1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 static int vmmap_skip_res_cnt = 0; 145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 146 &vmmap_skip_res_cnt, 0, 147 "Skip calculation of the pages resident count in kern.proc.vmmap"); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 cv_init(&p->p_dbgwait, "dbgwait"); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(p) 267 register struct proc *p; 268 { 269 270 sx_assert(&proctree_lock, SX_LOCKED); 271 for (; p != curproc; p = p->p_pptr) 272 if (p->p_pid == 0) 273 return (0); 274 return (1); 275 } 276 277 struct proc * 278 pfind_locked(pid_t pid) 279 { 280 struct proc *p; 281 282 sx_assert(&allproc_lock, SX_LOCKED); 283 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 284 if (p->p_pid == pid) { 285 PROC_LOCK(p); 286 if (p->p_state == PRS_NEW) { 287 PROC_UNLOCK(p); 288 p = NULL; 289 } 290 break; 291 } 292 } 293 return (p); 294 } 295 296 /* 297 * Locate a process by number; return only "live" processes -- i.e., neither 298 * zombies nor newly born but incompletely initialized processes. By not 299 * returning processes in the PRS_NEW state, we allow callers to avoid 300 * testing for that condition to avoid dereferencing p_ucred, et al. 301 */ 302 struct proc * 303 pfind(pid_t pid) 304 { 305 struct proc *p; 306 307 sx_slock(&allproc_lock); 308 p = pfind_locked(pid); 309 sx_sunlock(&allproc_lock); 310 return (p); 311 } 312 313 static struct proc * 314 pfind_tid_locked(pid_t tid) 315 { 316 struct proc *p; 317 struct thread *td; 318 319 sx_assert(&allproc_lock, SX_LOCKED); 320 FOREACH_PROC_IN_SYSTEM(p) { 321 PROC_LOCK(p); 322 if (p->p_state == PRS_NEW) { 323 PROC_UNLOCK(p); 324 continue; 325 } 326 FOREACH_THREAD_IN_PROC(p, td) { 327 if (td->td_tid == tid) 328 goto found; 329 } 330 PROC_UNLOCK(p); 331 } 332 found: 333 return (p); 334 } 335 336 /* 337 * Locate a process group by number. 338 * The caller must hold proctree_lock. 339 */ 340 struct pgrp * 341 pgfind(pgid) 342 register pid_t pgid; 343 { 344 register struct pgrp *pgrp; 345 346 sx_assert(&proctree_lock, SX_LOCKED); 347 348 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 349 if (pgrp->pg_id == pgid) { 350 PGRP_LOCK(pgrp); 351 return (pgrp); 352 } 353 } 354 return (NULL); 355 } 356 357 /* 358 * Locate process and do additional manipulations, depending on flags. 359 */ 360 int 361 pget(pid_t pid, int flags, struct proc **pp) 362 { 363 struct proc *p; 364 int error; 365 366 sx_slock(&allproc_lock); 367 if (pid <= PID_MAX) { 368 p = pfind_locked(pid); 369 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 370 p = zpfind_locked(pid); 371 } else if ((flags & PGET_NOTID) == 0) { 372 p = pfind_tid_locked(pid); 373 } else { 374 p = NULL; 375 } 376 sx_sunlock(&allproc_lock); 377 if (p == NULL) 378 return (ESRCH); 379 if ((flags & PGET_CANSEE) != 0) { 380 error = p_cansee(curthread, p); 381 if (error != 0) 382 goto errout; 383 } 384 if ((flags & PGET_CANDEBUG) != 0) { 385 error = p_candebug(curthread, p); 386 if (error != 0) 387 goto errout; 388 } 389 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 390 error = EPERM; 391 goto errout; 392 } 393 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 394 error = ESRCH; 395 goto errout; 396 } 397 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 398 /* 399 * XXXRW: Not clear ESRCH is the right error during proc 400 * execve(). 401 */ 402 error = ESRCH; 403 goto errout; 404 } 405 if ((flags & PGET_HOLD) != 0) { 406 _PHOLD(p); 407 PROC_UNLOCK(p); 408 } 409 *pp = p; 410 return (0); 411 errout: 412 PROC_UNLOCK(p); 413 return (error); 414 } 415 416 /* 417 * Create a new process group. 418 * pgid must be equal to the pid of p. 419 * Begin a new session if required. 420 */ 421 int 422 enterpgrp(p, pgid, pgrp, sess) 423 register struct proc *p; 424 pid_t pgid; 425 struct pgrp *pgrp; 426 struct session *sess; 427 { 428 429 sx_assert(&proctree_lock, SX_XLOCKED); 430 431 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 432 KASSERT(p->p_pid == pgid, 433 ("enterpgrp: new pgrp and pid != pgid")); 434 KASSERT(pgfind(pgid) == NULL, 435 ("enterpgrp: pgrp with pgid exists")); 436 KASSERT(!SESS_LEADER(p), 437 ("enterpgrp: session leader attempted setpgrp")); 438 439 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 440 441 if (sess != NULL) { 442 /* 443 * new session 444 */ 445 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 446 PROC_LOCK(p); 447 p->p_flag &= ~P_CONTROLT; 448 PROC_UNLOCK(p); 449 PGRP_LOCK(pgrp); 450 sess->s_leader = p; 451 sess->s_sid = p->p_pid; 452 refcount_init(&sess->s_count, 1); 453 sess->s_ttyvp = NULL; 454 sess->s_ttydp = NULL; 455 sess->s_ttyp = NULL; 456 bcopy(p->p_session->s_login, sess->s_login, 457 sizeof(sess->s_login)); 458 pgrp->pg_session = sess; 459 KASSERT(p == curproc, 460 ("enterpgrp: mksession and p != curproc")); 461 } else { 462 pgrp->pg_session = p->p_session; 463 sess_hold(pgrp->pg_session); 464 PGRP_LOCK(pgrp); 465 } 466 pgrp->pg_id = pgid; 467 LIST_INIT(&pgrp->pg_members); 468 469 /* 470 * As we have an exclusive lock of proctree_lock, 471 * this should not deadlock. 472 */ 473 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 474 pgrp->pg_jobc = 0; 475 SLIST_INIT(&pgrp->pg_sigiolst); 476 PGRP_UNLOCK(pgrp); 477 478 doenterpgrp(p, pgrp); 479 480 return (0); 481 } 482 483 /* 484 * Move p to an existing process group 485 */ 486 int 487 enterthispgrp(p, pgrp) 488 register struct proc *p; 489 struct pgrp *pgrp; 490 { 491 492 sx_assert(&proctree_lock, SX_XLOCKED); 493 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 494 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 496 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 497 KASSERT(pgrp->pg_session == p->p_session, 498 ("%s: pgrp's session %p, p->p_session %p.\n", 499 __func__, 500 pgrp->pg_session, 501 p->p_session)); 502 KASSERT(pgrp != p->p_pgrp, 503 ("%s: p belongs to pgrp.", __func__)); 504 505 doenterpgrp(p, pgrp); 506 507 return (0); 508 } 509 510 /* 511 * Move p to a process group 512 */ 513 static void 514 doenterpgrp(p, pgrp) 515 struct proc *p; 516 struct pgrp *pgrp; 517 { 518 struct pgrp *savepgrp; 519 520 sx_assert(&proctree_lock, SX_XLOCKED); 521 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 524 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 525 526 savepgrp = p->p_pgrp; 527 528 /* 529 * Adjust eligibility of affected pgrps to participate in job control. 530 * Increment eligibility counts before decrementing, otherwise we 531 * could reach 0 spuriously during the first call. 532 */ 533 fixjobc(p, pgrp, 1); 534 fixjobc(p, p->p_pgrp, 0); 535 536 PGRP_LOCK(pgrp); 537 PGRP_LOCK(savepgrp); 538 PROC_LOCK(p); 539 LIST_REMOVE(p, p_pglist); 540 p->p_pgrp = pgrp; 541 PROC_UNLOCK(p); 542 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 543 PGRP_UNLOCK(savepgrp); 544 PGRP_UNLOCK(pgrp); 545 if (LIST_EMPTY(&savepgrp->pg_members)) 546 pgdelete(savepgrp); 547 } 548 549 /* 550 * remove process from process group 551 */ 552 int 553 leavepgrp(p) 554 register struct proc *p; 555 { 556 struct pgrp *savepgrp; 557 558 sx_assert(&proctree_lock, SX_XLOCKED); 559 savepgrp = p->p_pgrp; 560 PGRP_LOCK(savepgrp); 561 PROC_LOCK(p); 562 LIST_REMOVE(p, p_pglist); 563 p->p_pgrp = NULL; 564 PROC_UNLOCK(p); 565 PGRP_UNLOCK(savepgrp); 566 if (LIST_EMPTY(&savepgrp->pg_members)) 567 pgdelete(savepgrp); 568 return (0); 569 } 570 571 /* 572 * delete a process group 573 */ 574 static void 575 pgdelete(pgrp) 576 register struct pgrp *pgrp; 577 { 578 struct session *savesess; 579 struct tty *tp; 580 581 sx_assert(&proctree_lock, SX_XLOCKED); 582 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 583 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 584 585 /* 586 * Reset any sigio structures pointing to us as a result of 587 * F_SETOWN with our pgid. 588 */ 589 funsetownlst(&pgrp->pg_sigiolst); 590 591 PGRP_LOCK(pgrp); 592 tp = pgrp->pg_session->s_ttyp; 593 LIST_REMOVE(pgrp, pg_hash); 594 savesess = pgrp->pg_session; 595 PGRP_UNLOCK(pgrp); 596 597 /* Remove the reference to the pgrp before deallocating it. */ 598 if (tp != NULL) { 599 tty_lock(tp); 600 tty_rel_pgrp(tp, pgrp); 601 } 602 603 mtx_destroy(&pgrp->pg_mtx); 604 free(pgrp, M_PGRP); 605 sess_release(savesess); 606 } 607 608 static void 609 pgadjustjobc(pgrp, entering) 610 struct pgrp *pgrp; 611 int entering; 612 { 613 614 PGRP_LOCK(pgrp); 615 if (entering) 616 pgrp->pg_jobc++; 617 else { 618 --pgrp->pg_jobc; 619 if (pgrp->pg_jobc == 0) 620 orphanpg(pgrp); 621 } 622 PGRP_UNLOCK(pgrp); 623 } 624 625 /* 626 * Adjust pgrp jobc counters when specified process changes process group. 