtx);
254 	if (p->p_ksi != NULL)
255 		ksiginfo_free(p->p_ksi);
256 #else
257 	panic("proc reclaimed");
258 #endif
259 }
260 
261 /*
262  * Is p an inferior of the current process?
263  */
264 int
265 inferior(p)
266 	register struct proc *p;
267 {
268 
269 	sx_assert(&proctree_lock, SX_LOCKED);
270 	for (; p != curproc; p = p->p_pptr)
271 		if (p->p_pid == 0)
272 			return (0);
273 	return (1);
274 }
275 
276 /*
277  * Locate a process by number; return only "live" processes -- i.e., neither
278  * zombies nor newly born but incompletely initialized processes.  By not
279  * returning processes in the PRS_NEW state, we allow callers to avoid
280  * testing for that condition to avoid dereferencing p_ucred, et al.
281  */
282 struct proc *
283 pfind(pid)
284 	register pid_t pid;
285 {
286 	register struct proc *p;
287 
288 	sx_slock(&allproc_lock);
289 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
290 		if (p->p_pid == pid) {
291 			if (p->p_state == PRS_NEW) {
292 				p = NULL;
293 				break;
294 			}
295 			PROC_LOCK(p);
296 			break;
297 		}
298 	sx_sunlock(&allproc_lock);
299 	return (p);
300 }
301 
302 /*
303  * Locate a process group by number.
304  * The caller must hold proctree_lock.
305  */
306 struct pgrp *
307 pgfind(pgid)
308 	register pid_t pgid;
309 {
310 	register struct pgrp *pgrp;
311 
312 	sx_assert(&proctree_lock, SX_LOCKED);
313 
314 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
315 		if (pgrp->pg_id == pgid) {
316 			PGRP_LOCK(pgrp);
317 			return (pgrp);
318 		}
319 	}
320 	return (NULL);
321 }
322 
323 /*
324  * Create a new process group.
325  * pgid must be equal to the pid of p.
326  * Begin a new session if required.
327  */
328 int
329 enterpgrp(p, pgid, pgrp, sess)
330 	register struct proc *p;
331 	pid_t pgid;
332 	struct pgrp *pgrp;
333 	struct session *sess;
334 {
335 	struct pgrp *pgrp2;
336 
337 	sx_assert(&proctree_lock, SX_XLOCKED);
338 
339 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
340 	KASSERT(p->p_pid == pgid,
341 	    ("enterpgrp: new pgrp and pid != pgid"));
342 
343 	pgrp2 = pgfind(pgid);
344 
345 	KASSERT(pgrp2 == NULL,
346 	    ("enterpgrp: pgrp with pgid exists"));
347 	KASSERT(!SESS_LEADER(p),
348 	    ("enterpgrp: session leader attempted setpgrp"));
349 
350 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
351 
352 	if (sess != NULL) {
353 		/*
354 		 * new session
355 		 */
356 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
357 		PROC_LOCK(p);
358 		p->p_flag &= ~P_CONTROLT;
359 		PROC_UNLOCK(p);
360 		PGRP_LOCK(pgrp);
361 		sess->s_leader = p;
362 		sess->s_sid = p->p_pid;
363 		refcount_init(&sess->s_count, 1);
364 		sess->s_ttyvp = NULL;
365 		sess->s_ttydp = NULL;
366 		sess->s_ttyp = NULL;
367 		bcopy(p->p_session->s_login, sess->s_login,
368 			    sizeof(sess->s_login));
369 		pgrp->pg_session = sess;
370 		KASSERT(p == curproc,
371 		    ("enterpgrp: mksession and p != curproc"));
372 	} else {
373 		pgrp->pg_session = p->p_session;
374 		sess_hold(pgrp->pg_session);
375 		PGRP_LOCK(pgrp);
376 	}
377 	pgrp->pg_id = pgid;
378 	LIST_INIT(&pgrp->pg_members);
379 
380 	/*
381 	 * As we have an exclusive lock of proctree_lock,
382 	 * this should not deadlock.
383 	 */
384 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
385 	pgrp->pg_jobc = 0;
386 	SLIST_INIT(&pgrp->pg_sigiolst);
387 	PGRP_UNLOCK(pgrp);
388 
389 	doenterpgrp(p, pgrp);
390 
391 	return (0);
392 }
393 
394 /*
395  * Move p to an existing process group
396  */
397 int
398 enterthispgrp(p, pgrp)
399 	register struct proc *p;
400 	struct pgrp *pgrp;
401 {
402 
403 	sx_assert(&proctree_lock, SX_XLOCKED);
404 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
405 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
406 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
407 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
408 	KASSERT(pgrp->pg_session == p->p_session,
409 		("%s: pgrp's session %p, p->p_session %p.\n",
410 		__func__,
411 		pgrp->pg_session,
412 		p->p_session));
413 	KASSERT(pgrp != p->p_pgrp,
414 		("%s: p belongs to pgrp.", __func__));
415 
416 	doenterpgrp(p, pgrp);
417 
418 	return (0);
419 }
420 
421 /*
422  * Move p to a process group
423  */
424 static void
425 doenterpgrp(p, pgrp)
426 	struct proc *p;
427 	struct pgrp *pgrp;
428 {
429 	struct pgrp *savepgrp;
430 
431 	sx_assert(&proctree_lock, SX_XLOCKED);
432 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
433 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
434 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
435 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
436 
437 	savepgrp = p->p_pgrp;
438 
439 	/*
440 	 * Adjust eligibility of affected pgrps to participate in job control.
441 	 * Increment eligibility counts before decrementing, otherwise we
442 	 * could reach 0 spuriously during the first call.
443 	 */
444 	fixjobc(p, pgrp, 1);
445 	fixjobc(p, p->p_pgrp, 0);
446 
447 	PGRP_LOCK(pgrp);
448 	PGRP_LOCK(savepgrp);
449 	PROC_LOCK(p);
450 	LIST_REMOVE(p, p_pglist);
451 	p->p_pgrp = pgrp;
452 	PROC_UNLOCK(p);
453 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
454 	PGRP_UNLOCK(savepgrp);
455 	PGRP_UNLOCK(pgrp);
456 	if (LIST_EMPTY(&savepgrp->pg_members))
457 		pgdelete(savepgrp);
458 }
459 
460 /*
461  * remove process from process group
462  */
463 int
464 leavepgrp(p)
465 	register struct proc *p;
466 {
467 	struct pgrp *savepgrp;
468 
469 	sx_assert(&proctree_lock, SX_XLOCKED);
470 	savepgrp = p->p_pgrp;
471 	PGRP_LOCK(savepgrp);
472 	PROC_LOCK(p);
473 	LIST_REMOVE(p, p_pglist);
474 	p->p_pgrp = NULL;
475 	PROC_UNLOCK(p);
476 	PGRP_UNLOCK(savepgrp);
477 	if (LIST_EMPTY(&savepgrp->pg_members))
478 		pgdelete(savepgrp);
479 	return (0);
480 }
481 
482 /*
483  * delete a process group
484  */
485 static void
486 pgdelete(pgrp)
487 	register struct pgrp *pgrp;
488 {
489 	struct session *savesess;
490 	struct tty *tp;
491 
492 	sx_assert(&proctree_lock, SX_XLOCKED);
493 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
494 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
495 
496 	/*
497 	 * Reset any sigio structures pointing to us as a result of
498 	 * F_SETOWN with our pgid.
