1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit() 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 197 EVENTHANDLER_INVOKE(process_ctor, p); 198 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 199 return (0); 200 } 201 202 /* 203 * Reclaim a proc after use. 204 */ 205 static void 206 proc_dtor(void *mem, int size, void *arg) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 /* INVARIANTS checks go here */ 212 p = (struct proc *)mem; 213 td = FIRST_THREAD_IN_PROC(p); 214 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 215 if (td != NULL) { 216 #ifdef INVARIANTS 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in exiting process")); 219 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 220 #endif 221 /* Free all OSD associated to this thread. */ 222 osd_thread_exit(td); 223 } 224 EVENTHANDLER_INVOKE(process_dtor, p); 225 if (p->p_ksi != NULL) 226 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 227 SDT_PROBE3(proc, , dtor, return, p, size, arg); 228 } 229 230 /* 231 * Initialize type-stable parts of a proc (when newly created). 232 */ 233 static int 234 proc_init(void *mem, int size, int flags) 235 { 236 struct proc *p; 237 238 p = (struct proc *)mem; 239 SDT_PROBE3(proc, , init, entry, p, size, flags); 240 p->p_sched = (struct p_sched *)&p[1]; 241 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 242 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 243 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 244 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 245 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 246 cv_init(&p->p_pwait, "ppwait"); 247 cv_init(&p->p_dbgwait, "dbgwait"); 248 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 249 EVENTHANDLER_INVOKE(process_init, p); 250 p->p_stats = pstats_alloc(); 251 p->p_pgrp = NULL; 252 SDT_PROBE3(proc, , init, return, p, size, flags); 253 return (0); 254 } 255 256 /* 257 * UMA should ensure that this function is never called. 258 * Freeing a proc structure would violate type stability. 259 */ 260 static void 261 proc_fini(void *mem, int size) 262 { 263 #ifdef notnow 264 struct proc *p; 265 266 p = (struct proc *)mem; 267 EVENTHANDLER_INVOKE(process_fini, p); 268 pstats_free(p->p_stats); 269 thread_free(FIRST_THREAD_IN_PROC(p)); 270 mtx_destroy(&p->p_mtx); 271 if (p->p_ksi != NULL) 272 ksiginfo_free(p->p_ksi); 273 #else 274 panic("proc reclaimed"); 275 #endif 276 } 277 278 /* 279 * Is p an inferior of the current process? 280 */ 281 int 282 inferior(struct proc *p) 283 { 284 285 sx_assert(&proctree_lock, SX_LOCKED); 286 PROC_LOCK_ASSERT(p, MA_OWNED); 287 for (; p != curproc; p = proc_realparent(p)) { 288 if (p->p_pid == 0) 289 return (0); 290 } 291 return (1); 292 } 293 294 struct proc * 295 pfind_locked(pid_t pid) 296 { 297 struct proc *p; 298 299 sx_assert(&allproc_lock, SX_LOCKED); 300 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 301 if (p->p_pid == pid) { 302 PROC_LOCK(p); 303 if (p->p_state == PRS_NEW) { 304 PROC_UNLOCK(p); 305 p = NULL; 306 } 307 break; 308 } 309 } 310 return (p); 311 } 312 313 /* 314 * Locate a process by number; return only "live" processes -- i.e., neither 315 * zombies nor newly born but incompletely initialized processes. By not 316 * returning processes in the PRS_NEW state, we allow callers to avoid 317 * testing for that condition to avoid dereferencing p_ucred, et al. 318 */ 319 struct proc * 320 pfind(pid_t pid) 321 { 322 struct proc *p; 323 324 sx_slock(&allproc_lock); 325 p = pfind_locked(pid); 326 sx_sunlock(&allproc_lock); 327 return (p); 328 } 329 330 static struct proc * 331 pfind_tid_locked(pid_t tid) 332 { 333 struct proc *p; 334 struct thread *td; 335 336 sx_assert(&allproc_lock, SX_LOCKED); 337 FOREACH_PROC_IN_SYSTEM(p) { 338 PROC_LOCK(p); 339 if (p->p_state == PRS_NEW) { 340 PROC_UNLOCK(p); 341 continue; 342 } 343 FOREACH_THREAD_IN_PROC(p, td) { 344 if (td->td_tid == tid) 345 goto found; 346 } 347 PROC_UNLOCK(p); 348 } 349 found: 350 return (p); 351 } 352 353 /* 354 * Locate a process group by number. 355 * The caller must hold proctree_lock. 356 */ 357 struct pgrp * 358 pgfind(pgid) 359 register pid_t pgid; 360 { 361 register struct pgrp *pgrp; 362 363 sx_assert(&proctree_lock, SX_LOCKED); 364 365 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 366 if (pgrp->pg_id == pgid) { 367 PGRP_LOCK(pgrp); 368 return (pgrp); 369 } 370 } 371 return (NULL); 372 } 373 374 /* 375 * Locate process and do additional manipulations, depending on flags. 376 */ 377 int 378 pget(pid_t pid, int flags, struct proc **pp) 379 { 380 struct proc *p; 381 int error; 382 383 sx_slock(&allproc_lock); 384 if (pid <= PID_MAX) { 385 p = pfind_locked(pid); 386 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 387 p = zpfind_locked(pid); 388 } else if ((flags & PGET_NOTID) == 0) { 389 p = pfind_tid_locked(pid); 390 } else { 391 p = NULL; 392 } 393 sx_sunlock(&allproc_lock); 394 if (p == NULL) 395 return (ESRCH); 396 if ((flags & PGET_CANSEE) != 0) { 397 error = p_cansee(curthread, p); 398 if (error != 0) 399 goto errout; 400 } 401 if ((flags & PGET_CANDEBUG) != 0) { 402 error = p_candebug(curthread, p); 403 if (error != 0) 404 goto errout; 405 } 406 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 407 error = EPERM; 408 goto errout; 409 } 410 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 411 error = ESRCH; 412 goto errout; 413 } 414 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 415 /* 416 * XXXRW: Not clear ESRCH is the right error during proc 417 * execve(). 418 */ 419 error = ESRCH; 420 goto errout; 421 } 422 if ((flags & PGET_HOLD) != 0) { 423 _PHOLD(p); 424 PROC_UNLOCK(p); 425 } 426 *pp = p; 427 return (0); 428 errout: 429 PROC_UNLOCK(p); 430 return (error); 431 } 432 433 /* 434 * Create a new process group. 435 * pgid must be equal to the pid of p. 436 * Begin a new session if required. 437 */ 438 int 439 enterpgrp(p, pgid, pgrp, sess) 440 register struct proc *p; 441 pid_t pgid; 442 struct pgrp *pgrp; 443 struct session *sess; 444 { 445 446 sx_assert(&proctree_lock, SX_XLOCKED); 447 448 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 449 KASSERT(p->p_pid == pgid, 450 ("enterpgrp: new pgrp and pid != pgid")); 451 KASSERT(pgfind(pgid) == NULL, 452 ("enterpgrp: pgrp with pgid exists")); 453 KASSERT(!SESS_LEADER(p), 454 ("enterpgrp: session leader attempted setpgrp")); 455 456 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 457 458 if (sess != NULL) { 459 /* 460 * new session 461 */ 462 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 463 PROC_LOCK(p); 464 p->p_flag &= ~P_CONTROLT; 465 PROC_UNLOCK(p); 466 PGRP_LOCK(pgrp); 467 sess->s_leader = p; 468 sess->s_sid = p->p_pid; 469 refcount_init(&sess->s_count, 1); 470 sess->s_ttyvp = NULL; 471 sess->s_ttydp = NULL; 472 sess->s_ttyp = NULL; 473 bcopy(p->p_session->s_login, sess->s_login, 474 sizeof(sess->s_login)); 475 pgrp->pg_session = sess; 476 KASSERT(p == curproc, 477 ("enterpgrp: mksession and p != curproc")); 478 } else { 479 pgrp->pg_session = p->p_session; 480 sess_hold(pgrp->pg_session); 481 PGRP_LOCK(pgrp); 482 } 483 pgrp->pg_id = pgid; 484 LIST_INIT(&pgrp->pg_members); 485 486 /* 487 * As we have an exclusive lock of proctree_lock, 488 * this should not deadlock. 489 */ 490 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 491 pgrp->pg_jobc = 0; 492 SLIST_INIT(&pgrp->pg_sigiolst); 493 PGRP_UNLOCK(pgrp); 494 495 doenterpgrp(p, pgrp); 496 497 return (0); 498 } 499 500 /* 501 * Move p to an existing process group 502 */ 503 int 504 enterthispgrp(p, pgrp) 505 register struct proc *p; 506 struct pgrp *pgrp; 507 { 508 509 sx_assert(&proctree_lock, SX_XLOCKED); 510 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 511 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 512 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 513 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 514 KASSERT(pgrp->pg_session == p->p_session, 515 ("%s: pgrp's session %p, p->p_session %p.\n", 516 __func__, 517 pgrp->pg_session, 518 p->p_session)); 519 KASSERT(pgrp != p->p_pgrp, 520 ("%s: p belongs to pgrp.", __func__)); 521 522 doenterpgrp(p, pgrp); 523 524 return (0); 525 } 526 527 /* 528 * Move p to a process group 529 */ 530 static void 531 doenterpgrp(p, pgrp) 532 struct proc *p; 533 struct pgrp *pgrp; 534 { 535 struct pgrp *savepgrp; 536 537 sx_assert(&proctree_lock, SX_XLOCKED); 538 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 539 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 540 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 541 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 542 543 savepgrp = p->p_pgrp; 544 545 /* 546 * Adjust eligibility of affected pgrps to participate in job control. 