xref: /freebsd/sys/kern/kern_proc.c (revision 9f23cbd6cae82fd77edfad7173432fa8dccd0a95)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/fcntl.h>
49 #include <sys/jail.h>
50 #include <sys/kernel.h>
51 #include <sys/limits.h>
52 #include <sys/lock.h>
53 #include <sys/loginclass.h>
54 #include <sys/malloc.h>
55 #include <sys/mman.h>
56 #include <sys/mount.h>
57 #include <sys/mutex.h>
58 #include <sys/namei.h>
59 #include <sys/proc.h>
60 #include <sys/ptrace.h>
61 #include <sys/refcount.h>
62 #include <sys/resourcevar.h>
63 #include <sys/rwlock.h>
64 #include <sys/sbuf.h>
65 #include <sys/sysent.h>
66 #include <sys/sched.h>
67 #include <sys/smp.h>
68 #include <sys/stack.h>
69 #include <sys/stat.h>
70 #include <sys/dtrace_bsd.h>
71 #include <sys/sysctl.h>
72 #include <sys/filedesc.h>
73 #include <sys/tty.h>
74 #include <sys/signalvar.h>
75 #include <sys/sdt.h>
76 #include <sys/sx.h>
77 #include <sys/user.h>
78 #include <sys/vnode.h>
79 #include <sys/wait.h>
80 #ifdef KTRACE
81 #include <sys/ktrace.h>
82 #endif
83 
84 #ifdef DDB
85 #include <ddb/ddb.h>
86 #endif
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/vm_extern.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_page.h>
95 #include <vm/uma.h>
96 
97 #include <fs/devfs/devfs.h>
98 
99 #ifdef COMPAT_FREEBSD32
100 #include <compat/freebsd32/freebsd32.h>
101 #include <compat/freebsd32/freebsd32_util.h>
102 #endif
103 
104 SDT_PROVIDER_DEFINE(proc);
105 
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgdelete(struct pgrp *);
117 static int pgrp_init(void *mem, int size, int flags);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 
124 /*
125  * Other process lists
126  */
127 struct pidhashhead *pidhashtbl = NULL;
128 struct sx *pidhashtbl_lock;
129 u_long pidhash;
130 u_long pidhashlock;
131 struct pgrphashhead *pgrphashtbl;
132 u_long pgrphash;
133 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc);
134 struct sx __exclusive_cache_line allproc_lock;
135 struct sx __exclusive_cache_line proctree_lock;
136 struct mtx __exclusive_cache_line ppeers_lock;
137 struct mtx __exclusive_cache_line procid_lock;
138 uma_zone_t proc_zone;
139 uma_zone_t pgrp_zone;
140 
141 /*
142  * The offset of various fields in struct proc and struct thread.
143  * These are used by kernel debuggers to enumerate kernel threads and
144  * processes.
145  */
146 const int proc_off_p_pid = offsetof(struct proc, p_pid);
147 const int proc_off_p_comm = offsetof(struct proc, p_comm);
148 const int proc_off_p_list = offsetof(struct proc, p_list);
149 const int proc_off_p_hash = offsetof(struct proc, p_hash);
150 const int proc_off_p_threads = offsetof(struct proc, p_threads);
151 const int thread_off_td_tid = offsetof(struct thread, td_tid);
152 const int thread_off_td_name = offsetof(struct thread, td_name);
153 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
154 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
155 const int thread_off_td_plist = offsetof(struct thread, td_plist);
156 
157 EVENTHANDLER_LIST_DEFINE(process_ctor);
158 EVENTHANDLER_LIST_DEFINE(process_dtor);
159 EVENTHANDLER_LIST_DEFINE(process_init);
160 EVENTHANDLER_LIST_DEFINE(process_fini);
161 EVENTHANDLER_LIST_DEFINE(process_exit);
162 EVENTHANDLER_LIST_DEFINE(process_fork);
163 EVENTHANDLER_LIST_DEFINE(process_exec);
164 
165 int kstack_pages = KSTACK_PAGES;
166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
167     "Kernel stack size in pages");
168 static int vmmap_skip_res_cnt = 0;
169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
170     &vmmap_skip_res_cnt, 0,
171     "Skip calculation of the pages resident count in kern.proc.vmmap");
172 
173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
174 #ifdef COMPAT_FREEBSD32
175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
176 #endif
177 
178 /*
179  * Initialize global process hashing structures.
180  */
181 void
182 procinit(void)
183 {
184 	u_long i;
185 
186 	sx_init(&allproc_lock, "allproc");
187 	sx_init(&proctree_lock, "proctree");
188 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
189 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
190 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
191 	pidhashlock = (pidhash + 1) / 64;
192 	if (pidhashlock > 0)
193 		pidhashlock--;
194 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
195 	    M_PROC, M_WAITOK | M_ZERO);
196 	for (i = 0; i < pidhashlock + 1; i++)
197 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
198 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
199 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
200 	    proc_ctor, proc_dtor, proc_init, proc_fini,
201 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL,
203 	    pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
204 	uihashinit();
205 }
206 
207 /*
208  * Prepare a proc for use.
209  */
210 static int
211 proc_ctor(void *mem, int size, void *arg, int flags)
212 {
213 	struct proc *p;
214 	struct thread *td;
215 
216 	p = (struct proc *)mem;
217 #ifdef KDTRACE_HOOKS
218 	kdtrace_proc_ctor(p);
219 #endif
220 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
221 	td = FIRST_THREAD_IN_PROC(p);
222 	if (td != NULL) {
223 		/* Make sure all thread constructors are executed */
224 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
225 	}
226 	return (0);
227 }
228 
229 /*
230  * Reclaim a proc after use.
231  */
232 static void
233 proc_dtor(void *mem, int size, void *arg)
234 {
235 	struct proc *p;
236 	struct thread *td;
237 
238 	/* INVARIANTS checks go here */
239 	p = (struct proc *)mem;
240 	td = FIRST_THREAD_IN_PROC(p);
241 	if (td != NULL) {
242 #ifdef INVARIANTS
243 		KASSERT((p->p_numthreads == 1),
244 		    ("bad number of threads in exiting process"));
245 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
246 #endif
247 		/* Free all OSD associated to this thread. */
248 		osd_thread_exit(td);
249 		ast_kclear(td);
250 
251 		/* Make sure all thread destructors are executed */
252 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
253 	}
254 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
255 #ifdef KDTRACE_HOOKS
256 	kdtrace_proc_dtor(p);
257 #endif
258 	if (p->p_ksi != NULL)
259 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
260 }
261 
262 /*
263  * Initialize type-stable parts of a proc (when newly created).
264  */
265 static int
266 proc_init(void *mem, int size, int flags)
267 {
268 	struct proc *p;
269 
270 	p = (struct proc *)mem;
271 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
272 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
273 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
274 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
275 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
276 	cv_init(&p->p_pwait, "ppwait");
277 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
278 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
279 	p->p_stats = pstats_alloc();
280 	p->p_pgrp = NULL;
281 	return (0);
282 }
283 
284 /*
285  * UMA should ensure that this function is never called.
286  * Freeing a proc structure would violate type stability.
287  */
288 static void
289 proc_fini(void *mem, int size)
290 {
291 #ifdef notnow
292 	struct proc *p;
293 
294 	p = (struct proc *)mem;
295 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
296 	pstats_free(p->p_stats);
297 	thread_free(FIRST_THREAD_IN_PROC(p));
298 	mtx_destroy(&p->p_mtx);
299 	if (p->p_ksi != NULL)
300 		ksiginfo_free(p->p_ksi);
301 #else
302 	panic("proc reclaimed");
303 #endif
304 }
305 
306 static int
307 pgrp_init(void *mem, int size, int flags)
308 {
309 	struct pgrp *pg;
310 
311 	pg = mem;
312 	mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
313 	sx_init(&pg->pg_killsx, "killpg racer");
314 	return (0);
315 }
316 
317 /*
318  * PID space management.
319  *
320  * These bitmaps are used by fork_findpid.
321  */
322 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
323 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
324 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
325 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
326 
327 static bitstr_t *proc_id_array[] = {
328 	proc_id_pidmap,
329 	proc_id_grpidmap,
330 	proc_id_sessidmap,
331 	proc_id_reapmap,
332 };
333 
334 void
335 proc_id_set(int type, pid_t id)
336 {
337 
338 	KASSERT(type >= 0 && type < nitems(proc_id_array),
339 	    ("invalid type %d\n", type));
340 	mtx_lock(&procid_lock);
341 	KASSERT(bit_test(proc_id_array[type], id) == 0,
342 	    ("bit %d already set in %d\n", id, type));
343 	bit_set(proc_id_array[type], id);
344 	mtx_unlock(&procid_lock);
345 }
346 
347 void
348 proc_id_set_cond(int type, pid_t id)
349 {
350 
351 	KASSERT(type >= 0 && type < nitems(proc_id_array),
352 	    ("invalid type %d\n", type));
353 	if (bit_test(proc_id_array[type], id))
354 		return;
355 	mtx_lock(&procid_lock);
356 	bit_set(proc_id_array[type], id);
357 	mtx_unlock(&procid_lock);
358 }
359 
360 void
361 proc_id_clear(int type, pid_t id)
362 {
363 
364 	KASSERT(type >= 0 && type < nitems(proc_id_array),
365 	    ("invalid type %d\n", type));
366 	mtx_lock(&procid_lock);
367 	KASSERT(bit_test(proc_id_array[type], id) != 0,
368 	    ("bit %d not set in %d\n", id, type));
369 	bit_clear(proc_id_array[type], id);
370 	mtx_unlock(&procid_lock);
371 }
372 
373 /*
374  * Is p an inferior of the current process?