499 	 */
500 	funsetownlst(&pgrp->pg_sigiolst);
501 
502 	PGRP_LOCK(pgrp);
503 	tp = pgrp->pg_session->s_ttyp;
504 	LIST_REMOVE(pgrp, pg_hash);
505 	savesess = pgrp->pg_session;
506 	PGRP_UNLOCK(pgrp);
507 
508 	/* Remove the reference to the pgrp before deallocating it. */
509 	if (tp != NULL) {
510 		tty_lock(tp);
511 		tty_rel_pgrp(tp, pgrp);
512 	}
513 
514 	mtx_destroy(&pgrp->pg_mtx);
515 	free(pgrp, M_PGRP);
516 	sess_release(savesess);
517 }
518 
519 static void
520 pgadjustjobc(pgrp, entering)
521 	struct pgrp *pgrp;
522 	int entering;
523 {
524 
525 	PGRP_LOCK(pgrp);
526 	if (entering)
527 		pgrp->pg_jobc++;
528 	else {
529 		--pgrp->pg_jobc;
530 		if (pgrp->pg_jobc == 0)
531 			orphanpg(pgrp);
532 	}
533 	PGRP_UNLOCK(pgrp);
534 }
535 
536 /*
537  * Adjust pgrp jobc counters when specified process changes process group.
538  * We count the number of processes in each process group that "qualify"
539  * the group for terminal job control (those with a parent in a different
540  * process group of the same session).  If that count reaches zero, the
541  * process group becomes orphaned.  Check both the specified process'
542  * process group and that of its children.
543  * entering == 0 => p is leaving specified group.
544  * entering == 1 => p is entering specified group.
545  */
546 void
547 fixjobc(p, pgrp, entering)
548 	register struct proc *p;
549 	register struct pgrp *pgrp;
550 	int entering;
551 {
552 	register struct pgrp *hispgrp;
553 	register struct session *mysession;
554 
555 	sx_assert(&proctree_lock, SX_LOCKED);
556 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
557 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
558 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
559 
560 	/*
561 	 * Check p's parent to see whether p qualifies its own process
562 	 * group; if so, adjust count for p's process group.
563 	 */
564 	mysession = pgrp->pg_session;
565 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
566 	    hispgrp->pg_session == mysession)
567 		pgadjustjobc(pgrp, entering);
568 
569 	/*
570 	 * Check this process' children to see whether they qualify
571 	 * their process groups; if so, adjust counts for children's
572 	 * process groups.
573 	 */
574 	LIST_FOREACH(p, &p->p_children, p_sibling) {
575 		hispgrp = p->p_pgrp;
576 		if (hispgrp == pgrp ||
577 		    hispgrp->pg_session != mysession)
578 			continue;
579 		PROC_LOCK(p);
580 		if (p->p_state == PRS_ZOMBIE) {
581 			PROC_UNLOCK(p);
582 			continue;
583 		}
584 		PROC_UNLOCK(p);
585 		pgadjustjobc(hispgrp, entering);
586 	}
587 }
588 
589 /*
590  * A process group has become orphaned;
591  * if there are any stopped processes in the group,
592  * hang-up all process in that group.
593  */
594 static void
595 orphanpg(pg)
596 	struct pgrp *pg;
597 {
598 	register struct proc *p;
599 
600 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
601 
602 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
603 		PROC_LOCK(p);
604 		if (P_SHOULDSTOP(p)) {
605 			PROC_UNLOCK(p);
606 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
607 				PROC_LOCK(p);
608 				psignal(p, SIGHUP);
609 				psignal(p, SIGCONT);
610 				PROC_UNLOCK(p);
611 			}
612 			return;
613 		}
614 		PROC_UNLOCK(p);
615 	}
616 }
617 
618 void
619 sess_hold(struct session *s)
620 {
621 
622 	refcount_acquire(&s->s_count);
623 }
624 
625 void
626 sess_release(struct session *s)
627 {
628 
629 	if (refcount_release(&s->s_count)) {
630 		if (s->s_ttyp != NULL) {
631 			tty_lock(s->s_ttyp);
632 			tty_rel_sess(s->s_ttyp, s);
633 		}
634 		mtx_destroy(&s->s_mtx);
635 		free(s, M_SESSION);
636 	}
637 }
638 
639 #include "opt_ddb.h"
640 #ifdef DDB
641 #include <ddb/ddb.h>
642 
643 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
644 {
645 	register struct pgrp *pgrp;
646 	register struct proc *p;
647 	register int i;
648 
649 	for (i = 0; i <= pgrphash; i++) {
650 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
651 			printf("\tindx %d\n", i);
652 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
653 				printf(
654 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
655 				    (void *)pgrp, (long)pgrp->pg_id,
656 				    (void *)pgrp->pg_session,
657 				    pgrp->pg_session->s_count,
658 				    (void *)LIST_FIRST(&pgrp->pg_members));
659 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
660 					printf("\t\tpid %ld addr %p pgrp %p\n",
661 					    (long)p->p_pid, (void *)p,
662 					    (void *)p->p_pgrp);
663 				}
664 			}
665 		}
666 	}
667 }
668 #endif /* DDB */
669 
670 /*
671  * Calculate the kinfo_proc members which contain process-wide
672  * informations.
673  * Must be called with the target process locked.
674  */
675 static void
676 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
677 {
678 	struct thread *td;
679 
680 	PROC_LOCK_ASSERT(p, MA_OWNED);
681 
682 	kp->ki_estcpu = 0;
683 	kp->ki_pctcpu = 0;
684 	FOREACH_THREAD_IN_PROC(p, td) {
685 		thread_lock(td);
686 		kp->ki_pctcpu += sched_pctcpu(td);
687 		kp->ki_estcpu += td->td_estcpu;
688 		thread_unlock(td);
689 	}
690 }
691 
692 /*
693  * Clear kinfo_proc and fill in any information that is common
694  * to all threads in the process.
695  * Must be called with the target process locked.