627 * We count the number of processes in each process group that "qualify" 628 * the group for terminal job control (those with a parent in a different 629 * process group of the same session). If that count reaches zero, the 630 * process group becomes orphaned. Check both the specified process' 631 * process group and that of its children. 632 * entering == 0 => p is leaving specified group. 633 * entering == 1 => p is entering specified group. 634 */ 635 void 636 fixjobc(p, pgrp, entering) 637 register struct proc *p; 638 register struct pgrp *pgrp; 639 int entering; 640 { 641 register struct pgrp *hispgrp; 642 register struct session *mysession; 643 644 sx_assert(&proctree_lock, SX_LOCKED); 645 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 646 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 647 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 648 649 /* 650 * Check p's parent to see whether p qualifies its own process 651 * group; if so, adjust count for p's process group. 652 */ 653 mysession = pgrp->pg_session; 654 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 655 hispgrp->pg_session == mysession) 656 pgadjustjobc(pgrp, entering); 657 658 /* 659 * Check this process' children to see whether they qualify 660 * their process groups; if so, adjust counts for children's 661 * process groups. 662 */ 663 LIST_FOREACH(p, &p->p_children, p_sibling) { 664 hispgrp = p->p_pgrp; 665 if (hispgrp == pgrp || 666 hispgrp->pg_session != mysession) 667 continue; 668 PROC_LOCK(p); 669 if (p->p_state == PRS_ZOMBIE) { 670 PROC_UNLOCK(p); 671 continue; 672 } 673 PROC_UNLOCK(p); 674 pgadjustjobc(hispgrp, entering); 675 } 676 } 677 678 /* 679 * A process group has become orphaned; 680 * if there are any stopped processes in the group, 681 * hang-up all process in that group. 682 */ 683 static void 684 orphanpg(pg) 685 struct pgrp *pg; 686 { 687 register struct proc *p; 688 689 PGRP_LOCK_ASSERT(pg, MA_OWNED); 690 691 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 692 PROC_LOCK(p); 693 if (P_SHOULDSTOP(p)) { 694 PROC_UNLOCK(p); 695 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 696 PROC_LOCK(p); 697 kern_psignal(p, SIGHUP); 698 kern_psignal(p, SIGCONT); 699 PROC_UNLOCK(p); 700 } 701 return; 702 } 703 PROC_UNLOCK(p); 704 } 705 } 706 707 void 708 sess_hold(struct session *s) 709 { 710 711 refcount_acquire(&s->s_count); 712 } 713 714 void 715 sess_release(struct session *s) 716 { 717 718 if (refcount_release(&s->s_count)) { 719 if (s->s_ttyp != NULL) { 720 tty_lock(s->s_ttyp); 721 tty_rel_sess(s->s_ttyp, s); 722 } 723 mtx_destroy(&s->s_mtx); 724 free(s, M_SESSION); 725 } 726 } 727 728 #ifdef DDB 729 730 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 731 { 732 register struct pgrp *pgrp; 733 register struct proc *p; 734 register int i; 735 736 for (i = 0; i <= pgrphash; i++) { 737 if (!LIST_EMPTY(&pgrphashtbl[i])) { 738 printf("\tindx %d\n", i); 739 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 740 printf( 741 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 742 (void *)pgrp, (long)pgrp->pg_id, 743 (void *)pgrp->pg_session, 744 pgrp->pg_session->s_count, 745 (void *)LIST_FIRST(&pgrp->pg_members)); 746 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 747 printf("\t\tpid %ld addr %p pgrp %p\n", 748 (long)p->p_pid, (void *)p, 749 (void *)p->p_pgrp); 750 } 751 } 752 } 753 } 754 } 755 #endif /* DDB */ 756 757 /* 758 * Calculate the kinfo_proc members which contain process-wide 759 * informations. 760 * Must be called with the target process locked. 761 */ 762 static void 763 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 764 { 765 struct thread *td; 766 767 PROC_LOCK_ASSERT(p, MA_OWNED); 768 769 kp->ki_estcpu = 0; 770 kp->ki_pctcpu = 0; 771 FOREACH_THREAD_IN_PROC(p, td) { 772 thread_lock(td); 773 kp->ki_pctcpu += sched_pctcpu(td); 774 kp->ki_estcpu += td->td_estcpu; 775 thread_unlock(td); 776 } 777 } 778 779 /* 780 * Clear kinfo_proc and fill in any information that is common 781 * to all threads in the process. 782 * Must be called with the target process locked. 783 */ 784 static void 785 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 786 { 787 struct thread *td0; 788 struct tty *tp; 789 struct session *sp; 790 struct ucred *cred; 791 struct sigacts *ps; 792 793 PROC_LOCK_ASSERT(p, MA_OWNED); 794 bzero(kp, sizeof(*kp)); 795 796 kp->ki_structsize = sizeof(*kp); 797 kp->ki_paddr = p; 798 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 799 kp->ki_args = p->p_args; 800 kp->ki_textvp = p->p_textvp; 801 #ifdef KTRACE 802 kp->ki_tracep = p->p_tracevp; 803 kp->ki_traceflag = p->p_traceflag; 804 #endif 805 kp->ki_fd = p->p_fd; 806 kp->ki_vmspace = p->p_vmspace; 807 kp->ki_flag = p->p_flag; 808 kp->ki_flag2 = p->p_flag2; 809 cred = p->p_ucred; 810 if (cred) { 811 kp->ki_uid = cred->cr_uid; 812 kp->ki_ruid = cred->cr_ruid; 813 kp->ki_svuid = cred->cr_svuid; 814 kp->ki_cr_flags = 0; 815 if (cred->cr_flags & CRED_FLAG_CAPMODE) 816 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 817 /* XXX bde doesn't like KI_NGROUPS */ 818 if (cred->cr_ngroups > KI_NGROUPS) { 819 kp->ki_ngroups = KI_NGROUPS; 820 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 821 } else 822 kp->ki_ngroups = cred->cr_ngroups; 823 bcopy(cred->cr_groups, kp->ki_groups, 824 kp->ki_ngroups * sizeof(gid_t)); 825 kp->ki_rgid = cred->cr_rgid; 826 kp->ki_svgid = cred->cr_svgid; 827 /* If jailed(cred), emulate the old P_JAILED flag. */ 828 if (jailed(cred)) { 829 kp->ki_flag |= P_JAILED; 830 /* If inside the jail, use 0 as a jail ID. */ 831 if (cred->cr_prison != curthread->td_ucred->cr_prison) 832 kp->ki_jid = cred->cr_prison->pr_id; 833 } 834 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 835 sizeof(kp->ki_loginclass)); 836 } 837 ps = p->p_sigacts; 838 if (ps) { 839 mtx_lock(&ps->ps_mtx); 840 kp->ki_sigignore = ps->ps_sigignore; 841 kp->ki_sigcatch = ps->ps_sigcatch; 842 mtx_unlock(&ps->ps_mtx); 843 } 844 if (p->p_state != PRS_NEW && 845 p->p_state != PRS_ZOMBIE && 846 p->p_vmspace != NULL) { 847 struct vmspace *vm = p->p_vmspace; 848 849 kp->ki_size = vm->vm_map.size; 850 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 851 FOREACH_THREAD_IN_PROC(p, td0) { 852 if (!TD_IS_SWAPPED(td0)) 853 kp->ki_rssize += td0->td_kstack_pages; 854 } 855 kp->ki_swrss = vm->vm_swrss; 856 kp->ki_tsize = vm->vm_tsize; 857 kp->ki_dsize = vm->vm_dsize; 858 kp->ki_ssize = vm->vm_ssize; 859 } else if (p->p_state == PRS_ZOMBIE) 860 kp->ki_stat = SZOMB; 861 if (kp->ki_flag & P_INMEM) 862 kp->ki_sflag = PS_INMEM; 863 else 864 kp->ki_sflag = 0; 865 /* Calculate legacy swtime as seconds since 'swtick'. */ 866 kp->ki_swtime = (ticks - p->p_swtick) / hz; 867 kp->ki_pid = p->p_pid; 868 kp->ki_nice = p->p_nice; 869 kp->ki_fibnum = p->p_fibnum; 870 kp->ki_start = p->p_stats->p_start; 871 timevaladd(&kp->ki_start, &boottime); 872 PROC_SLOCK(p); 873 rufetch(p, &kp->ki_rusage); 874 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 875 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 876 PROC_SUNLOCK(p); 877 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 878 /* Some callers want child times in a single value. */ 879 kp->ki_childtime = kp->ki_childstime; 880 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 881 882 FOREACH_THREAD_IN_PROC(p, td0) 883 kp->ki_cow += td0->td_cow; 884 885 tp = NULL; 886 if (p->p_pgrp) { 887 kp->ki_pgid = p->p_pgrp->pg_id; 888 kp->ki_jobc = p->p_pgrp->pg_jobc; 889 sp = p->p_pgrp->pg_session; 890 891 if (sp != NULL) { 892 kp->ki_sid = sp->s_sid; 893 SESS_LOCK(sp); 894 strlcpy(kp->ki_login, sp->s_login, 895 sizeof(kp->ki_login)); 896 if (sp->s_ttyvp) 897 kp->ki_kiflag |= KI_CTTY; 898 if (SESS_LEADER(p)) 899 kp->ki_kiflag |= KI_SLEADER; 900 /* XXX proctree_lock */ 901 tp = sp->s_ttyp; 902 SESS_UNLOCK(sp); 903 } 904 } 905 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 906 kp->ki_tdev = tty_udev(tp); 907 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 908 if (tp->t_session) 909 kp->ki_tsid = tp->t_session->s_sid; 910 } else 911 kp->ki_tdev = NODEV; 912 if (p->p_comm[0] != '\0') 913 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 914 if (p->p_sysent && p->p_sysent->sv_name != NULL && 915 p->p_sysent->sv_name[0] != '\0') 916 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 917 kp->ki_siglist = p->p_siglist; 918 kp->ki_xstat = p->p_xstat; 919 kp->ki_acflag = p->p_acflag; 920 kp->ki_lock = p->p_lock; 921 if (p->p_pptr) 922 kp->ki_ppid = p->p_pptr->p_pid; 923 } 924 925 /* 926 * Fill in information that is thread specific. Must be called with 927 * target process locked. If 'preferthread' is set, overwrite certain 928 * process-related fields that are maintained for both threads and 929 * processes. 