375  */
376 int
377 inferior(struct proc *p)
378 {
379 
380 	sx_assert(&proctree_lock, SX_LOCKED);
381 	PROC_LOCK_ASSERT(p, MA_OWNED);
382 	for (; p != curproc; p = proc_realparent(p)) {
383 		if (p->p_pid == 0)
384 			return (0);
385 	}
386 	return (1);
387 }
388 
389 /*
390  * Shared lock all the pid hash lists.
391  */
392 void
393 pidhash_slockall(void)
394 {
395 	u_long i;
396 
397 	for (i = 0; i < pidhashlock + 1; i++)
398 		sx_slock(&pidhashtbl_lock[i]);
399 }
400 
401 /*
402  * Shared unlock all the pid hash lists.
403  */
404 void
405 pidhash_sunlockall(void)
406 {
407 	u_long i;
408 
409 	for (i = 0; i < pidhashlock + 1; i++)
410 		sx_sunlock(&pidhashtbl_lock[i]);
411 }
412 
413 /*
414  * Similar to pfind_any(), this function finds zombies.
415  */
416 struct proc *
417 pfind_any_locked(pid_t pid)
418 {
419 	struct proc *p;
420 
421 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
422 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
423 		if (p->p_pid == pid) {
424 			PROC_LOCK(p);
425 			if (p->p_state == PRS_NEW) {
426 				PROC_UNLOCK(p);
427 				p = NULL;
428 			}
429 			break;
430 		}
431 	}
432 	return (p);
433 }
434 
435 /*
436  * Locate a process by number.
437  *
438  * By not returning processes in the PRS_NEW state, we allow callers to avoid
439  * testing for that condition to avoid dereferencing p_ucred, et al.
440  */
441 static __always_inline struct proc *
442 _pfind(pid_t pid, bool zombie)
443 {
444 	struct proc *p;
445 
446 	p = curproc;
447 	if (p->p_pid == pid) {
448 		PROC_LOCK(p);
449 		return (p);
450 	}
451 	sx_slock(PIDHASHLOCK(pid));
452 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
453 		if (p->p_pid == pid) {
454 			PROC_LOCK(p);
455 			if (p->p_state == PRS_NEW ||
456 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
457 				PROC_UNLOCK(p);
458 				p = NULL;
459 			}
460 			break;
461 		}
462 	}
463 	sx_sunlock(PIDHASHLOCK(pid));
464 	return (p);
465 }
466 
467 struct proc *
468 pfind(pid_t pid)
469 {
470 
471 	return (_pfind(pid, false));
472 }
473 
474 /*
475  * Same as pfind but allow zombies.
476  */
477 struct proc *
478 pfind_any(pid_t pid)
479 {
480 
481 	return (_pfind(pid, true));
482 }
483 
484 /*
485  * Locate a process group by number.
486  * The caller must hold proctree_lock.
487  */
488 struct pgrp *
489 pgfind(pid_t pgid)
490 {
491 	struct pgrp *pgrp;
492 
493 	sx_assert(&proctree_lock, SX_LOCKED);
494 
495 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
496 		if (pgrp->pg_id == pgid) {
497 			PGRP_LOCK(pgrp);
498 			return (pgrp);
499 		}
500 	}
501 	return (NULL);
502 }
503 
504 /*
505  * Locate process and do additional manipulations, depending on flags.
506  */
507 int
508 pget(pid_t pid, int flags, struct proc **pp)
509 {
510 	struct proc *p;
511 	struct thread *td1;
512 	int error;
513 
514 	p = curproc;
515 	if (p->p_pid == pid) {
516 		PROC_LOCK(p);
517 	} else {
518 		p = NULL;
519 		if (pid <= PID_MAX) {
520 			if ((flags & PGET_NOTWEXIT) == 0)
521 				p = pfind_any(pid);
522 			else
523 				p = pfind(pid);
524 		} else if ((flags & PGET_NOTID) == 0) {
525 			td1 = tdfind(pid, -1);
526 			if (td1 != NULL)
527 				p = td1->td_proc;
528 		}
529 		if (p == NULL)
530 			return (ESRCH);
531 		if ((flags & PGET_CANSEE) != 0) {
532 			error = p_cansee(curthread, p);
533 			if (error != 0)
534 				goto errout;
535 		}
536 	}
537 	if ((flags & PGET_CANDEBUG) != 0) {
538 		error = p_candebug(curthread, p);
539 		if (error != 0)
540 			goto errout;
541 	}
542 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
543 		error = EPERM;
544 		goto errout;
545 	}
546 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
547 		error = ESRCH;
548 		goto errout;
549 	}
550 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
551 		/*
552 		 * XXXRW: Not clear ESRCH is the right error during proc
553 		 * execve().
554 		 */
555 		error = ESRCH;
556 		goto errout;
557 	}
558 	if ((flags & PGET_HOLD) != 0) {
559 		_PHOLD(p);
560 		PROC_UNLOCK(p);
561 	}
562 	*pp = p;
563 	return (0);
564 errout:
565 	PROC_UNLOCK(p);
566 	return (error);
567 }
568 
569 /*
570  * Create a new process group.
571  * pgid must be equal to the pid of p.
572  * Begin a new session if required.
573  */
574 int
575 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
576 {
577 	struct pgrp *old_pgrp;
578 
579 	sx_assert(&proctree_lock, SX_XLOCKED);
580 
581 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
582 	KASSERT(p->p_pid == pgid,
583 	    ("enterpgrp: new pgrp and pid != pgid"));
584 	KASSERT(pgfind(pgid) == NULL,
585 	    ("enterpgrp: pgrp with pgid exists"));
586 	KASSERT(!SESS_LEADER(p),
587 	    ("enterpgrp: session leader attempted setpgrp"));
588 
589 	old_pgrp = p->p_pgrp;
590 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
591 		sx_xunlock(&proctree_lock);
592 		sx_xlock(&old_pgrp->pg_killsx);
593 		sx_xunlock(&old_pgrp->pg_killsx);
594 		return (ERESTART);
595 	}
596 	MPASS(old_pgrp == p->p_pgrp);
597 
598 	if (sess != NULL) {
599 		/*
600 		 * new session
601 		 */
602 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
603 		PROC_LOCK(p);
604 		p->p_flag &= ~P_CONTROLT;
605 		PROC_UNLOCK(p);
606 		PGRP_LOCK(pgrp);
607 		sess->s_leader = p;
608 		sess->s_sid = p->p_pid;
609 		proc_id_set(PROC_ID_SESSION, p->p_pid);
610 		refcount_init(&sess->s_count, 1);
611 		sess->s_ttyvp = NULL;
612 		sess->s_ttydp = NULL;
613 		sess->s_ttyp = NULL;
614 		bcopy(p->p_session->s_login, sess->s_login,
615 			    sizeof(sess->s_login));
616 		pgrp->pg_session = sess;
617 		KASSERT(p == curproc,
618 		    ("enterpgrp: mksession and p != curproc"));
619 	} else {
620 		pgrp->pg_session = p->p_session;
621 		sess_hold(pgrp->pg_session);
622 		PGRP_LOCK(pgrp);
623 	}
624 	pgrp->pg_id = pgid;
625 	proc_id_set(PROC_ID_GROUP, p->p_pid);
626 	LIST_INIT(&pgrp->pg_members);
627 	pgrp->pg_flags = 0;
628 
629 	/*
630 	 * As we have an exclusive lock of proctree_lock,
631 	 * this should not deadlock.
632 	 */
633 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
634 	SLIST_INIT(&pgrp->pg_sigiolst);
635 	PGRP_UNLOCK(pgrp);
636 
637 	doenterpgrp(p, pgrp);
638 
639 	sx_xunlock(&old_pgrp->pg_killsx);
640 	return (0);
641 }
642 
643 /*
644  * Move p to an existing process group
645  */
646 int
647 enterthispgrp(struct proc *p, struct pgrp *pgrp)
648 {
649 	struct pgrp *old_pgrp;
650 
651 	sx_assert(&proctree_lock, SX_XLOCKED);
652 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
653 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
654 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
655 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
656 	KASSERT(pgrp->pg_session == p->p_session,
657 	    ("%s: pgrp's session %p, p->p_session %p proc %p\n",
658 	    __func__, pgrp->pg_session, p->p_session, p));
659 	KASSERT(pgrp != p->p_pgrp,
660 	    ("%s: p %p belongs to pgrp %p", __func__, p, pgrp));
661 
662 	old_pgrp = p->p_pgrp;
663 	if (!sx_try_xlock(&old_pgrp->pg_killsx)) {
664 		sx_xunlock(&proctree_lock);
665 		sx_xlock(&old_pgrp->pg_killsx);
666 		sx_xunlock(&old_pgrp->pg_killsx);
667 		return (ERESTART);
668 	}
669 	MPASS(old_pgrp == p->p_pgrp);
670 	if (!sx_try_xlock(&pgrp->pg_killsx)) {
671 		sx_xunlock(&old_pgrp->pg_killsx);
672 		sx_xunlock(&proctree_lock);
673 		sx_xlock(&pgrp->pg_killsx);
674 		sx_xunlock(&pgrp->pg_killsx);
675 		return (ERESTART);
676 	}
677 
678 	doenterpgrp(p, pgrp);
679 
680 	sx_xunlock(&pgrp->pg_killsx);
681 	sx_xunlock(&old_pgrp->pg_killsx);
682 	return (0);
683 }
684 
685 /*
686  * If true, any child of q which belongs to group pgrp, qualifies the
687  * process group pgrp as not orphaned.