696  */
697 static void
698 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
699 {
700 	struct thread *td0;
701 	struct tty *tp;
702 	struct session *sp;
703 	struct ucred *cred;
704 	struct sigacts *ps;
705 
706 	PROC_LOCK_ASSERT(p, MA_OWNED);
707 	bzero(kp, sizeof(*kp));
708 
709 	kp->ki_structsize = sizeof(*kp);
710 	kp->ki_paddr = p;
711 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
712 	kp->ki_args = p->p_args;
713 	kp->ki_textvp = p->p_textvp;
714 #ifdef KTRACE
715 	kp->ki_tracep = p->p_tracevp;
716 	kp->ki_traceflag = p->p_traceflag;
717 #endif
718 	kp->ki_fd = p->p_fd;
719 	kp->ki_vmspace = p->p_vmspace;
720 	kp->ki_flag = p->p_flag;
721 	cred = p->p_ucred;
722 	if (cred) {
723 		kp->ki_uid = cred->cr_uid;
724 		kp->ki_ruid = cred->cr_ruid;
725 		kp->ki_svuid = cred->cr_svuid;
726 		kp->ki_cr_flags = cred->cr_flags;
727 		/* XXX bde doesn't like KI_NGROUPS */
728 		if (cred->cr_ngroups > KI_NGROUPS) {
729 			kp->ki_ngroups = KI_NGROUPS;
730 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
731 		} else
732 			kp->ki_ngroups = cred->cr_ngroups;
733 		bcopy(cred->cr_groups, kp->ki_groups,
734 		    kp->ki_ngroups * sizeof(gid_t));
735 		kp->ki_rgid = cred->cr_rgid;
736 		kp->ki_svgid = cred->cr_svgid;
737 		/* If jailed(cred), emulate the old P_JAILED flag. */
738 		if (jailed(cred)) {
739 			kp->ki_flag |= P_JAILED;
740 			/* If inside the jail, use 0 as a jail ID. */
741 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
742 				kp->ki_jid = cred->cr_prison->pr_id;
743 		}
744 	}
745 	ps = p->p_sigacts;
746 	if (ps) {
747 		mtx_lock(&ps->ps_mtx);
748 		kp->ki_sigignore = ps->ps_sigignore;
749 		kp->ki_sigcatch = ps->ps_sigcatch;
750 		mtx_unlock(&ps->ps_mtx);
751 	}
752 	PROC_SLOCK(p);
753 	if (p->p_state != PRS_NEW &&
754 	    p->p_state != PRS_ZOMBIE &&
755 	    p->p_vmspace != NULL) {
756 		struct vmspace *vm = p->p_vmspace;
757 
758 		kp->ki_size = vm->vm_map.size;
759 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
760 		FOREACH_THREAD_IN_PROC(p, td0) {
761 			if (!TD_IS_SWAPPED(td0))
762 				kp->ki_rssize += td0->td_kstack_pages;
763 		}
764 		kp->ki_swrss = vm->vm_swrss;
765 		kp->ki_tsize = vm->vm_tsize;
766 		kp->ki_dsize = vm->vm_dsize;
767 		kp->ki_ssize = vm->vm_ssize;
768 	} else if (p->p_state == PRS_ZOMBIE)
769 		kp->ki_stat = SZOMB;
770 	if (kp->ki_flag & P_INMEM)
771 		kp->ki_sflag = PS_INMEM;
772 	else
773 		kp->ki_sflag = 0;
774 	/* Calculate legacy swtime as seconds since 'swtick'. */
775 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
776 	kp->ki_pid = p->p_pid;
777 	kp->ki_nice = p->p_nice;
778 	rufetch(p, &kp->ki_rusage);
779 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
780 	PROC_SUNLOCK(p);
781 	kp->ki_start = p->p_stats->p_start;
782 	timevaladd(&kp->ki_start, &boottime);
783 	PROC_SLOCK(p);
784 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
785 	PROC_SUNLOCK(p);
786 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
787 
788 	/* Some callers want child-times in a single value */
789 	kp->ki_childtime = kp->ki_childstime;
790 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
791 	tp = NULL;
792 	if (p->p_pgrp) {
793 		kp->ki_pgid = p->p_pgrp->pg_id;
794 		kp->ki_jobc = p->p_pgrp->pg_jobc;
795 		sp = p->p_pgrp->pg_session;
796 
797 		if (sp != NULL) {
798 			kp->ki_sid = sp->s_sid;
799 			SESS_LOCK(sp);
800 			strlcpy(kp->ki_login, sp->s_login,
801 			    sizeof(kp->ki_login));
802 			if (sp->s_ttyvp)
803 				kp->ki_kiflag |= KI_CTTY;
804 			if (SESS_LEADER(p))
805 				kp->ki_kiflag |= KI_SLEADER;
806 			/* XXX proctree_lock */
807 			tp = sp->s_ttyp;
808 			SESS_UNLOCK(sp);
809 		}
810 	}
811 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
812 		kp->ki_tdev = tty_udev(tp);
813 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
814 		if (tp->t_session)
815 			kp->ki_tsid = tp->t_session->s_sid;
816 	} else
817 		kp->ki_tdev = NODEV;
818 	if (p->p_comm[0] != '\0')
819 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
820 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
821 	    p->p_sysent->sv_name[0] != '\0')
822 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
823 	kp->ki_siglist = p->p_siglist;
824 	kp->ki_xstat = p->p_xstat;
825 	kp->ki_acflag = p->p_acflag;
826 	kp->ki_lock = p->p_lock;
827 	if (p->p_pptr)
828 		kp->ki_ppid = p->p_pptr->p_pid;
829 }
830 
831 /*
832  * Fill in information that is thread specific.  Must be called with
833  * target process locked.  If 'preferthread' is set, overwrite certain
834  * process-related fields that are maintained for both threads and
835  * processes.
836  */
837 static void
838 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
839 {
840 	struct proc *p;
841 
842 	p = td->td_proc;
843 	kp->ki_tdaddr = td;
844 	PROC_LOCK_ASSERT(p, MA_OWNED);
845 
846 	thread_lock(td);
847 	if (td->td_wmesg != NULL)
848 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
849 	else
850 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
851 	strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
852 	if (TD_ON_LOCK(td)) {
853 		kp->ki_kiflag |= KI_LOCKBLOCK;
854 		strlcpy(kp->ki_lockname, td->td_lockname,
855 		    sizeof(kp->ki_lockname));
856 	} else {
857 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
858 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
859 	}
860 
861 	if (p->p_state == PRS_NORMAL) { /* approximate. */
862 		if (TD_ON_RUNQ(td) ||
863 		    TD_CAN_RUN(td) ||
864 		    TD_IS_RUNNING(td)) {
865 			kp->ki_stat = SRUN;
866 		} else if (P_SHOULDSTOP(p)) {
867 			kp->ki_stat = SSTOP;
868 		} else if (TD_IS_SLEEPING(td)) {
869 			kp->ki_stat = SSLEEP;
870 		} else if (TD_ON_LOCK(td)) {
871 			kp->ki_stat = SLOCK;
872 		} else {
873 			kp->ki_stat = SWAIT;
874 		}
875 	} else if (p->p_state == PRS_ZOMBIE) {
876 		kp->ki_stat = SZOMB;
877 	} else {
878 		kp->ki_stat = SIDL;
879 	}
880 
881 	/* Things in the thread */
882 	kp->ki_wchan = td->td_wchan;
883 	kp->ki_pri.pri_level = td->td_priority;
884 	kp->ki_pri.pri_native = td->td_base_pri;
885 	kp->ki_lastcpu = td->td_lastcpu;
886 	kp->ki_oncpu = td->td_oncpu;
887 	kp->ki_tdflags = td->td_flags;
888 	kp->ki_tid = td->td_tid;
889 	kp->ki_numthreads = p->p_numthreads;
890 	kp->ki_pcb = td->td_pcb;
891 	kp->ki_kstack = (void *)td->td_kstack;
892 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
893 	kp->ki_pri.pri_class = td->td_pri_class;
894 	kp->ki_pri.pri_user = td->td_user_pri;
895 
896 	if (preferthread) {
897 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
898 		kp->ki_pctcpu = sched_pctcpu(td);
899 		kp->ki_estcpu = td->td_estcpu;
900 	}
901 
902 	/* We can't get this anymore but ps etc never used it anyway. */
903 	kp->ki_rqindex = 0;
904 
905 	if (preferthread)
906 		kp->ki_siglist = td->td_siglist;
907 	kp->ki_sigmask = td->td_sigmask;
908 	thread_unlock(td);
909 }
910 
911 /*
912  * Fill in a kinfo_proc structure for the specified process.