547 * Increment eligibility counts before decrementing, otherwise we 548 * could reach 0 spuriously during the first call. 549 */ 550 fixjobc(p, pgrp, 1); 551 fixjobc(p, p->p_pgrp, 0); 552 553 PGRP_LOCK(pgrp); 554 PGRP_LOCK(savepgrp); 555 PROC_LOCK(p); 556 LIST_REMOVE(p, p_pglist); 557 p->p_pgrp = pgrp; 558 PROC_UNLOCK(p); 559 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 560 PGRP_UNLOCK(savepgrp); 561 PGRP_UNLOCK(pgrp); 562 if (LIST_EMPTY(&savepgrp->pg_members)) 563 pgdelete(savepgrp); 564 } 565 566 /* 567 * remove process from process group 568 */ 569 int 570 leavepgrp(p) 571 register struct proc *p; 572 { 573 struct pgrp *savepgrp; 574 575 sx_assert(&proctree_lock, SX_XLOCKED); 576 savepgrp = p->p_pgrp; 577 PGRP_LOCK(savepgrp); 578 PROC_LOCK(p); 579 LIST_REMOVE(p, p_pglist); 580 p->p_pgrp = NULL; 581 PROC_UNLOCK(p); 582 PGRP_UNLOCK(savepgrp); 583 if (LIST_EMPTY(&savepgrp->pg_members)) 584 pgdelete(savepgrp); 585 return (0); 586 } 587 588 /* 589 * delete a process group 590 */ 591 static void 592 pgdelete(pgrp) 593 register struct pgrp *pgrp; 594 { 595 struct session *savesess; 596 struct tty *tp; 597 598 sx_assert(&proctree_lock, SX_XLOCKED); 599 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 600 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 601 602 /* 603 * Reset any sigio structures pointing to us as a result of 604 * F_SETOWN with our pgid. 605 */ 606 funsetownlst(&pgrp->pg_sigiolst); 607 608 PGRP_LOCK(pgrp); 609 tp = pgrp->pg_session->s_ttyp; 610 LIST_REMOVE(pgrp, pg_hash); 611 savesess = pgrp->pg_session; 612 PGRP_UNLOCK(pgrp); 613 614 /* Remove the reference to the pgrp before deallocating it. */ 615 if (tp != NULL) { 616 tty_lock(tp); 617 tty_rel_pgrp(tp, pgrp); 618 } 619 620 mtx_destroy(&pgrp->pg_mtx); 621 free(pgrp, M_PGRP); 622 sess_release(savesess); 623 } 624 625 static void 626 pgadjustjobc(pgrp, entering) 627 struct pgrp *pgrp; 628 int entering; 629 { 630 631 PGRP_LOCK(pgrp); 632 if (entering) 633 pgrp->pg_jobc++; 634 else { 635 --pgrp->pg_jobc; 636 if (pgrp->pg_jobc == 0) 637 orphanpg(pgrp); 638 } 639 PGRP_UNLOCK(pgrp); 640 } 641 642 /* 643 * Adjust pgrp jobc counters when specified process changes process group. 644 * We count the number of processes in each process group that "qualify" 645 * the group for terminal job control (those with a parent in a different 646 * process group of the same session). If that count reaches zero, the 647 * process group becomes orphaned. Check both the specified process' 648 * process group and that of its children. 649 * entering == 0 => p is leaving specified group. 650 * entering == 1 => p is entering specified group. 651 */ 652 void 653 fixjobc(p, pgrp, entering) 654 register struct proc *p; 655 register struct pgrp *pgrp; 656 int entering; 657 { 658 register struct pgrp *hispgrp; 659 register struct session *mysession; 660 661 sx_assert(&proctree_lock, SX_LOCKED); 662 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 663 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 664 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 665 666 /* 667 * Check p's parent to see whether p qualifies its own process 668 * group; if so, adjust count for p's process group. 669 */ 670 mysession = pgrp->pg_session; 671 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 672 hispgrp->pg_session == mysession) 673 pgadjustjobc(pgrp, entering); 674 675 /* 676 * Check this process' children to see whether they qualify 677 * their process groups; if so, adjust counts for children's 678 * process groups. 679 */ 680 LIST_FOREACH(p, &p->p_children, p_sibling) { 681 hispgrp = p->p_pgrp; 682 if (hispgrp == pgrp || 683 hispgrp->pg_session != mysession) 684 continue; 685 PROC_LOCK(p); 686 if (p->p_state == PRS_ZOMBIE) { 687 PROC_UNLOCK(p); 688 continue; 689 } 690 PROC_UNLOCK(p); 691 pgadjustjobc(hispgrp, entering); 692 } 693 } 694 695 /* 696 * A process group has become orphaned; 697 * if there are any stopped processes in the group, 698 * hang-up all process in that group. 699 */ 700 static void 701 orphanpg(pg) 702 struct pgrp *pg; 703 { 704 register struct proc *p; 705 706 PGRP_LOCK_ASSERT(pg, MA_OWNED); 707 708 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 709 PROC_LOCK(p); 710 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 711 PROC_UNLOCK(p); 712 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 713 PROC_LOCK(p); 714 kern_psignal(p, SIGHUP); 715 kern_psignal(p, SIGCONT); 716 PROC_UNLOCK(p); 717 } 718 return; 719 } 720 PROC_UNLOCK(p); 721 } 722 } 723 724 void 725 sess_hold(struct session *s) 726 { 727 728 refcount_acquire(&s->s_count); 729 } 730 731 void 732 sess_release(struct session *s) 733 { 734 735 if (refcount_release(&s->s_count)) { 736 if (s->s_ttyp != NULL) { 737 tty_lock(s->s_ttyp); 738 tty_rel_sess(s->s_ttyp, s); 739 } 740 mtx_destroy(&s->s_mtx); 741 free(s, M_SESSION); 742 } 743 } 744 745 #ifdef DDB 746 747 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 748 { 749 register struct pgrp *pgrp; 750 register struct proc *p; 751 register int i; 752 753 for (i = 0; i <= pgrphash; i++) { 754 if (!LIST_EMPTY(&pgrphashtbl[i])) { 755 printf("\tindx %d\n", i); 756 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 757 printf( 758 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 759 (void *)pgrp, (long)pgrp->pg_id, 760 (void *)pgrp->pg_session, 761 pgrp->pg_session->s_count, 762 (void *)LIST_FIRST(&pgrp->pg_members)); 763 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 764 printf("\t\tpid %ld addr %p pgrp %p\n", 765 (long)p->p_pid, (void *)p, 766 (void *)p->p_pgrp); 767 } 768 } 769 } 770 } 771 } 772 #endif /* DDB */ 773 774 /* 775 * Calculate the kinfo_proc members which contain process-wide 776 * informations. 777 * Must be called with the target process locked. 778 */ 779 static void 780 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 781 { 782 struct thread *td; 783 784 PROC_LOCK_ASSERT(p, MA_OWNED); 785 786 kp->ki_estcpu = 0; 787 kp->ki_pctcpu = 0; 788 FOREACH_THREAD_IN_PROC(p, td) { 789 thread_lock(td); 790 kp->ki_pctcpu += sched_pctcpu(td); 791 kp->ki_estcpu += td->td_estcpu; 792 thread_unlock(td); 793 } 794 } 795 796 /* 797 * Clear kinfo_proc and fill in any information that is common 798 * to all threads in the process. 799 * Must be called with the target process locked. 800 */ 801 static void 802 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 803 { 804 struct thread *td0; 805 struct tty *tp; 806 struct session *sp; 807 struct ucred *cred; 808 struct sigacts *ps; 809 810 /* For proc_realparent. */ 811 sx_assert(&proctree_lock, SX_LOCKED); 812 PROC_LOCK_ASSERT(p, MA_OWNED); 813 bzero(kp, sizeof(*kp)); 814 815 kp->ki_structsize = sizeof(*kp); 816 kp->ki_paddr = p; 817 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 818 kp->ki_args = p->p_args; 819 kp->ki_textvp = p->p_textvp; 820 #ifdef KTRACE 821 kp->ki_tracep = p->p_tracevp; 822 kp->ki_traceflag = p->p_traceflag; 823 #endif 824 kp->ki_fd = p->p_fd; 825 kp->ki_vmspace = p->p_vmspace; 826 kp->ki_flag = p->p_flag; 827 kp->ki_flag2 = p->p_flag2; 828 cred = p->p_ucred; 829 if (cred) { 830 kp->ki_uid = cred->cr_uid; 831 kp->ki_ruid = cred->cr_ruid; 832 kp->ki_svuid = cred->cr_svuid; 833 kp->ki_cr_flags = 0; 834 if (cred->cr_flags & CRED_FLAG_CAPMODE) 835 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 836 /* XXX bde doesn't like KI_NGROUPS */ 837 if (cred->cr_ngroups > KI_NGROUPS) { 838 kp->ki_ngroups = KI_NGROUPS; 839 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 840 } else 841 kp->ki_ngroups = cred->cr_ngroups; 842 bcopy(cred->cr_groups, kp->ki_groups, 843 kp->ki_ngroups * sizeof(gid_t)); 844 kp->ki_rgid = cred->cr_rgid; 845 kp->ki_svgid = cred->cr_svgid; 846 /* If jailed(cred), emulate the old P_JAILED flag. */ 847 if (jailed(cred)) { 848 kp->ki_flag |= P_JAILED; 849 /* If inside the jail, use 0 as a jail ID. */ 850 if (cred->cr_prison != curthread->td_ucred->cr_prison) 851 kp->ki_jid = cred->cr_prison->pr_id; 852 } 853 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 854 sizeof(kp->ki_loginclass)); 855 } 856 ps = p->p_sigacts; 857 if (ps) { 858 mtx_lock(&ps->ps_mtx); 859 kp->ki_sigignore = ps->ps_sigignore; 860 kp->ki_sigcatch = ps->ps_sigcatch; 861 mtx_unlock(&ps->ps_mtx); 862 } 863 if (p->p_state != PRS_NEW && 864 p->p_state != PRS_ZOMBIE && 865 p->p_vmspace != NULL) { 866 struct vmspace *vm = p->p_vmspace; 867 868 kp->ki_size = vm->vm_map.size; 869 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 870 FOREACH_THREAD_IN_PROC(p, td0) { 871 if (!TD_IS_SWAPPED(td0)) 872 kp->ki_rssize += td0->td_kstack_pages; 873 } 874 kp->ki_swrss = vm->vm_swrss; 875 kp->ki_tsize = vm->vm_tsize; 876 kp->ki_dsize = vm->vm_dsize; 877 kp->ki_ssize = vm->vm_ssize; 878 } else if (p->p_state == PRS_ZOMBIE) 879 kp->ki_stat = SZOMB; 880 if (kp->ki_flag & P_INMEM) 881 kp->ki_sflag = PS_INMEM; 882 else 883 kp->ki_sflag = 0; 884 /* Calculate legacy swtime as seconds since 'swtick'. */ 885 kp->ki_swtime = (ticks - p->p_swtick) / hz; 886 kp->ki_pid = p->p_pid; 887 kp->ki_nice = p->p_nice; 888 kp->ki_fibnum = p->p_fibnum; 889 kp->ki_start = p->p_stats->p_start; 890 timevaladd(&kp->ki_start, &boottime); 891 PROC_STATLOCK(p); 892 rufetch(p, &kp->ki_rusage); 893 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 894 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 895 PROC_STATUNLOCK(p); 896 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 897 /* Some callers want child times in a single value. */ 898 kp->ki_childtime = kp->ki_childstime; 899 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 900 901 FOREACH_THREAD_IN_PROC(p, td0) 902 kp->ki_cow += td0->td_cow; 903 904 tp = NULL; 905 if (p->p_pgrp) { 906 kp->ki_pgid = p->p_pgrp->pg_id; 907 kp->ki_jobc = p->p_pgrp->pg_jobc; 908 sp = p->p_pgrp->pg_session; 909 910 if (sp != NULL) { 911 kp->ki_sid = sp->s_sid; 912 SESS_LOCK(sp); 913 strlcpy(kp->ki_login, sp->s_login, 914 sizeof(kp->ki_login)); 915 if (sp->s_ttyvp) 916 kp->ki_kiflag |= KI_CTTY; 917 if (SESS_LEADER(p)) 918 kp->ki_kiflag |= KI_SLEADER; 919 /* XXX proctree_lock */ 920 tp = sp->s_ttyp; 921 SESS_UNLOCK(sp); 922 } 923 } 924 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 925 kp->ki_tdev = tty_udev(tp); 926 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 927 if (tp->t_session) 928 kp->ki_tsid = tp->t_session->s_sid; 929 } else 930 kp->ki_tdev = NODEV; 931 if (p->p_comm[0] != '\0') 932 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 933 if (p->p_sysent && p->p_sysent->sv_name != NULL && 934 p->p_sysent->sv_name[0] != '\0') 935 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 936 kp->ki_siglist = p->p_siglist; 937 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 938 kp->ki_acflag = p->p_acflag; 939 kp->ki_lock = p->p_lock; 940 if (p->p_pptr) { 941 kp->ki_ppid = proc_realparent(p)->p_pid; 942 if (p->p_flag & P_TRACED) 943 kp->ki_tracer = p->p_pptr->p_pid; 944 } 945 } 946 947 /* 948 * Fill in information that is thread specific. Must be called with 949 * target process locked. If 'preferthread' is set, overwrite certain 950 * process-related fields that are maintained for both threads and 951 * processes. 