688  */
689 static bool
690 isjobproc(struct proc *q, struct pgrp *pgrp)
691 {
692 	sx_assert(&proctree_lock, SX_LOCKED);
693 
694 	return (q->p_pgrp != pgrp &&
695 	    q->p_pgrp->pg_session == pgrp->pg_session);
696 }
697 
698 static struct proc *
699 jobc_reaper(struct proc *p)
700 {
701 	struct proc *pp;
702 
703 	sx_assert(&proctree_lock, SA_LOCKED);
704 
705 	for (pp = p;;) {
706 		pp = pp->p_reaper;
707 		if (pp->p_reaper == pp ||
708 		    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
709 			return (pp);
710 	}
711 }
712 
713 static struct proc *
714 jobc_parent(struct proc *p, struct proc *p_exiting)
715 {
716 	struct proc *pp;
717 
718 	sx_assert(&proctree_lock, SA_LOCKED);
719 
720 	pp = proc_realparent(p);
721 	if (pp->p_pptr == NULL || pp == p_exiting ||
722 	    (pp->p_treeflag & P_TREE_GRPEXITED) == 0)
723 		return (pp);
724 	return (jobc_reaper(pp));
725 }
726 
727 static int
728 pgrp_calc_jobc(struct pgrp *pgrp)
729 {
730 	struct proc *q;
731 	int cnt;
732 
733 #ifdef INVARIANTS
734 	if (!mtx_owned(&pgrp->pg_mtx))
735 		sx_assert(&proctree_lock, SA_LOCKED);
736 #endif
737 
738 	cnt = 0;
739 	LIST_FOREACH(q, &pgrp->pg_members, p_pglist) {
740 		if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 ||
741 		    q->p_pptr == NULL)
742 			continue;
743 		if (isjobproc(jobc_parent(q, NULL), pgrp))
744 			cnt++;
745 	}
746 	return (cnt);
747 }
748 
749 /*
750  * Move p to a process group
751  */
752 static void
753 doenterpgrp(struct proc *p, struct pgrp *pgrp)
754 {
755 	struct pgrp *savepgrp;
756 	struct proc *pp;
757 
758 	sx_assert(&proctree_lock, SX_XLOCKED);
759 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
760 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
761 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
762 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
763 
764 	savepgrp = p->p_pgrp;
765 	pp = jobc_parent(p, NULL);
766 
767 	PGRP_LOCK(pgrp);
768 	PGRP_LOCK(savepgrp);
769 	if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1)
770 		orphanpg(savepgrp);
771 	PROC_LOCK(p);
772 	LIST_REMOVE(p, p_pglist);
773 	p->p_pgrp = pgrp;
774 	PROC_UNLOCK(p);
775 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
776 	if (isjobproc(pp, pgrp))
777 		pgrp->pg_flags &= ~PGRP_ORPHANED;
778 	PGRP_UNLOCK(savepgrp);
779 	PGRP_UNLOCK(pgrp);
780 	if (LIST_EMPTY(&savepgrp->pg_members))
781 		pgdelete(savepgrp);
782 }
783 
784 /*
785  * remove process from process group
786  */
787 int
788 leavepgrp(struct proc *p)
789 {
790 	struct pgrp *savepgrp;
791 
792 	sx_assert(&proctree_lock, SX_XLOCKED);
793 	savepgrp = p->p_pgrp;
794 	PGRP_LOCK(savepgrp);
795 	PROC_LOCK(p);
796 	LIST_REMOVE(p, p_pglist);
797 	p->p_pgrp = NULL;
798 	PROC_UNLOCK(p);
799 	PGRP_UNLOCK(savepgrp);
800 	if (LIST_EMPTY(&savepgrp->pg_members))
801 		pgdelete(savepgrp);
802 	return (0);
803 }
804 
805 /*
806  * delete a process group
807  */
808 static void
809 pgdelete(struct pgrp *pgrp)
810 {
811 	struct session *savesess;
812 	struct tty *tp;
813 
814 	sx_assert(&proctree_lock, SX_XLOCKED);
815 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
816 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
817 
818 	/*
819 	 * Reset any sigio structures pointing to us as a result of
820 	 * F_SETOWN with our pgid.  The proctree lock ensures that
821 	 * new sigio structures will not be added after this point.
822 	 */
823 	funsetownlst(&pgrp->pg_sigiolst);
824 
825 	PGRP_LOCK(pgrp);
826 	tp = pgrp->pg_session->s_ttyp;
827 	LIST_REMOVE(pgrp, pg_hash);
828 	savesess = pgrp->pg_session;
829 	PGRP_UNLOCK(pgrp);
830 
831 	/* Remove the reference to the pgrp before deallocating it. */
832 	if (tp != NULL) {
833 		tty_lock(tp);
834 		tty_rel_pgrp(tp, pgrp);
835 	}
836 
837 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
838 	uma_zfree(pgrp_zone, pgrp);
839 	sess_release(savesess);
840 }
841 
842 
843 static void
844 fixjobc_kill(struct proc *p)
845 {
846 	struct proc *q;
847 	struct pgrp *pgrp;
848 
849 	sx_assert(&proctree_lock, SX_LOCKED);
850 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
851 	pgrp = p->p_pgrp;
852 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
853 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
854 
855 	/*
856 	 * p no longer affects process group orphanage for children.
857 	 * It is marked by the flag because p is only physically
858 	 * removed from its process group on wait(2).
859 	 */
860 	MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0);
861 	p->p_treeflag |= P_TREE_GRPEXITED;
862 
863 	/*
864 	 * Check if exiting p orphans its own group.
865 	 */
866 	pgrp = p->p_pgrp;
867 	if (isjobproc(jobc_parent(p, NULL), pgrp)) {
868 		PGRP_LOCK(pgrp);
869 		if (pgrp_calc_jobc(pgrp) == 0)
870 			orphanpg(pgrp);
871 		PGRP_UNLOCK(pgrp);
872 	}
873 
874 	/*
875 	 * Check this process' children to see whether they qualify
876 	 * their process groups after reparenting to reaper.
877 	 */
878 	LIST_FOREACH(q, &p->p_children, p_sibling) {
879 		pgrp = q->p_pgrp;
880 		PGRP_LOCK(pgrp);
881 		if (pgrp_calc_jobc(pgrp) == 0) {
882 			/*
883 			 * We want to handle exactly the children that
884 			 * has p as realparent.  Then, when calculating
885 			 * jobc_parent for children, we should ignore
886 			 * P_TREE_GRPEXITED flag already set on p.
887 			 */
888 			if (jobc_parent(q, p) == p && isjobproc(p, pgrp))
889 				orphanpg(pgrp);
890 		} else
891 			pgrp->pg_flags &= ~PGRP_ORPHANED;
892 		PGRP_UNLOCK(pgrp);
893 	}
894 	LIST_FOREACH(q, &p->p_orphans, p_orphan) {
895 		pgrp = q->p_pgrp;
896 		PGRP_LOCK(pgrp);
897 		if (pgrp_calc_jobc(pgrp) == 0) {
898 			if (isjobproc(p, pgrp))
899 				orphanpg(pgrp);
900 		} else
901 			pgrp->pg_flags &= ~PGRP_ORPHANED;
902 		PGRP_UNLOCK(pgrp);
903 	}
904 }
905 
906 void
907 killjobc(void)
908 {
909 	struct session *sp;
910 	struct tty *tp;
911 	struct proc *p;
912 	struct vnode *ttyvp;
913 
914 	p = curproc;
915 	MPASS(p->p_flag & P_WEXIT);
916 	sx_assert(&proctree_lock, SX_LOCKED);
917 
918 	if (SESS_LEADER(p)) {
919 		sp = p->p_session;
920 
921 		/*
922 		 * s_ttyp is not zero'd; we use this to indicate that
923 		 * the session once had a controlling terminal. (for
924 		 * logging and informational purposes)
925 		 */
926 		SESS_LOCK(sp);
927 		ttyvp = sp->s_ttyvp;
928 		tp = sp->s_ttyp;
929 		sp->s_ttyvp = NULL;
930 		sp->s_ttydp = NULL;
931 		sp->s_leader = NULL;
932 		SESS_UNLOCK(sp);
933 
934 		/*
935 		 * Signal foreground pgrp and revoke access to
936 		 * controlling terminal if it has not been revoked
937 		 * already.
938 		 *
939 		 * Because the TTY may have been revoked in the mean
940 		 * time and could already have a new session associated
941 		 * with it, make sure we don't send a SIGHUP to a
942 		 * foreground process group that does not belong to this
943 		 * session.
944 		 */
945 
946 		if (tp != NULL) {
947 			tty_lock(tp);
948 			if (tp->t_session == sp)
949 				tty_signal_pgrp(tp, SIGHUP);
950 			tty_unlock(tp);
951 		}
952 
953 		if (ttyvp != NULL) {
954 			sx_xunlock(&proctree_lock);
955 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
956 				VOP_REVOKE(ttyvp, REVOKEALL);
957 				VOP_UNLOCK(ttyvp);
958 			}
959 			devfs_ctty_unref(ttyvp);
960 			sx_xlock(&proctree_lock);
961 		}
962 	}
963 	fixjobc_kill(p);
964 }
965 
966 /*
967  * A process group has become orphaned, mark it as such for signal
968  * delivery code.  If there are any stopped processes in the group,
969  * hang-up all process in that group.