913  * Must be called with the target process locked.
914  */
915 void
916 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
917 {
918 
919 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
920 
921 	fill_kinfo_proc_only(p, kp);
922 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
923 	fill_kinfo_aggregate(p, kp);
924 }
925 
926 struct pstats *
927 pstats_alloc(void)
928 {
929 
930 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
931 }
932 
933 /*
934  * Copy parts of p_stats; zero the rest of p_stats (statistics).
935  */
936 void
937 pstats_fork(struct pstats *src, struct pstats *dst)
938 {
939 
940 	bzero(&dst->pstat_startzero,
941 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
942 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
943 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
944 }
945 
946 void
947 pstats_free(struct pstats *ps)
948 {
949 
950 	free(ps, M_SUBPROC);
951 }
952 
953 /*
954  * Locate a zombie process by number
955  */
956 struct proc *
957 zpfind(pid_t pid)
958 {
959 	struct proc *p;
960 
961 	sx_slock(&allproc_lock);
962 	LIST_FOREACH(p, &zombproc, p_list)
963 		if (p->p_pid == pid) {
964 			PROC_LOCK(p);
965 			break;
966 		}
967 	sx_sunlock(&allproc_lock);
968 	return (p);
969 }
970 
971 #define KERN_PROC_ZOMBMASK	0x3
972 #define KERN_PROC_NOTHREADS	0x4
973 
974 #ifdef COMPAT_FREEBSD32
975 
976 /*
977  * This function is typically used to copy out the kernel address, so
978  * it can be replaced by assignment of zero.
979  */
980 static inline uint32_t
981 ptr32_trim(void *ptr)
982 {
983 	uintptr_t uptr;
984 
985 	uptr = (uintptr_t)ptr;
986 	return ((uptr > UINT_MAX) ? 0 : uptr);
987 }
988 
989 #define PTRTRIM_CP(src,dst,fld) \
990 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
991 
992 static void
993 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
994 {
995 	int i;
996 
997 	bzero(ki32, sizeof(struct kinfo_proc32));
998 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
999 	CP(*ki, *ki32, ki_layout);
1000 	PTRTRIM_CP(*ki, *ki32, ki_args);
1001 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1002 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1003 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1004 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1005 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1006 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1007 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1008 	CP(*ki, *ki32, ki_pid);
1009 	CP(*ki, *ki32, ki_ppid);
1010 	CP(*ki, *ki32, ki_pgid);
1011 	CP(*ki, *ki32, ki_tpgid);
1012 	CP(*ki, *ki32, ki_sid);
1013 	CP(*ki, *ki32, ki_tsid);
1014 	CP(*ki, *ki32, ki_jobc);
1015 	CP(*ki, *ki32, ki_tdev);
1016 	CP(*ki, *ki32, ki_siglist);
1017 	CP(*ki, *ki32, ki_sigmask);
1018 	CP(*ki, *ki32, ki_sigignore);
1019 	CP(*ki, *ki32, ki_sigcatch);
1020 	CP(*ki, *ki32, ki_uid);
1021 	CP(*ki, *ki32, ki_ruid);
1022 	CP(*ki, *ki32, ki_svuid);
1023 	CP(*ki, *ki32, ki_rgid);
1024 	CP(*ki, *ki32, ki_svgid);
1025 	CP(*ki, *ki32, ki_ngroups);
1026 	for (i = 0; i < KI_NGROUPS; i++)
1027 		CP(*ki, *ki32, ki_groups[i]);
1028 	CP(*ki, *ki32, ki_size);
1029 	CP(*ki, *ki32, ki_rssize);
1030 	CP(*ki, *ki32, ki_swrss);
1031 	CP(*ki, *ki32, ki_tsize);
1032 	CP(*ki, *ki32, ki_dsize);
1033 	CP(*ki, *ki32, ki_ssize);
1034 	CP(*ki, *ki32, ki_xstat);
1035 	CP(*ki, *ki32, ki_acflag);
1036 	CP(*ki, *ki32, ki_pctcpu);
1037 	CP(*ki, *ki32, ki_estcpu);
1038 	CP(*ki, *ki32, ki_slptime);
1039 	CP(*ki, *ki32, ki_swtime);
1040 	CP(*ki, *ki32, ki_runtime);
1041 	TV_CP(*ki, *ki32, ki_start);
1042 	TV_CP(*ki, *ki32, ki_childtime);
1043 	CP(*ki, *ki32, ki_flag);
1044 	CP(*ki, *ki32, ki_kiflag);
1045 	CP(*ki, *ki32, ki_traceflag);
1046 	CP(*ki, *ki32, ki_stat);
1047 	CP(*ki, *ki32, ki_nice);
1048 	CP(*ki, *ki32, ki_lock);
1049 	CP(*ki, *ki32, ki_rqindex);
1050 	CP(*ki, *ki32, ki_oncpu);
1051 	CP(*ki, *ki32, ki_lastcpu);
1052 	bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1);
1053 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1054 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1055 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1056 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1057 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1058 	CP(*ki, *ki32, ki_cr_flags);
1059 	CP(*ki, *ki32, ki_jid);
1060 	CP(*ki, *ki32, ki_numthreads);
1061 	CP(*ki, *ki32, ki_tid);
1062 	CP(*ki, *ki32, ki_pri);
1063 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1064 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1065 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1066 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1067 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1068 	CP(*ki, *ki32, ki_sflag);
1069 	CP(*ki, *ki32, ki_tdflags);
1070 }
1071 
1072 static int
1073 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1074 {
1075 	struct kinfo_proc32 ki32;
1076 	int error;
1077 
1078 	if (req->flags & SCTL_MASK32) {
1079 		freebsd32_kinfo_proc_out(ki, &ki32);
1080 		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1081 	} else
1082 		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1083 	return (error);
1084 }
1085 #else
1086 static int
1087 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1088 {
1089 
1090 	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1091 }
1092 #endif
1093 
1094 /*
1095  * Must be called with the process locked and will return with it unlocked.