930 */ 931 static void 932 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 933 { 934 struct proc *p; 935 936 p = td->td_proc; 937 kp->ki_tdaddr = td; 938 PROC_LOCK_ASSERT(p, MA_OWNED); 939 940 if (preferthread) 941 PROC_SLOCK(p); 942 thread_lock(td); 943 if (td->td_wmesg != NULL) 944 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 945 else 946 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 947 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 948 if (TD_ON_LOCK(td)) { 949 kp->ki_kiflag |= KI_LOCKBLOCK; 950 strlcpy(kp->ki_lockname, td->td_lockname, 951 sizeof(kp->ki_lockname)); 952 } else { 953 kp->ki_kiflag &= ~KI_LOCKBLOCK; 954 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 955 } 956 957 if (p->p_state == PRS_NORMAL) { /* approximate. */ 958 if (TD_ON_RUNQ(td) || 959 TD_CAN_RUN(td) || 960 TD_IS_RUNNING(td)) { 961 kp->ki_stat = SRUN; 962 } else if (P_SHOULDSTOP(p)) { 963 kp->ki_stat = SSTOP; 964 } else if (TD_IS_SLEEPING(td)) { 965 kp->ki_stat = SSLEEP; 966 } else if (TD_ON_LOCK(td)) { 967 kp->ki_stat = SLOCK; 968 } else { 969 kp->ki_stat = SWAIT; 970 } 971 } else if (p->p_state == PRS_ZOMBIE) { 972 kp->ki_stat = SZOMB; 973 } else { 974 kp->ki_stat = SIDL; 975 } 976 977 /* Things in the thread */ 978 kp->ki_wchan = td->td_wchan; 979 kp->ki_pri.pri_level = td->td_priority; 980 kp->ki_pri.pri_native = td->td_base_pri; 981 kp->ki_lastcpu = td->td_lastcpu; 982 kp->ki_oncpu = td->td_oncpu; 983 kp->ki_tdflags = td->td_flags; 984 kp->ki_tid = td->td_tid; 985 kp->ki_numthreads = p->p_numthreads; 986 kp->ki_pcb = td->td_pcb; 987 kp->ki_kstack = (void *)td->td_kstack; 988 kp->ki_slptime = (ticks - td->td_slptick) / hz; 989 kp->ki_pri.pri_class = td->td_pri_class; 990 kp->ki_pri.pri_user = td->td_user_pri; 991 992 if (preferthread) { 993 rufetchtd(td, &kp->ki_rusage); 994 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 995 kp->ki_pctcpu = sched_pctcpu(td); 996 kp->ki_estcpu = td->td_estcpu; 997 kp->ki_cow = td->td_cow; 998 } 999 1000 /* We can't get this anymore but ps etc never used it anyway. */ 1001 kp->ki_rqindex = 0; 1002 1003 if (preferthread) 1004 kp->ki_siglist = td->td_siglist; 1005 kp->ki_sigmask = td->td_sigmask; 1006 thread_unlock(td); 1007 if (preferthread) 1008 PROC_SUNLOCK(p); 1009 } 1010 1011 /* 1012 * Fill in a kinfo_proc structure for the specified process. 1013 * Must be called with the target process locked. 1014 */ 1015 void 1016 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1017 { 1018 1019 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1020 1021 fill_kinfo_proc_only(p, kp); 1022 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1023 fill_kinfo_aggregate(p, kp); 1024 } 1025 1026 struct pstats * 1027 pstats_alloc(void) 1028 { 1029 1030 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1031 } 1032 1033 /* 1034 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1035 */ 1036 void 1037 pstats_fork(struct pstats *src, struct pstats *dst) 1038 { 1039 1040 bzero(&dst->pstat_startzero, 1041 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1042 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1043 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1044 } 1045 1046 void 1047 pstats_free(struct pstats *ps) 1048 { 1049 1050 free(ps, M_SUBPROC); 1051 } 1052 1053 static struct proc * 1054 zpfind_locked(pid_t pid) 1055 { 1056 struct proc *p; 1057 1058 sx_assert(&allproc_lock, SX_LOCKED); 1059 LIST_FOREACH(p, &zombproc, p_list) { 1060 if (p->p_pid == pid) { 1061 PROC_LOCK(p); 1062 break; 1063 } 1064 } 1065 return (p); 1066 } 1067 1068 /* 1069 * Locate a zombie process by number 1070 */ 1071 struct proc * 1072 zpfind(pid_t pid) 1073 { 1074 struct proc *p; 1075 1076 sx_slock(&allproc_lock); 1077 p = zpfind_locked(pid); 1078 sx_sunlock(&allproc_lock); 1079 return (p); 1080 } 1081 1082 #ifdef COMPAT_FREEBSD32 1083 1084 /* 1085 * This function is typically used to copy out the kernel address, so 1086 * it can be replaced by assignment of zero. 1087 */ 1088 static inline uint32_t 1089 ptr32_trim(void *ptr) 1090 { 1091 uintptr_t uptr; 1092 1093 uptr = (uintptr_t)ptr; 1094 return ((uptr > UINT_MAX) ? 0 : uptr); 1095 } 1096 1097 #define PTRTRIM_CP(src,dst,fld) \ 1098 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1099 1100 static void 1101 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1102 { 1103 int i; 1104 1105 bzero(ki32, sizeof(struct kinfo_proc32)); 1106 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1107 CP(*ki, *ki32, ki_layout); 1108 PTRTRIM_CP(*ki, *ki32, ki_args); 1109 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1110 PTRTRIM_CP(*ki, *ki32, ki_addr); 1111 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1112 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1113 PTRTRIM_CP(*ki, *ki32, ki_fd); 1114 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1115 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1116 CP(*ki, *ki32, ki_pid); 1117 CP(*ki, *ki32, ki_ppid); 1118 CP(*ki, *ki32, ki_pgid); 1119 CP(*ki, *ki32, ki_tpgid); 1120 CP(*ki, *ki32, ki_sid); 1121 CP(*ki, *ki32, ki_tsid); 1122 CP(*ki, *ki32, ki_jobc); 1123 CP(*ki, *ki32, ki_tdev); 1124 CP(*ki, *ki32, ki_siglist); 1125 CP(*ki, *ki32, ki_sigmask); 1126 CP(*ki, *ki32, ki_sigignore); 1127 CP(*ki, *ki32, ki_sigcatch); 1128 CP(*ki, *ki32, ki_uid); 1129 CP(*ki, *ki32, ki_ruid); 1130 CP(*ki, *ki32, ki_svuid); 1131 CP(*ki, *ki32, ki_rgid); 1132 CP(*ki, *ki32, ki_svgid); 1133 CP(*ki, *ki32, ki_ngroups); 1134 for (i = 0; i < KI_NGROUPS; i++) 1135 CP(*ki, *ki32, ki_groups[i]); 1136 CP(*ki, *ki32, ki_size); 1137 CP(*ki, *ki32, ki_rssize); 1138 CP(*ki, *ki32, ki_swrss); 1139 CP(*ki, *ki32, ki_tsize); 1140 CP(*ki, *ki32, ki_dsize); 1141 CP(*ki, *ki32, ki_ssize); 1142 CP(*ki, *ki32, ki_xstat); 1143 CP(*ki, *ki32, ki_acflag); 1144 CP(*ki, *ki32, ki_pctcpu); 1145 CP(*ki, *ki32, ki_estcpu); 1146 CP(*ki, *ki32, ki_slptime); 1147 CP(*ki, *ki32, ki_swtime); 1148 CP(*ki, *ki32, ki_cow); 1149 CP(*ki, *ki32, ki_runtime); 1150 TV_CP(*ki, *ki32, ki_start); 1151 TV_CP(*ki, *ki32, ki_childtime); 1152 CP(*ki, *ki32, ki_flag); 1153 CP(*ki, *ki32, ki_kiflag); 1154 CP(*ki, *ki32, ki_traceflag); 1155 CP(*ki, *ki32, ki_stat); 1156 CP(*ki, *ki32, ki_nice); 1157 CP(*ki, *ki32, ki_lock); 1158 CP(*ki, *ki32, ki_rqindex); 1159 CP(*ki, *ki32, ki_oncpu); 1160 CP(*ki, *ki32, ki_lastcpu); 1161 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1162 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1163 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1164 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1165 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1166 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1167 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1168 CP(*ki, *ki32, ki_flag2); 1169 CP(*ki, *ki32, ki_fibnum); 1170 CP(*ki, *ki32, ki_cr_flags); 1171 CP(*ki, *ki32, ki_jid); 1172 CP(*ki, *ki32, ki_numthreads); 1173 CP(*ki, *ki32, ki_tid); 1174 CP(*ki, *ki32, ki_pri); 1175 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1176 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1177 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1178 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1179 PTRTRIM_CP(*ki, *ki32, ki_udata); 1180 CP(*ki, *ki32, ki_sflag); 1181 CP(*ki, *ki32, ki_tdflags); 1182 } 1183 #endif 1184 1185 int 1186 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1187 { 1188 struct thread *td; 1189 struct kinfo_proc ki; 1190 #ifdef COMPAT_FREEBSD32 1191 struct kinfo_proc32 ki32; 1192 #endif 1193 int error; 1194 1195 PROC_LOCK_ASSERT(p, MA_OWNED); 1196 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1197 1198 error = 0; 1199 fill_kinfo_proc(p, &ki); 1200 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1201 #ifdef COMPAT_FREEBSD32 1202 if ((flags & KERN_PROC_MASK32) != 0) { 1203 freebsd32_kinfo_proc_out(&ki, &ki32); 1204 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1205 } else 1206 #endif 1207 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1208 } else { 1209 FOREACH_THREAD_IN_PROC(p, td) { 1210 fill_kinfo_thread(td, &ki, 1); 1211 #ifdef COMPAT_FREEBSD32 1212 if ((flags & KERN_PROC_MASK32) != 0) { 1213 freebsd32_kinfo_proc_out(&ki, &ki32); 1214 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1215 } else 1216 #endif 1217 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1218 if (error) 1219 break; 1220 } 1221 } 1222 PROC_UNLOCK(p); 1223 return (error); 1224 } 1225 1226 static int 1227 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1228 int doingzomb) 1229 { 1230 struct sbuf sb; 1231 struct kinfo_proc ki; 1232 struct proc *np; 1233 int error, error2; 1234 pid_t pid; 1235 1236 pid = p->p_pid; 1237 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1238 