970  */
971 static void
972 orphanpg(struct pgrp *pg)
973 {
974 	struct proc *p;
975 
976 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
977 
978 	pg->pg_flags |= PGRP_ORPHANED;
979 
980 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
981 		PROC_LOCK(p);
982 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
983 			PROC_UNLOCK(p);
984 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
985 				PROC_LOCK(p);
986 				kern_psignal(p, SIGHUP);
987 				kern_psignal(p, SIGCONT);
988 				PROC_UNLOCK(p);
989 			}
990 			return;
991 		}
992 		PROC_UNLOCK(p);
993 	}
994 }
995 
996 void
997 sess_hold(struct session *s)
998 {
999 
1000 	refcount_acquire(&s->s_count);
1001 }
1002 
1003 void
1004 sess_release(struct session *s)
1005 {
1006 
1007 	if (refcount_release(&s->s_count)) {
1008 		if (s->s_ttyp != NULL) {
1009 			tty_lock(s->s_ttyp);
1010 			tty_rel_sess(s->s_ttyp, s);
1011 		}
1012 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
1013 		mtx_destroy(&s->s_mtx);
1014 		free(s, M_SESSION);
1015 	}
1016 }
1017 
1018 #ifdef DDB
1019 
1020 static void
1021 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p)
1022 {
1023 	db_printf(
1024 	    "    pid %d at %p pr %d pgrp %p e %d jc %d\n",
1025 	    p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid,
1026 	    p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0,
1027 	    p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp));
1028 }
1029 
1030 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE)
1031 {
1032 	struct pgrp *pgrp;
1033 	struct proc *p;
1034 	int i;
1035 
1036 	for (i = 0; i <= pgrphash; i++) {
1037 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
1038 			db_printf("indx %d\n", i);
1039 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
1040 				db_printf(
1041 			"  pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n",
1042 				    pgrp, (int)pgrp->pg_id, pgrp->pg_session,
1043 				    pgrp->pg_session->s_count,
1044 				    LIST_FIRST(&pgrp->pg_members));
1045 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist)
1046 					db_print_pgrp_one(pgrp, p);
1047 			}
1048 		}
1049 	}
1050 }
1051 #endif /* DDB */
1052 
1053 /*
1054  * Calculate the kinfo_proc members which contain process-wide
1055  * informations.
1056  * Must be called with the target process locked.
1057  */
1058 static void
1059 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
1060 {
1061 	struct thread *td;
1062 
1063 	PROC_LOCK_ASSERT(p, MA_OWNED);
1064 
1065 	kp->ki_estcpu = 0;
1066 	kp->ki_pctcpu = 0;
1067 	FOREACH_THREAD_IN_PROC(p, td) {
1068 		thread_lock(td);
1069 		kp->ki_pctcpu += sched_pctcpu(td);
1070 		kp->ki_estcpu += sched_estcpu(td);
1071 		thread_unlock(td);
1072 	}
1073 }
1074 
1075 /*
1076  * Fill in any information that is common to all threads in the process.
1077  * Must be called with the target process locked.
1078  */
1079 static void
1080 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
1081 {
1082 	struct thread *td0;
1083 	struct ucred *cred;
1084 	struct sigacts *ps;
1085 	struct timeval boottime;
1086 
1087 	PROC_LOCK_ASSERT(p, MA_OWNED);
1088 
1089 	kp->ki_structsize = sizeof(*kp);
1090 	kp->ki_paddr = p;
1091 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1092 	kp->ki_args = p->p_args;
1093 	kp->ki_textvp = p->p_textvp;
1094 #ifdef KTRACE
1095 	kp->ki_tracep = ktr_get_tracevp(p, false);
1096 	kp->ki_traceflag = p->p_traceflag;
1097 #endif
1098 	kp->ki_fd = p->p_fd;
1099 	kp->ki_pd = p->p_pd;
1100 	kp->ki_vmspace = p->p_vmspace;
1101 	kp->ki_flag = p->p_flag;
1102 	kp->ki_flag2 = p->p_flag2;
1103 	cred = p->p_ucred;
1104 	if (cred) {
1105 		kp->ki_uid = cred->cr_uid;
1106 		kp->ki_ruid = cred->cr_ruid;
1107 		kp->ki_svuid = cred->cr_svuid;
1108 		kp->ki_cr_flags = 0;
1109 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1110 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1111 		/* XXX bde doesn't like KI_NGROUPS */
1112 		if (cred->cr_ngroups > KI_NGROUPS) {
1113 			kp->ki_ngroups = KI_NGROUPS;
1114 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1115 		} else
1116 			kp->ki_ngroups = cred->cr_ngroups;
1117 		bcopy(cred->cr_groups, kp->ki_groups,
1118 		    kp->ki_ngroups * sizeof(gid_t));
1119 		kp->ki_rgid = cred->cr_rgid;
1120 		kp->ki_svgid = cred->cr_svgid;
1121 		/* If jailed(cred), emulate the old P_JAILED flag. */
1122 		if (jailed(cred)) {
1123 			kp->ki_flag |= P_JAILED;
1124 			/* If inside the jail, use 0 as a jail ID. */
1125 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1126 				kp->ki_jid = cred->cr_prison->pr_id;
1127 		}
1128 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1129 		    sizeof(kp->ki_loginclass));
1130 	}
1131 	ps = p->p_sigacts;
1132 	if (ps) {
1133 		mtx_lock(&ps->ps_mtx);
1134 		kp->ki_sigignore = ps->ps_sigignore;
1135 		kp->ki_sigcatch = ps->ps_sigcatch;
1136 		mtx_unlock(&ps->ps_mtx);
1137 	}
1138 	if (p->p_state != PRS_NEW &&
1139 	    p->p_state != PRS_ZOMBIE &&
1140 	    p->p_vmspace != NULL) {
1141 		struct vmspace *vm = p->p_vmspace;
1142 
1143 		kp->ki_size = vm->vm_map.size;
1144 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1145 		FOREACH_THREAD_IN_PROC(p, td0) {
1146 			if (!TD_IS_SWAPPED(td0))
1147 				kp->ki_rssize += td0->td_kstack_pages;
1148 		}
1149 		kp->ki_swrss = vm->vm_swrss;
1150 		kp->ki_tsize = vm->vm_tsize;
1151 		kp->ki_dsize = vm->vm_dsize;
1152 		kp->ki_ssize = vm->vm_ssize;
1153 	} else if (p->p_state == PRS_ZOMBIE)
1154 		kp->ki_stat = SZOMB;
1155 	if (kp->ki_flag & P_INMEM)
1156 		kp->ki_sflag = PS_INMEM;
1157 	else
1158 		kp->ki_sflag = 0;
1159 	/* Calculate legacy swtime as seconds since 'swtick'. */
1160 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1161 	kp->ki_pid = p->p_pid;
1162 	kp->ki_nice = p->p_nice;
1163 	kp->ki_fibnum = p->p_fibnum;
1164 	kp->ki_start = p->p_stats->p_start;
1165 	getboottime(&boottime);
1166 	timevaladd(&kp->ki_start, &boottime);
1167 	PROC_STATLOCK(p);
1168 	rufetch(p, &kp->ki_rusage);
1169 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1170 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1171 	PROC_STATUNLOCK(p);
1172 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1173 	/* Some callers want child times in a single value. */
1174 	kp->ki_childtime = kp->ki_childstime;
1175 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1176 
1177 	FOREACH_THREAD_IN_PROC(p, td0)
1178 		kp->ki_cow += td0->td_cow;
1179 
1180 	if (p->p_comm[0] != '\0')
1181 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1182 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1183 	    p->p_sysent->sv_name[0] != '\0')
1184 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1185 	kp->ki_siglist = p->p_siglist;
1186 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1187 	kp->ki_acflag = p->p_acflag;
1188 	kp->ki_lock = p->p_lock;
1189 	if (p->p_pptr) {
1190 		kp->ki_ppid = p->p_oppid;
1191 		if (p->p_flag & P_TRACED)
1192 			kp->ki_tracer = p->p_pptr->p_pid;
1193 	}
1194 }
1195 
1196 /*
1197  * Fill job-related process information.
1198  */
1199 static void
1200 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp)
1201 {
1202 	struct tty *tp;
1203 	struct session *sp;
1204 	struct pgrp *pgrp;
1205 
1206 	sx_assert(&proctree_lock, SA_LOCKED);
1207 	PROC_LOCK_ASSERT(p, MA_OWNED);
1208 
1209 	pgrp = p->p_pgrp;
1210 	if (pgrp == NULL)
1211 		return;
1212 
1213 	kp->ki_pgid = pgrp->pg_id;
1214 	kp->ki_jobc = pgrp_calc_jobc(pgrp);
1215 
1216 	sp = pgrp->pg_session;
1217 	tp = NULL;
1218 
1219 	if (sp != NULL) {
1220 		kp->ki_sid = sp->s_sid;
1221 		SESS_LOCK(sp);
1222 		strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login));
1223 		if (sp->s_ttyvp)
1224 			kp->ki_kiflag |= KI_CTTY;
1225 		if (SESS_LEADER(p))
1226 			kp->ki_kiflag |= KI_SLEADER;
1227 		tp = sp->s_ttyp;
1228 		SESS_UNLOCK(sp);
1229 	}
1230 
1231 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1232 		kp->ki_tdev = tty_udev(tp);
1233 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1234 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1235 		if (tp->t_session)
1236 			kp->ki_tsid = tp->t_session->s_sid;
1237 	} else {
1238 		kp->ki_tdev = NODEV;
1239 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1240 	}
1241 }
1242 
1243 /*
1244  * Fill in information that is thread specific.  Must be called with
1245  * target process locked.  If 'preferthread' is set, overwrite certain
1246  * process-related fields that are maintained for both threads and
1247  * processes.