1096  */
1097 static int
1098 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1099 {
1100 	struct thread *td;
1101 	struct kinfo_proc kinfo_proc;
1102 	int error = 0;
1103 	struct proc *np;
1104 	pid_t pid = p->p_pid;
1105 
1106 	PROC_LOCK_ASSERT(p, MA_OWNED);
1107 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1108 
1109 	fill_kinfo_proc(p, &kinfo_proc);
1110 	if (flags & KERN_PROC_NOTHREADS)
1111 		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1112 	else {
1113 		FOREACH_THREAD_IN_PROC(p, td) {
1114 			fill_kinfo_thread(td, &kinfo_proc, 1);
1115 			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1116 			if (error)
1117 				break;
1118 		}
1119 	}
1120 	PROC_UNLOCK(p);
1121 	if (error)
1122 		return (error);
1123 	if (flags & KERN_PROC_ZOMBMASK)
1124 		np = zpfind(pid);
1125 	else {
1126 		if (pid == 0)
1127 			return (0);
1128 		np = pfind(pid);
1129 	}
1130 	if (np == NULL)
1131 		return (ESRCH);
1132 	if (np != p) {
1133 		PROC_UNLOCK(np);
1134 		return (ESRCH);
1135 	}
1136 	PROC_UNLOCK(np);
1137 	return (0);
1138 }
1139 
1140 static int
1141 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1142 {
1143 	int *name = (int*) arg1;
1144 	u_int namelen = arg2;
1145 	struct proc *p;
1146 	int flags, doingzomb, oid_number;
1147 	int error = 0;
1148 
1149 	oid_number = oidp->oid_number;
1150 	if (oid_number != KERN_PROC_ALL &&
1151 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1152 		flags = KERN_PROC_NOTHREADS;
1153 	else {
1154 		flags = 0;
1155 		oid_number &= ~KERN_PROC_INC_THREAD;
1156 	}
1157 	if (oid_number == KERN_PROC_PID) {
1158 		if (namelen != 1)
1159 			return (EINVAL);
1160 		error = sysctl_wire_old_buffer(req, 0);
1161 		if (error)
1162 			return (error);
1163 		p = pfind((pid_t)name[0]);
1164 		if (!p)
1165 			return (ESRCH);
1166 		if ((error = p_cansee(curthread, p))) {
1167 			PROC_UNLOCK(p);
1168 			return (error);
1169 		}
1170 		error = sysctl_out_proc(p, req, flags);
1171 		return (error);
1172 	}
1173 
1174 	switch (oid_number) {
1175 	case KERN_PROC_ALL:
1176 		if (namelen != 0)
1177 			return (EINVAL);
1178 		break;
1179 	case KERN_PROC_PROC:
1180 		if (namelen != 0 && namelen != 1)
1181 			return (EINVAL);
1182 		break;
1183 	default:
1184 		if (namelen != 1)
1185 			return (EINVAL);
1186 		break;
1187 	}
1188 
1189 	if (!req->oldptr) {
1190 		/* overestimate by 5 procs */
1191 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1192 		if (error)
1193 			return (error);
1194 	}
1195 	error = sysctl_wire_old_buffer(req, 0);
1196 	if (error != 0)
1197 		return (error);
1198 	sx_slock(&allproc_lock);
1199 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1200 		if (!doingzomb)
1201 			p = LIST_FIRST(&allproc);
1202 		else
1203 			p = LIST_FIRST(&zombproc);
1204 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1205 			/*
1206 			 * Skip embryonic processes.
1207 			 */
1208 			PROC_SLOCK(p);
1209 			if (p->p_state == PRS_NEW) {
1210 				PROC_SUNLOCK(p);
1211 				continue;
1212 			}
1213 			PROC_SUNLOCK(p);
1214 			PROC_LOCK(p);
1215 			KASSERT(p->p_ucred != NULL,
1216 			    ("process credential is NULL for non-NEW proc"));
1217 			/*
1218 			 * Show a user only appropriate processes.
1219 			 */
1220 			if (p_cansee(curthread, p)) {
1221 				PROC_UNLOCK(p);
1222 				continue;
1223 			}
1224 			/*
1225 			 * TODO - make more efficient (see notes below).
1226 			 * do by session.
1227 			 */
1228 			switch (oid_number) {
1229 
1230 			case KERN_PROC_GID:
1231 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1232 					PROC_UNLOCK(p);
1233 					continue;
1234 				}
1235 				break;
1236 
1237 			case KERN_PROC_PGRP:
1238 				/* could do this by traversing pgrp */
1239 				if (p->p_pgrp == NULL ||
1240 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1241 					PROC_UNLOCK(p);
1242 					continue;
1243 				}
1244 				break;
1245 
1246 			case KERN_PROC_RGID:
1247 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1248 					PROC_UNLOCK(p);
1249 					continue;
1250 				}
1251 				break;
1252 
1253 			case KERN_PROC_SESSION:
1254 				if (p->p_session == NULL ||
1255 				    p->p_session->s_sid != (pid_t)name[0]) {
1256 					PROC_UNLOCK(p);
1257 					continue;
1258 				}
1259 				break;
1260 
1261 			case KERN_PROC_TTY:
1262 				if ((p->p_flag & P_CONTROLT) == 0 ||
1263 				    p->p_session == NULL) {
1264 					PROC_UNLOCK(p);
1265 					continue;
1266 				}
1267 				/* XXX proctree_lock */
1268 				SESS_LOCK(p->p_session);
1269 				if (p->p_session->s_ttyp == NULL ||
1270 				    tty_udev(p->p_session->s_ttyp) !=
1271 				    (dev_t)name[0]) {
1272 					SESS_UNLOCK(p->p_session);
1273 					PROC_UNLOCK(p);
1274 					continue;
1275 				}
1276 				SESS_UNLOCK(p->p_session);
1277 				break;
1278 
1279 			case KERN_PROC_UID:
1280 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1281 					PROC_UNLOCK(p);
1282 					continue;
1283 				}
1284 				break;
1285 
1286 			case KERN_PROC_RUID:
1287 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1288 					PROC_UNLOCK(p);
1289 					continue;
1290 				}
1291 				break;
1292 
1293 			case KERN_PROC_PROC:
1294 				break;
1295 
1296 			default:
1297 				break;
1298 
1299 			}
1300 
1301 			error = sysctl_out_proc(p, req, flags | doingzomb);
1302 			if (error) {
1303 				sx_sunlock(&allproc_lock);
1304 				return (error);
1305 			}
1306 		}
1307 	}
1308 	sx_sunlock(&allproc_lock);
1309 	return (0);
1310 }
1311 
1312 struct pargs *
1313 pargs_alloc(int len)
1314 {
1315 	struct pargs *pa;
1316 
1317 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1318 		M_WAITOK);
1319 	refcount_init(&pa->ar_ref, 1);
1320 	pa->ar_length = len;
1321 	return (pa);
1322 }
1323 
1324 static void
1325 pargs_free(struct pargs *pa)
1326 {
1327 
1328 	free(pa, M_PARGS);
1329 }
1330 
1331 void
1332 pargs_hold(struct pargs *pa)
1333 {
1334 
1335 	if (pa == NULL)
1336 		return;
1337 	refcount_acquire(&pa->ar_ref);
1338 }
1339 
1340 void
1341 pargs_drop(struct pargs *pa)
1342 {
1343 
1344 	if (pa == NULL)
1345 		return;
1346 	if (refcount_release(&pa->ar_ref))
1347 		pargs_free(pa);
1348 }
1349 
1350 /*
1351  * This sysctl allows a process to retrieve the argument list or process
1352  * title for another process without groping around in the address space
1353  * of the other process.  It also allow a process to set its own "process
1354  * title to a string of its own choice.
1355  */
1356 static int
1357 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1358 {
1359 	int *name = (int*) arg1;
1360 	u_int namelen = arg2;
1361 	struct pargs *newpa, *pa;
1362 	struct proc *p;
1363 	int error = 0;
1364 
1365 	if (namelen != 1)
1366 		return (EINVAL);
1367 
1368 	p = pfind((pid_t)name[0]);
1369 	if (!p)
1370 		return (ESRCH);
1371 
1372 	if ((error = p_cansee(curthread, p)) != 0) {
1373 		PROC_UNLOCK(p);
1374 		return (error);
1375 	}
1376 
1377 	if (req->newptr && curproc != p) {
1378 		PROC_UNLOCK(p);
1379 		return (EPERM);
1380 	}
1381 
1382 	pa = p->p_args;
1383 	pargs_hold(pa);
1384 	PROC_UNLOCK(p);
1385 	if (req->oldptr != NULL && pa != NULL)
1386 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1387 	pargs_drop(pa);
1388 	if (error != 0 || req->newptr == NULL)
1389 		return (error);
1390 
1391 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1392 		return (ENOMEM);
1393 	newpa = pargs_alloc(req->newlen);
1394 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1395 	if (error != 0) {
1396 		pargs_free(newpa);
1397 		return (error);
1398 	}
1399 	PROC_LOCK(p);
1400 	pa = p->p_args;
1401 	p->p_args = newpa;
1402 	PROC_UNLOCK(p);
1403 	pargs_drop(pa);
1404 	return (0);
1405 }
1406 
1407 /*
1408  * This sysctl allows a process to retrieve the path of the executable for
1409  * itself or another process.
