1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 static int vmmap_skip_res_cnt = 0; 145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 146 &vmmap_skip_res_cnt, 0, 147 "Skip calculation of the pages resident count in kern.proc.vmmap"); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 cv_init(&p->p_dbgwait, "dbgwait"); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(struct proc *p) 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 PROC_LOCK_ASSERT(p, MA_OWNED); 271 for (; p != curproc; p = proc_realparent(p)) { 272 if (p->p_pid == 0) 273 return (0); 274 } 275 return (1); 276 } 277 278 struct proc * 279 pfind_locked(pid_t pid) 280 { 281 struct proc *p; 282 283 sx_assert(&allproc_lock, SX_LOCKED); 284 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 285 if (p->p_pid == pid) { 286 PROC_LOCK(p); 287 if (p->p_state == PRS_NEW) { 288 PROC_UNLOCK(p); 289 p = NULL; 290 } 291 break; 292 } 293 } 294 return (p); 295 } 296 297 /* 298 * Locate a process by number; return only "live" processes -- i.e., neither 299 * zombies nor newly born but incompletely initialized processes. By not 300 * returning processes in the PRS_NEW state, we allow callers to avoid 301 * testing for that condition to avoid dereferencing p_ucred, et al. 302 */ 303 struct proc * 304 pfind(pid_t pid) 305 { 306 struct proc *p; 307 308 sx_slock(&allproc_lock); 309 p = pfind_locked(pid); 310 sx_sunlock(&allproc_lock); 311 return (p); 312 } 313 314 static struct proc * 315 pfind_tid_locked(pid_t tid) 316 { 317 struct proc *p; 318 struct thread *td; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 FOREACH_PROC_IN_SYSTEM(p) { 322 PROC_LOCK(p); 323 if (p->p_state == PRS_NEW) { 324 PROC_UNLOCK(p); 325 continue; 326 } 327 FOREACH_THREAD_IN_PROC(p, td) { 328 if (td->td_tid == tid) 329 goto found; 330 } 331 PROC_UNLOCK(p); 332 } 333 found: 334 return (p); 335 } 336 337 /* 338 * Locate a process group by number. 339 * The caller must hold proctree_lock. 340 */ 341 struct pgrp * 342 pgfind(pgid) 343 register pid_t pgid; 344 { 345 register struct pgrp *pgrp; 346 347 sx_assert(&proctree_lock, SX_LOCKED); 348 349 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 350 if (pgrp->pg_id == pgid) { 351 PGRP_LOCK(pgrp); 352 return (pgrp); 353 } 354 } 355 return (NULL); 356 } 357 358 /* 359 * Locate process and do additional manipulations, depending on flags. 360 */ 361 int 362 pget(pid_t pid, int flags, struct proc **pp) 363 { 364 struct proc *p; 365 int error; 366 367 sx_slock(&allproc_lock); 368 if (pid <= PID_MAX) { 369 p = pfind_locked(pid); 370 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 371 p = zpfind_locked(pid); 372 } else if ((flags & PGET_NOTID) == 0) { 373 p = pfind_tid_locked(pid); 374 } else { 375 p = NULL; 376 } 377 sx_sunlock(&allproc_lock); 378 if (p == NULL) 379 return (ESRCH); 380 if ((flags & PGET_CANSEE) != 0) { 381 error = p_cansee(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_CANDEBUG) != 0) { 386 error = p_candebug(curthread, p); 387 if (error != 0) 388 goto errout; 389 } 390 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 391 error = EPERM; 392 goto errout; 393 } 394 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 395 error = ESRCH; 396 goto errout; 397 } 398 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 399 /* 400 * XXXRW: Not clear ESRCH is the right error during proc 401 * execve(). 402 */ 403 error = ESRCH; 404 goto errout; 405 } 406 if ((flags & PGET_HOLD) != 0) { 407 _PHOLD(p); 408 PROC_UNLOCK(p); 409 } 410 *pp = p; 411 return (0); 412 errout: 413 PROC_UNLOCK(p); 414 return (error); 415 } 416 417 /* 418 * Create a new process group. 419 * pgid must be equal to the pid of p. 420 * Begin a new session if required. 421 */ 422 int 423 enterpgrp(p, pgid, pgrp, sess) 424 register struct proc *p; 425 pid_t pgid; 426 struct pgrp *pgrp; 427 struct session *sess; 428 { 429 430 sx_assert(&proctree_lock, SX_XLOCKED); 431 432 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 433 KASSERT(p->p_pid == pgid, 434 ("enterpgrp: new pgrp and pid != pgid")); 435 KASSERT(pgfind(pgid) == NULL, 436 ("enterpgrp: pgrp with pgid exists")); 437 KASSERT(!SESS_LEADER(p), 438 ("enterpgrp: session leader attempted setpgrp")); 439 440 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 441 442 if (sess != NULL) { 443 /* 444 * new session 445 */ 446 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 447 PROC_LOCK(p); 448 p->p_flag &= ~P_CONTROLT; 449 PROC_UNLOCK(p); 450 PGRP_LOCK(pgrp); 451 sess->s_leader = p; 452 sess->s_sid = p->p_pid; 453 refcount_init(&sess->s_count, 1); 454 sess->s_ttyvp = NULL; 455 sess->s_ttydp = NULL; 456 sess->s_ttyp = NULL; 457 bcopy(p->p_session->s_login, sess->s_login, 458 sizeof(sess->s_login)); 459 pgrp->pg_session = sess; 460 KASSERT(p == curproc, 461 ("enterpgrp: mksession and p != curproc")); 462 } else { 463 pgrp->pg_session = p->p_session; 464 sess_hold(pgrp->pg_session); 465 PGRP_LOCK(pgrp); 466 } 467 pgrp->pg_id = pgid; 468 LIST_INIT(&pgrp->pg_members); 469 470 /* 471 * As we have an exclusive lock of proctree_lock, 472 * this should not deadlock. 473 */ 474 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 475 pgrp->pg_jobc = 0; 476 SLIST_INIT(&pgrp->pg_sigiolst); 477 PGRP_UNLOCK(pgrp); 478 479 doenterpgrp(p, pgrp); 480 481 return (0); 482 } 483 484 /* 485 * Move p to an existing process group 486 */ 487 int 488 enterthispgrp(p, pgrp) 489 register struct proc *p; 490 struct pgrp *pgrp; 491 { 492 493 sx_assert(&proctree_lock, SX_XLOCKED); 494 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 496 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 498 KASSERT(pgrp->pg_session == p->p_session, 499 ("%s: pgrp's session %p, p->p_session %p.\n", 500 __func__, 501 pgrp->pg_session, 502 p->p_session)); 503 KASSERT(pgrp != p->p_pgrp, 504 ("%s: p belongs to pgrp.", __func__)); 505 506 doenterpgrp(p, pgrp); 507 508 return (0); 509 } 510 511 /* 512 * Move p to a process group 513 */ 514 static void 515 doenterpgrp(p, pgrp) 516 struct proc *p; 517 struct pgrp *pgrp; 518 { 519 struct pgrp *savepgrp; 520 521 sx_assert(&proctree_lock, SX_XLOCKED); 522 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 524 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 525 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 526 527 savepgrp = p->p_pgrp; 528 529 /* 530 * Adjust eligibility of affected pgrps to participate in job control. 531 * Increment eligibility counts before decrementing, otherwise we 532 * could reach 0 spuriously during the first call. 533 */ 534 fixjobc(p, pgrp, 1); 535 fixjobc(p, p->p_pgrp, 0); 536 537 PGRP_LOCK(pgrp); 538 PGRP_LOCK(savepgrp); 539 PROC_LOCK(p); 540 LIST_REMOVE(p, p_pglist); 541 p->p_pgrp = pgrp; 542 PROC_UNLOCK(p); 543 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 544 PGRP_UNLOCK(savepgrp); 545 PGRP_UNLOCK(pgrp); 546 if (LIST_EMPTY(&savepgrp->pg_members)) 547 pgdelete(savepgrp); 548 } 549 550 /* 551 * remove process from process group 552 */ 553 int 554 leavepgrp(p) 555 register struct proc *p; 556 { 557 struct pgrp *savepgrp; 558 559 sx_assert(&proctree_lock, SX_XLOCKED); 560 savepgrp = p->p_pgrp; 561 PGRP_LOCK(savepgrp); 562 PROC_LOCK(p); 563 LIST_REMOVE(p, p_pglist); 564 p->p_pgrp = NULL; 565 PROC_UNLOCK(p); 566 PGRP_UNLOCK(savepgrp); 567 if (LIST_EMPTY(&savepgrp->pg_members)) 568 pgdelete(savepgrp); 569 return (0); 570 } 571 572 /* 573 * delete a process group 574 */ 575 static void 576 pgdelete(pgrp) 577 register struct pgrp *pgrp; 578 { 579 struct session *savesess; 580 struct tty *tp; 581 582 sx_assert(&proctree_lock, SX_XLOCKED); 583 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 584 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 585 586 /* 587 * Reset any sigio structures pointing to us as a result of 588 * F_SETOWN with our pgid. 589 */ 590 funsetownlst(&pgrp->pg_sigiolst); 591 592 PGRP_LOCK(pgrp); 593 tp = pgrp->pg_session->s_ttyp; 594 LIST_REMOVE(pgrp, pg_hash); 595 savesess = pgrp->pg_session; 596 PGRP_UNLOCK(pgrp); 597 598 /* Remove the reference to the pgrp before deallocating it. */ 599 if (tp != NULL) { 600 tty_lock(tp); 601 tty_rel_pgrp(tp, pgrp); 602 } 603 604 mtx_destroy(&pgrp->pg_mtx); 605 free(pgrp, M_PGRP); 606 sess_release(savesess); 607 } 608 609 static void 610 pgadjustjobc(pgrp, entering) 611 struct pgrp *pgrp; 612 int entering; 613 { 614 615 PGRP_LOCK(pgrp); 616 if (entering) 617 pgrp->pg_jobc++; 618 else { 619 --pgrp->pg_jobc; 620 if (pgrp->pg_jobc == 0) 621 orphanpg(pgrp); 622 } 623 PGRP_UNLOCK(pgrp); 624 } 625 626 /* 627 * Adjust pgrp jobc counters when specified process changes process group. 