error = kern_proc_out(p, &sb, flags); 1239 error2 = sbuf_finish(&sb); 1240 sbuf_delete(&sb); 1241 if (error != 0) 1242 return (error); 1243 else if (error2 != 0) 1244 return (error2); 1245 if (doingzomb) 1246 np = zpfind(pid); 1247 else { 1248 if (pid == 0) 1249 return (0); 1250 np = pfind(pid); 1251 } 1252 if (np == NULL) 1253 return (ESRCH); 1254 if (np != p) { 1255 PROC_UNLOCK(np); 1256 return (ESRCH); 1257 } 1258 PROC_UNLOCK(np); 1259 return (0); 1260 } 1261 1262 static int 1263 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1264 { 1265 int *name = (int *)arg1; 1266 u_int namelen = arg2; 1267 struct proc *p; 1268 int flags, doingzomb, oid_number; 1269 int error = 0; 1270 1271 oid_number = oidp->oid_number; 1272 if (oid_number != KERN_PROC_ALL && 1273 (oid_number & KERN_PROC_INC_THREAD) == 0) 1274 flags = KERN_PROC_NOTHREADS; 1275 else { 1276 flags = 0; 1277 oid_number &= ~KERN_PROC_INC_THREAD; 1278 } 1279 #ifdef COMPAT_FREEBSD32 1280 if (req->flags & SCTL_MASK32) 1281 flags |= KERN_PROC_MASK32; 1282 #endif 1283 if (oid_number == KERN_PROC_PID) { 1284 if (namelen != 1) 1285 return (EINVAL); 1286 error = sysctl_wire_old_buffer(req, 0); 1287 if (error) 1288 return (error); 1289 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1290 if (error != 0) 1291 return (error); 1292 error = sysctl_out_proc(p, req, flags, 0); 1293 return (error); 1294 } 1295 1296 switch (oid_number) { 1297 case KERN_PROC_ALL: 1298 if (namelen != 0) 1299 return (EINVAL); 1300 break; 1301 case KERN_PROC_PROC: 1302 if (namelen != 0 && namelen != 1) 1303 return (EINVAL); 1304 break; 1305 default: 1306 if (namelen != 1) 1307 return (EINVAL); 1308 break; 1309 } 1310 1311 if (!req->oldptr) { 1312 /* overestimate by 5 procs */ 1313 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1314 if (error) 1315 return (error); 1316 } 1317 error = sysctl_wire_old_buffer(req, 0); 1318 if (error != 0) 1319 return (error); 1320 sx_slock(&allproc_lock); 1321 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1322 if (!doingzomb) 1323 p = LIST_FIRST(&allproc); 1324 else 1325 p = LIST_FIRST(&zombproc); 1326 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1327 /* 1328 * Skip embryonic processes. 1329 */ 1330 PROC_LOCK(p); 1331 if (p->p_state == PRS_NEW) { 1332 PROC_UNLOCK(p); 1333 continue; 1334 } 1335 KASSERT(p->p_ucred != NULL, 1336 ("process credential is NULL for non-NEW proc")); 1337 /* 1338 * Show a user only appropriate processes. 1339 */ 1340 if (p_cansee(curthread, p)) { 1341 PROC_UNLOCK(p); 1342 continue; 1343 } 1344 /* 1345 * TODO - make more efficient (see notes below). 1346 * do by session. 1347 */ 1348 switch (oid_number) { 1349 1350 case KERN_PROC_GID: 1351 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1352 PROC_UNLOCK(p); 1353 continue; 1354 } 1355 break; 1356 1357 case KERN_PROC_PGRP: 1358 /* could do this by traversing pgrp */ 1359 if (p->p_pgrp == NULL || 1360 p->p_pgrp->pg_id != (pid_t)name[0]) { 1361 PROC_UNLOCK(p); 1362 continue; 1363 } 1364 break; 1365 1366 case KERN_PROC_RGID: 1367 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1368 PROC_UNLOCK(p); 1369 continue; 1370 } 1371 break; 1372 1373 case KERN_PROC_SESSION: 1374 if (p->p_session == NULL || 1375 p->p_session->s_sid != (pid_t)name[0]) { 1376 PROC_UNLOCK(p); 1377 continue; 1378 } 1379 break; 1380 1381 case KERN_PROC_TTY: 1382 if ((p->p_flag & P_CONTROLT) == 0 || 1383 p->p_session == NULL) { 1384 PROC_UNLOCK(p); 1385 continue; 1386 } 1387 /* XXX proctree_lock */ 1388 SESS_LOCK(p->p_session); 1389 if (p->p_session->s_ttyp == NULL || 1390 tty_udev(p->p_session->s_ttyp) != 1391 (dev_t)name[0]) { 1392 SESS_UNLOCK(p->p_session); 1393 PROC_UNLOCK(p); 1394 continue; 1395 } 1396 SESS_UNLOCK(p->p_session); 1397 break; 1398 1399 case KERN_PROC_UID: 1400 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1401 PROC_UNLOCK(p); 1402 continue; 1403 } 1404 break; 1405 1406 case KERN_PROC_RUID: 1407 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1408 PROC_UNLOCK(p); 1409 continue; 1410 } 1411 break; 1412 1413 case KERN_PROC_PROC: 1414 break; 1415 1416 default: 1417 break; 1418 1419 } 1420 1421 error = sysctl_out_proc(p, req, flags, doingzomb); 1422 if (error) { 1423 sx_sunlock(&allproc_lock); 1424 return (error); 1425 } 1426 } 1427 } 1428 sx_sunlock(&allproc_lock); 1429 return (0); 1430 } 1431 1432 struct pargs * 1433 pargs_alloc(int len) 1434 { 1435 struct pargs *pa; 1436 1437 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1438 M_WAITOK); 1439 refcount_init(&pa->ar_ref, 1); 1440 pa->ar_length = len; 1441 return (pa); 1442 } 1443 1444 static void 1445 pargs_free(struct pargs *pa) 1446 { 1447 1448 free(pa, M_PARGS); 1449 } 1450 1451 void 1452 pargs_hold(struct pargs *pa) 1453 { 1454 1455 if (pa == NULL) 1456 return; 1457 refcount_acquire(&pa->ar_ref); 1458 } 1459 1460 void 1461 pargs_drop(struct pargs *pa) 1462 { 1463 1464 if (pa == NULL) 1465 return; 1466 if (refcount_release(&pa->ar_ref)) 1467 pargs_free(pa); 1468 } 1469 1470 static int 1471 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1472 size_t len) 1473 { 1474 struct iovec iov; 1475 struct uio uio; 1476 1477 iov.iov_base = (caddr_t)buf; 1478 iov.iov_len = len; 1479 uio.uio_iov = &iov; 1480 uio.uio_iovcnt = 1; 1481 uio.uio_offset = offset; 1482 uio.uio_resid = (ssize_t)len; 1483 uio.uio_segflg = UIO_SYSSPACE; 1484 uio.uio_rw = UIO_READ; 1485 uio.uio_td = td; 1486 1487 return (proc_rwmem(p, &uio)); 1488 } 1489 1490 static int 1491 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1492 size_t len) 1493 { 1494 size_t i; 1495 int error; 1496 1497 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1498 /* 1499 * Reading the chunk may validly return EFAULT if the string is shorter 1500 * than the chunk and is aligned at the end of the page, assuming the 1501 * next page is not mapped. So if EFAULT is returned do a fallback to 1502 * one byte read loop. 1503 */ 1504 if (error == EFAULT) { 1505 for (i = 0; i < len; i++, buf++, sptr++) { 1506 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1507 if (error != 0) 1508 return (error); 1509 if (*buf == '\0') 1510 break; 1511 } 1512 error = 0; 1513 } 1514 return (error); 1515 } 1516 1517 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1518 1519 enum proc_vector_type { 1520 PROC_ARG, 1521 PROC_ENV, 1522 PROC_AUX, 1523 }; 1524 1525 #ifdef COMPAT_FREEBSD32 1526 static int 1527 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1528 size_t *vsizep, enum proc_vector_type type) 1529 { 1530 struct freebsd32_ps_strings pss; 1531 Elf32_Auxinfo aux; 1532 vm_offset_t vptr, ptr; 1533 uint32_t *proc_vector32; 1534 char **proc_vector; 1535 size_t vsize, size; 1536 int i, error; 1537 1538 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1539 &pss, sizeof(pss)); 1540 if (error != 0) 1541 return (error); 1542 switch (type) { 1543 case PROC_ARG: 1544 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1545 vsize = pss.ps_nargvstr; 1546 if (vsize > ARG_MAX) 1547 return (ENOEXEC); 1548 size = vsize * sizeof(int32_t); 1549 break; 1550 case PROC_ENV: 1551 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1552 vsize = pss.ps_nenvstr; 1553 if (vsize > ARG_MAX) 1554 return (ENOEXEC); 1555 size = vsize * sizeof(int32_t); 1556 break; 1557 case PROC_AUX: 1558 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1559 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1560 if (vptr % 4 != 0) 1561 return (ENOEXEC); 1562 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1563 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1564 if (error != 0) 1565 return (error); 1566 if (aux.a_type == AT_NULL) 1567 break; 1568 ptr += sizeof(aux); 1569 } 1570 if (aux.a_type != AT_NULL) 1571 return (ENOEXEC); 1572 vsize = i + 1; 1573 size = vsize * sizeof(aux); 1574 break; 1575 default: 1576 KASSERT(0, ("Wrong proc vector type: %d", type)); 1577 return (EINVAL); 1578 } 1579 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1580 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1581 if (error != 0) 1582 goto done; 1583 if (type == PROC_AUX) { 1584 *proc_vectorp = (char **)proc_vector32; 1585 *vsizep = vsize; 1586 return (0); 1587 } 1588 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1589 for (i = 0; i < (int)vsize; i++) 1590 proc_vector[i] = PTRIN(proc_vector32[i]); 1591 *proc_vectorp = proc_vector; 1592 *vsizep = vsize; 1593 done: 1594 free(proc_vector32, M_TEMP); 1595 return (error); 1596 } 1597 #endif 1598 1599 static int 1600 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1601 size_t *vsizep, enum proc_vector_type type) 1602 { 1603 struct ps_strings pss; 1604 Elf_Auxinfo aux; 1605 vm_offset_t vptr, ptr; 1606 char **proc_vector; 1607 size_t vsize, size; 1608 int error, i; 1609 1610 #ifdef COMPAT_FREEBSD32 1611 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1612 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1613 #endif 1614 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1615 &pss, sizeof(pss)); 1616 if (error != 0) 1617 return (error); 1618 switch (type) { 1619 case PROC_ARG: 1620 vptr = (vm_offset_t)pss.ps_argvstr; 1621 vsize = pss.ps_nargvstr; 1622 if (vsize > ARG_MAX) 1623 return (ENOEXEC); 1624 size = vsize * sizeof(char *); 1625 break; 1626 case PROC_ENV: 1627 vptr = (vm_offset_t)pss.ps_envstr; 1628 vsize = pss.ps_nenvstr; 1629 if (vsize > ARG_MAX) 1630 return (ENOEXEC); 1631 size = vsize * sizeof(char *); 1632 break; 1633 case PROC_AUX: 1634 /* 1635 * The aux array is just above env array on the stack. Check 1636 * that the address is naturally aligned. 