1410  */
1411 static int
1412 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1413 {
1414 	pid_t *pidp = (pid_t *)arg1;
1415 	unsigned int arglen = arg2;
1416 	struct proc *p;
1417 	struct vnode *vp;
1418 	char *retbuf, *freebuf;
1419 	int error, vfslocked;
1420 
1421 	if (arglen != 1)
1422 		return (EINVAL);
1423 	if (*pidp == -1) {	/* -1 means this process */
1424 		p = req->td->td_proc;
1425 	} else {
1426 		p = pfind(*pidp);
1427 		if (p == NULL)
1428 			return (ESRCH);
1429 		if ((error = p_cansee(curthread, p)) != 0) {
1430 			PROC_UNLOCK(p);
1431 			return (error);
1432 		}
1433 	}
1434 
1435 	vp = p->p_textvp;
1436 	if (vp == NULL) {
1437 		if (*pidp != -1)
1438 			PROC_UNLOCK(p);
1439 		return (0);
1440 	}
1441 	vref(vp);
1442 	if (*pidp != -1)
1443 		PROC_UNLOCK(p);
1444 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1445 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1446 	vrele(vp);
1447 	VFS_UNLOCK_GIANT(vfslocked);
1448 	if (error)
1449 		return (error);
1450 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1451 	free(freebuf, M_TEMP);
1452 	return (error);
1453 }
1454 
1455 static int
1456 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1457 {
1458 	struct proc *p;
1459 	char *sv_name;
1460 	int *name;
1461 	int namelen;
1462 	int error;
1463 
1464 	namelen = arg2;
1465 	if (namelen != 1)
1466 		return (EINVAL);
1467 
1468 	name = (int *)arg1;
1469 	if ((p = pfind((pid_t)name[0])) == NULL)
1470 		return (ESRCH);
1471 	if ((error = p_cansee(curthread, p))) {
1472 		PROC_UNLOCK(p);
1473 		return (error);
1474 	}
1475 	sv_name = p->p_sysent->sv_name;
1476 	PROC_UNLOCK(p);
1477 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1478 }
1479 
1480 #ifdef KINFO_OVMENTRY_SIZE
1481 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1482 #endif
1483 
1484 #ifdef COMPAT_FREEBSD7
1485 static int
1486 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1487 {
1488 	vm_map_entry_t entry, tmp_entry;
1489 	unsigned int last_timestamp;
1490 	char *fullpath, *freepath;
1491 	struct kinfo_ovmentry *kve;
1492 	struct vattr va;
1493 	struct ucred *cred;
1494 	int error, *name;
1495 	struct vnode *vp;
1496 	struct proc *p;
1497 	vm_map_t map;
1498 	struct vmspace *vm;
1499 
1500 	name = (int *)arg1;
1501 	if ((p = pfind((pid_t)name[0])) == NULL)
1502 		return (ESRCH);
1503 	if (p->p_flag & P_WEXIT) {
1504 		PROC_UNLOCK(p);
1505 		return (ESRCH);
1506 	}
1507 	if ((error = p_candebug(curthread, p))) {
1508 		PROC_UNLOCK(p);
1509 		return (error);
1510 	}
1511 	_PHOLD(p);
1512 	PROC_UNLOCK(p);
1513 	vm = vmspace_acquire_ref(p);
1514 	if (vm == NULL) {
1515 		PRELE(p);
1516 		return (ESRCH);
1517 	}
1518 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1519 
1520 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1521 	vm_map_lock_read(map);
1522 	for (entry = map->header.next; entry != &map->header;
1523 	    entry = entry->next) {
1524 		vm_object_t obj, tobj, lobj;
1525 		vm_offset_t addr;
1526 		int vfslocked;
1527 
1528 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1529 			continue;
1530 
1531 		bzero(kve, sizeof(*kve));
1532 		kve->kve_structsize = sizeof(*kve);
1533 
1534 		kve->kve_private_resident = 0;
1535 		obj = entry->object.vm_object;
1536 		if (obj != NULL) {
1537 			VM_OBJECT_LOCK(obj);
1538 			if (obj->shadow_count == 1)
1539 				kve->kve_private_resident =
1540 				    obj->resident_page_count;
1541 		}
1542 		kve->kve_resident = 0;
1543 		addr = entry->start;
1544 		while (addr < entry->end) {
1545 			if (pmap_extract(map->pmap, addr))
1546 				kve->kve_resident++;
1547 			addr += PAGE_SIZE;
1548 		}
1549 
1550 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1551 			if (tobj != obj)
1552 				VM_OBJECT_LOCK(tobj);
1553 			if (lobj != obj)
1554 				VM_OBJECT_UNLOCK(lobj);
1555 			lobj = tobj;
1556 		}
1557 
1558 		kve->kve_start = (void*)entry->start;
1559 		kve->kve_end = (void*)entry->end;
1560 		kve->kve_offset = (off_t)entry->offset;
1561 
1562 		if (entry->protection & VM_PROT_READ)
1563 			kve->kve_protection |= KVME_PROT_READ;
1564 		if (entry->protection & VM_PROT_WRITE)
1565 			kve->kve_protection |= KVME_PROT_WRITE;
1566 		if (entry->protection & VM_PROT_EXECUTE)
1567 			kve->kve_protection |= KVME_PROT_EXEC;
1568 
1569 		if (entry->eflags & MAP_ENTRY_COW)
1570 			kve->kve_flags |= KVME_FLAG_COW;
1571 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1572 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1573 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1574 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1575 
1576 		last_timestamp = map->timestamp;
1577 		vm_map_unlock_read(map);
1578 
1579 		kve->kve_fileid = 0;
1580 		kve->kve_fsid = 0;
1581 		freepath = NULL;
1582 		fullpath = "";
1583 		if (lobj) {
1584 			vp = NULL;
1585 			switch (lobj->type) {
1586 			case OBJT_DEFAULT:
1587 				kve->kve_type = KVME_TYPE_DEFAULT;
1588 				break;
1589 			case OBJT_VNODE:
1590 				kve->kve_type = KVME_TYPE_VNODE;
1591 				vp = lobj->handle;
1592 				vref(vp);
1593 				break;
1594 			case OBJT_SWAP:
1595 				kve->kve_type = KVME_TYPE_SWAP;
1596 				break;
1597 			case OBJT_DEVICE:
1598 				kve->kve_type = KVME_TYPE_DEVICE;
1599 				break;
1600 			case OBJT_PHYS:
1601 				kve->kve_type = KVME_TYPE_PHYS;
1602 				break;
1603 			case OBJT_DEAD:
1604 				kve->kve_type = KVME_TYPE_DEAD;
1605 				break;
1606 			case OBJT_SG:
1607 				kve->kve_type = KVME_TYPE_SG;
1608 				break;
1609 			default:
1610 				kve->kve_type = KVME_TYPE_UNKNOWN;
1611 				break;
1612 			}
1613 			if (lobj != obj)
1614 				VM_OBJECT_UNLOCK(lobj);
1615 
1616 			kve->kve_ref_count = obj->ref_count;
1617 			kve->kve_shadow_count = obj->shadow_count;
1618 			VM_OBJECT_UNLOCK(obj);
1619 			if (vp != NULL) {
1620 				vn_fullpath(curthread, vp, &fullpath,
1621 				    &freepath);
1622 				cred = curthread->td_ucred;
1623 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1624 				vn_lock(vp, LK_SHARED | LK_RETRY);
1625 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1626 					kve->kve_fileid = va.va_fileid;
1627 					kve->kve_fsid = va.va_fsid;
1628 				}
1629 				vput(vp);
1630 				VFS_UNLOCK_GIANT(vfslocked);
1631 			}
1632 		} else {
1633 			kve->kve_type = KVME_TYPE_NONE;
1634 			kve->kve_ref_count = 0;
1635 			kve->kve_shadow_count = 0;
1636 		}
1637 
1638 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1639 		if (freepath != NULL)
1640 			free(freepath, M_TEMP);
1641 
1642 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1643 		vm_map_lock_read(map);