628 * We count the number of processes in each process group that "qualify" 629 * the group for terminal job control (those with a parent in a different 630 * process group of the same session). If that count reaches zero, the 631 * process group becomes orphaned. Check both the specified process' 632 * process group and that of its children. 633 * entering == 0 => p is leaving specified group. 634 * entering == 1 => p is entering specified group. 635 */ 636 void 637 fixjobc(p, pgrp, entering) 638 register struct proc *p; 639 register struct pgrp *pgrp; 640 int entering; 641 { 642 register struct pgrp *hispgrp; 643 register struct session *mysession; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(p, &p->p_children, p_sibling) { 665 hispgrp = p->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 PROC_LOCK(p); 670 if (p->p_state == PRS_ZOMBIE) { 671 PROC_UNLOCK(p); 672 continue; 673 } 674 PROC_UNLOCK(p); 675 pgadjustjobc(hispgrp, entering); 676 } 677 } 678 679 /* 680 * A process group has become orphaned; 681 * if there are any stopped processes in the group, 682 * hang-up all process in that group. 683 */ 684 static void 685 orphanpg(pg) 686 struct pgrp *pg; 687 { 688 register struct proc *p; 689 690 PGRP_LOCK_ASSERT(pg, MA_OWNED); 691 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 if (P_SHOULDSTOP(p)) { 695 PROC_UNLOCK(p); 696 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 697 PROC_LOCK(p); 698 kern_psignal(p, SIGHUP); 699 kern_psignal(p, SIGCONT); 700 PROC_UNLOCK(p); 701 } 702 return; 703 } 704 PROC_UNLOCK(p); 705 } 706 } 707 708 void 709 sess_hold(struct session *s) 710 { 711 712 refcount_acquire(&s->s_count); 713 } 714 715 void 716 sess_release(struct session *s) 717 { 718 719 if (refcount_release(&s->s_count)) { 720 if (s->s_ttyp != NULL) { 721 tty_lock(s->s_ttyp); 722 tty_rel_sess(s->s_ttyp, s); 723 } 724 mtx_destroy(&s->s_mtx); 725 free(s, M_SESSION); 726 } 727 } 728 729 #ifdef DDB 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 PROC_LOCK_ASSERT(p, MA_OWNED); 795 bzero(kp, sizeof(*kp)); 796 797 kp->ki_structsize = sizeof(*kp); 798 kp->ki_paddr = p; 799 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 800 kp->ki_args = p->p_args; 801 kp->ki_textvp = p->p_textvp; 802 #ifdef KTRACE 803 kp->ki_tracep = p->p_tracevp; 804 kp->ki_traceflag = p->p_traceflag; 805 #endif 806 kp->ki_fd = p->p_fd; 807 kp->ki_vmspace = p->p_vmspace; 808 kp->ki_flag = p->p_flag; 809 kp->ki_flag2 = p->p_flag2; 810 cred = p->p_ucred; 811 if (cred) { 812 kp->ki_uid = cred->cr_uid; 813 kp->ki_ruid = cred->cr_ruid; 814 kp->ki_svuid = cred->cr_svuid; 815 kp->ki_cr_flags = 0; 816 if (cred->cr_flags & CRED_FLAG_CAPMODE) 817 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 818 /* XXX bde doesn't like KI_NGROUPS */ 819 if (cred->cr_ngroups > KI_NGROUPS) { 820 kp->ki_ngroups = KI_NGROUPS; 821 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 822 } else 823 kp->ki_ngroups = cred->cr_ngroups; 824 bcopy(cred->cr_groups, kp->ki_groups, 825 kp->ki_ngroups * sizeof(gid_t)); 826 kp->ki_rgid = cred->cr_rgid; 827 kp->ki_svgid = cred->cr_svgid; 828 /* If jailed(cred), emulate the old P_JAILED flag. */ 829 if (jailed(cred)) { 830 kp->ki_flag |= P_JAILED; 831 /* If inside the jail, use 0 as a jail ID. */ 832 if (cred->cr_prison != curthread->td_ucred->cr_prison) 833 kp->ki_jid = cred->cr_prison->pr_id; 834 } 835 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 836 sizeof(kp->ki_loginclass)); 837 } 838 ps = p->p_sigacts; 839 if (ps) { 840 mtx_lock(&ps->ps_mtx); 841 kp->ki_sigignore = ps->ps_sigignore; 842 kp->ki_sigcatch = ps->ps_sigcatch; 843 mtx_unlock(&ps->ps_mtx); 844 } 845 if (p->p_state != PRS_NEW && 846 p->p_state != PRS_ZOMBIE && 847 p->p_vmspace != NULL) { 848 struct vmspace *vm = p->p_vmspace; 849 850 kp->ki_size = vm->vm_map.size; 851 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 852 FOREACH_THREAD_IN_PROC(p, td0) { 853 if (!TD_IS_SWAPPED(td0)) 854 kp->ki_rssize += td0->td_kstack_pages; 855 } 856 kp->ki_swrss = vm->vm_swrss; 857 kp->ki_tsize = vm->vm_tsize; 858 kp->ki_dsize = vm->vm_dsize; 859 kp->ki_ssize = vm->vm_ssize; 860 } else if (p->p_state == PRS_ZOMBIE) 861 kp->ki_stat = SZOMB; 862 if (kp->ki_flag & P_INMEM) 863 kp->ki_sflag = PS_INMEM; 864 else 865 kp->ki_sflag = 0; 866 /* Calculate legacy swtime as seconds since 'swtick'. */ 867 kp->ki_swtime = (ticks - p->p_swtick) / hz; 868 kp->ki_pid = p->p_pid; 869 kp->ki_nice = p->p_nice; 870 kp->ki_fibnum = p->p_fibnum; 871 kp->ki_start = p->p_stats->p_start; 872 timevaladd(&kp->ki_start, &boottime); 873 PROC_SLOCK(p); 874 rufetch(p, &kp->ki_rusage); 875 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 876 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 877 PROC_SUNLOCK(p); 878 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 879 /* Some callers want child times in a single value. */ 880 kp->ki_childtime = kp->ki_childstime; 881 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 882 883 FOREACH_THREAD_IN_PROC(p, td0) 884 kp->ki_cow += td0->td_cow; 885 886 tp = NULL; 887 if (p->p_pgrp) { 888 kp->ki_pgid = p->p_pgrp->pg_id; 889 kp->ki_jobc = p->p_pgrp->pg_jobc; 890 sp = p->p_pgrp->pg_session; 891 892 if (sp != NULL) { 893 kp->ki_sid = sp->s_sid; 894 SESS_LOCK(sp); 895 strlcpy(kp->ki_login, sp->s_login, 896 sizeof(kp->ki_login)); 897 if (sp->s_ttyvp) 898 kp->ki_kiflag |= KI_CTTY; 899 if (SESS_LEADER(p)) 900 kp->ki_kiflag |= KI_SLEADER; 901 /* XXX proctree_lock */ 902 tp = sp->s_ttyp; 903 SESS_UNLOCK(sp); 904 } 905 } 906 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 907 kp->ki_tdev = tty_udev(tp); 908 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 909 if (tp->t_session) 910 kp->ki_tsid = tp->t_session->s_sid; 911 } else 912 kp->ki_tdev = NODEV; 913 if (p->p_comm[0] != '\0') 914 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 915 if (p->p_sysent && p->p_sysent->sv_name != NULL && 916 p->p_sysent->sv_name[0] != '\0') 917 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 918 kp->ki_siglist = p->p_siglist; 919 kp->ki_xstat = p->p_xstat; 920 kp->ki_acflag = p->p_acflag; 921 kp->ki_lock = p->p_lock; 922 if (p->p_pptr) 923 kp->ki_ppid = p->p_pptr->p_pid; 924 } 925 926 /* 927 * Fill in information that is thread specific. Must be called with 928 * target process locked. If 'preferthread' is set, overwrite certain 929 * process-related fields that are maintained for both threads and 930 * processes. 931 */ 932 static void 933 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 934 { 935 struct proc *p; 936 937 p = td->td_proc; 938 kp->ki_tdaddr = td; 939 PROC_LOCK_ASSERT(p, MA_OWNED); 940 941 if (preferthread) 942 PROC_SLOCK(p); 943 thread_lock(td); 944 if (td->td_wmesg != NULL) 945 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 946 else 947 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 948 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 949 if (TD_ON_LOCK(td)) { 950 kp->ki_kiflag |= KI_LOCKBLOCK; 951 strlcpy(kp->ki_lockname, td->td_lockname, 952 sizeof(kp->ki_lockname)); 953 } else { 954 kp->ki_kiflag &= ~KI_LOCKBLOCK; 955 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 956 } 957 958 if (p->p_state == PRS_NORMAL) { /* approximate. */ 959 if (TD_ON_RUNQ(td) || 960 TD_CAN_RUN(td) || 961 TD_IS_RUNNING(td)) { 962 kp->ki_stat = SRUN; 963 } else if (P_SHOULDSTOP(p)) { 964 kp->ki_stat = SSTOP; 965 } else if (TD_IS_SLEEPING(td)) { 966 kp->ki_stat = SSLEEP; 967 } else if (TD_ON_LOCK(td)) { 968 kp->ki_stat = SLOCK; 969 } else { 970 kp->ki_stat = SWAIT; 971 } 972 } else if (p->p_state == PRS_ZOMBIE) { 973 kp->ki_stat = SZOMB; 974 } else { 975 kp->ki_stat = SIDL; 976 } 977 978 /* Things in the thread */ 979 kp->ki_wchan = td->td_wchan; 980 kp->ki_pri.pri_level = td->td_priority; 981 kp->ki_pri.pri_native = td->td_base_pri; 982 kp->ki_lastcpu = td->td_lastcpu; 983 kp->ki_oncpu = td->td_oncpu; 984 kp->ki_tdflags = td->td_flags; 985 kp->ki_tid = td->td_tid; 986 kp->ki_numthreads = p->p_numthreads; 987 kp->ki_pcb = td->td_pcb; 988 kp->ki_kstack = (void *)td->td_kstack; 989 kp->ki_slptime = (ticks - td->td_slptick) / hz; 990 kp->ki_pri.pri_class = td->td_pri_class; 991 kp->ki_pri.pri_user = td->td_user_pri; 992 993 if (preferthread) { 994 rufetchtd(td, &kp->ki_rusage); 995 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 996 kp->ki_pctcpu = sched_pctcpu(td); 997 kp->ki_estcpu = td->td_estcpu; 998 kp->ki_cow = td->td_cow; 999 } 1000 1001 /* We can't get this anymore but ps etc never used it anyway. */ 1002 kp->ki_rqindex = 0; 1003 1004 if (preferthread) 1005 kp->ki_siglist = td->td_siglist; 1006 kp->ki_sigmask = td->td_sigmask; 1007 thread_unlock(td); 1008 if (preferthread) 1009 PROC_SUNLOCK(p); 1010 } 1011 1012 /* 1013 * Fill in a kinfo_proc structure for the specified process. 