1248  */
1249 static void
1250 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1251 {
1252 	struct proc *p;
1253 
1254 	p = td->td_proc;
1255 	kp->ki_tdaddr = td;
1256 	PROC_LOCK_ASSERT(p, MA_OWNED);
1257 
1258 	if (preferthread)
1259 		PROC_STATLOCK(p);
1260 	thread_lock(td);
1261 	if (td->td_wmesg != NULL)
1262 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1263 	else
1264 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1265 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1266 	    sizeof(kp->ki_tdname)) {
1267 		strlcpy(kp->ki_moretdname,
1268 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1269 		    sizeof(kp->ki_moretdname));
1270 	} else {
1271 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1272 	}
1273 	if (TD_ON_LOCK(td)) {
1274 		kp->ki_kiflag |= KI_LOCKBLOCK;
1275 		strlcpy(kp->ki_lockname, td->td_lockname,
1276 		    sizeof(kp->ki_lockname));
1277 	} else {
1278 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1279 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1280 	}
1281 
1282 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1283 		if (TD_ON_RUNQ(td) ||
1284 		    TD_CAN_RUN(td) ||
1285 		    TD_IS_RUNNING(td)) {
1286 			kp->ki_stat = SRUN;
1287 		} else if (P_SHOULDSTOP(p)) {
1288 			kp->ki_stat = SSTOP;
1289 		} else if (TD_IS_SLEEPING(td)) {
1290 			kp->ki_stat = SSLEEP;
1291 		} else if (TD_ON_LOCK(td)) {
1292 			kp->ki_stat = SLOCK;
1293 		} else {
1294 			kp->ki_stat = SWAIT;
1295 		}
1296 	} else if (p->p_state == PRS_ZOMBIE) {
1297 		kp->ki_stat = SZOMB;
1298 	} else {
1299 		kp->ki_stat = SIDL;
1300 	}
1301 
1302 	/* Things in the thread */
1303 	kp->ki_wchan = td->td_wchan;
1304 	kp->ki_pri.pri_level = td->td_priority;
1305 	kp->ki_pri.pri_native = td->td_base_pri;
1306 
1307 	/*
1308 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1309 	 * the maximum u_char CPU value.
1310 	 */
1311 	if (td->td_lastcpu == NOCPU)
1312 		kp->ki_lastcpu_old = NOCPU_OLD;
1313 	else if (td->td_lastcpu > MAXCPU_OLD)
1314 		kp->ki_lastcpu_old = MAXCPU_OLD;
1315 	else
1316 		kp->ki_lastcpu_old = td->td_lastcpu;
1317 
1318 	if (td->td_oncpu == NOCPU)
1319 		kp->ki_oncpu_old = NOCPU_OLD;
1320 	else if (td->td_oncpu > MAXCPU_OLD)
1321 		kp->ki_oncpu_old = MAXCPU_OLD;
1322 	else
1323 		kp->ki_oncpu_old = td->td_oncpu;
1324 
1325 	kp->ki_lastcpu = td->td_lastcpu;
1326 	kp->ki_oncpu = td->td_oncpu;
1327 	kp->ki_tdflags = td->td_flags;
1328 	kp->ki_tid = td->td_tid;
1329 	kp->ki_numthreads = p->p_numthreads;
1330 	kp->ki_pcb = td->td_pcb;
1331 	kp->ki_kstack = (void *)td->td_kstack;
1332 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1333 	kp->ki_pri.pri_class = td->td_pri_class;
1334 	kp->ki_pri.pri_user = td->td_user_pri;
1335 
1336 	if (preferthread) {
1337 		rufetchtd(td, &kp->ki_rusage);
1338 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1339 		kp->ki_pctcpu = sched_pctcpu(td);
1340 		kp->ki_estcpu = sched_estcpu(td);
1341 		kp->ki_cow = td->td_cow;
1342 	}
1343 
1344 	/* We can't get this anymore but ps etc never used it anyway. */
1345 	kp->ki_rqindex = 0;
1346 
1347 	if (preferthread)
1348 		kp->ki_siglist = td->td_siglist;
1349 	kp->ki_sigmask = td->td_sigmask;
1350 	thread_unlock(td);
1351 	if (preferthread)
1352 		PROC_STATUNLOCK(p);
1353 }
1354 
1355 /*
1356  * Fill in a kinfo_proc structure for the specified process.
1357  * Must be called with the target process locked.
1358  */
1359 void
1360 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1361 {
1362 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1363 
1364 	bzero(kp, sizeof(*kp));
1365 
1366 	fill_kinfo_proc_pgrp(p,kp);
1367 	fill_kinfo_proc_only(p, kp);
1368 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1369 	fill_kinfo_aggregate(p, kp);
1370 }
1371 
1372 struct pstats *
1373 pstats_alloc(void)
1374 {
1375 
1376 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1377 }
1378 
1379 /*
1380  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1381  */
1382 void
1383 pstats_fork(struct pstats *src, struct pstats *dst)
1384 {
1385 
1386 	bzero(&dst->pstat_startzero,
1387 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1388 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1389 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1390 }
1391 
1392 void
1393 pstats_free(struct pstats *ps)
1394 {
1395 
1396 	free(ps, M_SUBPROC);
1397 }
1398 
1399 #ifdef COMPAT_FREEBSD32
1400 
1401 /*
1402  * This function is typically used to copy out the kernel address, so
1403  * it can be replaced by assignment of zero.
1404  */
1405 static inline uint32_t
1406 ptr32_trim(const void *ptr)
1407 {
1408 	uintptr_t uptr;
1409 
1410 	uptr = (uintptr_t)ptr;
1411 	return ((uptr > UINT_MAX) ? 0 : uptr);
1412 }
1413 
1414 #define PTRTRIM_CP(src,dst,fld) \
1415 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1416 
1417 static void
1418 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1419 {
1420 	int i;
1421 
1422 	bzero(ki32, sizeof(struct kinfo_proc32));
1423 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1424 	CP(*ki, *ki32, ki_layout);
1425 	PTRTRIM_CP(*ki, *ki32, ki_args);
1426 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1427 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1428 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1429 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1430 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1431 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1432 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1433 	CP(*ki, *ki32, ki_pid);
1434 	CP(*ki, *ki32, ki_ppid);
1435 	CP(*ki, *ki32, ki_pgid);
1436 	CP(*ki, *ki32, ki_tpgid);
1437 	CP(*ki, *ki32, ki_sid);
1438 	CP(*ki, *ki32, ki_tsid);
1439 	CP(*ki, *ki32, ki_jobc);
1440 	CP(*ki, *ki32, ki_tdev);
1441 	CP(*ki, *ki32, ki_tdev_freebsd11);
1442 	CP(*ki, *ki32, ki_siglist);
1443 	CP(*ki, *ki32, ki_sigmask);
1444 	CP(*ki, *ki32, ki_sigignore);
1445 	CP(*ki, *ki32, ki_sigcatch);
1446 	CP(*ki, *ki32, ki_uid);
1447 	CP(*ki, *ki32, ki_ruid);
1448 	CP(*ki, *ki32, ki_svuid);
1449 	CP(*ki, *ki32, ki_rgid);
1450 	CP(*ki, *ki32, ki_svgid);
1451 	CP(*ki, *ki32, ki_ngroups);
1452 	for (i = 0; i < KI_NGROUPS; i++)
1453 		CP(*ki, *ki32, ki_groups[i]);
1454 	CP(*ki, *ki32, ki_size);
1455 	CP(*ki, *ki32, ki_rssize);
1456 	CP(*ki, *ki32, ki_swrss);
1457 	CP(*ki, *ki32, ki_tsize);
1458 	CP(*ki, *ki32, ki_dsize);
1459 	CP(*ki, *ki32, ki_ssize);
1460 	CP(*ki, *ki32, ki_xstat);
1461 	CP(*ki, *ki32, ki_acflag);
1462 	CP(*ki, *ki32, ki_pctcpu);
1463 	CP(*ki, *ki32, ki_estcpu);
1464 	CP(*ki, *ki32, ki_slptime);
1465 	CP(*ki, *ki32, ki_swtime);
1466 	CP(*ki, *ki32, ki_cow);
1467 	CP(*ki, *ki32, ki_runtime);
1468 	TV_CP(*ki, *ki32, ki_start);
1469 	TV_CP(*ki, *ki32, ki_childtime);
1470 	CP(*ki, *ki32, ki_flag);
1471 	CP(*ki, *ki32, ki_kiflag);
1472 	CP(*ki, *ki32, ki_traceflag);
1473 	CP(*ki, *ki32, ki_stat);
1474 	CP(*ki, *ki32, ki_nice);
1475 	CP(*ki, *ki32, ki_lock);
1476 	CP(*ki, *ki32, ki_rqindex);
1477 	CP(*ki, *ki32, ki_oncpu);
1478 	CP(*ki, *ki32, ki_lastcpu);
1479 
1480 	/* XXX TODO: wrap cpu value as appropriate */
1481 	CP(*ki, *ki32, ki_oncpu_old);
1482 	CP(*ki, *ki32, ki_lastcpu_old);
1483 
1484 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1485 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1486 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1487 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1488 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1489 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1490 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1491 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1492 	CP(*ki, *ki32, ki_tracer);
1493 	CP(*ki, *ki32, ki_flag2);
1494 	CP(*ki, *ki32, ki_fibnum);
1495 	CP(*ki, *ki32, ki_cr_flags);
1496 	CP(*ki, *ki32, ki_jid);
1497 	CP(*ki, *ki32, ki_numthreads);
1498 	CP(*ki, *ki32, ki_tid);
1499 	CP(*ki, *ki32, ki_pri);
1500 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1501 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1502 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1503 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1504 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1505 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1506 	CP(*ki, *ki32, ki_sflag);
1507 	CP(*ki, *ki32, ki_tdflags);
1508 }
1509 #endif
1510 
1511 static ssize_t
1512 kern_proc_out_size(struct proc *p, int flags)
1513 {