952 */ 953 static void 954 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 955 { 956 struct proc *p; 957 958 p = td->td_proc; 959 kp->ki_tdaddr = td; 960 PROC_LOCK_ASSERT(p, MA_OWNED); 961 962 if (preferthread) 963 PROC_STATLOCK(p); 964 thread_lock(td); 965 if (td->td_wmesg != NULL) 966 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 967 else 968 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 969 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 970 if (TD_ON_LOCK(td)) { 971 kp->ki_kiflag |= KI_LOCKBLOCK; 972 strlcpy(kp->ki_lockname, td->td_lockname, 973 sizeof(kp->ki_lockname)); 974 } else { 975 kp->ki_kiflag &= ~KI_LOCKBLOCK; 976 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 977 } 978 979 if (p->p_state == PRS_NORMAL) { /* approximate. */ 980 if (TD_ON_RUNQ(td) || 981 TD_CAN_RUN(td) || 982 TD_IS_RUNNING(td)) { 983 kp->ki_stat = SRUN; 984 } else if (P_SHOULDSTOP(p)) { 985 kp->ki_stat = SSTOP; 986 } else if (TD_IS_SLEEPING(td)) { 987 kp->ki_stat = SSLEEP; 988 } else if (TD_ON_LOCK(td)) { 989 kp->ki_stat = SLOCK; 990 } else { 991 kp->ki_stat = SWAIT; 992 } 993 } else if (p->p_state == PRS_ZOMBIE) { 994 kp->ki_stat = SZOMB; 995 } else { 996 kp->ki_stat = SIDL; 997 } 998 999 /* Things in the thread */ 1000 kp->ki_wchan = td->td_wchan; 1001 kp->ki_pri.pri_level = td->td_priority; 1002 kp->ki_pri.pri_native = td->td_base_pri; 1003 1004 /* 1005 * Note: legacy fields; clamp at the old NOCPU value and/or 1006 * the maximum u_char CPU value. 1007 */ 1008 if (td->td_lastcpu == NOCPU) 1009 kp->ki_lastcpu_old = NOCPU_OLD; 1010 else if (td->td_lastcpu > MAXCPU_OLD) 1011 kp->ki_lastcpu_old = MAXCPU_OLD; 1012 else 1013 kp->ki_lastcpu_old = td->td_lastcpu; 1014 1015 if (td->td_oncpu == NOCPU) 1016 kp->ki_oncpu_old = NOCPU_OLD; 1017 else if (td->td_oncpu > MAXCPU_OLD) 1018 kp->ki_oncpu_old = MAXCPU_OLD; 1019 else 1020 kp->ki_oncpu_old = td->td_oncpu; 1021 1022 kp->ki_lastcpu = td->td_lastcpu; 1023 kp->ki_oncpu = td->td_oncpu; 1024 kp->ki_tdflags = td->td_flags; 1025 kp->ki_tid = td->td_tid; 1026 kp->ki_numthreads = p->p_numthreads; 1027 kp->ki_pcb = td->td_pcb; 1028 kp->ki_kstack = (void *)td->td_kstack; 1029 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1030 kp->ki_pri.pri_class = td->td_pri_class; 1031 kp->ki_pri.pri_user = td->td_user_pri; 1032 1033 if (preferthread) { 1034 rufetchtd(td, &kp->ki_rusage); 1035 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1036 kp->ki_pctcpu = sched_pctcpu(td); 1037 kp->ki_estcpu = td->td_estcpu; 1038 kp->ki_cow = td->td_cow; 1039 } 1040 1041 /* We can't get this anymore but ps etc never used it anyway. */ 1042 kp->ki_rqindex = 0; 1043 1044 if (preferthread) 1045 kp->ki_siglist = td->td_siglist; 1046 kp->ki_sigmask = td->td_sigmask; 1047 thread_unlock(td); 1048 if (preferthread) 1049 PROC_STATUNLOCK(p); 1050 } 1051 1052 /* 1053 * Fill in a kinfo_proc structure for the specified process. 1054 * Must be called with the target process locked. 1055 */ 1056 void 1057 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1058 { 1059 1060 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1061 1062 fill_kinfo_proc_only(p, kp); 1063 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1064 fill_kinfo_aggregate(p, kp); 1065 } 1066 1067 struct pstats * 1068 pstats_alloc(void) 1069 { 1070 1071 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1072 } 1073 1074 /* 1075 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1076 */ 1077 void 1078 pstats_fork(struct pstats *src, struct pstats *dst) 1079 { 1080 1081 bzero(&dst->pstat_startzero, 1082 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1083 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1084 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1085 } 1086 1087 void 1088 pstats_free(struct pstats *ps) 1089 { 1090 1091 free(ps, M_SUBPROC); 1092 } 1093 1094 static struct proc * 1095 zpfind_locked(pid_t pid) 1096 { 1097 struct proc *p; 1098 1099 sx_assert(&allproc_lock, SX_LOCKED); 1100 LIST_FOREACH(p, &zombproc, p_list) { 1101 if (p->p_pid == pid) { 1102 PROC_LOCK(p); 1103 break; 1104 } 1105 } 1106 return (p); 1107 } 1108 1109 /* 1110 * Locate a zombie process by number 1111 */ 1112 struct proc * 1113 zpfind(pid_t pid) 1114 { 1115 struct proc *p; 1116 1117 sx_slock(&allproc_lock); 1118 p = zpfind_locked(pid); 1119 sx_sunlock(&allproc_lock); 1120 return (p); 1121 } 1122 1123 #ifdef COMPAT_FREEBSD32 1124 1125 /* 1126 * This function is typically used to copy out the kernel address, so 1127 * it can be replaced by assignment of zero. 1128 */ 1129 static inline uint32_t 1130 ptr32_trim(void *ptr) 1131 { 1132 uintptr_t uptr; 1133 1134 uptr = (uintptr_t)ptr; 1135 return ((uptr > UINT_MAX) ? 0 : uptr); 1136 } 1137 1138 #define PTRTRIM_CP(src,dst,fld) \ 1139 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1140 1141 static void 1142 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1143 { 1144 int i; 1145 1146 bzero(ki32, sizeof(struct kinfo_proc32)); 1147 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1148 CP(*ki, *ki32, ki_layout); 1149 PTRTRIM_CP(*ki, *ki32, ki_args); 1150 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1151 PTRTRIM_CP(*ki, *ki32, ki_addr); 1152 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1153 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1154 PTRTRIM_CP(*ki, *ki32, ki_fd); 1155 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1156 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1157 CP(*ki, *ki32, ki_pid); 1158 CP(*ki, *ki32, ki_ppid); 1159 CP(*ki, *ki32, ki_pgid); 1160 CP(*ki, *ki32, ki_tpgid); 1161 CP(*ki, *ki32, ki_sid); 1162 CP(*ki, *ki32, ki_tsid); 1163 CP(*ki, *ki32, ki_jobc); 1164 CP(*ki, *ki32, ki_tdev); 1165 CP(*ki, *ki32, ki_siglist); 1166 CP(*ki, *ki32, ki_sigmask); 1167 CP(*ki, *ki32, ki_sigignore); 1168 CP(*ki, *ki32, ki_sigcatch); 1169 CP(*ki, *ki32, ki_uid); 1170 CP(*ki, *ki32, ki_ruid); 1171 CP(*ki, *ki32, ki_svuid); 1172 CP(*ki, *ki32, ki_rgid); 1173 CP(*ki, *ki32, ki_svgid); 1174 CP(*ki, *ki32, ki_ngroups); 1175 for (i = 0; i < KI_NGROUPS; i++) 1176 CP(*ki, *ki32, ki_groups[i]); 1177 CP(*ki, *ki32, ki_size); 1178 CP(*ki, *ki32, ki_rssize); 1179 CP(*ki, *ki32, ki_swrss); 1180 CP(*ki, *ki32, ki_tsize); 1181 CP(*ki, *ki32, ki_dsize); 1182 CP(*ki, *ki32, ki_ssize); 1183 CP(*ki, *ki32, ki_xstat); 1184 CP(*ki, *ki32, ki_acflag); 1185 CP(*ki, *ki32, ki_pctcpu); 1186 CP(*ki, *ki32, ki_estcpu); 1187 CP(*ki, *ki32, ki_slptime); 1188 CP(*ki, *ki32, ki_swtime); 1189 CP(*ki, *ki32, ki_cow); 1190 CP(*ki, *ki32, ki_runtime); 1191 TV_CP(*ki, *ki32, ki_start); 1192 TV_CP(*ki, *ki32, ki_childtime); 1193 CP(*ki, *ki32, ki_flag); 1194 CP(*ki, *ki32, ki_kiflag); 1195 CP(*ki, *ki32, ki_traceflag); 1196 CP(*ki, *ki32, ki_stat); 1197 CP(*ki, *ki32, ki_nice); 1198 CP(*ki, *ki32, ki_lock); 1199 CP(*ki, *ki32, ki_rqindex); 1200 CP(*ki, *ki32, ki_oncpu); 1201 CP(*ki, *ki32, ki_lastcpu); 1202 1203 /* XXX TODO: wrap cpu value as appropriate */ 1204 CP(*ki, *ki32, ki_oncpu_old); 1205 CP(*ki, *ki32, ki_lastcpu_old); 1206 1207 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1208 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1209 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1210 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1211 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1212 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1213 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1214 CP(*ki, *ki32, ki_tracer); 1215 CP(*ki, *ki32, ki_flag2); 1216 CP(*ki, *ki32, ki_fibnum); 1217 CP(*ki, *ki32, ki_cr_flags); 1218 CP(*ki, *ki32, ki_jid); 1219 CP(*ki, *ki32, ki_numthreads); 1220 CP(*ki, *ki32, ki_tid); 1221 CP(*ki, *ki32, ki_pri); 1222 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1223 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1224 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1225 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1226 PTRTRIM_CP(*ki, *ki32, ki_udata); 1227 CP(*ki, *ki32, ki_sflag); 1228 CP(*ki, *ki32, ki_tdflags); 1229 } 1230 #endif 1231 1232 int 1233 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1234 { 1235 struct thread *td; 1236 struct kinfo_proc ki; 1237 #ifdef COMPAT_FREEBSD32 1238 struct kinfo_proc32 ki32; 1239 #endif 1240 int error; 1241 1242 PROC_LOCK_ASSERT(p, MA_OWNED); 1243 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1244 1245 error = 0; 1246 fill_kinfo_proc(p, &ki); 1247 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1248 #ifdef COMPAT_FREEBSD32 1249 if ((flags & KERN_PROC_MASK32) != 0) { 1250 freebsd32_kinfo_proc_out(&ki, &ki32); 1251 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1252 error = ENOMEM; 1253 } else 1254 #endif 1255 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1256 error = ENOMEM; 1257 } else { 1258 FOREACH_THREAD_IN_PROC(p, td) { 1259 fill_kinfo_thread(td, &ki, 1); 1260 #ifdef COMPAT_FREEBSD32 1261 if ((flags & KERN_PROC_MASK32) != 0) { 1262 freebsd32_kinfo_proc_out(&ki, &ki32); 1263 