1014 * Must be called with the target process locked. 1015 */ 1016 void 1017 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1018 { 1019 1020 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1021 1022 fill_kinfo_proc_only(p, kp); 1023 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1024 fill_kinfo_aggregate(p, kp); 1025 } 1026 1027 struct pstats * 1028 pstats_alloc(void) 1029 { 1030 1031 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1032 } 1033 1034 /* 1035 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1036 */ 1037 void 1038 pstats_fork(struct pstats *src, struct pstats *dst) 1039 { 1040 1041 bzero(&dst->pstat_startzero, 1042 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1043 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1044 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1045 } 1046 1047 void 1048 pstats_free(struct pstats *ps) 1049 { 1050 1051 free(ps, M_SUBPROC); 1052 } 1053 1054 static struct proc * 1055 zpfind_locked(pid_t pid) 1056 { 1057 struct proc *p; 1058 1059 sx_assert(&allproc_lock, SX_LOCKED); 1060 LIST_FOREACH(p, &zombproc, p_list) { 1061 if (p->p_pid == pid) { 1062 PROC_LOCK(p); 1063 break; 1064 } 1065 } 1066 return (p); 1067 } 1068 1069 /* 1070 * Locate a zombie process by number 1071 */ 1072 struct proc * 1073 zpfind(pid_t pid) 1074 { 1075 struct proc *p; 1076 1077 sx_slock(&allproc_lock); 1078 p = zpfind_locked(pid); 1079 sx_sunlock(&allproc_lock); 1080 return (p); 1081 } 1082 1083 #ifdef COMPAT_FREEBSD32 1084 1085 /* 1086 * This function is typically used to copy out the kernel address, so 1087 * it can be replaced by assignment of zero. 1088 */ 1089 static inline uint32_t 1090 ptr32_trim(void *ptr) 1091 { 1092 uintptr_t uptr; 1093 1094 uptr = (uintptr_t)ptr; 1095 return ((uptr > UINT_MAX) ? 0 : uptr); 1096 } 1097 1098 #define PTRTRIM_CP(src,dst,fld) \ 1099 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1100 1101 static void 1102 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1103 { 1104 int i; 1105 1106 bzero(ki32, sizeof(struct kinfo_proc32)); 1107 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1108 CP(*ki, *ki32, ki_layout); 1109 PTRTRIM_CP(*ki, *ki32, ki_args); 1110 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1111 PTRTRIM_CP(*ki, *ki32, ki_addr); 1112 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1113 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1114 PTRTRIM_CP(*ki, *ki32, ki_fd); 1115 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1116 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1117 CP(*ki, *ki32, ki_pid); 1118 CP(*ki, *ki32, ki_ppid); 1119 CP(*ki, *ki32, ki_pgid); 1120 CP(*ki, *ki32, ki_tpgid); 1121 CP(*ki, *ki32, ki_sid); 1122 CP(*ki, *ki32, ki_tsid); 1123 CP(*ki, *ki32, ki_jobc); 1124 CP(*ki, *ki32, ki_tdev); 1125 CP(*ki, *ki32, ki_siglist); 1126 CP(*ki, *ki32, ki_sigmask); 1127 CP(*ki, *ki32, ki_sigignore); 1128 CP(*ki, *ki32, ki_sigcatch); 1129 CP(*ki, *ki32, ki_uid); 1130 CP(*ki, *ki32, ki_ruid); 1131 CP(*ki, *ki32, ki_svuid); 1132 CP(*ki, *ki32, ki_rgid); 1133 CP(*ki, *ki32, ki_svgid); 1134 CP(*ki, *ki32, ki_ngroups); 1135 for (i = 0; i < KI_NGROUPS; i++) 1136 CP(*ki, *ki32, ki_groups[i]); 1137 CP(*ki, *ki32, ki_size); 1138 CP(*ki, *ki32, ki_rssize); 1139 CP(*ki, *ki32, ki_swrss); 1140 CP(*ki, *ki32, ki_tsize); 1141 CP(*ki, *ki32, ki_dsize); 1142 CP(*ki, *ki32, ki_ssize); 1143 CP(*ki, *ki32, ki_xstat); 1144 CP(*ki, *ki32, ki_acflag); 1145 CP(*ki, *ki32, ki_pctcpu); 1146 CP(*ki, *ki32, ki_estcpu); 1147 CP(*ki, *ki32, ki_slptime); 1148 CP(*ki, *ki32, ki_swtime); 1149 CP(*ki, *ki32, ki_cow); 1150 CP(*ki, *ki32, ki_runtime); 1151 TV_CP(*ki, *ki32, ki_start); 1152 TV_CP(*ki, *ki32, ki_childtime); 1153 CP(*ki, *ki32, ki_flag); 1154 CP(*ki, *ki32, ki_kiflag); 1155 CP(*ki, *ki32, ki_traceflag); 1156 CP(*ki, *ki32, ki_stat); 1157 CP(*ki, *ki32, ki_nice); 1158 CP(*ki, *ki32, ki_lock); 1159 CP(*ki, *ki32, ki_rqindex); 1160 CP(*ki, *ki32, ki_oncpu); 1161 CP(*ki, *ki32, ki_lastcpu); 1162 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1163 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1164 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1165 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1166 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1167 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1168 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1169 CP(*ki, *ki32, ki_flag2); 1170 CP(*ki, *ki32, ki_fibnum); 1171 CP(*ki, *ki32, ki_cr_flags); 1172 CP(*ki, *ki32, ki_jid); 1173 CP(*ki, *ki32, ki_numthreads); 1174 CP(*ki, *ki32, ki_tid); 1175 CP(*ki, *ki32, ki_pri); 1176 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1177 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1178 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1179 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1180 PTRTRIM_CP(*ki, *ki32, ki_udata); 1181 CP(*ki, *ki32, ki_sflag); 1182 CP(*ki, *ki32, ki_tdflags); 1183 } 1184 #endif 1185 1186 int 1187 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1188 { 1189 struct thread *td; 1190 struct kinfo_proc ki; 1191 #ifdef COMPAT_FREEBSD32 1192 struct kinfo_proc32 ki32; 1193 #endif 1194 int error; 1195 1196 PROC_LOCK_ASSERT(p, MA_OWNED); 1197 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1198 1199 error = 0; 1200 fill_kinfo_proc(p, &ki); 1201 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1202 #ifdef COMPAT_FREEBSD32 1203 if ((flags & KERN_PROC_MASK32) != 0) { 1204 freebsd32_kinfo_proc_out(&ki, &ki32); 1205 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1206 } else 1207 #endif 1208 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1209 } else { 1210 FOREACH_THREAD_IN_PROC(p, td) { 1211 fill_kinfo_thread(td, &ki, 1); 1212 #ifdef COMPAT_FREEBSD32 1213 if ((flags & KERN_PROC_MASK32) != 0) { 1214 freebsd32_kinfo_proc_out(&ki, &ki32); 1215 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1216 } else 1217 #endif 1218 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1219 if (error) 1220 break; 1221 } 1222 } 1223 PROC_UNLOCK(p); 1224 return (error); 1225 } 1226 1227 static int 1228 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1229 int doingzomb) 1230 { 1231 struct sbuf sb; 1232 struct kinfo_proc ki; 1233 struct proc *np; 1234 int error, error2; 1235 pid_t pid; 1236 1237 pid = p->p_pid; 1238 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1239 error = kern_proc_out(p, &sb, flags); 1240 error2 = sbuf_finish(&sb); 1241 sbuf_delete(&sb); 1242 if (error != 0) 1243 return (error); 1244 else if (error2 != 0) 1245 return (error2); 1246 if (doingzomb) 1247 np = zpfind(pid); 1248 else { 1249 if (pid == 0) 1250 return (0); 1251 np = pfind(pid); 1252 } 1253 if (np == NULL) 1254 return (ESRCH); 1255 if (np != p) { 1256 PROC_UNLOCK(np); 1257 return (ESRCH); 1258 } 1259 PROC_UNLOCK(np); 1260 return (0); 1261 } 1262 1263 static int 1264 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1265 { 1266 int *name = (int *)arg1; 1267 u_int namelen = arg2; 1268 struct proc *p; 1269 int flags, doingzomb, oid_number; 1270 int error = 0; 1271 1272 oid_number = oidp->oid_number; 1273 if (oid_number != KERN_PROC_ALL && 1274 (oid_number & KERN_PROC_INC_THREAD) == 0) 1275 flags = KERN_PROC_NOTHREADS; 1276 else { 1277 flags = 0; 1278 oid_number &= ~KERN_PROC_INC_THREAD; 1279 } 1280 #ifdef COMPAT_FREEBSD32 1281 if (req->flags & SCTL_MASK32) 1282 flags |= KERN_PROC_MASK32; 1283 #endif 1284 if (oid_number == KERN_PROC_PID) { 1285 if (namelen != 1) 1286 return (EINVAL); 1287 error = sysctl_wire_old_buffer(req, 0); 1288 if (error) 1289 return (error); 1290 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1291 if (error != 0) 1292 return (error); 1293 error = sysctl_out_proc(p, req, flags, 0); 1294 return (error); 1295 } 1296 1297 switch (oid_number) { 1298 case KERN_PROC_ALL: 1299 if (namelen != 0) 1300 return (EINVAL); 1301 break; 1302 case KERN_PROC_PROC: 1303 if (namelen != 0 && namelen != 1) 1304 return (EINVAL); 1305 break; 1306 default: 1307 if (namelen != 1) 1308 return (EINVAL); 1309 break; 1310 } 1311 1312 if (!req->oldptr) { 1313 /* overestimate by 5 procs */ 1314 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1315 if (error) 1316 return (error); 1317 } 1318 error = sysctl_wire_old_buffer(req, 0); 1319 if (error != 0) 1320 return (error); 1321 sx_slock(&allproc_lock); 1322 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1323 if (!doingzomb) 1324 p = LIST_FIRST(&allproc); 1325 else 1326 p = LIST_FIRST(&zombproc); 1327 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1328 /* 1329 * Skip embryonic processes. 