1514 	ssize_t size = 0;
1515 
1516 	PROC_LOCK_ASSERT(p, MA_OWNED);
1517 
1518 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1519 #ifdef COMPAT_FREEBSD32
1520 		if ((flags & KERN_PROC_MASK32) != 0) {
1521 			size += sizeof(struct kinfo_proc32);
1522 		} else
1523 #endif
1524 			size += sizeof(struct kinfo_proc);
1525 	} else {
1526 #ifdef COMPAT_FREEBSD32
1527 		if ((flags & KERN_PROC_MASK32) != 0)
1528 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1529 		else
1530 #endif
1531 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1532 	}
1533 	PROC_UNLOCK(p);
1534 	return (size);
1535 }
1536 
1537 int
1538 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1539 {
1540 	struct thread *td;
1541 	struct kinfo_proc ki;
1542 #ifdef COMPAT_FREEBSD32
1543 	struct kinfo_proc32 ki32;
1544 #endif
1545 	int error;
1546 
1547 	PROC_LOCK_ASSERT(p, MA_OWNED);
1548 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1549 
1550 	error = 0;
1551 	fill_kinfo_proc(p, &ki);
1552 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1553 #ifdef COMPAT_FREEBSD32
1554 		if ((flags & KERN_PROC_MASK32) != 0) {
1555 			freebsd32_kinfo_proc_out(&ki, &ki32);
1556 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1557 				error = ENOMEM;
1558 		} else
1559 #endif
1560 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1561 				error = ENOMEM;
1562 	} else {
1563 		FOREACH_THREAD_IN_PROC(p, td) {
1564 			fill_kinfo_thread(td, &ki, 1);
1565 #ifdef COMPAT_FREEBSD32
1566 			if ((flags & KERN_PROC_MASK32) != 0) {
1567 				freebsd32_kinfo_proc_out(&ki, &ki32);
1568 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1569 					error = ENOMEM;
1570 			} else
1571 #endif
1572 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1573 					error = ENOMEM;
1574 			if (error != 0)
1575 				break;
1576 		}
1577 	}
1578 	PROC_UNLOCK(p);
1579 	return (error);
1580 }
1581 
1582 static int
1583 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1584 {
1585 	struct sbuf sb;
1586 	struct kinfo_proc ki;
1587 	int error, error2;
1588 
1589 	if (req->oldptr == NULL)
1590 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1591 
1592 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1593 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1594 	error = kern_proc_out(p, &sb, flags);
1595 	error2 = sbuf_finish(&sb);
1596 	sbuf_delete(&sb);
1597 	if (error != 0)
1598 		return (error);
1599 	else if (error2 != 0)
1600 		return (error2);
1601 	return (0);
1602 }
1603 
1604 int
1605 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1606 {
1607 	struct proc *p;
1608 	int error, i, j;
1609 
1610 	for (i = 0; i < pidhashlock + 1; i++) {
1611 		sx_slock(&proctree_lock);
1612 		sx_slock(&pidhashtbl_lock[i]);
1613 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1614 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1615 				if (p->p_state == PRS_NEW)
1616 					continue;
1617 				error = cb(p, cbarg);
1618 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1619 				if (error != 0) {
1620 					sx_sunlock(&pidhashtbl_lock[i]);
1621 					sx_sunlock(&proctree_lock);
1622 					return (error);
1623 				}
1624 			}
1625 		}
1626 		sx_sunlock(&pidhashtbl_lock[i]);
1627 		sx_sunlock(&proctree_lock);
1628 	}
1629 	return (0);
1630 }
1631 
1632 struct kern_proc_out_args {
1633 	struct sysctl_req *req;
1634 	int flags;
1635 	int oid_number;
1636 	int *name;
1637 };
1638 
1639 static int
1640 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1641 {
1642 	struct kern_proc_out_args *arg = origarg;
1643 	int *name = arg->name;
1644 	int oid_number = arg->oid_number;
1645 	int flags = arg->flags;
1646 	struct sysctl_req *req = arg->req;
1647 	int error = 0;
1648 
1649 	PROC_LOCK(p);
1650 
1651 	KASSERT(p->p_ucred != NULL,
1652 	    ("process credential is NULL for non-NEW proc"));
1653 	/*
1654 	 * Show a user only appropriate processes.
1655 	 */
1656 	if (p_cansee(curthread, p))
1657 		goto skip;
1658 	/*
1659 	 * TODO - make more efficient (see notes below).
1660 	 * do by session.
1661 	 */
1662 	switch (oid_number) {
1663 	case KERN_PROC_GID:
1664 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1665 			goto skip;
1666 		break;
1667 
1668 	case KERN_PROC_PGRP:
1669 		/* could do this by traversing pgrp */
1670 		if (p->p_pgrp == NULL ||
1671 		    p->p_pgrp->pg_id != (pid_t)name[0])
1672 			goto skip;
1673 		break;
1674 
1675 	case KERN_PROC_RGID:
1676 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1677 			goto skip;
1678 		break;
1679 
1680 	case KERN_PROC_SESSION:
1681 		if (p->p_session == NULL ||
1682 		    p->p_session->s_sid != (pid_t)name[0])
1683 			goto skip;
1684 		break;
1685 
1686 	case KERN_PROC_TTY:
1687 		if ((p->p_flag & P_CONTROLT) == 0 ||
1688 		    p->p_session == NULL)
1689 			goto skip;
1690 		/* XXX proctree_lock */
1691 		SESS_LOCK(p->p_session);
1692 		if (p->p_session->s_ttyp == NULL ||
1693 		    tty_udev(p->p_session->s_ttyp) !=
1694 		    (dev_t)name[0]) {
1695 			SESS_UNLOCK(p->p_session);
1696 			goto skip;
1697 		}
1698 		SESS_UNLOCK(p->p_session);
1699 		break;
1700 
1701 	case KERN_PROC_UID:
1702 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1703 			goto skip;
1704 		break;
1705 
1706 	case KERN_PROC_RUID:
1707 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1708 			goto skip;
1709 		break;
1710 
1711 	case KERN_PROC_PROC:
1712 		break;
1713 
1714 	default:
1715 		break;
1716 	}
1717 	error = sysctl_out_proc(p, req, flags);
1718 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1719 	return (error);
1720 skip:
1721 	PROC_UNLOCK(p);
1722 	return (0);
1723 }
1724 
1725 static int
1726 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1727 {
1728 	struct kern_proc_out_args iterarg;
1729 	int *name = (int *)arg1;
1730 	u_int namelen = arg2;
1731 	struct proc *p;
1732 	int flags, oid_number;
1733 	int error = 0;
1734 
1735 	oid_number = oidp->oid_number;
1736 	if (oid_number != KERN_PROC_ALL &&
1737 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1738 		flags = KERN_PROC_NOTHREADS;
1739 	else {
1740 		flags = 0;
1741 		oid_number &= ~KERN_PROC_INC_THREAD;
1742 	}
1743 #ifdef COMPAT_FREEBSD32
1744 	if (req->flags & SCTL_MASK32)
1745 		flags |= KERN_PROC_MASK32;
1746 #endif
1747 	if (oid_number == KERN_PROC_PID) {
1748 		if (namelen != 1)
1749 			return (EINVAL);
1750 		error = sysctl_wire_old_buffer(req, 0);
1751 		if (error)
1752 			return (error);
1753 		sx_slock(&proctree_lock);
1754 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1755 		if (error == 0)
1756 			error = sysctl_out_proc(p, req, flags);
1757 		sx_sunlock(&proctree_lock);
1758 		return (error);
1759 	}
1760 
1761 	switch (oid_number) {
1762 	case KERN_PROC_ALL:
1763 		if (namelen != 0)
1764 			return (EINVAL);
1765 		break;
1766 	case KERN_PROC_PROC:
1767 		if (namelen != 0 && namelen != 1)
1768 			return (EINVAL);
1769 		break;
1770 	default:
1771 		if (namelen != 1)
1772 			return (EINVAL);
1773 		break;
1774 	}
1775 
1776 	if (req->oldptr == NULL) {
1777 		/* overestimate by 5 procs */
1778 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1779 		if (error)
1780 			return (error);
1781 	} else {
1782 		error = sysctl_wire_old_buffer(req, 0);
1783 		if (error != 0)
1784 			return (error);
1785 	}
1786 	iterarg.flags = flags;
1787 	iterarg.oid_number = oid_number;
1788 	iterarg.req = req;
1789 	iterarg.name = name;
1790 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1791 	return (error);
1792 }
1793 
1794 struct pargs *
1795 pargs_alloc(int len)
1796 {
1797 	struct pargs *pa;
1798 
1799 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1800 		M_WAITOK);
1801 	refcount_init(&pa->ar_ref, 1);
1802 	pa->ar_length = len;
1803 	return (pa);
1804 }
1805 
1806 static void
1807 pargs_free(struct pargs *pa)
1808 {
1809 
1810 	free(pa, M_PARGS);
1811 }
1812 
1813 void
1814 pargs_hold(struct pargs *pa)
1815 {
1816 
1817 	if (pa == NULL)
1818 		return;
1819 	refcount_acquire(&pa->ar_ref);
1820 }
1821 
1822 void
1823 pargs_drop(struct pargs *pa)
1824 {
1825 
1826 	if (pa == NULL)
1827 		return;
1828 	if (refcount_release(&pa->ar_ref))
1829 		pargs_free(pa);
1830 }
1831 
1832 static int
1833 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1834     size_t len)
1835 {
1836 	ssize_t n;
1837 
1838 	/*
1839 	 * This may return a short read if the string is shorter than the chunk
1840 	 * and is aligned at the end of the page, and the following page is not
1841 	 * mapped.