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1264 error = ENOMEM; 1265 } else 1266 #endif 1267 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1268 error = ENOMEM; 1269 if (error != 0) 1270 break; 1271 } 1272 } 1273 PROC_UNLOCK(p); 1274 return (error); 1275 } 1276 1277 static int 1278 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1279 int doingzomb) 1280 { 1281 struct sbuf sb; 1282 struct kinfo_proc ki; 1283 struct proc *np; 1284 int error, error2; 1285 pid_t pid; 1286 1287 pid = p->p_pid; 1288 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1289 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1290 error = kern_proc_out(p, &sb, flags); 1291 error2 = sbuf_finish(&sb); 1292 sbuf_delete(&sb); 1293 if (error != 0) 1294 return (error); 1295 else if (error2 != 0) 1296 return (error2); 1297 if (doingzomb) 1298 np = zpfind(pid); 1299 else { 1300 if (pid == 0) 1301 return (0); 1302 np = pfind(pid); 1303 } 1304 if (np == NULL) 1305 return (ESRCH); 1306 if (np != p) { 1307 PROC_UNLOCK(np); 1308 return (ESRCH); 1309 } 1310 PROC_UNLOCK(np); 1311 return (0); 1312 } 1313 1314 static int 1315 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1316 { 1317 int *name = (int *)arg1; 1318 u_int namelen = arg2; 1319 struct proc *p; 1320 int flags, doingzomb, oid_number; 1321 int error = 0; 1322 1323 oid_number = oidp->oid_number; 1324 if (oid_number != KERN_PROC_ALL && 1325 (oid_number & KERN_PROC_INC_THREAD) == 0) 1326 flags = KERN_PROC_NOTHREADS; 1327 else { 1328 flags = 0; 1329 oid_number &= ~KERN_PROC_INC_THREAD; 1330 } 1331 #ifdef COMPAT_FREEBSD32 1332 if (req->flags & SCTL_MASK32) 1333 flags |= KERN_PROC_MASK32; 1334 #endif 1335 if (oid_number == KERN_PROC_PID) { 1336 if (namelen != 1) 1337 return (EINVAL); 1338 error = sysctl_wire_old_buffer(req, 0); 1339 if (error) 1340 return (error); 1341 sx_slock(&proctree_lock); 1342 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1343 if (error == 0) 1344 error = sysctl_out_proc(p, req, flags, 0); 1345 sx_sunlock(&proctree_lock); 1346 return (error); 1347 } 1348 1349 switch (oid_number) { 1350 case KERN_PROC_ALL: 1351 if (namelen != 0) 1352 return (EINVAL); 1353 break; 1354 case KERN_PROC_PROC: 1355 if (namelen != 0 && namelen != 1) 1356 return (EINVAL); 1357 break; 1358 default: 1359 if (namelen != 1) 1360 return (EINVAL); 1361 break; 1362 } 1363 1364 if (!req->oldptr) { 1365 /* overestimate by 5 procs */ 1366 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1367 if (error) 1368 return (error); 1369 } 1370 error = sysctl_wire_old_buffer(req, 0); 1371 if (error != 0) 1372 return (error); 1373 sx_slock(&proctree_lock); 1374 sx_slock(&allproc_lock); 1375 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1376 if (!doingzomb) 1377 p = LIST_FIRST(&allproc); 1378 else 1379 p = LIST_FIRST(&zombproc); 1380 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1381 /* 1382 * Skip embryonic processes. 1383 */ 1384 PROC_LOCK(p); 1385 if (p->p_state == PRS_NEW) { 1386 PROC_UNLOCK(p); 1387 continue; 1388 } 1389 KASSERT(p->p_ucred != NULL, 1390 ("process credential is NULL for non-NEW proc")); 1391 /* 1392 * Show a user only appropriate processes. 1393 */ 1394 if (p_cansee(curthread, p)) { 1395 PROC_UNLOCK(p); 1396 continue; 1397 } 1398 /* 1399 * TODO - make more efficient (see notes below). 1400 * do by session. 1401 */ 1402 switch (oid_number) { 1403 1404 case KERN_PROC_GID: 1405 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1406 PROC_UNLOCK(p); 1407 continue; 1408 } 1409 break; 1410 1411 case KERN_PROC_PGRP: 1412 /* could do this by traversing pgrp */ 1413 if (p->p_pgrp == NULL || 1414 p->p_pgrp->pg_id != (pid_t)name[0]) { 1415 PROC_UNLOCK(p); 1416 continue; 1417 } 1418 break; 1419 1420 case KERN_PROC_RGID: 1421 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1422 PROC_UNLOCK(p); 1423 continue; 1424 } 1425 break; 1426 1427 case KERN_PROC_SESSION: 1428 if (p->p_session == NULL || 1429 p->p_session->s_sid != (pid_t)name[0]) { 1430 PROC_UNLOCK(p); 1431 continue; 1432 } 1433 break; 1434 1435 case KERN_PROC_TTY: 1436 if ((p->p_flag & P_CONTROLT) == 0 || 1437 p->p_session == NULL) { 1438 PROC_UNLOCK(p); 1439 continue; 1440 } 1441 /* XXX proctree_lock */ 1442 SESS_LOCK(p->p_session); 1443 if (p->p_session->s_ttyp == NULL || 1444 tty_udev(p->p_session->s_ttyp) != 1445 (dev_t)name[0]) { 1446 SESS_UNLOCK(p->p_session); 1447 PROC_UNLOCK(p); 1448 continue; 1449 } 1450 SESS_UNLOCK(p->p_session); 1451 break; 1452 1453 case KERN_PROC_UID: 1454 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1455 PROC_UNLOCK(p); 1456 continue; 1457 } 1458 break; 1459 1460 case KERN_PROC_RUID: 1461 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1462 PROC_UNLOCK(p); 1463 continue; 1464 } 1465 break; 1466 1467 case KERN_PROC_PROC: 1468 break; 1469 1470 default: 1471 break; 1472 1473 } 1474 1475 error = sysctl_out_proc(p, req, flags, doingzomb); 1476 if (error) { 1477 sx_sunlock(&allproc_lock); 1478 sx_sunlock(&proctree_lock); 1479 return (error); 1480 } 1481 } 1482 } 1483 sx_sunlock(&allproc_lock); 1484 sx_sunlock(&proctree_lock); 1485 return (0); 1486 } 1487 1488 struct pargs * 1489 pargs_alloc(int len) 1490 { 1491 struct pargs *pa; 1492 1493 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1494 M_WAITOK); 1495 refcount_init(&pa->ar_ref, 1); 1496 pa->ar_length = len; 1497 return (pa); 1498 } 1499 1500 static void 1501 pargs_free(struct pargs *pa) 1502 { 1503 1504 free(pa, M_PARGS); 1505 } 1506 1507 void 1508 pargs_hold(struct pargs *pa) 1509 { 1510 1511 if (pa == NULL) 1512 return; 1513 refcount_acquire(&pa->ar_ref); 1514 } 1515 1516 void 1517 pargs_drop(struct pargs *pa) 1518 { 1519 1520 if (pa == NULL) 1521 return; 1522 if (refcount_release(&pa->ar_ref)) 1523 pargs_free(pa); 1524 } 1525 1526 static int 1527 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1528 size_t len) 1529 { 1530 ssize_t n; 1531 1532 /* 1533 * This may return a short read if the string is shorter than the chunk 1534 * and is aligned at the end of the page, and the following page is not 1535 * mapped. 1536 */ 1537 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1538 if (n <= 0) 1539 return (ENOMEM); 1540 return (0); 1541 } 1542 1543 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1544 1545 enum proc_vector_type { 1546 PROC_ARG, 1547 PROC_ENV, 1548 PROC_AUX, 1549 }; 1550 1551 #ifdef COMPAT_FREEBSD32 1552 static int 1553 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1554 size_t *vsizep, enum proc_vector_type type) 1555 { 1556 struct freebsd32_ps_strings pss; 1557 Elf32_Auxinfo aux; 1558 vm_offset_t vptr, ptr; 1559 uint32_t *proc_vector32; 1560 char **proc_vector; 1561 size_t vsize, size; 1562 int i, error; 1563 1564 error = 0; 1565 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1566 sizeof(pss)) != sizeof(pss)) 1567 return (ENOMEM); 1568 switch (type) { 1569 case PROC_ARG: 1570 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1571 vsize = pss.ps_nargvstr; 1572 if (vsize > ARG_MAX) 1573 return (ENOEXEC); 1574 size = vsize * sizeof(int32_t); 1575 break; 1576 case PROC_ENV: 1577 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1578 vsize = pss.ps_nenvstr; 1579 if (vsize > ARG_MAX) 1580 return (ENOEXEC); 1581 size = vsize * sizeof(int32_t); 1582 break; 1583 case PROC_AUX: 1584 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1585 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1586 if (vptr % 4 != 0) 1587 return (ENOEXEC); 1588 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1589 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1590 sizeof(aux)) 1591 return (ENOMEM); 1592 if (aux.a_type == AT_NULL) 1593 break; 1594 ptr += sizeof(aux); 1595 } 1596 if (aux.a_type != AT_NULL) 1597 return (ENOEXEC); 1598 vsize = i + 1; 1599 size = vsize * sizeof(aux); 1600 break; 1601 default: 1602 KASSERT(0, ("Wrong proc vector type: %d", type)); 1603 return (EINVAL); 1604 } 1605 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1606 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1607 error = ENOMEM; 1608 goto done; 1609 } 1610 if (type == PROC_AUX) { 1611 *proc_vectorp = (char **)proc_vector32; 1612 *vsizep = vsize; 1613 return (0); 1614 } 1615 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1616 for (i = 0; i < (int)vsize; i++) 1617 proc_vector[i] = PTRIN(proc_vector32[i]); 1618 *proc_vectorp = proc_vector; 1619 *vsizep = vsize; 1620 done: 1621 free(proc_vector32, M_TEMP); 1622 return (error); 1623 } 1624 #endif 1625 1626 static int 1627 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1628 size_t *vsizep, enum proc_vector_type type) 1629 { 1630 struct ps_strings pss; 1631 Elf_Auxinfo aux; 1632 vm_offset_t vptr, ptr; 1633 char **proc_vector; 1634 size_t vsize, size; 1635 int i; 1636 1637 #ifdef COMPAT_FREEBSD32 1638 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1639 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1640 #endif 1641 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1642 sizeof(pss)) != sizeof(pss)) 1643 return (ENOMEM); 1644 switch (type) { 1645 case PROC_ARG: 1646 vptr = (vm_offset_t)pss.ps_argvstr; 1647 vsize = pss.ps_nargvstr; 1648 if (vsize > ARG_MAX) 1649 return (ENOEXEC); 1650 size = vsize * sizeof(char *); 1651 break; 1652 case PROC_ENV: 1653 vptr = (vm_offset_t)pss.ps_envstr; 1654 vsize = pss.ps_nenvstr; 1655 if (vsize > ARG_MAX) 1656 return (ENOEXEC); 1657 size = vsize * sizeof(char *); 1658 break; 1659 case PROC_AUX: 1660 /* 1661 * The aux array is just above env array on the stack. Check 1662 * that the address is naturally aligned. 