1644 		if (error)
1645 			break;
1646 		if (last_timestamp != map->timestamp) {
1647 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1648 			entry = tmp_entry;
1649 		}
1650 	}
1651 	vm_map_unlock_read(map);
1652 	vmspace_free(vm);
1653 	PRELE(p);
1654 	free(kve, M_TEMP);
1655 	return (error);
1656 }
1657 #endif	/* COMPAT_FREEBSD7 */
1658 
1659 #ifdef KINFO_VMENTRY_SIZE
1660 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1661 #endif
1662 
1663 static int
1664 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1665 {
1666 	vm_map_entry_t entry, tmp_entry;
1667 	unsigned int last_timestamp;
1668 	char *fullpath, *freepath;
1669 	struct kinfo_vmentry *kve;
1670 	struct vattr va;
1671 	struct ucred *cred;
1672 	int error, *name;
1673 	struct vnode *vp;
1674 	struct proc *p;
1675 	struct vmspace *vm;
1676 	vm_map_t map;
1677 
1678 	name = (int *)arg1;
1679 	if ((p = pfind((pid_t)name[0])) == NULL)
1680 		return (ESRCH);
1681 	if (p->p_flag & P_WEXIT) {
1682 		PROC_UNLOCK(p);
1683 		return (ESRCH);
1684 	}
1685 	if ((error = p_candebug(curthread, p))) {
1686 		PROC_UNLOCK(p);
1687 		return (error);
1688 	}
1689 	_PHOLD(p);
1690 	PROC_UNLOCK(p);
1691 	vm = vmspace_acquire_ref(p);
1692 	if (vm == NULL) {
1693 		PRELE(p);
1694 		return (ESRCH);
1695 	}
1696 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1697 
1698 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1699 	vm_map_lock_read(map);
1700 	for (entry = map->header.next; entry != &map->header;
1701 	    entry = entry->next) {
1702 		vm_object_t obj, tobj, lobj;
1703 		vm_offset_t addr;
1704 		int vfslocked;
1705 
1706 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1707 			continue;
1708 
1709 		bzero(kve, sizeof(*kve));
1710 
1711 		kve->kve_private_resident = 0;
1712 		obj = entry->object.vm_object;
1713 		if (obj != NULL) {
1714 			VM_OBJECT_LOCK(obj);
1715 			if (obj->shadow_count == 1)
1716 				kve->kve_private_resident =
1717 				    obj->resident_page_count;
1718 		}
1719 		kve->kve_resident = 0;
1720 		addr = entry->start;
1721 		while (addr < entry->end) {
1722 			if (pmap_extract(map->pmap, addr))
1723 				kve->kve_resident++;
1724 			addr += PAGE_SIZE;
1725 		}
1726 
1727 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1728 			if (tobj != obj)
1729 				VM_OBJECT_LOCK(tobj);
1730 			if (lobj != obj)
1731 				VM_OBJECT_UNLOCK(lobj);
1732 			lobj = tobj;
1733 		}
1734 
1735 		kve->kve_start = entry->start;
1736 		kve->kve_end = entry->end;
1737 		kve->kve_offset = entry->offset;
1738 
1739 		if (entry->protection & VM_PROT_READ)
1740 			kve->kve_protection |= KVME_PROT_READ;
1741 		if (entry->protection & VM_PROT_WRITE)
1742 			kve->kve_protection |= KVME_PROT_WRITE;
1743 		if (entry->protection & VM_PROT_EXECUTE)
1744 			kve->kve_protection |= KVME_PROT_EXEC;
1745 
1746 		if (entry->eflags & MAP_ENTRY_COW)
1747 			kve->kve_flags |= KVME_FLAG_COW;
1748 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1749 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1750 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1751 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1752 
1753 		last_timestamp = map->timestamp;
1754 		vm_map_unlock_read(map);
1755 
1756 		kve->kve_fileid = 0;
1757 		kve->kve_fsid = 0;
1758 		freepath = NULL;
1759 		fullpath = "";
1760 		if (lobj) {
1761 			vp = NULL;
1762 			switch (lobj->type) {
1763 			case OBJT_DEFAULT:
1764 				kve->kve_type = KVME_TYPE_DEFAULT;
1765 				break;
1766 			case OBJT_VNODE:
1767 				kve->kve_type = KVME_TYPE_VNODE;
1768 				vp = lobj->handle;
1769 				vref(vp);
1770 				break;
1771 			case OBJT_SWAP:
1772 				kve->kve_type = KVME_TYPE_SWAP;
1773 				break;
1774 			case OBJT_DEVICE:
1775 				kve->kve_type = KVME_TYPE_DEVICE;
1776 				break;
1777 			case OBJT_PHYS:
1778 				kve->kve_type = KVME_TYPE_PHYS;
1779 				break;
1780 			case OBJT_DEAD:
1781 				kve->kve_type = KVME_TYPE_DEAD;
1782 				break;
1783 			case OBJT_SG:
1784 				kve->kve_type = KVME_TYPE_SG;
1785 				break;
1786 			default:
1787 				kve->kve_type = KVME_TYPE_UNKNOWN;
1788 				break;
1789 			}
1790 			if (lobj != obj)
1791 				VM_OBJECT_UNLOCK(lobj);
1792 
1793 			kve->kve_ref_count = obj->ref_count;
1794 			kve->kve_shadow_count = obj->shadow_count;
1795 			VM_OBJECT_UNLOCK(obj);
1796 			if (vp != NULL) {
1797 				vn_fullpath(curthread, vp, &fullpath,
1798 				    &freepath);
1799 				cred = curthread->td_ucred;
1800 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1801 				vn_lock(vp, LK_SHARED | LK_RETRY);
1802 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1803 					kve->kve_fileid = va.va_fileid;
1804 					kve->kve_fsid = va.va_fsid;
1805 				}
1806 				vput(vp);
1807 				VFS_UNLOCK_GIANT(vfslocked);
1808 			}
1809 		} else {
1810 			kve->kve_type = KVME_TYPE_NONE;
1811 			kve->kve_ref_count = 0;
1812 			kve->kve_shadow_count = 0;
1813 		}
1814 
1815 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1816 		if (freepath != NULL)
1817 			free(freepath, M_TEMP);
1818 
1819 		/* Pack record size down */
1820 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1821 		    strlen(kve->kve_path) + 1;
1822 		kve->kve_structsize = roundup(kve->kve_structsize,
1823 		    sizeof(uint64_t));
1824 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1825 		vm_map_lock_read(map);
1826 		if (error)
1827 			break;
1828 		if (last_timestamp != map->timestamp) {
1829 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1830 			entry = tmp_entry;
1831 		}
1832 	}
1833 	vm_map_unlock_read(map);
1834 	vmspace_free(vm);
1835 	PRELE(p);
1836 	free(kve, M_TEMP);
1837 	return (error);
1838 }
1839 
1840 #if defined(STACK) || defined(DDB)
1841 static int
1842 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1843 {
1844 	struct kinfo_kstack *kkstp;
1845 	int error, i, *name, numthreads;
1846 	lwpid_t *lwpidarray;
1847 	struct thread *td;
1848 	struct stack *st;
1849 	struct sbuf sb;
1850 	struct proc *p;
1851 
1852 	name = (int *)arg1;
1853 	if ((p = pfind((pid_t)name[0])) == NULL)
1854 		return (ESRCH);
1855 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1856 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1857 		PROC_UNLOCK(p);
1858 		return (ESRCH);
1859 	}
1860 	if ((error = p_candebug(curthread, p))) {
1861 		PROC_UNLOCK(p);
1862 		return (error);
1863 	}
1864 	_PHOLD(p);
1865 	PROC_UNLOCK(p);
1866 
1867 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1868 	st = stack_create();
1869 
1870 	lwpidarray = NULL;