1842 	 */
1843 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1844 	if (n <= 0)
1845 		return (ENOMEM);
1846 	return (0);
1847 }
1848 
1849 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1850 
1851 enum proc_vector_type {
1852 	PROC_ARG,
1853 	PROC_ENV,
1854 	PROC_AUX,
1855 };
1856 
1857 #ifdef COMPAT_FREEBSD32
1858 static int
1859 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1860     size_t *vsizep, enum proc_vector_type type)
1861 {
1862 	struct freebsd32_ps_strings pss;
1863 	Elf32_Auxinfo aux;
1864 	vm_offset_t vptr, ptr;
1865 	uint32_t *proc_vector32;
1866 	char **proc_vector;
1867 	size_t vsize, size;
1868 	int i, error;
1869 
1870 	error = 0;
1871 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1872 	    sizeof(pss))
1873 		return (ENOMEM);
1874 	switch (type) {
1875 	case PROC_ARG:
1876 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1877 		vsize = pss.ps_nargvstr;
1878 		if (vsize > ARG_MAX)
1879 			return (ENOEXEC);
1880 		size = vsize * sizeof(int32_t);
1881 		break;
1882 	case PROC_ENV:
1883 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1884 		vsize = pss.ps_nenvstr;
1885 		if (vsize > ARG_MAX)
1886 			return (ENOEXEC);
1887 		size = vsize * sizeof(int32_t);
1888 		break;
1889 	case PROC_AUX:
1890 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1891 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1892 		if (vptr % 4 != 0)
1893 			return (ENOEXEC);
1894 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1895 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1896 			    sizeof(aux))
1897 				return (ENOMEM);
1898 			if (aux.a_type == AT_NULL)
1899 				break;
1900 			ptr += sizeof(aux);
1901 		}
1902 		if (aux.a_type != AT_NULL)
1903 			return (ENOEXEC);
1904 		vsize = i + 1;
1905 		size = vsize * sizeof(aux);
1906 		break;
1907 	default:
1908 		KASSERT(0, ("Wrong proc vector type: %d", type));
1909 		return (EINVAL);
1910 	}
1911 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1912 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1913 		error = ENOMEM;
1914 		goto done;
1915 	}
1916 	if (type == PROC_AUX) {
1917 		*proc_vectorp = (char **)proc_vector32;
1918 		*vsizep = vsize;
1919 		return (0);
1920 	}
1921 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1922 	for (i = 0; i < (int)vsize; i++)
1923 		proc_vector[i] = PTRIN(proc_vector32[i]);
1924 	*proc_vectorp = proc_vector;
1925 	*vsizep = vsize;
1926 done:
1927 	free(proc_vector32, M_TEMP);
1928 	return (error);
1929 }
1930 #endif
1931 
1932 static int
1933 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1934     size_t *vsizep, enum proc_vector_type type)
1935 {
1936 	struct ps_strings pss;
1937 	Elf_Auxinfo aux;
1938 	vm_offset_t vptr, ptr;
1939 	char **proc_vector;
1940 	size_t vsize, size;
1941 	int i;
1942 
1943 #ifdef COMPAT_FREEBSD32
1944 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1945 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1946 #endif
1947 	if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) !=
1948 	    sizeof(pss))
1949 		return (ENOMEM);
1950 	switch (type) {
1951 	case PROC_ARG:
1952 		vptr = (vm_offset_t)pss.ps_argvstr;
1953 		vsize = pss.ps_nargvstr;
1954 		if (vsize > ARG_MAX)
1955 			return (ENOEXEC);
1956 		size = vsize * sizeof(char *);
1957 		break;
1958 	case PROC_ENV:
1959 		vptr = (vm_offset_t)pss.ps_envstr;
1960 		vsize = pss.ps_nenvstr;
1961 		if (vsize > ARG_MAX)
1962 			return (ENOEXEC);
1963 		size = vsize * sizeof(char *);
1964 		break;
1965 	case PROC_AUX:
1966 		/*
1967 		 * The aux array is just above env array on the stack. Check
1968 		 * that the address is naturally aligned.
1969 		 */
1970 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1971 		    * sizeof(char *);
1972 #if __ELF_WORD_SIZE == 64
1973 		if (vptr % sizeof(uint64_t) != 0)
1974 #else
1975 		if (vptr % sizeof(uint32_t) != 0)
1976 #endif
1977 			return (ENOEXEC);
1978 		/*
1979 		 * We count the array size reading the aux vectors from the
1980 		 * stack until AT_NULL vector is returned.  So (to keep the code
1981 		 * simple) we read the process stack twice: the first time here
1982 		 * to find the size and the second time when copying the vectors
1983 		 * to the allocated proc_vector.
1984 		 */
1985 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1986 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1987 			    sizeof(aux))
1988 				return (ENOMEM);
1989 			if (aux.a_type == AT_NULL)
1990 				break;
1991 			ptr += sizeof(aux);
1992 		}
1993 		/*
1994 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1995 		 * not reached AT_NULL, it is most likely we are reading wrong
1996 		 * data: either the process doesn't have auxv array or data has
1997 		 * been modified. Return the error in this case.
1998 		 */
1999 		if (aux.a_type != AT_NULL)
2000 			return (ENOEXEC);
2001 		vsize = i + 1;
2002 		size = vsize * sizeof(aux);
2003 		break;
2004 	default:
2005 		KASSERT(0, ("Wrong proc vector type: %d", type));
2006 		return (EINVAL); /* In case we are built without INVARIANTS. */
2007 	}
2008 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
2009 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
2010 		free(proc_vector, M_TEMP);
2011 		return (ENOMEM);
2012 	}
2013 	*proc_vectorp = proc_vector;
2014 	*vsizep = vsize;
2015 
2016 	return (0);
2017 }
2018 
2019 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
2020 
2021 static int
2022 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
2023     enum proc_vector_type type)
2024 {
2025 	size_t done, len, nchr, vsize;
2026 	int error, i;
2027 	char **proc_vector, *sptr;
2028 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
2029 
2030 	PROC_ASSERT_HELD(p);
2031 
2032 	/*
2033 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
2034 	 */
2035 	nchr = 2 * (PATH_MAX + ARG_MAX);
2036 
2037 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
2038 	if (error != 0)
2039 		return (error);
2040 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
2041 		/*
2042 		 * The program may have scribbled into its argv array, e.g. to
2043 		 * remove some arguments.  If that has happened, break out
2044 		 * before trying to read from NULL.
2045 		 */
2046 		if (proc_vector[i] == NULL)
2047 			break;
2048 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
2049 			error = proc_read_string(td, p, sptr, pss_string,
2050 			    sizeof(pss_string));
2051 			if (error != 0)
2052 				goto done;
2053 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
2054 			if (done + len >= nchr)
2055 				len = nchr - done - 1;
2056 			sbuf_bcat(sb, pss_string, len);
2057 			if (len != GET_PS_STRINGS_CHUNK_SZ)
2058 				break;
2059 			done += GET_PS_STRINGS_CHUNK_SZ;
2060 		}
2061 		sbuf_bcat(sb, "", 1);
2062 		done += len + 1;
2063 	}
2064 done:
2065 	free(proc_vector, M_TEMP);
2066 	return (error);
2067 }
2068 
2069 int
2070 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
2071 {
2072 
2073 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
2074 }
2075 
2076 int
2077 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
2078 {
2079 
2080 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
2081 }
2082 
2083 int
2084 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
2085 {
2086 	size_t vsize, size;
2087 	char **auxv;
2088 	int error;
2089 
2090 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
2091 	if (error == 0) {
2092 #ifdef COMPAT_FREEBSD32
2093 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
2094 			size = vsize * sizeof(Elf32_Auxinfo);
2095 		else
2096 #endif
2097 			size = vsize * sizeof(Elf_Auxinfo);
2098 		if (sbuf_bcat(sb, auxv, size) != 0)
2099 			error = ENOMEM;
2100 		free(auxv, M_TEMP);
2101 	}
2102 	return (error);
2103 }
2104 
2105 /*
2106  * This sysctl allows a process to retrieve the argument list or process
2107  * title for another process without groping around in the address space
2108  * of the other process.  It also allow a process to set its own "process
2109  * title to a string of its own choice.
2110  */
2111 static int
2112 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2113 {
2114 	int *name = (int *)arg1;
2115 	u_int namelen = arg2;
2116 	struct pargs *newpa, *pa;
2117 	struct proc *p;
2118 	struct sbuf sb;
2119 	int flags, error = 0, error2;
2120 	pid_t pid;
2121 
2122 	if (namelen != 1)
2123 		return (EINVAL);
2124 
2125 	p = curproc;
2126 	pid = (pid_t)name[0];
2127 	if (pid == -1) {
2128 		pid = p->p_pid;
2129 	}
2130 
2131 	/*
2132 	 * If the query is for this process and it is single-threaded, there
2133 	 * is nobody to modify pargs, thus we can just read.
2134 	 */
2135 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2136 	    (pa = p->p_args) != NULL)
2137 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2138 
2139 	flags = PGET_CANSEE;
2140 	if (req->newptr != NULL)
2141 		flags |= PGET_ISCURRENT;
2142 	error = pget(pid, flags, &p);
2143 	if (error)
2144 		return (error);
2145 
2146 	pa = p->p_args;
2147 	if (pa != NULL) {
2148 		pargs_hold(pa);
2149 		PROC_UNLOCK(p);
2150 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2151 		pargs_drop(pa);
2152 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2153 		_PHOLD(p);
2154 		PROC_UNLOCK(p);
2155 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2156 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2157 		error = proc_getargv(curthread, p, &sb);
2158 		error2 = sbuf_finish(&sb);
2159 		PRELE(p);
2160 		sbuf_delete(&sb);
2161 		if (error == 0 && error2 != 0)
2162 			error = error2;
2163 	} else {
2164 		PROC_UNLOCK(p);
2165 	}
2166 	if (error != 0 || req->newptr == NULL)
2167 		return (error);
2168 
2169 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2170 		return (ENOMEM);
2171 
2172 	if (req->newlen == 0) {
2173 		/*
2174 		 * Clear the argument pointer, so that we'll fetch arguments
2175 		 * with proc_getargv() until further notice.