1330 */ 1331 PROC_LOCK(p); 1332 if (p->p_state == PRS_NEW) { 1333 PROC_UNLOCK(p); 1334 continue; 1335 } 1336 KASSERT(p->p_ucred != NULL, 1337 ("process credential is NULL for non-NEW proc")); 1338 /* 1339 * Show a user only appropriate processes. 1340 */ 1341 if (p_cansee(curthread, p)) { 1342 PROC_UNLOCK(p); 1343 continue; 1344 } 1345 /* 1346 * TODO - make more efficient (see notes below). 1347 * do by session. 1348 */ 1349 switch (oid_number) { 1350 1351 case KERN_PROC_GID: 1352 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1353 PROC_UNLOCK(p); 1354 continue; 1355 } 1356 break; 1357 1358 case KERN_PROC_PGRP: 1359 /* could do this by traversing pgrp */ 1360 if (p->p_pgrp == NULL || 1361 p->p_pgrp->pg_id != (pid_t)name[0]) { 1362 PROC_UNLOCK(p); 1363 continue; 1364 } 1365 break; 1366 1367 case KERN_PROC_RGID: 1368 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1369 PROC_UNLOCK(p); 1370 continue; 1371 } 1372 break; 1373 1374 case KERN_PROC_SESSION: 1375 if (p->p_session == NULL || 1376 p->p_session->s_sid != (pid_t)name[0]) { 1377 PROC_UNLOCK(p); 1378 continue; 1379 } 1380 break; 1381 1382 case KERN_PROC_TTY: 1383 if ((p->p_flag & P_CONTROLT) == 0 || 1384 p->p_session == NULL) { 1385 PROC_UNLOCK(p); 1386 continue; 1387 } 1388 /* XXX proctree_lock */ 1389 SESS_LOCK(p->p_session); 1390 if (p->p_session->s_ttyp == NULL || 1391 tty_udev(p->p_session->s_ttyp) != 1392 (dev_t)name[0]) { 1393 SESS_UNLOCK(p->p_session); 1394 PROC_UNLOCK(p); 1395 continue; 1396 } 1397 SESS_UNLOCK(p->p_session); 1398 break; 1399 1400 case KERN_PROC_UID: 1401 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1402 PROC_UNLOCK(p); 1403 continue; 1404 } 1405 break; 1406 1407 case KERN_PROC_RUID: 1408 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1409 PROC_UNLOCK(p); 1410 continue; 1411 } 1412 break; 1413 1414 case KERN_PROC_PROC: 1415 break; 1416 1417 default: 1418 break; 1419 1420 } 1421 1422 error = sysctl_out_proc(p, req, flags, doingzomb); 1423 if (error) { 1424 sx_sunlock(&allproc_lock); 1425 return (error); 1426 } 1427 } 1428 } 1429 sx_sunlock(&allproc_lock); 1430 return (0); 1431 } 1432 1433 struct pargs * 1434 pargs_alloc(int len) 1435 { 1436 struct pargs *pa; 1437 1438 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1439 M_WAITOK); 1440 refcount_init(&pa->ar_ref, 1); 1441 pa->ar_length = len; 1442 return (pa); 1443 } 1444 1445 static void 1446 pargs_free(struct pargs *pa) 1447 { 1448 1449 free(pa, M_PARGS); 1450 } 1451 1452 void 1453 pargs_hold(struct pargs *pa) 1454 { 1455 1456 if (pa == NULL) 1457 return; 1458 refcount_acquire(&pa->ar_ref); 1459 } 1460 1461 void 1462 pargs_drop(struct pargs *pa) 1463 { 1464 1465 if (pa == NULL) 1466 return; 1467 if (refcount_release(&pa->ar_ref)) 1468 pargs_free(pa); 1469 } 1470 1471 static int 1472 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1473 size_t len) 1474 { 1475 struct iovec iov; 1476 struct uio uio; 1477 1478 iov.iov_base = (caddr_t)buf; 1479 iov.iov_len = len; 1480 uio.uio_iov = &iov; 1481 uio.uio_iovcnt = 1; 1482 uio.uio_offset = offset; 1483 uio.uio_resid = (ssize_t)len; 1484 uio.uio_segflg = UIO_SYSSPACE; 1485 uio.uio_rw = UIO_READ; 1486 uio.uio_td = td; 1487 1488 return (proc_rwmem(p, &uio)); 1489 } 1490 1491 static int 1492 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1493 size_t len) 1494 { 1495 size_t i; 1496 int error; 1497 1498 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1499 /* 1500 * Reading the chunk may validly return EFAULT if the string is shorter 1501 * than the chunk and is aligned at the end of the page, assuming the 1502 * next page is not mapped. So if EFAULT is returned do a fallback to 1503 * one byte read loop. 1504 */ 1505 if (error == EFAULT) { 1506 for (i = 0; i < len; i++, buf++, sptr++) { 1507 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1508 if (error != 0) 1509 return (error); 1510 if (*buf == '\0') 1511 break; 1512 } 1513 error = 0; 1514 } 1515 return (error); 1516 } 1517 1518 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1519 1520 enum proc_vector_type { 1521 PROC_ARG, 1522 PROC_ENV, 1523 PROC_AUX, 1524 }; 1525 1526 #ifdef COMPAT_FREEBSD32 1527 static int 1528 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1529 size_t *vsizep, enum proc_vector_type type) 1530 { 1531 struct freebsd32_ps_strings pss; 1532 Elf32_Auxinfo aux; 1533 vm_offset_t vptr, ptr; 1534 uint32_t *proc_vector32; 1535 char **proc_vector; 1536 size_t vsize, size; 1537 int i, error; 1538 1539 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1540 &pss, sizeof(pss)); 1541 if (error != 0) 1542 return (error); 1543 switch (type) { 1544 case PROC_ARG: 1545 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1546 vsize = pss.ps_nargvstr; 1547 if (vsize > ARG_MAX) 1548 return (ENOEXEC); 1549 size = vsize * sizeof(int32_t); 1550 break; 1551 case PROC_ENV: 1552 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1553 vsize = pss.ps_nenvstr; 1554 if (vsize > ARG_MAX) 1555 return (ENOEXEC); 1556 size = vsize * sizeof(int32_t); 1557 break; 1558 case PROC_AUX: 1559 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1560 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1561 if (vptr % 4 != 0) 1562 return (ENOEXEC); 1563 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1564 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1565 if (error != 0) 1566 return (error); 1567 if (aux.a_type == AT_NULL) 1568 break; 1569 ptr += sizeof(aux); 1570 } 1571 if (aux.a_type != AT_NULL) 1572 return (ENOEXEC); 1573 vsize = i + 1; 1574 size = vsize * sizeof(aux); 1575 break; 1576 default: 1577 KASSERT(0, ("Wrong proc vector type: %d", type)); 1578 return (EINVAL); 1579 } 1580 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1581 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1582 if (error != 0) 1583 goto done; 1584 if (type == PROC_AUX) { 1585 *proc_vectorp = (char **)proc_vector32; 1586 *vsizep = vsize; 1587 return (0); 1588 } 1589 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1590 for (i = 0; i < (int)vsize; i++) 1591 proc_vector[i] = PTRIN(proc_vector32[i]); 1592 *proc_vectorp = proc_vector; 1593 *vsizep = vsize; 1594 done: 1595 free(proc_vector32, M_TEMP); 1596 return (error); 1597 } 1598 #endif 1599 1600 static int 1601 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1602 size_t *vsizep, enum proc_vector_type type) 1603 { 1604 struct ps_strings pss; 1605 Elf_Auxinfo aux; 1606 vm_offset_t vptr, ptr; 1607 char **proc_vector; 1608 size_t vsize, size; 1609 int error, i; 1610 1611 #ifdef COMPAT_FREEBSD32 1612 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1613 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1614 #endif 1615 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1616 &pss, sizeof(pss)); 1617 if (error != 0) 1618 return (error); 1619 switch (type) { 1620 case PROC_ARG: 1621 vptr = (vm_offset_t)pss.ps_argvstr; 1622 vsize = pss.ps_nargvstr; 1623 if (vsize > ARG_MAX) 1624 return (ENOEXEC); 1625 size = vsize * sizeof(char *); 1626 break; 1627 case PROC_ENV: 1628 vptr = (vm_offset_t)pss.ps_envstr; 1629 vsize = pss.ps_nenvstr; 1630 if (vsize > ARG_MAX) 1631 return (ENOEXEC); 1632 size = vsize * sizeof(char *); 1633 break; 1634 case PROC_AUX: 1635 /* 1636 * The aux array is just above env array on the stack. Check 1637 * that the address is naturally aligned. 