1637 */ 1638 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1639 * sizeof(char *); 1640 #if __ELF_WORD_SIZE == 64 1641 if (vptr % sizeof(uint64_t) != 0) 1642 #else 1643 if (vptr % sizeof(uint32_t) != 0) 1644 #endif 1645 return (ENOEXEC); 1646 /* 1647 * We count the array size reading the aux vectors from the 1648 * stack until AT_NULL vector is returned. So (to keep the code 1649 * simple) we read the process stack twice: the first time here 1650 * to find the size and the second time when copying the vectors 1651 * to the allocated proc_vector. 1652 */ 1653 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1654 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1655 if (error != 0) 1656 return (error); 1657 if (aux.a_type == AT_NULL) 1658 break; 1659 ptr += sizeof(aux); 1660 } 1661 /* 1662 * If the PROC_AUXV_MAX entries are iterated over, and we have 1663 * not reached AT_NULL, it is most likely we are reading wrong 1664 * data: either the process doesn't have auxv array or data has 1665 * been modified. Return the error in this case. 1666 */ 1667 if (aux.a_type != AT_NULL) 1668 return (ENOEXEC); 1669 vsize = i + 1; 1670 size = vsize * sizeof(aux); 1671 break; 1672 default: 1673 KASSERT(0, ("Wrong proc vector type: %d", type)); 1674 return (EINVAL); /* In case we are built without INVARIANTS. */ 1675 } 1676 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1677 if (proc_vector == NULL) 1678 return (ENOMEM); 1679 error = proc_read_mem(td, p, vptr, proc_vector, size); 1680 if (error != 0) { 1681 free(proc_vector, M_TEMP); 1682 return (error); 1683 } 1684 *proc_vectorp = proc_vector; 1685 *vsizep = vsize; 1686 1687 return (0); 1688 } 1689 1690 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1691 1692 static int 1693 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1694 enum proc_vector_type type) 1695 { 1696 size_t done, len, nchr, vsize; 1697 int error, i; 1698 char **proc_vector, *sptr; 1699 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1700 1701 PROC_ASSERT_HELD(p); 1702 1703 /* 1704 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1705 */ 1706 nchr = 2 * (PATH_MAX + ARG_MAX); 1707 1708 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1709 if (error != 0) 1710 return (error); 1711 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1712 /* 1713 * The program may have scribbled into its argv array, e.g. to 1714 * remove some arguments. If that has happened, break out 1715 * before trying to read from NULL. 1716 */ 1717 if (proc_vector[i] == NULL) 1718 break; 1719 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1720 error = proc_read_string(td, p, sptr, pss_string, 1721 sizeof(pss_string)); 1722 if (error != 0) 1723 goto done; 1724 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1725 if (done + len >= nchr) 1726 len = nchr - done - 1; 1727 sbuf_bcat(sb, pss_string, len); 1728 if (len != GET_PS_STRINGS_CHUNK_SZ) 1729 break; 1730 done += GET_PS_STRINGS_CHUNK_SZ; 1731 } 1732 sbuf_bcat(sb, "", 1); 1733 done += len + 1; 1734 } 1735 done: 1736 free(proc_vector, M_TEMP); 1737 return (error); 1738 } 1739 1740 int 1741 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1742 { 1743 1744 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1745 } 1746 1747 int 1748 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1749 { 1750 1751 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1752 } 1753 1754 int 1755 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1756 { 1757 size_t vsize, size; 1758 char **auxv; 1759 int error; 1760 1761 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1762 if (error == 0) { 1763 #ifdef COMPAT_FREEBSD32 1764 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1765 size = vsize * sizeof(Elf32_Auxinfo); 1766 else 1767 #endif 1768 size = vsize * sizeof(Elf_Auxinfo); 1769 error = sbuf_bcat(sb, auxv, size); 1770 free(auxv, M_TEMP); 1771 } 1772 return (error); 1773 } 1774 1775 /* 1776 * This sysctl allows a process to retrieve the argument list or process 1777 * title for another process without groping around in the address space 1778 * of the other process. It also allow a process to set its own "process 1779 * title to a string of its own choice. 1780 */ 1781 static int 1782 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1783 { 1784 int *name = (int *)arg1; 1785 u_int namelen = arg2; 1786 struct pargs *newpa, *pa; 1787 struct proc *p; 1788 struct sbuf sb; 1789 int flags, error = 0, error2; 1790 1791 if (namelen != 1) 1792 return (EINVAL); 1793 1794 flags = PGET_CANSEE; 1795 if (req->newptr != NULL) 1796 flags |= PGET_ISCURRENT; 1797 error = pget((pid_t)name[0], flags, &p); 1798 if (error) 1799 return (error); 1800 1801 pa = p->p_args; 1802 if (pa != NULL) { 1803 pargs_hold(pa); 1804 PROC_UNLOCK(p); 1805 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1806 pargs_drop(pa); 1807 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1808 _PHOLD(p); 1809 PROC_UNLOCK(p); 1810 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1811 error = proc_getargv(curthread, p, &sb); 1812 error2 = sbuf_finish(&sb); 1813 PRELE(p); 1814 sbuf_delete(&sb); 1815 if (error == 0 && error2 != 0) 1816 error = error2; 1817 } else { 1818 PROC_UNLOCK(p); 1819 } 1820 if (error != 0 || req->newptr == NULL) 1821 return (error); 1822 1823 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1824 return (ENOMEM); 1825 newpa = pargs_alloc(req->newlen); 1826 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1827 if (error != 0) { 1828 pargs_free(newpa); 1829 return (error); 1830 } 1831 PROC_LOCK(p); 1832 pa = p->p_args; 1833 p->p_args = newpa; 1834 PROC_UNLOCK(p); 1835 pargs_drop(pa); 1836 return (0); 1837 } 1838 1839 /* 1840 * This sysctl allows a process to retrieve environment of another process. 1841 */ 1842 static int 1843 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1844 { 1845 int *name = (int *)arg1; 1846 u_int namelen = arg2; 1847 struct proc *p; 1848 struct sbuf sb; 1849 int error, error2; 1850 1851 if (namelen != 1) 1852 return (EINVAL); 1853 1854 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1855 if (error != 0) 1856 return (error); 1857 if ((p->p_flag & P_SYSTEM) != 0) { 1858 PRELE(p); 1859 return (0); 1860 } 1861 1862 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1863 error = proc_getenvv(curthread, p, &sb); 1864 error2 = sbuf_finish(&sb); 1865 PRELE(p); 1866 sbuf_delete(&sb); 1867 return (error != 0 ? error : error2); 1868 } 1869 1870 /* 1871 * This sysctl allows a process to retrieve ELF auxiliary vector of 1872 * another process. 1873 */ 1874 static int 1875 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1876 { 1877 int *name = (int *)arg1; 1878 u_int namelen = arg2; 1879 struct proc *p; 1880 struct sbuf sb; 1881 int error, error2; 1882 1883 if (namelen != 1) 1884 return (EINVAL); 1885 1886 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1887 if (error != 0) 1888 return (error); 1889 if ((p->p_flag & P_SYSTEM) != 0) { 1890 PRELE(p); 1891 return (0); 1892 } 1893 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1894 error = proc_getauxv(curthread, p, &sb); 1895 error2 = sbuf_finish(&sb); 1896 PRELE(p); 1897 sbuf_delete(&sb); 1898 return (error != 0 ? error : error2); 1899 } 1900 1901 /* 1902 * This sysctl allows a process to retrieve the path of the executable for 1903 * itself or another process. 