1663 */ 1664 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1665 * sizeof(char *); 1666 #if __ELF_WORD_SIZE == 64 1667 if (vptr % sizeof(uint64_t) != 0) 1668 #else 1669 if (vptr % sizeof(uint32_t) != 0) 1670 #endif 1671 return (ENOEXEC); 1672 /* 1673 * We count the array size reading the aux vectors from the 1674 * stack until AT_NULL vector is returned. So (to keep the code 1675 * simple) we read the process stack twice: the first time here 1676 * to find the size and the second time when copying the vectors 1677 * to the allocated proc_vector. 1678 */ 1679 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1680 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1681 sizeof(aux)) 1682 return (ENOMEM); 1683 if (aux.a_type == AT_NULL) 1684 break; 1685 ptr += sizeof(aux); 1686 } 1687 /* 1688 * If the PROC_AUXV_MAX entries are iterated over, and we have 1689 * not reached AT_NULL, it is most likely we are reading wrong 1690 * data: either the process doesn't have auxv array or data has 1691 * been modified. Return the error in this case. 1692 */ 1693 if (aux.a_type != AT_NULL) 1694 return (ENOEXEC); 1695 vsize = i + 1; 1696 size = vsize * sizeof(aux); 1697 break; 1698 default: 1699 KASSERT(0, ("Wrong proc vector type: %d", type)); 1700 return (EINVAL); /* In case we are built without INVARIANTS. */ 1701 } 1702 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1703 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1704 free(proc_vector, M_TEMP); 1705 return (ENOMEM); 1706 } 1707 *proc_vectorp = proc_vector; 1708 *vsizep = vsize; 1709 1710 return (0); 1711 } 1712 1713 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1714 1715 static int 1716 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1717 enum proc_vector_type type) 1718 { 1719 size_t done, len, nchr, vsize; 1720 int error, i; 1721 char **proc_vector, *sptr; 1722 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1723 1724 PROC_ASSERT_HELD(p); 1725 1726 /* 1727 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1728 */ 1729 nchr = 2 * (PATH_MAX + ARG_MAX); 1730 1731 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1732 if (error != 0) 1733 return (error); 1734 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1735 /* 1736 * The program may have scribbled into its argv array, e.g. to 1737 * remove some arguments. If that has happened, break out 1738 * before trying to read from NULL. 1739 */ 1740 if (proc_vector[i] == NULL) 1741 break; 1742 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1743 error = proc_read_string(td, p, sptr, pss_string, 1744 sizeof(pss_string)); 1745 if (error != 0) 1746 goto done; 1747 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1748 if (done + len >= nchr) 1749 len = nchr - done - 1; 1750 sbuf_bcat(sb, pss_string, len); 1751 if (len != GET_PS_STRINGS_CHUNK_SZ) 1752 break; 1753 done += GET_PS_STRINGS_CHUNK_SZ; 1754 } 1755 sbuf_bcat(sb, "", 1); 1756 done += len + 1; 1757 } 1758 done: 1759 free(proc_vector, M_TEMP); 1760 return (error); 1761 } 1762 1763 int 1764 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1765 { 1766 1767 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1768 } 1769 1770 int 1771 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1772 { 1773 1774 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1775 } 1776 1777 int 1778 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1779 { 1780 size_t vsize, size; 1781 char **auxv; 1782 int error; 1783 1784 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1785 if (error == 0) { 1786 #ifdef COMPAT_FREEBSD32 1787 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1788 size = vsize * sizeof(Elf32_Auxinfo); 1789 else 1790 #endif 1791 size = vsize * sizeof(Elf_Auxinfo); 1792 if (sbuf_bcat(sb, auxv, size) != 0) 1793 error = ENOMEM; 1794 free(auxv, M_TEMP); 1795 } 1796 return (error); 1797 } 1798 1799 /* 1800 * This sysctl allows a process to retrieve the argument list or process 1801 * title for another process without groping around in the address space 1802 * of the other process. It also allow a process to set its own "process 1803 * title to a string of its own choice. 1804 */ 1805 static int 1806 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1807 { 1808 int *name = (int *)arg1; 1809 u_int namelen = arg2; 1810 struct pargs *newpa, *pa; 1811 struct proc *p; 1812 struct sbuf sb; 1813 int flags, error = 0, error2; 1814 1815 if (namelen != 1) 1816 return (EINVAL); 1817 1818 flags = PGET_CANSEE; 1819 if (req->newptr != NULL) 1820 flags |= PGET_ISCURRENT; 1821 error = pget((pid_t)name[0], flags, &p); 1822 if (error) 1823 return (error); 1824 1825 pa = p->p_args; 1826 if (pa != NULL) { 1827 pargs_hold(pa); 1828 PROC_UNLOCK(p); 1829 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1830 pargs_drop(pa); 1831 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1832 _PHOLD(p); 1833 PROC_UNLOCK(p); 1834 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1835 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1836 error = proc_getargv(curthread, p, &sb); 1837 error2 = sbuf_finish(&sb); 1838 PRELE(p); 1839 sbuf_delete(&sb); 1840 if (error == 0 && error2 != 0) 1841 error = error2; 1842 } else { 1843 PROC_UNLOCK(p); 1844 } 1845 if (error != 0 || req->newptr == NULL) 1846 return (error); 1847 1848 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1849 return (ENOMEM); 1850 newpa = pargs_alloc(req->newlen); 1851 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1852 if (error != 0) { 1853 pargs_free(newpa); 1854 return (error); 1855 } 1856 PROC_LOCK(p); 1857 pa = p->p_args; 1858 p->p_args = newpa; 1859 PROC_UNLOCK(p); 1860 pargs_drop(pa); 1861 return (0); 1862 } 1863 1864 /* 1865 * This sysctl allows a process to retrieve environment of another process. 1866 */ 1867 static int 1868 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1869 { 1870 int *name = (int *)arg1; 1871 u_int namelen = arg2; 1872 struct proc *p; 1873 struct sbuf sb; 1874 int error, error2; 1875 1876 if (namelen != 1) 1877 return (EINVAL); 1878 1879 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1880 if (error != 0) 1881 return (error); 1882 if ((p->p_flag & P_SYSTEM) != 0) { 1883 PRELE(p); 1884 return (0); 1885 } 1886 1887 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1888 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1889 error = proc_getenvv(curthread, p, &sb); 1890 error2 = sbuf_finish(&sb); 1891 PRELE(p); 1892 sbuf_delete(&sb); 1893 return (error != 0 ? error : error2); 1894 } 1895 1896 /* 1897 * This sysctl allows a process to retrieve ELF auxiliary vector of 1898 * another process. 1899 */ 1900 static int 1901 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1902 { 1903 int *name = (int *)arg1; 1904 u_int namelen = arg2; 1905 struct proc *p; 1906 struct sbuf sb; 1907 int error, error2; 1908 1909 if (namelen != 1) 1910 return (EINVAL); 1911 1912 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1913 if (error != 0) 1914 return (error); 1915 if ((p->p_flag & P_SYSTEM) != 0) { 1916 PRELE(p); 1917 return (0); 1918 } 1919 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1920 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1921 error = proc_getauxv(curthread, p, &sb); 1922 error2 = sbuf_finish(&sb); 1923 PRELE(p); 1924 sbuf_delete(&sb); 1925 return (error != 0 ? error : error2); 1926 } 1927 1928 /* 1929 * This sysctl allows a process to retrieve the path of the executable for 1930 * itself or another process. 1931 */ 1932 static int 1933 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1934 { 1935 pid_t *pidp = (pid_t *)arg1; 1936 unsigned int arglen = arg2; 1937 struct proc *p; 1938 struct vnode *vp; 1939 char *retbuf, *freebuf; 1940 int error; 1941 1942 if (arglen != 1) 1943 return (EINVAL); 1944 if (*pidp == -1) { /* -1 means this process */ 1945 p = req->td->td_proc; 1946 } else { 1947 error = pget(*pidp, PGET_CANSEE, &p); 1948 if (error != 0) 1949 return (error); 1950 } 1951 1952 vp = p->p_textvp; 1953 if (vp == NULL) { 1954 if (*pidp != -1) 1955 PROC_UNLOCK(p); 1956 return (0); 1957 } 1958 vref(vp); 1959 if (*pidp != -1) 1960 PROC_UNLOCK(p); 1961 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1962 vrele(vp); 1963 if (error) 1964 return (error); 1965 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1966 free(freebuf, M_TEMP); 1967 return (error); 1968 } 1969 1970 static int 1971 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1972 { 1973 struct proc *p; 1974 char *sv_name; 1975 int *name; 1976 int namelen; 1977 int error; 1978 1979 namelen = arg2; 1980 if (namelen != 1) 1981 return (EINVAL); 1982 1983 name = (int *)arg1; 1984 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1985 if (error != 0) 1986 return (error); 1987 sv_name = p->p_sysent->sv_name; 1988 PROC_UNLOCK(p); 1989 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1990 } 1991 1992 #ifdef KINFO_OVMENTRY_SIZE 1993 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1994 #endif 1995 1996 #ifdef COMPAT_FREEBSD7 1997 static int 1998 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1999 { 2000 vm_map_entry_t entry, tmp_entry; 2001 unsigned int last_timestamp; 2002 char *fullpath, *freepath; 2003 struct kinfo_ovmentry *kve; 2004 struct vattr va; 2005 struct ucred *cred; 2006 int error, *name; 2007 struct vnode *vp; 2008 struct proc *p; 2009 vm_map_t map; 2010 struct vmspace *vm; 2011 2012 name = (int *)arg1; 2013 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2014 if (error != 0) 2015 return (error); 2016 vm = vmspace_acquire_ref(p); 2017 if (vm == NULL) { 2018 PRELE(p); 2019 return (ESRCH); 2020 } 2021 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2022 2023 map = &vm->vm_map; 2024 vm_map_lock_read(map); 2025 for (entry = map->header.next; entry != &map->header; 2026 entry = entry->next) { 2027 vm_object_t obj, tobj, lobj; 2028 vm_offset_t addr; 2029 2030 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2031 continue; 2032 2033 bzero(kve, sizeof(*kve)); 2034 kve->kve_structsize = sizeof(*kve); 2035 2036 kve->kve_private_resident = 0; 2037 obj = entry->object.vm_object; 2038 if (obj != NULL) { 2039 VM_OBJECT_RLOCK(obj); 2040 if (obj->shadow_count == 1) 2041 kve->kve_private_resident = 2042 obj->resident_page_count; 2043 } 2044 kve->kve_resident = 0; 2045 addr = entry->start; 2046 while (addr < entry->end) { 2047 if (pmap_extract(map->pmap, addr)) 2048 kve->kve_resident++; 2049 addr += PAGE_SIZE; 2050 } 2051 2052 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2053 if (tobj != obj) 2054 VM_OBJECT_RLOCK(tobj); 2055 if (lobj != obj) 2056 VM_OBJECT_RUNLOCK(lobj); 2057 lobj = tobj; 2058 } 2059 2060 kve->kve_start = (void*)entry->start; 2061 kve->kve_end = (void*)entry->end; 2062 kve->kve_offset = (off_t)entry->offset; 2063 2064 if (entry->protection & VM_PROT_READ) 2065 kve->kve_protection |= KVME_PROT_READ; 2066 if (entry->protection & VM_PROT_WRITE) 2067 kve->kve_protection |= KVME_PROT_WRITE; 2068 if (entry->protection & VM_PROT_EXECUTE) 2069 kve->kve_protection |= KVME_PROT_EXEC; 2070 2071 if (entry->eflags & MAP_ENTRY_COW) 2072 kve->kve_flags |= KVME_FLAG_COW; 2073 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2074 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2075 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2076 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2077 2078 last_timestamp = map->timestamp; 2079 vm_map_unlock_read(map); 2080 2081 kve->kve_fileid = 0; 2082 kve->kve_fsid = 0; 2083 freepath = NULL; 2084 fullpath = ""; 2085 if (lobj) { 2086 vp = NULL; 2087 switch (lobj->type) { 2088 case OBJT_DEFAULT: 2089 kve->kve_type = KVME_TYPE_DEFAULT; 2090 break; 2091 case OBJT_VNODE: 2092 kve->kve_type = KVME_TYPE_VNODE; 2093 vp = lobj->handle; 2094 vref(vp); 2095 break; 2096 case OBJT_SWAP: 2097 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2098 kve->kve_type = KVME_TYPE_VNODE; 2099 if ((lobj->flags & OBJ_TMPFS) != 0) { 2100 vp = lobj->un_pager.swp.swp_tmpfs; 2101 vref(vp); 2102 } 2103 } else { 2104 kve->kve_type = KVME_TYPE_SWAP; 2105 } 2106 break; 2107 case OBJT_DEVICE: 2108 kve->kve_type = KVME_TYPE_DEVICE; 2109 break; 2110 case OBJT_PHYS: 2111 kve->kve_type = KVME_TYPE_PHYS; 2112 break; 2113 case OBJT_DEAD: 2114 kve->kve_type = KVME_TYPE_DEAD; 2115 break; 2116 case OBJT_SG: 2117 kve->kve_type = KVME_TYPE_SG; 2118 break; 2119 default: 2120 kve->kve_type = KVME_TYPE_UNKNOWN; 2121 break; 2122 } 2123 if (lobj != obj) 2124 VM_OBJECT_RUNLOCK(lobj); 2125 2126 kve->kve_ref_count = obj->ref_count; 2127 kve->kve_shadow_count = obj->shadow_count; 2128 VM_OBJECT_RUNLOCK(obj); 2129 if (vp != NULL) { 2130 vn_fullpath(curthread, vp, &fullpath, 2131 &freepath); 2132 cred = curthread->td_ucred; 2133 vn_lock(vp, LK_SHARED | LK_RETRY); 2134 if (VOP_GETATTR(vp, &va, cred) == 0) { 2135 kve->kve_fileid = va.va_fileid; 2136 kve->kve_fsid = va.va_fsid; 2137 } 2138 vput(vp); 2139 } 2140 } else { 2141 kve->kve_type = KVME_TYPE_NONE; 2142 kve->kve_ref_count = 0; 2143 kve->kve_shadow_count = 0; 2144 } 2145 2146 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2147 if (freepath != NULL) 2148 free(freepath, M_TEMP); 2149 2150 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2151 vm_map_lock_read(map); 2152 if (error) 2153 break; 2154 if (last_timestamp != map->timestamp) { 2155 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2156 entry = tmp_entry; 2157 } 2158 } 2159 vm_map_unlock_read(map); 2160 vmspace_free(vm); 2161 PRELE(p); 2162 free(kve, M_TEMP); 2163 return (error); 2164 } 2165 #endif /* COMPAT_FREEBSD7 */ 2166 2167 #ifdef KINFO_VMENTRY_SIZE 2168 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2169 #endif 2170 2171 static void 2172 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2173 struct kinfo_vmentry *kve) 2174 { 2175 vm_object_t obj, tobj; 2176 vm_page_t m, m_adv; 2177 vm_offset_t addr; 2178 vm_paddr_t locked_pa; 2179 vm_pindex_t pi, pi_adv, pindex; 2180 2181 locked_pa = 0; 2182 obj = entry->object.vm_object; 2183 addr = entry->start; 2184 m_adv = NULL; 2185 pi = OFF_TO_IDX(entry->offset); 2186 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2187 if (m_adv != NULL) { 2188 m = m_adv; 2189 } else { 2190 pi_adv = OFF_TO_IDX(entry->end - addr); 2191 pindex = pi; 2192 for (tobj = obj;; tobj = tobj->backing_object) { 2193 m = vm_page_find_least(tobj, pindex); 2194 if (m != NULL) { 2195 if (m->pindex == pindex) 2196 break; 2197 if (pi_adv > m->pindex - pindex) { 2198 pi_adv = m->pindex - pindex; 2199 m_adv = m; 2200 } 2201 } 2202 if (tobj->backing_object == NULL) 2203 goto next; 2204 pindex += OFF_TO_IDX(tobj-> 2205 backing_object_offset); 2206 } 2207 } 2208 m_adv = NULL; 2209 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2210 (addr & (pagesizes[1] - 1)) == 0 && 2211 (pmap_mincore(map->pmap, addr, &locked_pa) & 2212 MINCORE_SUPER) != 0) { 2213 kve->kve_flags |= KVME_FLAG_SUPER; 2214 pi_adv = OFF_TO_IDX(pagesizes[1]); 2215 } else { 2216 /* 2217 * We do not test the found page on validity. 2218 * Either the page is busy and being paged in, 2219 * or it was invalidated. The first case 2220 * should be counted as resident, the second 2221 * is not so clear; we do account both. 2222 */ 2223 pi_adv = 1; 2224 } 2225 kve->kve_resident += pi_adv; 2226 next:; 2227 } 2228 PA_UNLOCK_COND(locked_pa); 2229 } 2230 2231 /* 2232 * Must be called with the process locked and will return unlocked. 2233 */ 2234 int 2235 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2236 { 2237 vm_map_entry_t entry, tmp_entry; 2238 struct vattr va; 2239 vm_map_t map; 2240 vm_object_t obj, tobj, lobj; 2241 char *fullpath, *freepath; 2242 struct kinfo_vmentry *kve; 2243 struct ucred *cred; 2244 struct vnode *vp; 2245 struct vmspace *vm; 2246 vm_offset_t addr; 2247 unsigned int last_timestamp; 2248 int error; 2249 2250 PROC_LOCK_ASSERT(p, MA_OWNED); 2251 2252 _PHOLD(p); 2253 PROC_UNLOCK(p); 2254 vm = vmspace_acquire_ref(p); 2255 if (vm == NULL) { 2256 PRELE(p); 2257 return (ESRCH); 2258 } 2259 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2260 2261 error = 0; 2262 map = &vm->vm_map; 2263 vm_map_lock_read(map); 2264 for (entry = map->header.next; entry != &map->header; 2265 entry = entry->next) { 2266 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2267 continue; 2268 2269 addr = entry->end; 2270 bzero(kve, sizeof(*kve)); 2271 obj = entry->object.vm_object; 2272 if (obj != NULL) { 2273 for (tobj = obj; tobj != NULL; 2274 tobj = tobj->backing_object) { 2275 VM_OBJECT_RLOCK(tobj); 2276 lobj = tobj; 2277 } 2278 if (obj->backing_object == NULL) 2279 kve->kve_private_resident = 2280 obj->resident_page_count; 2281 if (!vmmap_skip_res_cnt) 2282 kern_proc_vmmap_resident(map, entry, kve); 2283 for (tobj = obj; tobj != NULL; 2284 tobj = tobj->backing_object) { 2285 if (tobj != obj && tobj != lobj) 2286 VM_OBJECT_RUNLOCK(tobj); 2287 } 2288 } else { 2289 lobj = NULL; 2290 } 2291 2292 kve->kve_start = entry->start; 2293 kve->kve_end = entry->end; 2294 kve->kve_offset = entry->offset; 2295 2296 if (entry->protection & VM_PROT_READ) 2297 kve->kve_protection |= KVME_PROT_READ; 2298 if (entry->protection & VM_PROT_WRITE) 2299 kve->kve_protection |= KVME_PROT_WRITE; 2300 if (entry->protection & VM_PROT_EXECUTE) 2301 kve->kve_protection |= KVME_PROT_EXEC; 2302 2303 if (entry->eflags & MAP_ENTRY_COW) 2304 kve->kve_flags |= KVME_FLAG_COW; 2305 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2306 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2307 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2308 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2309 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2310 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2311 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2312 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2313 2314 last_timestamp = map->timestamp; 2315 vm_map_unlock_read(map); 2316 2317 freepath = NULL; 2318 fullpath = ""; 2319 if (lobj != NULL) { 2320 vp = NULL; 2321 switch (lobj->type) { 2322 case OBJT_DEFAULT: 2323 kve->kve_type = KVME_TYPE_DEFAULT; 2324 break; 2325 case OBJT_VNODE: 2326 kve->kve_type = KVME_TYPE_VNODE; 2327 vp = lobj->handle; 2328 vref(vp); 2329 break; 2330 case OBJT_SWAP: 2331 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2332 kve->kve_type = KVME_TYPE_VNODE; 2333 if ((lobj->flags & OBJ_TMPFS) != 0) { 2334 vp = lobj->un_pager.swp.swp_tmpfs; 2335 vref(vp); 2336 } 2337 } else { 2338 kve->kve_type = KVME_TYPE_SWAP; 2339 } 2340 break; 2341 case OBJT_DEVICE: 2342 kve->kve_type = KVME_TYPE_DEVICE; 2343 break; 2344 case OBJT_PHYS: 2345 kve->kve_type = KVME_TYPE_PHYS; 2346 break; 2347 case OBJT_DEAD: 2348 kve->kve_type = KVME_TYPE_DEAD; 2349 break; 2350 case OBJT_SG: 2351 kve->kve_type = KVME_TYPE_SG; 2352 break; 2353 case OBJT_MGTDEVICE: 2354 kve->kve_type = KVME_TYPE_MGTDEVICE; 2355 break; 2356 default: 2357 kve->kve_type = KVME_TYPE_UNKNOWN; 2358 break; 2359 } 2360 if (lobj != obj) 2361 VM_OBJECT_RUNLOCK(lobj); 2362 2363 kve->kve_ref_count = obj->ref_count; 2364 kve->kve_shadow_count = obj->shadow_count; 2365 VM_OBJECT_RUNLOCK(obj); 2366 if (vp != NULL) { 2367 vn_fullpath(curthread, vp, &fullpath, 2368 &freepath); 2369 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2370 cred = curthread->td_ucred; 2371 vn_lock(vp, LK_SHARED | LK_RETRY); 2372 if (VOP_GETATTR(vp, &va, cred) == 0) { 2373 kve->kve_vn_fileid = va.va_fileid; 2374 kve->kve_vn_fsid = va.va_fsid; 2375 kve->kve_vn_mode = 2376 MAKEIMODE(va.va_type, va.va_mode); 2377 kve->kve_vn_size = va.va_size; 2378 kve->kve_vn_rdev = va.va_rdev; 2379 kve->kve_status = KF_ATTR_VALID; 2380 } 2381 vput(vp); 2382 } 2383 } else { 2384 kve->kve_type = KVME_TYPE_NONE; 2385 kve->kve_ref_count = 0; 2386 kve->kve_shadow_count = 0; 2387 } 2388 2389 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2390 if (freepath != NULL) 2391 free(freepath, M_TEMP); 2392 2393 /* Pack record size down */ 2394 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2395 kve->kve_structsize = 2396 offsetof(struct kinfo_vmentry, kve_path) + 2397 strlen(kve->kve_path) + 1; 2398 else 2399 kve->kve_structsize = sizeof(*kve); 2400 kve->kve_structsize = roundup(kve->kve_structsize, 2401 sizeof(uint64_t)); 2402 2403 /* Halt filling and truncate rather than exceeding maxlen */ 2404 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2405 error = 0; 2406 vm_map_lock_read(map); 2407 break; 2408 } else if (maxlen != -1) 2409 maxlen -= kve->kve_structsize; 2410 2411 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2412 error = ENOMEM; 2413 vm_map_lock_read(map); 2414 if (error != 0) 2415 break; 2416 if (last_timestamp != map->timestamp) { 2417 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2418 entry = tmp_entry; 2419 } 2420 } 2421 vm_map_unlock_read(map); 2422 vmspace_free(vm); 2423 PRELE(p); 2424 free(kve, M_TEMP); 2425 return (error); 2426 } 2427 2428 static int 2429 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2430 { 2431 struct proc *p; 2432 struct sbuf sb; 2433 int error, error2, *name; 2434 2435 name = (int *)arg1; 2436 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2437 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2438 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2439 if (error != 0) { 2440 sbuf_delete(&sb); 2441 return (error); 2442 } 2443 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2444 error2 = sbuf_finish(&sb); 2445 sbuf_delete(&sb); 2446 return (error != 0 ? error : error2); 2447 } 2448 2449 #if defined(STACK) || defined(DDB) 2450 static int 2451 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2452 { 2453 struct kinfo_kstack *kkstp; 2454 int error, i, *name, numthreads; 2455 lwpid_t *lwpidarray; 2456 struct thread *td; 2457 struct stack *st; 2458 struct sbuf sb; 2459 struct proc *p; 2460 2461 name = (int *)arg1; 2462 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2463 if (error != 0) 2464 return (error); 2465 2466 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2467 st = stack_create(); 2468 2469 lwpidarray = NULL; 2470 numthreads = 0; 2471 PROC_LOCK(p); 2472 repeat: 2473 if (numthreads < p->p_numthreads) { 2474 if (lwpidarray != NULL) { 2475 free(lwpidarray, M_TEMP); 2476 lwpidarray = NULL; 2477 } 2478 numthreads = p->p_numthreads; 2479 PROC_UNLOCK(p); 2480 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2481 M_WAITOK | M_ZERO); 2482 PROC_LOCK(p); 2483 goto repeat; 2484 } 2485 i = 0; 2486 2487 /* 2488 * XXXRW: During the below loop, execve(2) and countless other sorts 2489 * of changes could have taken place. Should we check to see if the 2490 * vmspace has been replaced, or the like, in order to prevent 2491 * giving a snapshot that spans, say, execve(2), with some threads 2492 * before and some after? Among other things, the credentials could 2493 * have changed, in which case the right to extract debug info might 2494 * no longer be assured. 2495 */ 2496 FOREACH_THREAD_IN_PROC(p, td) { 2497 KASSERT(i < numthreads, 2498 ("sysctl_kern_proc_kstack: numthreads")); 2499 lwpidarray[i] = td->td_tid; 2500 i++; 2501 } 2502 numthreads = i; 2503 for (i = 0; i < numthreads; i++) { 2504 td = thread_find(p, lwpidarray[i]); 2505 if (td == NULL) { 2506 continue; 2507 } 2508 bzero(kkstp, sizeof(*kkstp)); 2509 (void)sbuf_new(&sb, kkstp->kkst_trace, 2510 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2511 thread_lock(td); 2512 kkstp->kkst_tid = td->td_tid; 2513 if (TD_IS_SWAPPED(td)) { 2514 kkstp->kkst_state = KKST_STATE_SWAPPED; 2515 } else if (TD_IS_RUNNING(td)) { 2516 if (stack_save_td_running(st, td) == 0) 2517 kkstp->kkst_state = KKST_STATE_STACKOK; 2518 else 2519 kkstp->kkst_state = KKST_STATE_RUNNING; 2520 } else { 2521 kkstp->kkst_state = KKST_STATE_STACKOK; 2522 stack_save_td(st, td); 2523 } 2524 thread_unlock(td); 2525 PROC_UNLOCK(p); 2526 stack_sbuf_print(&sb, st); 2527 sbuf_finish(&sb); 2528 sbuf_delete(&sb); 2529 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2530 PROC_LOCK(p); 2531 if (error) 2532 break; 2533 } 2534 _PRELE(p); 2535 PROC_UNLOCK(p); 2536 if (lwpidarray != NULL) 2537 free(lwpidarray, M_TEMP); 2538 stack_destroy(st); 2539 free(kkstp, M_TEMP); 2540 return (error); 2541 } 2542 #endif 2543 2544 /* 2545 * This sysctl allows a process to retrieve the full list of groups from 2546 * itself or another process. 2547 */ 2548 static int 2549 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2550 { 2551 pid_t *pidp = (pid_t *)arg1; 2552 unsigned int arglen = arg2; 2553 struct proc *p; 2554 struct ucred *cred; 2555 int error; 2556 2557 if (arglen != 1) 2558 return (EINVAL); 2559 if (*pidp == -1) { /* -1 means this process */ 2560 p = req->td->td_proc; 2561 PROC_LOCK(p); 2562 } else { 2563 error = pget(*pidp, PGET_CANSEE, &p); 2564 if (error != 0) 2565 return (error); 2566 } 2567 2568 cred = crhold(p->p_ucred); 2569 PROC_UNLOCK(p); 2570 2571 error = SYSCTL_OUT(req, cred->cr_groups, 2572 cred->cr_ngroups * sizeof(gid_t)); 2573 crfree(cred); 2574 return (error); 2575 } 2576 2577 /* 2578 * This sysctl allows a process to retrieve or/and set the resource limit for 2579 * another process. 2580 */ 2581 static int 2582 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2583 { 2584 int *name = (int *)arg1; 2585 u_int namelen = arg2; 2586 struct rlimit rlim; 2587 struct proc *p; 2588 u_int which; 2589 int flags, error; 2590 2591 if (namelen != 2) 2592 return (EINVAL); 2593 2594 which = (u_int)name[1]; 2595 if (which >= RLIM_NLIMITS) 2596 return (EINVAL); 2597 2598 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2599 return (EINVAL); 2600 2601 flags = PGET_HOLD | PGET_NOTWEXIT; 2602 if (req->newptr != NULL) 2603 flags |= PGET_CANDEBUG; 2604 else 2605 flags |= PGET_CANSEE; 2606 error = pget((pid_t)name[0], flags, &p); 2607 if (error != 0) 2608 return (error); 2609 2610 /* 2611 * Retrieve limit. 2612 */ 2613 if (req->oldptr != NULL) { 2614 PROC_LOCK(p); 2615 lim_rlimit_proc(p, which, &rlim); 2616 PROC_UNLOCK(p); 2617 } 2618 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2619 if (error != 0) 2620 goto errout; 2621 2622 /* 2623 * Set limit. 2624 */ 2625 if (req->newptr != NULL) { 2626 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2627 if (error == 0) 2628 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2629 } 2630 2631 errout: 2632 PRELE(p); 2633 return (error); 2634 } 2635 2636 /* 2637 * This sysctl allows a process to retrieve ps_strings structure location of 2638 * another process. 2639 */ 2640 static int 2641 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2642 { 2643 int *name = (int *)arg1; 2644 u_int namelen = arg2; 2645 struct proc *p; 2646 vm_offset_t ps_strings; 2647 int error; 2648 #ifdef COMPAT_FREEBSD32 2649 uint32_t ps_strings32; 2650 #endif 2651 2652 if (namelen != 1) 2653 return (EINVAL); 2654 2655 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2656 if (error != 0) 2657 return (error); 2658 #ifdef COMPAT_FREEBSD32 2659 if ((req->flags & SCTL_MASK32) != 0) { 2660 /* 2661 * We return 0 if the 32 bit emulation request is for a 64 bit 2662 * process. 2663 */ 2664 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2665 PTROUT(p->p_sysent->sv_psstrings) : 0; 2666 PROC_UNLOCK(p); 2667 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2668 return (error); 2669 } 2670 #endif 2671 ps_strings = p->p_sysent->sv_psstrings; 2672 PROC_UNLOCK(p); 2673 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2674 return (error); 2675 } 2676 2677 /* 2678 * This sysctl allows a process to retrieve umask of another process. 2679 */ 2680 static int 2681 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2682 { 2683 int *name = (int *)arg1; 2684 u_int namelen = arg2; 2685 struct proc *p; 2686 int error; 2687 u_short fd_cmask; 2688 2689 if (namelen != 1) 2690 return (EINVAL); 2691 2692 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2693 if (error != 0) 2694 return (error); 2695 2696 FILEDESC_SLOCK(p->p_fd); 2697 fd_cmask = p->p_fd->fd_cmask; 2698 FILEDESC_SUNLOCK(p->p_fd); 2699 PRELE(p); 2700 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2701 return (error); 2702 } 2703 2704 /* 2705 * This sysctl allows a process to set and retrieve binary osreldate of 2706 * another process. 