1638 */ 1639 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1640 * sizeof(char *); 1641 #if __ELF_WORD_SIZE == 64 1642 if (vptr % sizeof(uint64_t) != 0) 1643 #else 1644 if (vptr % sizeof(uint32_t) != 0) 1645 #endif 1646 return (ENOEXEC); 1647 /* 1648 * We count the array size reading the aux vectors from the 1649 * stack until AT_NULL vector is returned. So (to keep the code 1650 * simple) we read the process stack twice: the first time here 1651 * to find the size and the second time when copying the vectors 1652 * to the allocated proc_vector. 1653 */ 1654 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1655 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1656 if (error != 0) 1657 return (error); 1658 if (aux.a_type == AT_NULL) 1659 break; 1660 ptr += sizeof(aux); 1661 } 1662 /* 1663 * If the PROC_AUXV_MAX entries are iterated over, and we have 1664 * not reached AT_NULL, it is most likely we are reading wrong 1665 * data: either the process doesn't have auxv array or data has 1666 * been modified. Return the error in this case. 1667 */ 1668 if (aux.a_type != AT_NULL) 1669 return (ENOEXEC); 1670 vsize = i + 1; 1671 size = vsize * sizeof(aux); 1672 break; 1673 default: 1674 KASSERT(0, ("Wrong proc vector type: %d", type)); 1675 return (EINVAL); /* In case we are built without INVARIANTS. */ 1676 } 1677 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1678 if (proc_vector == NULL) 1679 return (ENOMEM); 1680 error = proc_read_mem(td, p, vptr, proc_vector, size); 1681 if (error != 0) { 1682 free(proc_vector, M_TEMP); 1683 return (error); 1684 } 1685 *proc_vectorp = proc_vector; 1686 *vsizep = vsize; 1687 1688 return (0); 1689 } 1690 1691 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1692 1693 static int 1694 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1695 enum proc_vector_type type) 1696 { 1697 size_t done, len, nchr, vsize; 1698 int error, i; 1699 char **proc_vector, *sptr; 1700 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1701 1702 PROC_ASSERT_HELD(p); 1703 1704 /* 1705 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1706 */ 1707 nchr = 2 * (PATH_MAX + ARG_MAX); 1708 1709 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1710 if (error != 0) 1711 return (error); 1712 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1713 /* 1714 * The program may have scribbled into its argv array, e.g. to 1715 * remove some arguments. If that has happened, break out 1716 * before trying to read from NULL. 1717 */ 1718 if (proc_vector[i] == NULL) 1719 break; 1720 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1721 error = proc_read_string(td, p, sptr, pss_string, 1722 sizeof(pss_string)); 1723 if (error != 0) 1724 goto done; 1725 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1726 if (done + len >= nchr) 1727 len = nchr - done - 1; 1728 sbuf_bcat(sb, pss_string, len); 1729 if (len != GET_PS_STRINGS_CHUNK_SZ) 1730 break; 1731 done += GET_PS_STRINGS_CHUNK_SZ; 1732 } 1733 sbuf_bcat(sb, "", 1); 1734 done += len + 1; 1735 } 1736 done: 1737 free(proc_vector, M_TEMP); 1738 return (error); 1739 } 1740 1741 int 1742 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1743 { 1744 1745 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1746 } 1747 1748 int 1749 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1750 { 1751 1752 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1753 } 1754 1755 int 1756 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1757 { 1758 size_t vsize, size; 1759 char **auxv; 1760 int error; 1761 1762 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1763 if (error == 0) { 1764 #ifdef COMPAT_FREEBSD32 1765 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1766 size = vsize * sizeof(Elf32_Auxinfo); 1767 else 1768 #endif 1769 size = vsize * sizeof(Elf_Auxinfo); 1770 error = sbuf_bcat(sb, auxv, size); 1771 free(auxv, M_TEMP); 1772 } 1773 return (error); 1774 } 1775 1776 /* 1777 * This sysctl allows a process to retrieve the argument list or process 1778 * title for another process without groping around in the address space 1779 * of the other process. It also allow a process to set its own "process 1780 * title to a string of its own choice. 1781 */ 1782 static int 1783 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1784 { 1785 int *name = (int *)arg1; 1786 u_int namelen = arg2; 1787 struct pargs *newpa, *pa; 1788 struct proc *p; 1789 struct sbuf sb; 1790 int flags, error = 0, error2; 1791 1792 if (namelen != 1) 1793 return (EINVAL); 1794 1795 flags = PGET_CANSEE; 1796 if (req->newptr != NULL) 1797 flags |= PGET_ISCURRENT; 1798 error = pget((pid_t)name[0], flags, &p); 1799 if (error) 1800 return (error); 1801 1802 pa = p->p_args; 1803 if (pa != NULL) { 1804 pargs_hold(pa); 1805 PROC_UNLOCK(p); 1806 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1807 pargs_drop(pa); 1808 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1809 _PHOLD(p); 1810 PROC_UNLOCK(p); 1811 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1812 error = proc_getargv(curthread, p, &sb); 1813 error2 = sbuf_finish(&sb); 1814 PRELE(p); 1815 sbuf_delete(&sb); 1816 if (error == 0 && error2 != 0) 1817 error = error2; 1818 } else { 1819 PROC_UNLOCK(p); 1820 } 1821 if (error != 0 || req->newptr == NULL) 1822 return (error); 1823 1824 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1825 return (ENOMEM); 1826 newpa = pargs_alloc(req->newlen); 1827 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1828 if (error != 0) { 1829 pargs_free(newpa); 1830 return (error); 1831 } 1832 PROC_LOCK(p); 1833 pa = p->p_args; 1834 p->p_args = newpa; 1835 PROC_UNLOCK(p); 1836 pargs_drop(pa); 1837 return (0); 1838 } 1839 1840 /* 1841 * This sysctl allows a process to retrieve environment of another process. 1842 */ 1843 static int 1844 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1845 { 1846 int *name = (int *)arg1; 1847 u_int namelen = arg2; 1848 struct proc *p; 1849 struct sbuf sb; 1850 int error, error2; 1851 1852 if (namelen != 1) 1853 return (EINVAL); 1854 1855 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1856 if (error != 0) 1857 return (error); 1858 if ((p->p_flag & P_SYSTEM) != 0) { 1859 PRELE(p); 1860 return (0); 1861 } 1862 1863 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1864 error = proc_getenvv(curthread, p, &sb); 1865 error2 = sbuf_finish(&sb); 1866 PRELE(p); 1867 sbuf_delete(&sb); 1868 return (error != 0 ? error : error2); 1869 } 1870 1871 /* 1872 * This sysctl allows a process to retrieve ELF auxiliary vector of 1873 * another process. 1874 */ 1875 static int 1876 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1877 { 1878 int *name = (int *)arg1; 1879 u_int namelen = arg2; 1880 struct proc *p; 1881 struct sbuf sb; 1882 int error, error2; 1883 1884 if (namelen != 1) 1885 return (EINVAL); 1886 1887 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1888 if (error != 0) 1889 return (error); 1890 if ((p->p_flag & P_SYSTEM) != 0) { 1891 PRELE(p); 1892 return (0); 1893 } 1894 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1895 error = proc_getauxv(curthread, p, &sb); 1896 error2 = sbuf_finish(&sb); 1897 PRELE(p); 1898 sbuf_delete(&sb); 1899 return (error != 0 ? error : error2); 1900 } 1901 1902 /* 1903 * This sysctl allows a process to retrieve the path of the executable for 1904 * itself or another process. 1905 */ 1906 static int 1907 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1908 { 1909 pid_t *pidp = (pid_t *)arg1; 1910 unsigned int arglen = arg2; 1911 struct proc *p; 1912 struct vnode *vp; 1913 char *retbuf, *freebuf; 1914 int error; 1915 1916 if (arglen != 1) 1917 return (EINVAL); 1918 if (*pidp == -1) { /* -1 means this process */ 1919 p = req->td->td_proc; 1920 } else { 1921 error = pget(*pidp, PGET_CANSEE, &p); 1922 if (error != 0) 1923 return (error); 1924 } 1925 1926 vp = p->p_textvp; 1927 if (vp == NULL) { 1928 if (*pidp != -1) 1929 PROC_UNLOCK(p); 1930 return (0); 1931 } 1932 vref(vp); 1933 if (*pidp != -1) 1934 PROC_UNLOCK(p); 1935 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1936 vrele(vp); 1937 if (error) 1938 return (error); 1939 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1940 free(freebuf, M_TEMP); 1941 return (error); 1942 } 1943 1944 static int 1945 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1946 { 1947 struct proc *p; 1948 char *sv_name; 1949 int *name; 1950 int namelen; 1951 int error; 1952 1953 namelen = arg2; 1954 if (namelen != 1) 1955 return (EINVAL); 1956 1957 name = (int *)arg1; 1958 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1959 if (error != 0) 1960 return (error); 1961 sv_name = p->p_sysent->sv_name; 1962 PROC_UNLOCK(p); 