1904 */ 1905 static int 1906 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1907 { 1908 pid_t *pidp = (pid_t *)arg1; 1909 unsigned int arglen = arg2; 1910 struct proc *p; 1911 struct vnode *vp; 1912 char *retbuf, *freebuf; 1913 int error; 1914 1915 if (arglen != 1) 1916 return (EINVAL); 1917 if (*pidp == -1) { /* -1 means this process */ 1918 p = req->td->td_proc; 1919 } else { 1920 error = pget(*pidp, PGET_CANSEE, &p); 1921 if (error != 0) 1922 return (error); 1923 } 1924 1925 vp = p->p_textvp; 1926 if (vp == NULL) { 1927 if (*pidp != -1) 1928 PROC_UNLOCK(p); 1929 return (0); 1930 } 1931 vref(vp); 1932 if (*pidp != -1) 1933 PROC_UNLOCK(p); 1934 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1935 vrele(vp); 1936 if (error) 1937 return (error); 1938 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1939 free(freebuf, M_TEMP); 1940 return (error); 1941 } 1942 1943 static int 1944 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1945 { 1946 struct proc *p; 1947 char *sv_name; 1948 int *name; 1949 int namelen; 1950 int error; 1951 1952 namelen = arg2; 1953 if (namelen != 1) 1954 return (EINVAL); 1955 1956 name = (int *)arg1; 1957 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1958 if (error != 0) 1959 return (error); 1960 sv_name = p->p_sysent->sv_name; 1961 PROC_UNLOCK(p); 1962 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1963 } 1964 1965 #ifdef KINFO_OVMENTRY_SIZE 1966 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1967 #endif 1968 1969 #ifdef COMPAT_FREEBSD7 1970 static int 1971 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1972 { 1973 vm_map_entry_t entry, tmp_entry; 1974 unsigned int last_timestamp; 1975 char *fullpath, *freepath; 1976 struct kinfo_ovmentry *kve; 1977 struct vattr va; 1978 struct ucred *cred; 1979 int error, *name; 1980 struct vnode *vp; 1981 struct proc *p; 1982 vm_map_t map; 1983 struct vmspace *vm; 1984 1985 name = (int *)arg1; 1986 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1987 if (error != 0) 1988 return (error); 1989 vm = vmspace_acquire_ref(p); 1990 if (vm == NULL) { 1991 PRELE(p); 1992 return (ESRCH); 1993 } 1994 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1995 1996 map = &vm->vm_map; 1997 vm_map_lock_read(map); 1998 for (entry = map->header.next; entry != &map->header; 1999 entry = entry->next) { 2000 vm_object_t obj, tobj, lobj; 2001 vm_offset_t addr; 2002 2003 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2004 continue; 2005 2006 bzero(kve, sizeof(*kve)); 2007 kve->kve_structsize = sizeof(*kve); 2008 2009 kve->kve_private_resident = 0; 2010 obj = entry->object.vm_object; 2011 if (obj != NULL) { 2012 VM_OBJECT_RLOCK(obj); 2013 if (obj->shadow_count == 1) 2014 kve->kve_private_resident = 2015 obj->resident_page_count; 2016 } 2017 kve->kve_resident = 0; 2018 addr = entry->start; 2019 while (addr < entry->end) { 2020 if (pmap_extract(map->pmap, addr)) 2021 kve->kve_resident++; 2022 addr += PAGE_SIZE; 2023 } 2024 2025 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2026 if (tobj != obj) 2027 VM_OBJECT_RLOCK(tobj); 2028 if (lobj != obj) 2029 VM_OBJECT_RUNLOCK(lobj); 2030 lobj = tobj; 2031 } 2032 2033 kve->kve_start = (void*)entry->start; 2034 kve->kve_end = (void*)entry->end; 2035 kve->kve_offset = (off_t)entry->offset; 2036 2037 if (entry->protection & VM_PROT_READ) 2038 kve->kve_protection |= KVME_PROT_READ; 2039 if (entry->protection & VM_PROT_WRITE) 2040 kve->kve_protection |= KVME_PROT_WRITE; 2041 if (entry->protection & VM_PROT_EXECUTE) 2042 kve->kve_protection |= KVME_PROT_EXEC; 2043 2044 if (entry->eflags & MAP_ENTRY_COW) 2045 kve->kve_flags |= KVME_FLAG_COW; 2046 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2047 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2048 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2049 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2050 2051 last_timestamp = map->timestamp; 2052 vm_map_unlock_read(map); 2053 2054 kve->kve_fileid = 0; 2055 kve->kve_fsid = 0; 2056 freepath = NULL; 2057 fullpath = ""; 2058 if (lobj) { 2059 vp = NULL; 2060 switch (lobj->type) { 2061 case OBJT_DEFAULT: 2062 kve->kve_type = KVME_TYPE_DEFAULT; 2063 break; 2064 case OBJT_VNODE: 2065 kve->kve_type = KVME_TYPE_VNODE; 2066 vp = lobj->handle; 2067 vref(vp); 2068 break; 2069 case OBJT_SWAP: 2070 kve->kve_type = KVME_TYPE_SWAP; 2071 break; 2072 case OBJT_DEVICE: 2073 kve->kve_type = KVME_TYPE_DEVICE; 2074 break; 2075 case OBJT_PHYS: 2076 kve->kve_type = KVME_TYPE_PHYS; 2077 break; 2078 case OBJT_DEAD: 2079 kve->kve_type = KVME_TYPE_DEAD; 2080 break; 2081 case OBJT_SG: 2082 kve->kve_type = KVME_TYPE_SG; 2083 break; 2084 default: 2085 kve->kve_type = KVME_TYPE_UNKNOWN; 2086 break; 2087 } 2088 if (lobj != obj) 2089 VM_OBJECT_RUNLOCK(lobj); 2090 2091 kve->kve_ref_count = obj->ref_count; 2092 kve->kve_shadow_count = obj->shadow_count; 2093 VM_OBJECT_RUNLOCK(obj); 2094 if (vp != NULL) { 2095 vn_fullpath(curthread, vp, &fullpath, 2096 &freepath); 2097 cred = curthread->td_ucred; 2098 vn_lock(vp, LK_SHARED | LK_RETRY); 2099 if (VOP_GETATTR(vp, &va, cred) == 0) { 2100 kve->kve_fileid = va.va_fileid; 2101 kve->kve_fsid = va.va_fsid; 2102 } 2103 vput(vp); 2104 } 2105 } else { 2106 kve->kve_type = KVME_TYPE_NONE; 2107 kve->kve_ref_count = 0; 2108 kve->kve_shadow_count = 0; 2109 } 2110 2111 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2112 if (freepath != NULL) 2113 free(freepath, M_TEMP); 2114 2115 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2116 vm_map_lock_read(map); 2117 if (error) 2118 break; 2119 if (last_timestamp != map->timestamp) { 2120 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2121 entry = tmp_entry; 2122 } 2123 } 2124 vm_map_unlock_read(map); 2125 vmspace_free(vm); 2126 PRELE(p); 2127 free(kve, M_TEMP); 2128 return (error); 2129 } 2130 #endif /* COMPAT_FREEBSD7 */ 2131 2132 #ifdef KINFO_VMENTRY_SIZE 2133 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2134 #endif 2135 2136 static void 2137 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2138 struct kinfo_vmentry *kve) 2139 { 2140 vm_object_t obj, tobj; 2141 vm_page_t m, m_adv; 2142 vm_offset_t addr; 2143 vm_paddr_t locked_pa; 2144 vm_pindex_t pi, pi_adv, pindex; 2145 2146 locked_pa = 0; 2147 obj = entry->object.vm_object; 2148 addr = entry->start; 2149 m_adv = NULL; 2150 pi = OFF_TO_IDX(entry->offset); 2151 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2152 if (m_adv != NULL) { 2153 m = m_adv; 2154 } else { 2155 pi_adv = OFF_TO_IDX(entry->end - addr); 2156 pindex = pi; 2157 for (tobj = obj;; tobj = tobj->backing_object) { 2158 m = vm_page_find_least(tobj, pindex); 2159 if (m != NULL) { 2160 if (m->pindex == pindex) 2161 break; 2162 if (pi_adv > m->pindex - pindex) { 2163 pi_adv = m->pindex - pindex; 2164 m_adv = m; 2165 } 2166 } 2167 if (tobj->backing_object == NULL) 2168 goto next; 2169 pindex += OFF_TO_IDX(tobj-> 2170 backing_object_offset); 2171 } 2172 } 2173 m_adv = NULL; 2174 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2175 (addr & (pagesizes[1] - 1)) == 0 && 2176 (pmap_mincore(map->pmap, addr, &locked_pa) & 2177 MINCORE_SUPER) != 0) { 2178 kve->kve_flags |= KVME_FLAG_SUPER; 2179 pi_adv = OFF_TO_IDX(pagesizes[1]); 2180 } else { 2181 /* 2182 * We do not test the found page on validity. 2183 * Either the page is busy and being paged in, 2184 * or it was invalidated. The first case 2185 * should be counted as resident, the second 2186 * is not so clear; we do account both. 2187 */ 2188 pi_adv = 1; 2189 } 2190 kve->kve_resident += pi_adv; 2191 next:; 2192 } 2193 PA_UNLOCK_COND(locked_pa); 2194 } 2195 2196 /* 2197 * Must be called with the process locked and will return unlocked. 2198 */ 2199 int 2200 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2201 { 2202 vm_map_entry_t entry, tmp_entry; 2203 struct vattr va; 2204 vm_map_t map; 2205 vm_object_t obj, tobj, lobj; 2206 char *fullpath, *freepath; 2207 struct kinfo_vmentry *kve; 2208 struct ucred *cred; 2209 struct vnode *vp; 2210 struct vmspace *vm; 2211 vm_offset_t addr; 2212 unsigned int last_timestamp; 2213 int error; 2214 2215 PROC_LOCK_ASSERT(p, MA_OWNED); 2216 2217 _PHOLD(p); 2218 PROC_UNLOCK(p); 2219 vm = vmspace_acquire_ref(p); 2220 if (vm == NULL) { 2221 PRELE(p); 2222 return (ESRCH); 2223 } 2224 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2225 2226 error = 0; 2227 map = &vm->vm_map; 2228 vm_map_lock_read(map); 2229 for (entry = map->header.next; entry != &map->header; 2230 entry = entry->next) { 2231 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2232 continue; 2233 2234 addr = entry->end; 2235 bzero(kve, sizeof(*kve)); 2236 obj = entry->object.vm_object; 2237 if (obj != NULL) { 2238 for (tobj = obj; tobj != NULL; 2239 tobj = tobj->backing_object) { 2240 VM_OBJECT_RLOCK(tobj); 2241 lobj = tobj; 2242 } 2243 if (obj->backing_object == NULL) 2244 kve->kve_private_resident = 2245 obj->resident_page_count; 2246 if (!vmmap_skip_res_cnt) 2247 kern_proc_vmmap_resident(map, entry, kve); 2248 for (tobj = obj; tobj != NULL; 2249 tobj = tobj->backing_object) { 2250 if (tobj != obj && tobj != lobj) 2251 VM_OBJECT_RUNLOCK(tobj); 2252 } 2253 } else { 2254 lobj = NULL; 2255 } 2256 2257 kve->kve_start = entry->start; 2258 kve->kve_end = entry->end; 2259 kve->kve_offset = entry->offset; 2260 2261 if (entry->protection & VM_PROT_READ) 2262 kve->kve_protection |= KVME_PROT_READ; 2263 if (entry->protection & VM_PROT_WRITE) 2264 kve->kve_protection |= KVME_PROT_WRITE; 2265 if (entry->protection & VM_PROT_EXECUTE) 2266 kve->kve_protection |= KVME_PROT_EXEC; 2267 2268 if (entry->eflags & MAP_ENTRY_COW) 2269 kve->kve_flags |= KVME_FLAG_COW; 2270 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2271 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2272 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2273 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2274 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2275 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2276 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2277 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2278 2279 last_timestamp = map->timestamp; 2280 vm_map_unlock_read(map); 2281 2282 freepath = NULL; 2283 fullpath = ""; 2284 if (lobj != NULL) { 2285 vp = NULL; 2286 switch (lobj->type) { 2287 case OBJT_DEFAULT: 2288 kve->kve_type = KVME_TYPE_DEFAULT; 2289 break; 2290 case OBJT_VNODE: 2291 kve->kve_type = KVME_TYPE_VNODE; 2292 vp = lobj->handle; 2293 vref(vp); 2294 break; 2295 case OBJT_SWAP: 2296 kve->kve_type = KVME_TYPE_SWAP; 2297 break; 2298 case OBJT_DEVICE: 2299 kve->kve_type = KVME_TYPE_DEVICE; 2300 break; 2301 case OBJT_PHYS: 2302 kve->kve_type = KVME_TYPE_PHYS; 2303 break; 2304 case OBJT_DEAD: 2305 kve->kve_type = KVME_TYPE_DEAD; 2306 break; 2307 case OBJT_SG: 2308 kve->kve_type = KVME_TYPE_SG; 2309 break; 2310 case OBJT_MGTDEVICE: 2311 kve->kve_type = KVME_TYPE_MGTDEVICE; 2312 break; 2313 default: 2314 kve->kve_type = KVME_TYPE_UNKNOWN; 2315 break; 2316 } 2317 if (lobj != obj) 2318 VM_OBJECT_RUNLOCK(lobj); 2319 2320 kve->kve_ref_count = obj->ref_count; 2321 kve->kve_shadow_count = obj->shadow_count; 2322 VM_OBJECT_RUNLOCK(obj); 2323 if (vp != NULL) { 2324 vn_fullpath(curthread, vp, &fullpath, 2325 &freepath); 2326 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2327 cred = curthread->td_ucred; 2328 vn_lock(vp, LK_SHARED | LK_RETRY); 2329 if (VOP_GETATTR(vp, &va, cred) == 0) { 2330 kve->kve_vn_fileid = va.va_fileid; 2331 kve->kve_vn_fsid = va.va_fsid; 2332 kve->kve_vn_mode = 2333 MAKEIMODE(va.va_type, va.va_mode); 2334 kve->kve_vn_size = va.va_size; 2335 kve->kve_vn_rdev = va.va_rdev; 2336 kve->kve_status = KF_ATTR_VALID; 2337 } 2338 vput(vp); 2339 } 2340 } else { 2341 kve->kve_type = KVME_TYPE_NONE; 2342 kve->kve_ref_count = 0; 2343 kve->kve_shadow_count = 0; 2344 } 2345 2346 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2347 if (freepath != NULL) 2348 free(freepath, M_TEMP); 2349 2350 /* Pack record size down */ 2351 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2352 strlen(kve->kve_path) + 1; 2353 kve->kve_structsize = roundup(kve->kve_structsize, 2354 sizeof(uint64_t)); 2355 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2356 vm_map_lock_read(map); 2357 if (error) 2358 break; 2359 if (last_timestamp != map->timestamp) { 2360 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2361 entry = tmp_entry; 2362 } 2363 } 2364 vm_map_unlock_read(map); 2365 vmspace_free(vm); 2366 PRELE(p); 2367 free(kve, M_TEMP); 2368 return (error); 2369 } 2370 2371 static int 2372 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2373 { 2374 struct proc *p; 2375 struct sbuf sb; 2376 int error, error2, *name; 2377 2378 name = (int *)arg1; 2379 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2380 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2381 if (error != 0) { 2382 sbuf_delete(&sb); 2383 return (error); 2384 } 2385 error = kern_proc_vmmap_out(p, &sb); 2386 error2 = sbuf_finish(&sb); 2387 sbuf_delete(&sb); 2388 return (error != 0 ? error : error2); 2389 } 2390 2391 #if defined(STACK) || defined(DDB) 2392 static int 2393 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2394 { 2395 struct kinfo_kstack *kkstp; 2396 int error, i, *name, numthreads; 2397 lwpid_t *lwpidarray; 2398 struct thread *td; 2399 struct stack *st; 2400 struct sbuf sb; 2401 struct proc *p; 2402 2403 name = (int *)arg1; 2404 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2405 if (error != 0) 2406 return (error); 2407 2408 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2409 st = stack_create(); 2410 2411 lwpidarray = NULL; 2412 numthreads = 0; 2413 PROC_LOCK(p); 2414 repeat: 2415 if (numthreads < p->p_numthreads) { 2416 if (lwpidarray != NULL) { 2417 free(lwpidarray, M_TEMP); 2418 lwpidarray = NULL; 2419 } 2420 numthreads = p->p_numthreads; 2421 PROC_UNLOCK(p); 2422 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2423 M_WAITOK | M_ZERO); 2424 PROC_LOCK(p); 2425 goto repeat; 2426 } 2427 i = 0; 2428 2429 /* 2430 * XXXRW: During the below loop, execve(2) and countless other sorts 2431 * of changes could have taken place. Should we check to see if the 2432 * vmspace has been replaced, or the like, in order to prevent 2433 * giving a snapshot that spans, say, execve(2), with some threads 2434 * before and some after? Among other things, the credentials could 2435 * have changed, in which case the right to extract debug info might 2436 * no longer be assured. 2437 */ 2438 FOREACH_THREAD_IN_PROC(p, td) { 2439 KASSERT(i < numthreads, 2440 ("sysctl_kern_proc_kstack: numthreads")); 2441 lwpidarray[i] = td->td_tid; 2442 i++; 2443 } 2444 numthreads = i; 2445 for (i = 0; i < numthreads; i++) { 2446 td = thread_find(p, lwpidarray[i]); 2447 if (td == NULL) { 2448 continue; 2449 } 2450 bzero(kkstp, sizeof(*kkstp)); 2451 (void)sbuf_new(&sb, kkstp->kkst_trace, 2452 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2453 thread_lock(td); 2454 kkstp->kkst_tid = td->td_tid; 2455 if (TD_IS_SWAPPED(td)) 2456 kkstp->kkst_state = KKST_STATE_SWAPPED; 2457 else if (TD_IS_RUNNING(td)) 2458 kkstp->kkst_state = KKST_STATE_RUNNING; 2459 else { 2460 kkstp->kkst_state = KKST_STATE_STACKOK; 2461 stack_save_td(st, td); 2462 } 2463 thread_unlock(td); 2464 PROC_UNLOCK(p); 2465 stack_sbuf_print(&sb, st); 2466 sbuf_finish(&sb); 2467 sbuf_delete(&sb); 2468 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2469 PROC_LOCK(p); 2470 if (error) 2471 break; 2472 } 2473 _PRELE(p); 2474 PROC_UNLOCK(p); 2475 if (lwpidarray != NULL) 2476 free(lwpidarray, M_TEMP); 2477 stack_destroy(st); 2478 free(kkstp, M_TEMP); 2479 return (error); 2480 } 2481 #endif 2482 2483 /* 2484 * This sysctl allows a process to retrieve the full list of groups from 2485 * itself or another process. 2486 */ 2487 static int 2488 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2489 { 2490 pid_t *pidp = (pid_t *)arg1; 2491 unsigned int arglen = arg2; 2492 struct proc *p; 2493 struct ucred *cred; 2494 int error; 2495 2496 if (arglen != 1) 2497 return (EINVAL); 2498 if (*pidp == -1) { /* -1 means this process */ 2499 p = req->td->td_proc; 2500 } else { 2501 error = pget(*pidp, PGET_CANSEE, &p); 2502 if (error != 0) 2503 return (error); 2504 } 2505 2506 cred = crhold(p->p_ucred); 2507 if (*pidp != -1) 2508 PROC_UNLOCK(p); 2509 2510 error = SYSCTL_OUT(req, cred->cr_groups, 2511 cred->cr_ngroups * sizeof(gid_t)); 2512 crfree(cred); 2513 return (error); 2514 } 2515 2516 /* 2517 * This sysctl allows a process to retrieve or/and set the resource limit for 2518 * another process. 2519 */ 2520 static int 2521 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2522 { 2523 int *name = (int *)arg1; 2524 u_int namelen = arg2; 2525 struct rlimit rlim; 2526 struct proc *p; 2527 u_int which; 2528 int flags, error; 2529 2530 if (namelen != 2) 2531 return (EINVAL); 2532 2533 which = (u_int)name[1]; 2534 if (which >= RLIM_NLIMITS) 2535 return (EINVAL); 2536 2537 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2538 return (EINVAL); 2539 2540 flags = PGET_HOLD | PGET_NOTWEXIT; 2541 if (req->newptr != NULL) 2542 flags |= PGET_CANDEBUG; 2543 else 2544 flags |= PGET_CANSEE; 2545 error = pget((pid_t)name[0], flags, &p); 2546 if (error != 0) 2547 return (error); 2548 2549 /* 2550 * Retrieve limit. 2551 */ 2552 if (req->oldptr != NULL) { 2553 PROC_LOCK(p); 2554 lim_rlimit(p, which, &rlim); 2555 PROC_UNLOCK(p); 2556 } 2557 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2558 if (error != 0) 2559 goto errout; 2560 2561 /* 2562 * Set limit. 2563 */ 2564 if (req->newptr != NULL) { 2565 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2566 if (error == 0) 2567 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2568 } 2569 2570 errout: 2571 PRELE(p); 2572 return (error); 2573 } 2574 2575 /* 2576 * This sysctl allows a process to retrieve ps_strings structure location of 2577 * another process. 