2707 */ 2708 static int 2709 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2710 { 2711 int *name = (int *)arg1; 2712 u_int namelen = arg2; 2713 struct proc *p; 2714 int flags, error, osrel; 2715 2716 if (namelen != 1) 2717 return (EINVAL); 2718 2719 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2720 return (EINVAL); 2721 2722 flags = PGET_HOLD | PGET_NOTWEXIT; 2723 if (req->newptr != NULL) 2724 flags |= PGET_CANDEBUG; 2725 else 2726 flags |= PGET_CANSEE; 2727 error = pget((pid_t)name[0], flags, &p); 2728 if (error != 0) 2729 return (error); 2730 2731 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2732 if (error != 0) 2733 goto errout; 2734 2735 if (req->newptr != NULL) { 2736 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2737 if (error != 0) 2738 goto errout; 2739 if (osrel < 0) { 2740 error = EINVAL; 2741 goto errout; 2742 } 2743 p->p_osrel = osrel; 2744 } 2745 errout: 2746 PRELE(p); 2747 return (error); 2748 } 2749 2750 static int 2751 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2752 { 2753 int *name = (int *)arg1; 2754 u_int namelen = arg2; 2755 struct proc *p; 2756 struct kinfo_sigtramp kst; 2757 const struct sysentvec *sv; 2758 int error; 2759 #ifdef COMPAT_FREEBSD32 2760 struct kinfo_sigtramp32 kst32; 2761 #endif 2762 2763 if (namelen != 1) 2764 return (EINVAL); 2765 2766 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2767 if (error != 0) 2768 return (error); 2769 sv = p->p_sysent; 2770 #ifdef COMPAT_FREEBSD32 2771 if ((req->flags & SCTL_MASK32) != 0) { 2772 bzero(&kst32, sizeof(kst32)); 2773 if (SV_PROC_FLAG(p, SV_ILP32)) { 2774 if (sv->sv_sigcode_base != 0) { 2775 kst32.ksigtramp_start = sv->sv_sigcode_base; 2776 kst32.ksigtramp_end = sv->sv_sigcode_base + 2777 *sv->sv_szsigcode; 2778 } else { 2779 kst32.ksigtramp_start = sv->sv_psstrings - 2780 *sv->sv_szsigcode; 2781 kst32.ksigtramp_end = sv->sv_psstrings; 2782 } 2783 } 2784 PROC_UNLOCK(p); 2785 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2786 return (error); 2787 } 2788 #endif 2789 bzero(&kst, sizeof(kst)); 2790 if (sv->sv_sigcode_base != 0) { 2791 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2792 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2793 *sv->sv_szsigcode; 2794 } else { 2795 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2796 *sv->sv_szsigcode; 2797 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2798 } 2799 PROC_UNLOCK(p); 2800 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2801 return (error); 2802 } 2803 2804 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2805 2806 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2807 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2808 "Return entire process table"); 2809 2810 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2811 sysctl_kern_proc, "Process table"); 2812 2813 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2814 sysctl_kern_proc, "Process table"); 2815 2816 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2817 sysctl_kern_proc, "Process table"); 2818 2819 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2820 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2821 2822 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2823 sysctl_kern_proc, "Process table"); 2824 2825 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2826 sysctl_kern_proc, "Process table"); 2827 2828 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2829 sysctl_kern_proc, "Process table"); 2830 2831 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2832 sysctl_kern_proc, "Process table"); 2833 2834 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2835 sysctl_kern_proc, "Return process table, no threads"); 2836 2837 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2838 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2839 sysctl_kern_proc_args, "Process argument list"); 2840 2841 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2842 sysctl_kern_proc_env, "Process environment"); 2843 2844 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2845 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2846 2847 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2848 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2849 2850 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2851 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2852 "Process syscall vector name (ABI type)"); 2853 2854 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2855 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2856 2857 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2858 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2859 2860 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2861 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2862 2863 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2864 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2865 2866 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2867 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2868 2869 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2870 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2871 2872 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2873 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2874 2875 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2876 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2877 2878 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2879 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2880 "Return process table, no threads"); 2881 2882 #ifdef COMPAT_FREEBSD7 2883 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2884 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2885 #endif 2886 2887 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2888 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2889 2890 #if defined(STACK) || defined(DDB) 2891 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2892 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2893 #endif 2894 2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2896 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2897 2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2899 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2900 "Process resource limits"); 2901 2902 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2903 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2904 "Process ps_strings location"); 2905 2906 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2907 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2908 2909 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2910 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2911 "Process binary osreldate"); 2912 2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2914 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2915 "Process signal trampoline location"); 2916 2917 int allproc_gen; 2918 2919 void 2920 stop_all_proc(void) 2921 { 2922 struct proc *cp, *p; 2923 int r, gen; 2924 bool restart, seen_stopped, seen_exiting, stopped_some; 2925 2926 cp = curproc; 2927 /* 2928 * stop_all_proc() assumes that all process which have 2929 * usermode must be stopped, except current process, for 2930 * obvious reasons. Since other threads in the process 2931 * establishing global stop could unstop something, disable 2932 * calls from multithreaded processes as precaution. The 2933 * service must not be user-callable anyway. 2934 */ 2935 KASSERT((cp->p_flag & P_HADTHREADS) == 0 || 2936 (cp->p_flag & P_KTHREAD) != 0, ("mt stop_all_proc")); 2937 2938 allproc_loop: 2939 sx_xlock(&allproc_lock); 2940 gen = allproc_gen; 2941 seen_exiting = seen_stopped = stopped_some = restart = false; 2942 LIST_REMOVE(cp, p_list); 2943 LIST_INSERT_HEAD(&allproc, cp, p_list); 2944 for (;;) { 2945 p = LIST_NEXT(cp, p_list); 2946 if (p == NULL) 2947 break; 2948 LIST_REMOVE(cp, p_list); 2949 LIST_INSERT_AFTER(p, cp, p_list); 2950 PROC_LOCK(p); 2951 if ((p->p_flag & (P_KTHREAD | P_SYSTEM | 2952 P_TOTAL_STOP)) != 0) { 2953 PROC_UNLOCK(p); 2954 continue; 2955 } 2956 if ((p->p_flag & P_WEXIT) != 0) { 2957 seen_exiting = true; 2958 PROC_UNLOCK(p); 2959 continue; 2960 } 2961 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 2962 /* 2963 * Stopped processes are tolerated when there 2964 * are no other processes which might continue 2965 * them. P_STOPPED_SINGLE but not 2966 * P_TOTAL_STOP process still has at least one 2967 * thread running. 2968 */ 2969 seen_stopped = true; 2970 PROC_UNLOCK(p); 2971 continue; 2972 } 2973 _PHOLD(p); 2974 sx_xunlock(&allproc_lock); 2975 r = thread_single(p, SINGLE_ALLPROC); 2976 if (r != 0) 2977 restart = true; 2978 else 2979 stopped_some = true; 2980 _PRELE(p); 2981 PROC_UNLOCK(p); 2982 sx_xlock(&allproc_lock); 2983 } 2984 /* Catch forked children we did not see in iteration. */ 2985 if (gen != allproc_gen) 2986 restart = true; 2987 sx_xunlock(&allproc_lock); 2988 if (restart || stopped_some || seen_exiting || seen_stopped) { 2989 kern_yield(PRI_USER); 2990 goto allproc_loop; 2991 } 2992 } 2993 2994 void 2995 resume_all_proc(void) 2996 { 2997 struct proc *cp, *p; 2998 2999 cp = curproc; 3000 sx_xlock(&allproc_lock); 3001 LIST_REMOVE(cp, p_list); 3002 LIST_INSERT_HEAD(&allproc, cp, p_list); 3003 for (;;) { 3004 p = LIST_NEXT(cp, p_list); 3005 if (p == NULL) 3006 break; 3007 LIST_REMOVE(cp, p_list); 3008 LIST_INSERT_AFTER(p, cp, p_list); 3009 PROC_LOCK(p); 3010 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3011 sx_xunlock(&allproc_lock); 3012 _PHOLD(p); 3013 thread_single_end(p, SINGLE_ALLPROC); 3014 _PRELE(p); 3015 PROC_UNLOCK(p); 3016 sx_xlock(&allproc_lock); 3017 } else { 3018 PROC_UNLOCK(p); 3019 } 3020 } 3021 sx_xunlock(&allproc_lock); 3022 } 3023 3024 #define TOTAL_STOP_DEBUG 1 3025 #ifdef TOTAL_STOP_DEBUG 3026 volatile static int ap_resume; 3027 #include <sys/mount.h> 3028 3029 static int 3030 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3031 { 3032 int error, val; 3033 3034 val = 0; 3035 ap_resume = 0; 3036 error = sysctl_handle_int(oidp, &val, 0, req); 3037 if (error != 0 || req->newptr == NULL) 3038 return (error); 3039 if (val != 0) { 3040 stop_all_proc(); 3041 syncer_suspend(); 3042 while (ap_resume == 0) 3043 ; 3044 syncer_resume(); 3045 resume_all_proc(); 3046 } 3047 return (0); 3048 } 3049 3050 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3051 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3052 sysctl_debug_stop_all_proc, "I", 3053 ""); 3054 #endif 3055