1963 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1964 } 1965 1966 #ifdef KINFO_OVMENTRY_SIZE 1967 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1968 #endif 1969 1970 #ifdef COMPAT_FREEBSD7 1971 static int 1972 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1973 { 1974 vm_map_entry_t entry, tmp_entry; 1975 unsigned int last_timestamp; 1976 char *fullpath, *freepath; 1977 struct kinfo_ovmentry *kve; 1978 struct vattr va; 1979 struct ucred *cred; 1980 int error, *name; 1981 struct vnode *vp; 1982 struct proc *p; 1983 vm_map_t map; 1984 struct vmspace *vm; 1985 1986 name = (int *)arg1; 1987 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1988 if (error != 0) 1989 return (error); 1990 vm = vmspace_acquire_ref(p); 1991 if (vm == NULL) { 1992 PRELE(p); 1993 return (ESRCH); 1994 } 1995 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1996 1997 map = &vm->vm_map; 1998 vm_map_lock_read(map); 1999 for (entry = map->header.next; entry != &map->header; 2000 entry = entry->next) { 2001 vm_object_t obj, tobj, lobj; 2002 vm_offset_t addr; 2003 2004 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2005 continue; 2006 2007 bzero(kve, sizeof(*kve)); 2008 kve->kve_structsize = sizeof(*kve); 2009 2010 kve->kve_private_resident = 0; 2011 obj = entry->object.vm_object; 2012 if (obj != NULL) { 2013 VM_OBJECT_RLOCK(obj); 2014 if (obj->shadow_count == 1) 2015 kve->kve_private_resident = 2016 obj->resident_page_count; 2017 } 2018 kve->kve_resident = 0; 2019 addr = entry->start; 2020 while (addr < entry->end) { 2021 if (pmap_extract(map->pmap, addr)) 2022 kve->kve_resident++; 2023 addr += PAGE_SIZE; 2024 } 2025 2026 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2027 if (tobj != obj) 2028 VM_OBJECT_RLOCK(tobj); 2029 if (lobj != obj) 2030 VM_OBJECT_RUNLOCK(lobj); 2031 lobj = tobj; 2032 } 2033 2034 kve->kve_start = (void*)entry->start; 2035 kve->kve_end = (void*)entry->end; 2036 kve->kve_offset = (off_t)entry->offset; 2037 2038 if (entry->protection & VM_PROT_READ) 2039 kve->kve_protection |= KVME_PROT_READ; 2040 if (entry->protection & VM_PROT_WRITE) 2041 kve->kve_protection |= KVME_PROT_WRITE; 2042 if (entry->protection & VM_PROT_EXECUTE) 2043 kve->kve_protection |= KVME_PROT_EXEC; 2044 2045 if (entry->eflags & MAP_ENTRY_COW) 2046 kve->kve_flags |= KVME_FLAG_COW; 2047 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2048 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2049 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2050 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2051 2052 last_timestamp = map->timestamp; 2053 vm_map_unlock_read(map); 2054 2055 kve->kve_fileid = 0; 2056 kve->kve_fsid = 0; 2057 freepath = NULL; 2058 fullpath = ""; 2059 if (lobj) { 2060 vp = NULL; 2061 switch (lobj->type) { 2062 case OBJT_DEFAULT: 2063 kve->kve_type = KVME_TYPE_DEFAULT; 2064 break; 2065 case OBJT_VNODE: 2066 kve->kve_type = KVME_TYPE_VNODE; 2067 vp = lobj->handle; 2068 vref(vp); 2069 break; 2070 case OBJT_SWAP: 2071 kve->kve_type = KVME_TYPE_SWAP; 2072 break; 2073 case OBJT_DEVICE: 2074 kve->kve_type = KVME_TYPE_DEVICE; 2075 break; 2076 case OBJT_PHYS: 2077 kve->kve_type = KVME_TYPE_PHYS; 2078 break; 2079 case OBJT_DEAD: 2080 kve->kve_type = KVME_TYPE_DEAD; 2081 break; 2082 case OBJT_SG: 2083 kve->kve_type = KVME_TYPE_SG; 2084 break; 2085 default: 2086 kve->kve_type = KVME_TYPE_UNKNOWN; 2087 break; 2088 } 2089 if (lobj != obj) 2090 VM_OBJECT_RUNLOCK(lobj); 2091 2092 kve->kve_ref_count = obj->ref_count; 2093 kve->kve_shadow_count = obj->shadow_count; 2094 VM_OBJECT_RUNLOCK(obj); 2095 if (vp != NULL) { 2096 vn_fullpath(curthread, vp, &fullpath, 2097 &freepath); 2098 cred = curthread->td_ucred; 2099 vn_lock(vp, LK_SHARED | LK_RETRY); 2100 if (VOP_GETATTR(vp, &va, cred) == 0) { 2101 kve->kve_fileid = va.va_fileid; 2102 kve->kve_fsid = va.va_fsid; 2103 } 2104 vput(vp); 2105 } 2106 } else { 2107 kve->kve_type = KVME_TYPE_NONE; 2108 kve->kve_ref_count = 0; 2109 kve->kve_shadow_count = 0; 2110 } 2111 2112 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2113 if (freepath != NULL) 2114 free(freepath, M_TEMP); 2115 2116 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2117 vm_map_lock_read(map); 2118 if (error) 2119 break; 2120 if (last_timestamp != map->timestamp) { 2121 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2122 entry = tmp_entry; 2123 } 2124 } 2125 vm_map_unlock_read(map); 2126 vmspace_free(vm); 2127 PRELE(p); 2128 free(kve, M_TEMP); 2129 return (error); 2130 } 2131 #endif /* COMPAT_FREEBSD7 */ 2132 2133 #ifdef KINFO_VMENTRY_SIZE 2134 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2135 #endif 2136 2137 static void 2138 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2139 struct kinfo_vmentry *kve) 2140 { 2141 vm_object_t obj, tobj; 2142 vm_page_t m, m_adv; 2143 vm_offset_t addr; 2144 vm_paddr_t locked_pa; 2145 vm_pindex_t pi, pi_adv, pindex; 2146 2147 locked_pa = 0; 2148 obj = entry->object.vm_object; 2149 addr = entry->start; 2150 m_adv = NULL; 2151 pi = OFF_TO_IDX(entry->offset); 2152 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2153 if (m_adv != NULL) { 2154 m = m_adv; 2155 } else { 2156 pi_adv = OFF_TO_IDX(entry->end - addr); 2157 pindex = pi; 2158 for (tobj = obj;; tobj = tobj->backing_object) { 2159 m = vm_page_find_least(tobj, pindex); 2160 if (m != NULL) { 2161 if (m->pindex == pindex) 2162 break; 2163 if (pi_adv > m->pindex - pindex) { 2164 pi_adv = m->pindex - pindex; 2165 m_adv = m; 2166 } 2167 } 2168 if (tobj->backing_object == NULL) 2169 goto next; 2170 pindex += OFF_TO_IDX(tobj-> 2171 backing_object_offset); 2172 } 2173 } 2174 m_adv = NULL; 2175 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2176 (addr & (pagesizes[1] - 1)) == 0 && 2177 (pmap_mincore(map->pmap, addr, &locked_pa) & 2178 MINCORE_SUPER) != 0) { 2179 kve->kve_flags |= KVME_FLAG_SUPER; 2180 pi_adv = OFF_TO_IDX(pagesizes[1]); 2181 } else { 2182 /* 2183 * We do not test the found page on validity. 2184 * Either the page is busy and being paged in, 2185 * or it was invalidated. The first case 2186 * should be counted as resident, the second 2187 * is not so clear; we do account both. 2188 */ 2189 pi_adv = 1; 2190 } 2191 kve->kve_resident += pi_adv; 2192 next:; 2193 } 2194 PA_UNLOCK_COND(locked_pa); 2195 } 2196 2197 /* 2198 * Must be called with the process locked and will return unlocked. 2199 */ 2200 int 2201 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2202 { 2203 vm_map_entry_t entry, tmp_entry; 2204 struct vattr va; 2205 vm_map_t map; 2206 vm_object_t obj, tobj, lobj; 2207 char *fullpath, *freepath; 2208 struct kinfo_vmentry *kve; 2209 struct ucred *cred; 2210 struct vnode *vp; 2211 struct vmspace *vm; 2212 vm_offset_t addr; 2213 unsigned int last_timestamp; 2214 int error; 2215 2216 PROC_LOCK_ASSERT(p, MA_OWNED); 2217 2218 _PHOLD(p); 2219 PROC_UNLOCK(p); 2220 vm = vmspace_acquire_ref(p); 2221 if (vm == NULL) { 2222 PRELE(p); 2223 return (ESRCH); 2224 } 2225 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2226 2227 error = 0; 2228 map = &vm->vm_map; 2229 vm_map_lock_read(map); 2230 for (entry = map->header.next; entry != &map->header; 2231 entry = entry->next) { 2232 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2233 continue; 2234 2235 addr = entry->end; 2236 bzero(kve, sizeof(*kve)); 2237 obj = entry->object.vm_object; 2238 if (obj != NULL) { 2239 for (tobj = obj; tobj != NULL; 2240 tobj = tobj->backing_object) { 2241 VM_OBJECT_RLOCK(tobj); 2242 lobj = tobj; 2243 } 2244 if (obj->backing_object == NULL) 2245 kve->kve_private_resident = 2246 obj->resident_page_count; 2247 if (!vmmap_skip_res_cnt) 2248 kern_proc_vmmap_resident(map, entry, kve); 2249 for (tobj = obj; tobj != NULL; 2250 tobj = tobj->backing_object) { 2251 if (tobj != obj && tobj != lobj) 2252 VM_OBJECT_RUNLOCK(tobj); 2253 } 2254 } else { 2255 lobj = NULL; 2256 } 2257 2258 kve->kve_start = entry->start; 2259 kve->kve_end = entry->end; 2260 kve->kve_offset = entry->offset; 2261 2262 if (entry->protection & VM_PROT_READ) 2263 kve->kve_protection |= KVME_PROT_READ; 2264 if (entry->protection & VM_PROT_WRITE) 2265 kve->kve_protection |= KVME_PROT_WRITE; 2266 if (entry->protection & VM_PROT_EXECUTE) 2267 kve->kve_protection |= KVME_PROT_EXEC; 2268 2269 if (entry->eflags & MAP_ENTRY_COW) 2270 kve->kve_flags |= KVME_FLAG_COW; 2271 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2272 