2578 */ 2579 static int 2580 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2581 { 2582 int *name = (int *)arg1; 2583 u_int namelen = arg2; 2584 struct proc *p; 2585 vm_offset_t ps_strings; 2586 int error; 2587 #ifdef COMPAT_FREEBSD32 2588 uint32_t ps_strings32; 2589 #endif 2590 2591 if (namelen != 1) 2592 return (EINVAL); 2593 2594 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2595 if (error != 0) 2596 return (error); 2597 #ifdef COMPAT_FREEBSD32 2598 if ((req->flags & SCTL_MASK32) != 0) { 2599 /* 2600 * We return 0 if the 32 bit emulation request is for a 64 bit 2601 * process. 2602 */ 2603 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2604 PTROUT(p->p_sysent->sv_psstrings) : 0; 2605 PROC_UNLOCK(p); 2606 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2607 return (error); 2608 } 2609 #endif 2610 ps_strings = p->p_sysent->sv_psstrings; 2611 PROC_UNLOCK(p); 2612 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2613 return (error); 2614 } 2615 2616 /* 2617 * This sysctl allows a process to retrieve umask of another process. 2618 */ 2619 static int 2620 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2621 { 2622 int *name = (int *)arg1; 2623 u_int namelen = arg2; 2624 struct proc *p; 2625 int error; 2626 u_short fd_cmask; 2627 2628 if (namelen != 1) 2629 return (EINVAL); 2630 2631 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2632 if (error != 0) 2633 return (error); 2634 2635 FILEDESC_SLOCK(p->p_fd); 2636 fd_cmask = p->p_fd->fd_cmask; 2637 FILEDESC_SUNLOCK(p->p_fd); 2638 PRELE(p); 2639 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2640 return (error); 2641 } 2642 2643 /* 2644 * This sysctl allows a process to set and retrieve binary osreldate of 2645 * another process. 2646 */ 2647 static int 2648 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2649 { 2650 int *name = (int *)arg1; 2651 u_int namelen = arg2; 2652 struct proc *p; 2653 int flags, error, osrel; 2654 2655 if (namelen != 1) 2656 return (EINVAL); 2657 2658 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2659 return (EINVAL); 2660 2661 flags = PGET_HOLD | PGET_NOTWEXIT; 2662 if (req->newptr != NULL) 2663 flags |= PGET_CANDEBUG; 2664 else 2665 flags |= PGET_CANSEE; 2666 error = pget((pid_t)name[0], flags, &p); 2667 if (error != 0) 2668 return (error); 2669 2670 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2671 if (error != 0) 2672 goto errout; 2673 2674 if (req->newptr != NULL) { 2675 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2676 if (error != 0) 2677 goto errout; 2678 if (osrel < 0) { 2679 error = EINVAL; 2680 goto errout; 2681 } 2682 p->p_osrel = osrel; 2683 } 2684 errout: 2685 PRELE(p); 2686 return (error); 2687 } 2688 2689 static int 2690 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2691 { 2692 int *name = (int *)arg1; 2693 u_int namelen = arg2; 2694 struct proc *p; 2695 struct kinfo_sigtramp kst; 2696 const struct sysentvec *sv; 2697 int error; 2698 #ifdef COMPAT_FREEBSD32 2699 struct kinfo_sigtramp32 kst32; 2700 #endif 2701 2702 if (namelen != 1) 2703 return (EINVAL); 2704 2705 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2706 if (error != 0) 2707 return (error); 2708 sv = p->p_sysent; 2709 #ifdef COMPAT_FREEBSD32 2710 if ((req->flags & SCTL_MASK32) != 0) { 2711 bzero(&kst32, sizeof(kst32)); 2712 if (SV_PROC_FLAG(p, SV_ILP32)) { 2713 if (sv->sv_sigcode_base != 0) { 2714 kst32.ksigtramp_start = sv->sv_sigcode_base; 2715 kst32.ksigtramp_end = sv->sv_sigcode_base + 2716 *sv->sv_szsigcode; 2717 } else { 2718 kst32.ksigtramp_start = sv->sv_psstrings - 2719 *sv->sv_szsigcode; 2720 kst32.ksigtramp_end = sv->sv_psstrings; 2721 } 2722 } 2723 PROC_UNLOCK(p); 2724 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2725 return (error); 2726 } 2727 #endif 2728 bzero(&kst, sizeof(kst)); 2729 if (sv->sv_sigcode_base != 0) { 2730 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2731 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2732 *sv->sv_szsigcode; 2733 } else { 2734 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2735 *sv->sv_szsigcode; 2736 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2737 } 2738 PROC_UNLOCK(p); 2739 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2740 return (error); 2741 } 2742 2743 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2744 2745 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2746 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2747 "Return entire process table"); 2748 2749 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2750 sysctl_kern_proc, "Process table"); 2751 2752 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2753 sysctl_kern_proc, "Process table"); 2754 2755 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2756 sysctl_kern_proc, "Process table"); 2757 2758 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2759 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2760 2761 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2762 sysctl_kern_proc, "Process table"); 2763 2764 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2765 sysctl_kern_proc, "Process table"); 2766 2767 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2768 sysctl_kern_proc, "Process table"); 2769 2770 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2771 sysctl_kern_proc, "Process table"); 2772 2773 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2774 sysctl_kern_proc, "Return process table, no threads"); 2775 2776 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2777 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2778 sysctl_kern_proc_args, "Process argument list"); 2779 2780 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2781 sysctl_kern_proc_env, "Process environment"); 2782 2783 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2784 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2785 2786 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2787 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2788 2789 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2790 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2791 "Process syscall vector name (ABI type)"); 2792 2793 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2794 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2795 2796 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2797 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2798 2799 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2800 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2801 2802 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2803 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2804 2805 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2806 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2807 2808 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2809 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2810 2811 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2812 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2813 2814 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2815 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2816 2817 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2818 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2819 "Return process table, no threads"); 2820 2821 #ifdef COMPAT_FREEBSD7 2822 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2823 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2824 #endif 2825 2826 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2827 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2828 2829 #if defined(STACK) || defined(DDB) 2830 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2831 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2832 #endif 2833 2834 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2835 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2836 2837 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2838 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2839 "Process resource limits"); 2840 2841 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2842 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2843 "Process ps_strings location"); 2844 2845 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2846 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2847 2848 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2849 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2850 "Process binary osreldate"); 2851 2852 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2853 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2854 "Process signal trampoline location"); 2855