1871 	numthreads = 0;
1872 	PROC_LOCK(p);
1873 repeat:
1874 	if (numthreads < p->p_numthreads) {
1875 		if (lwpidarray != NULL) {
1876 			free(lwpidarray, M_TEMP);
1877 			lwpidarray = NULL;
1878 		}
1879 		numthreads = p->p_numthreads;
1880 		PROC_UNLOCK(p);
1881 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1882 		    M_WAITOK | M_ZERO);
1883 		PROC_LOCK(p);
1884 		goto repeat;
1885 	}
1886 	i = 0;
1887 
1888 	/*
1889 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1890 	 * of changes could have taken place.  Should we check to see if the
1891 	 * vmspace has been replaced, or the like, in order to prevent
1892 	 * giving a snapshot that spans, say, execve(2), with some threads
1893 	 * before and some after?  Among other things, the credentials could
1894 	 * have changed, in which case the right to extract debug info might
1895 	 * no longer be assured.
1896 	 */
1897 	FOREACH_THREAD_IN_PROC(p, td) {
1898 		KASSERT(i < numthreads,
1899 		    ("sysctl_kern_proc_kstack: numthreads"));
1900 		lwpidarray[i] = td->td_tid;
1901 		i++;
1902 	}
1903 	numthreads = i;
1904 	for (i = 0; i < numthreads; i++) {
1905 		td = thread_find(p, lwpidarray[i]);
1906 		if (td == NULL) {
1907 			continue;
1908 		}
1909 		bzero(kkstp, sizeof(*kkstp));
1910 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1911 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1912 		thread_lock(td);
1913 		kkstp->kkst_tid = td->td_tid;
1914 		if (TD_IS_SWAPPED(td))
1915 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1916 		else if (TD_IS_RUNNING(td))
1917 			kkstp->kkst_state = KKST_STATE_RUNNING;
1918 		else {
1919 			kkstp->kkst_state = KKST_STATE_STACKOK;
1920 			stack_save_td(st, td);
1921 		}
1922 		thread_unlock(td);
1923 		PROC_UNLOCK(p);
1924 		stack_sbuf_print(&sb, st);
1925 		sbuf_finish(&sb);
1926 		sbuf_delete(&sb);
1927 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1928 		PROC_LOCK(p);
1929 		if (error)
1930 			break;
1931 	}
1932 	_PRELE(p);
1933 	PROC_UNLOCK(p);
1934 	if (lwpidarray != NULL)
1935 		free(lwpidarray, M_TEMP);
1936 	stack_destroy(st);
1937 	free(kkstp, M_TEMP);
1938 	return (error);
1939 }
1940 #endif
1941 
1942 /*
1943  * This sysctl allows a process to retrieve the full list of groups from
1944  * itself or another process.
1945  */
1946 static int
1947 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1948 {
1949 	pid_t *pidp = (pid_t *)arg1;
1950 	unsigned int arglen = arg2;
1951 	struct proc *p;
1952 	struct ucred *cred;
1953 	int error;
1954 
1955 	if (arglen != 1)
1956 		return (EINVAL);
1957 	if (*pidp == -1) {	/* -1 means this process */
1958 		p = req->td->td_proc;
1959 	} else {
1960 		p = pfind(*pidp);
1961 		if (p == NULL)
1962 			return (ESRCH);
1963 		if ((error = p_cansee(curthread, p)) != 0) {
1964 			PROC_UNLOCK(p);
1965 			return (error);
1966 		}
1967 	}
1968 
1969 	cred = crhold(p->p_ucred);
1970 	if (*pidp != -1)
1971 		PROC_UNLOCK(p);
1972 
1973 	error = SYSCTL_OUT(req, cred->cr_groups,
1974 	    cred->cr_ngroups * sizeof(gid_t));
1975 	crfree(cred);
1976 	return (error);
1977 }
1978 
1979 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1980 
1981 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1982 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1983 	"Return entire process table");
1984 
1985 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1986 	sysctl_kern_proc, "Process table");
1987 
1988 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1989 	sysctl_kern_proc, "Process table");
1990 
1991 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1992 	sysctl_kern_proc, "Process table");
1993 
1994 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
1995 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
1996 
1997 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
1998 	sysctl_kern_proc, "Process table");
1999 
2000 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2001 	sysctl_kern_proc, "Process table");
2002 
2003 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2004 	sysctl_kern_proc, "Process table");
2005 
2006 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2007 	sysctl_kern_proc, "Process table");
2008 
2009 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2010 	sysctl_kern_proc, "Return process table, no threads");
2011 
2012 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2013 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2014 	sysctl_kern_proc_args, "Process argument list");
2015 
2016 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2017 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2018 
2019 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2020 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2021 	"Process syscall vector name (ABI type)");
2022 
2023 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2024 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2025 
2026 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2027 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2028 
2029 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2030 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2031 
2032 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2033 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2034 
2035 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2036 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2037 
2038 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2039 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2040 
2041 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2042 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2043 
2044 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2045 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2046 
2047 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2048 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2049 	"Return process table, no threads");
2050 
2051 #ifdef COMPAT_FREEBSD7
2052 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2053 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2054 #endif
2055 
2056 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2057 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2058 
2059 #if defined(STACK) || defined(DDB)
2060 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2061 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2062 #endif
2063 
2064 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2065 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2066