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2273 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2274 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2275 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2276 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2277 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2278 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2279 2280 last_timestamp = map->timestamp; 2281 vm_map_unlock_read(map); 2282 2283 freepath = NULL; 2284 fullpath = ""; 2285 if (lobj != NULL) { 2286 vp = NULL; 2287 switch (lobj->type) { 2288 case OBJT_DEFAULT: 2289 kve->kve_type = KVME_TYPE_DEFAULT; 2290 break; 2291 case OBJT_VNODE: 2292 kve->kve_type = KVME_TYPE_VNODE; 2293 vp = lobj->handle; 2294 vref(vp); 2295 break; 2296 case OBJT_SWAP: 2297 kve->kve_type = KVME_TYPE_SWAP; 2298 break; 2299 case OBJT_DEVICE: 2300 kve->kve_type = KVME_TYPE_DEVICE; 2301 break; 2302 case OBJT_PHYS: 2303 kve->kve_type = KVME_TYPE_PHYS; 2304 break; 2305 case OBJT_DEAD: 2306 kve->kve_type = KVME_TYPE_DEAD; 2307 break; 2308 case OBJT_SG: 2309 kve->kve_type = KVME_TYPE_SG; 2310 break; 2311 case OBJT_MGTDEVICE: 2312 kve->kve_type = KVME_TYPE_MGTDEVICE; 2313 break; 2314 default: 2315 kve->kve_type = KVME_TYPE_UNKNOWN; 2316 break; 2317 } 2318 if (lobj != obj) 2319 VM_OBJECT_RUNLOCK(lobj); 2320 2321 kve->kve_ref_count = obj->ref_count; 2322 kve->kve_shadow_count = obj->shadow_count; 2323 VM_OBJECT_RUNLOCK(obj); 2324 if (vp != NULL) { 2325 vn_fullpath(curthread, vp, &fullpath, 2326 &freepath); 2327 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2328 cred = curthread->td_ucred; 2329 vn_lock(vp, LK_SHARED | LK_RETRY); 2330 if (VOP_GETATTR(vp, &va, cred) == 0) { 2331 kve->kve_vn_fileid = va.va_fileid; 2332 kve->kve_vn_fsid = va.va_fsid; 2333 kve->kve_vn_mode = 2334 MAKEIMODE(va.va_type, va.va_mode); 2335 kve->kve_vn_size = va.va_size; 2336 kve->kve_vn_rdev = va.va_rdev; 2337 kve->kve_status = KF_ATTR_VALID; 2338 } 2339 vput(vp); 2340 } 2341 } else { 2342 kve->kve_type = KVME_TYPE_NONE; 2343 kve->kve_ref_count = 0; 2344 kve->kve_shadow_count = 0; 2345 } 2346 2347 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2348 if (freepath != NULL) 2349 free(freepath, M_TEMP); 2350 2351 /* Pack record size down */ 2352 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2353 strlen(kve->kve_path) + 1; 2354 kve->kve_structsize = roundup(kve->kve_structsize, 2355 sizeof(uint64_t)); 2356 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2357 vm_map_lock_read(map); 2358 if (error) 2359 break; 2360 if (last_timestamp != map->timestamp) { 2361 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2362 entry = tmp_entry; 2363 } 2364 } 2365 vm_map_unlock_read(map); 2366 vmspace_free(vm); 2367 PRELE(p); 2368 free(kve, M_TEMP); 2369 return (error); 2370 } 2371 2372 static int 2373 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2374 { 2375 struct proc *p; 2376 struct sbuf sb; 2377 int error, error2, *name; 2378 2379 name = (int *)arg1; 2380 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2381 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2382 if (error != 0) { 2383 sbuf_delete(&sb); 2384 return (error); 2385 } 2386 error = kern_proc_vmmap_out(p, &sb); 2387 error2 = sbuf_finish(&sb); 2388 sbuf_delete(&sb); 2389 return (error != 0 ? error : error2); 2390 } 2391 2392 #if defined(STACK) || defined(DDB) 2393 static int 2394 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2395 { 2396 struct kinfo_kstack *kkstp; 2397 int error, i, *name, numthreads; 2398 lwpid_t *lwpidarray; 2399 struct thread *td; 2400 struct stack *st; 2401 struct sbuf sb; 2402 struct proc *p; 2403 2404 name = (int *)arg1; 2405 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2406 if (error != 0) 2407 return (error); 2408 2409 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2410 st = stack_create(); 2411 2412 lwpidarray = NULL; 2413 numthreads = 0; 2414 PROC_LOCK(p); 2415 repeat: 2416 if (numthreads < p->p_numthreads) { 2417 if (lwpidarray != NULL) { 2418 free(lwpidarray, M_TEMP); 2419 lwpidarray = NULL; 2420 } 2421 numthreads = p->p_numthreads; 2422 PROC_UNLOCK(p); 2423 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2424 M_WAITOK | M_ZERO); 2425 PROC_LOCK(p); 2426 goto repeat; 2427 } 2428 i = 0; 2429 2430 /* 2431 * XXXRW: During the below loop, execve(2) and countless other sorts 2432 * of changes could have taken place. Should we check to see if the 2433 * vmspace has been replaced, or the like, in order to prevent 2434 * giving a snapshot that spans, say, execve(2), with some threads 2435 * before and some after? Among other things, the credentials could 2436 * have changed, in which case the right to extract debug info might 2437 * no longer be assured. 2438 */ 2439 FOREACH_THREAD_IN_PROC(p, td) { 2440 KASSERT(i < numthreads, 2441 ("sysctl_kern_proc_kstack: numthreads")); 2442 lwpidarray[i] = td->td_tid; 2443 i++; 2444 } 2445 numthreads = i; 2446 for (i = 0; i < numthreads; i++) { 2447 td = thread_find(p, lwpidarray[i]); 2448 if (td == NULL) { 2449 continue; 2450 } 2451 bzero(kkstp, sizeof(*kkstp)); 2452 (void)sbuf_new(&sb, kkstp->kkst_trace, 2453 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2454 thread_lock(td); 2455 kkstp->kkst_tid = td->td_tid; 2456 if (TD_IS_SWAPPED(td)) 2457 kkstp->kkst_state = KKST_STATE_SWAPPED; 2458 else if (TD_IS_RUNNING(td)) 2459 kkstp->kkst_state = KKST_STATE_RUNNING; 2460 else { 2461 kkstp->kkst_state = KKST_STATE_STACKOK; 2462 stack_save_td(st, td); 2463 } 2464 thread_unlock(td); 2465 PROC_UNLOCK(p); 2466 stack_sbuf_print(&sb, st); 2467 sbuf_finish(&sb); 2468 sbuf_delete(&sb); 2469 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2470 PROC_LOCK(p); 2471 if (error) 2472 break; 2473 } 2474 _PRELE(p); 2475 PROC_UNLOCK(p); 2476 if (lwpidarray != NULL) 2477 free(lwpidarray, M_TEMP); 2478 stack_destroy(st); 2479 free(kkstp, M_TEMP); 2480 return (error); 2481 } 2482 #endif 2483 2484 /* 2485 * This sysctl allows a process to retrieve the full list of groups from 2486 * itself or another process. 2487 */ 2488 static int 2489 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2490 { 2491 pid_t *pidp = (pid_t *)arg1; 2492 unsigned int arglen = arg2; 2493 struct proc *p; 2494 struct ucred *cred; 2495 int error; 2496 2497 if (arglen != 1) 2498 return (EINVAL); 2499 if (*pidp == -1) { /* -1 means this process */ 2500 p = req->td->td_proc; 2501 } else { 2502 error = pget(*pidp, PGET_CANSEE, &p); 2503 if (error != 0) 2504 return (error); 2505 } 2506 2507 cred = crhold(p->p_ucred); 2508 if (*pidp != -1) 2509 PROC_UNLOCK(p); 2510 2511 error = SYSCTL_OUT(req, cred->cr_groups, 2512 cred->cr_ngroups * sizeof(gid_t)); 2513 crfree(cred); 2514 return (error); 2515 } 2516 2517 /* 2518 * This sysctl allows a process to retrieve or/and set the resource limit for 2519 * another process. 2520 */ 2521 static int 2522 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2523 { 2524 int *name = (int *)arg1; 2525 u_int namelen = arg2; 2526 struct rlimit rlim; 2527 struct proc *p; 2528 u_int which; 2529 int flags, error; 2530 2531 if (namelen != 2) 2532 return (EINVAL); 2533 2534 which = (u_int)name[1]; 2535 if (which >= RLIM_NLIMITS) 2536 return (EINVAL); 2537 2538 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2539 return (EINVAL); 2540 2541 flags = PGET_HOLD | PGET_NOTWEXIT; 2542 if (req->newptr != NULL) 2543 flags |= PGET_CANDEBUG; 2544 else 2545 flags |= PGET_CANSEE; 2546 error = pget((pid_t)name[0], flags, &p); 2547 if (error != 0) 2548 return (error); 2549 2550 /* 2551 * Retrieve limit. 2552 */ 2553 if (req->oldptr != NULL) { 2554 PROC_LOCK(p); 2555 lim_rlimit(p, which, &rlim); 2556 PROC_UNLOCK(p); 2557 } 2558 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2559 if (error != 0) 2560 goto errout; 2561 2562 /* 2563 * Set limit. 2564 */ 2565 if (req->newptr != NULL) { 2566 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2567 if (error == 0) 2568 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2569 } 2570 2571 errout: 2572 PRELE(p); 2573 return (error); 2574 } 2575 2576 /* 2577 * This sysctl allows a process to retrieve ps_strings structure location of 2578 * another process. 2579 */ 2580 static int 2581 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2582 { 2583 int *name = (int *)arg1; 2584 u_int namelen = arg2; 2585 struct proc *p; 2586 vm_offset_t ps_strings; 2587 int error; 2588 #ifdef COMPAT_FREEBSD32 2589 uint32_t ps_strings32; 2590 #endif 2591 2592 if (namelen != 1) 2593 return (EINVAL); 2594 2595 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2596 if (error != 0) 2597 return (error); 2598 #ifdef COMPAT_FREEBSD32 2599 if ((req->flags & SCTL_MASK32) != 0) { 2600 /* 2601 * We return 0 if the 32 bit emulation request is for a 64 bit 2602 * process. 2603 */ 2604 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2605 PTROUT(p->p_sysent->sv_psstrings) : 0; 2606 PROC_UNLOCK(p); 2607 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2608 return (error); 2609 } 2610 #endif 2611 ps_strings = p->p_sysent->sv_psstrings; 2612 PROC_UNLOCK(p); 2613 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2614 return (error); 2615 } 2616 2617 /* 2618 * This sysctl allows a process to retrieve umask of another process. 2619 */ 2620 static int 2621 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2622 { 2623 int *name = (int *)arg1; 2624 u_int namelen = arg2; 2625 struct proc *p; 2626 int error; 2627 u_short fd_cmask; 2628 2629 if (namelen != 1) 2630 return (EINVAL); 2631 2632 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2633 if (error != 0) 2634 return (error); 2635 2636 FILEDESC_SLOCK(p->p_fd); 2637 fd_cmask = p->p_fd->fd_cmask; 2638 FILEDESC_SUNLOCK(p->p_fd); 2639 PRELE(p); 2640 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2641 return (error); 2642 } 2643 2644 /* 2645 * This sysctl allows a process to set and retrieve binary osreldate of 2646 * another process. 2647 */ 2648 static int 2649 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2650 { 2651 int *name = (int *)arg1; 2652 u_int namelen = arg2; 2653 struct proc *p; 2654 int flags, error, osrel; 2655 2656 if (namelen != 1) 2657 return (EINVAL); 2658 2659 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2660 return (EINVAL); 2661 2662 flags = PGET_HOLD | PGET_NOTWEXIT; 2663 if (req->newptr != NULL) 2664 flags |= PGET_CANDEBUG; 2665 else 2666 flags |= PGET_CANSEE; 2667 error = pget((pid_t)name[0], flags, &p); 2668 if (error != 0) 2669 return (error); 2670 2671 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2672 if (error != 0) 2673 goto errout; 2674 2675 if (req->newptr != NULL) { 2676 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2677 if (error != 0) 2678 goto errout; 2679 if (osrel < 0) { 2680 error = EINVAL; 2681 goto errout; 2682 } 2683 p->p_osrel = osrel; 2684 } 2685 errout: 2686 PRELE(p); 2687 return (error); 2688 } 2689 2690 static int 2691 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2692 { 2693 int *name = (int *)arg1; 2694 u_int namelen = arg2; 2695 struct proc *p; 2696 struct kinfo_sigtramp kst; 2697 const struct sysentvec *sv; 2698 int error; 2699 #ifdef COMPAT_FREEBSD32 2700 struct kinfo_sigtramp32 kst32; 2701 #endif 2702 2703 if (namelen != 1) 2704 return (EINVAL); 2705 2706 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2707 if (error != 0) 2708 return (error); 2709 sv = p->p_sysent; 2710 #ifdef COMPAT_FREEBSD32 2711 if ((req->flags & SCTL_MASK32) != 0) { 2712 bzero(&kst32, sizeof(kst32)); 2713 if (SV_PROC_FLAG(p, SV_ILP32)) { 2714 if (sv->sv_sigcode_base != 0) { 2715 kst32.ksigtramp_start = sv->sv_sigcode_base; 2716 kst32.ksigtramp_end = sv->sv_sigcode_base + 2717 *sv->sv_szsigcode; 2718 } else { 2719 kst32.ksigtramp_start = sv->sv_psstrings - 2720 *sv->sv_szsigcode; 2721 kst32.ksigtramp_end = sv->sv_psstrings; 2722 } 2723 } 2724 PROC_UNLOCK(p); 2725 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2726 return (error); 2727 } 2728 #endif 2729 bzero(&kst, sizeof(kst)); 2730 if (sv->sv_sigcode_base != 0) { 2731 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2732 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2733 *sv->sv_szsigcode; 2734 } else { 2735 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2736 *sv->sv_szsigcode; 2737 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2738 } 2739 PROC_UNLOCK(p); 2740 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2741 return (error); 2742 } 2743 2744 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2745 2746 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2747 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2748 "Return entire process table"); 2749 2750 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2751 sysctl_kern_proc, "Process table"); 2752 2753 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2754 sysctl_kern_proc, "Process table"); 2755 2756 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2757 sysctl_kern_proc, "Process table"); 2758 2759 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2760 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2761 2762 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2763 sysctl_kern_proc, "Process table"); 2764 2765 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2766 sysctl_kern_proc, "Process table"); 2767 2768 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2769 sysctl_kern_proc, "Process table"); 2770 2771 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2772 sysctl_kern_proc, "Process table"); 2773 2774 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2775 sysctl_kern_proc, "Return process table, no threads"); 2776 2777 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2778 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2779 sysctl_kern_proc_args, "Process argument list"); 2780 2781 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2782 sysctl_kern_proc_env, "Process environment"); 2783 2784 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2785 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2786 2787 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2788 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2789 2790 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2791 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2792 "Process syscall vector name (ABI type)"); 2793 2794 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2795 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2796 2797 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2798 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2799 2800 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2801 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2802 2803 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2804 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2805 2806 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2807 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2808 2809 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2810 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2811 2812 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2813 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2814 2815 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2816 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2817 2818 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2819 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2820 "Return process table, no threads"); 2821 2822 #ifdef COMPAT_FREEBSD7 2823 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2824 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2825 #endif 2826 2827 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2828 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2829 2830 #if defined(STACK) || defined(DDB) 2831 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2832 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2833 #endif 2834 2835 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2836 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2837 2838 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2839 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2840 "Process resource limits"); 2841 2842 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2843 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2844 "Process ps_strings location"); 2845 2846 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2847 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2848 2849 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2850 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2851 "Process binary osreldate"); 2852 2853 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2854 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2855 "Process signal trampoline location"); 2856