2176 		 */
2177 		newpa = NULL;
2178 	} else {
2179 		newpa = pargs_alloc(req->newlen);
2180 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2181 		if (error != 0) {
2182 			pargs_free(newpa);
2183 			return (error);
2184 		}
2185 	}
2186 	PROC_LOCK(p);
2187 	pa = p->p_args;
2188 	p->p_args = newpa;
2189 	PROC_UNLOCK(p);
2190 	pargs_drop(pa);
2191 	return (0);
2192 }
2193 
2194 /*
2195  * This sysctl allows a process to retrieve environment of another process.
2196  */
2197 static int
2198 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2199 {
2200 	int *name = (int *)arg1;
2201 	u_int namelen = arg2;
2202 	struct proc *p;
2203 	struct sbuf sb;
2204 	int error, error2;
2205 
2206 	if (namelen != 1)
2207 		return (EINVAL);
2208 
2209 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2210 	if (error != 0)
2211 		return (error);
2212 	if ((p->p_flag & P_SYSTEM) != 0) {
2213 		PRELE(p);
2214 		return (0);
2215 	}
2216 
2217 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2218 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2219 	error = proc_getenvv(curthread, p, &sb);
2220 	error2 = sbuf_finish(&sb);
2221 	PRELE(p);
2222 	sbuf_delete(&sb);
2223 	return (error != 0 ? error : error2);
2224 }
2225 
2226 /*
2227  * This sysctl allows a process to retrieve ELF auxiliary vector of
2228  * another process.
2229  */
2230 static int
2231 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2232 {
2233 	int *name = (int *)arg1;
2234 	u_int namelen = arg2;
2235 	struct proc *p;
2236 	struct sbuf sb;
2237 	int error, error2;
2238 
2239 	if (namelen != 1)
2240 		return (EINVAL);
2241 
2242 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2243 	if (error != 0)
2244 		return (error);
2245 	if ((p->p_flag & P_SYSTEM) != 0) {
2246 		PRELE(p);
2247 		return (0);
2248 	}
2249 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2250 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2251 	error = proc_getauxv(curthread, p, &sb);
2252 	error2 = sbuf_finish(&sb);
2253 	PRELE(p);
2254 	sbuf_delete(&sb);
2255 	return (error != 0 ? error : error2);
2256 }
2257 
2258 /*
2259  * Look up the canonical executable path running in the specified process.
2260  * It tries to return the same hardlink name as was used for execve(2).
2261  * This allows the programs that modify their behavior based on their progname,
2262  * to operate correctly.
2263  *
2264  * Result is returned in retbuf, it must not be freed, similar to vn_fullpath()
2265  *   calling conventions.
2266  * binname is a pointer to temporary string buffer of length MAXPATHLEN,
2267  *   allocated and freed by caller.
2268  * freebuf should be freed by caller, from the M_TEMP malloc type.
2269  */
2270 int
2271 proc_get_binpath(struct proc *p, char *binname, char **retbuf,
2272     char **freebuf)
2273 {
2274 	struct nameidata nd;
2275 	struct vnode *vp, *dvp;
2276 	size_t freepath_size;
2277 	int error;
2278 	bool do_fullpath;
2279 
2280 	PROC_LOCK_ASSERT(p, MA_OWNED);
2281 
2282 	vp = p->p_textvp;
2283 	if (vp == NULL) {
2284 		PROC_UNLOCK(p);
2285 		*retbuf = "";
2286 		*freebuf = NULL;
2287 		return (0);
2288 	}
2289 	vref(vp);
2290 	dvp = p->p_textdvp;
2291 	if (dvp != NULL)
2292 		vref(dvp);
2293 	if (p->p_binname != NULL)
2294 		strlcpy(binname, p->p_binname, MAXPATHLEN);
2295 	PROC_UNLOCK(p);
2296 
2297 	do_fullpath = true;
2298 	*freebuf = NULL;
2299 	if (dvp != NULL && binname[0] != '\0') {
2300 		freepath_size = MAXPATHLEN;
2301 		if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname),
2302 		    retbuf, freebuf, &freepath_size) == 0) {
2303 			/*
2304 			 * Recheck the looked up path.  The binary
2305 			 * might have been renamed or replaced, in
2306 			 * which case we should not report old name.
2307 			 */
2308 			NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf);
2309 			error = namei(&nd);
2310 			if (error == 0) {
2311 				if (nd.ni_vp == vp)
2312 					do_fullpath = false;
2313 				vrele(nd.ni_vp);
2314 				NDFREE_PNBUF(&nd);
2315 			}
2316 		}
2317 	}
2318 	if (do_fullpath) {
2319 		free(*freebuf, M_TEMP);
2320 		*freebuf = NULL;
2321 		error = vn_fullpath(vp, retbuf, freebuf);
2322 	}
2323 	vrele(vp);
2324 	if (dvp != NULL)
2325 		vrele(dvp);
2326 	return (error);
2327 }
2328 
2329 /*
2330  * This sysctl allows a process to retrieve the path of the executable for
2331  * itself or another process.
2332  */
2333 static int
2334 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2335 {
2336 	pid_t *pidp = (pid_t *)arg1;
2337 	unsigned int arglen = arg2;
2338 	struct proc *p;
2339 	char *retbuf, *freebuf, *binname;
2340 	int error;
2341 
2342 	if (arglen != 1)
2343 		return (EINVAL);
2344 	binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
2345 	binname[0] = '\0';
2346 	if (*pidp == -1) {	/* -1 means this process */
2347 		error = 0;
2348 		p = req->td->td_proc;
2349 		PROC_LOCK(p);
2350 	} else {
2351 		error = pget(*pidp, PGET_CANSEE, &p);
2352 	}
2353 
2354 	if (error == 0)
2355 		error = proc_get_binpath(p, binname, &retbuf, &freebuf);
2356 	free(binname, M_TEMP);
2357 	if (error != 0)
2358 		return (error);
2359 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2360 	free(freebuf, M_TEMP);
2361 	return (error);
2362 }
2363 
2364 static int
2365 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2366 {
2367 	struct proc *p;
2368 	char *sv_name;
2369 	int *name;
2370 	int namelen;
2371 	int error;
2372 
2373 	namelen = arg2;
2374 	if (namelen != 1)
2375 		return (EINVAL);
2376 
2377 	name = (int *)arg1;
2378 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2379 	if (error != 0)
2380 		return (error);
2381 	sv_name = p->p_sysent->sv_name;
2382 	PROC_UNLOCK(p);
2383 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2384 }
2385 
2386 #ifdef KINFO_OVMENTRY_SIZE
2387 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2388 #endif
2389 
2390 #ifdef COMPAT_FREEBSD7
2391 static int
2392 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2393 {
2394 	vm_map_entry_t entry, tmp_entry;
2395 	unsigned int last_timestamp, namelen;
2396 	char *fullpath, *freepath;
2397 	struct kinfo_ovmentry *kve;
2398 	struct vattr va;
2399 	struct ucred *cred;
2400 	int error, *name;
2401 	struct vnode *vp;
2402 	struct proc *p;
2403 	vm_map_t map;
2404 	struct vmspace *vm;
2405 
2406 	namelen = arg2;
2407 	if (namelen != 1)
2408 		return (EINVAL);
2409 
2410 	name = (int *)arg1;
2411 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2412 	if (error != 0)
2413 		return (error);
2414 	vm = vmspace_acquire_ref(p);
2415 	if (vm == NULL) {
2416 		PRELE(p);
2417 		return (ESRCH);
2418 	}
2419 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2420 
2421 	map = &vm->vm_map;
2422 	vm_map_lock_read(map);
2423 	VM_MAP_ENTRY_FOREACH(entry, map) {
2424 		vm_object_t obj, tobj, lobj;
2425 		vm_offset_t addr;
2426 
2427 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2428 			continue;
2429 
2430 		bzero(kve, sizeof(*kve));
2431 		kve->kve_structsize = sizeof(*kve);
2432 
2433 		kve->kve_private_resident = 0;
2434 		obj = entry->object.vm_object;
2435 		if (obj != NULL) {
2436 			VM_OBJECT_RLOCK(obj);
2437 			if (obj->shadow_count == 1)
2438 				kve->kve_private_resident =
2439 				    obj->resident_page_count;
2440 		}
2441 		kve->kve_resident = 0;
2442 		addr = entry->start;
2443 		while (addr < entry->end) {
2444 			if (pmap_extract(map->pmap, addr))
2445 				kve->kve_resident++;
2446 			addr += PAGE_SIZE;
2447 		}
2448 
2449 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2450 			if (tobj != obj) {
2451 				VM_OBJECT_RLOCK(tobj);
2452 				kve->kve_offset += tobj->backing_object_offset;
2453 			}
2454 			if (lobj != obj)
2455 				VM_OBJECT_RUNLOCK(lobj);
2456 			lobj = tobj;
2457 		}
2458 
2459 		kve->kve_start = (void*)entry->start;
2460 		kve->kve_end = (void*)entry->end;
2461 		kve->kve_offset += (off_t)entry->offset;
2462 
2463 		if (entry->protection & VM_PROT_READ)
2464 			kve->kve_protection |= KVME_PROT_READ;
2465 		if (entry->protection & VM_PROT_WRITE)
2466 			kve->kve_protection |= KVME_PROT_WRITE;
2467 		if (entry->protection & VM_PROT_EXECUTE)
2468 			kve->kve_protection |= KVME_PROT_EXEC;
2469 
2470 		if (entry->eflags & MAP_ENTRY_COW)
2471 			kve->kve_flags |= KVME_FLAG_COW;
2472 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2473 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2474 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2475 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2476 
2477 		last_timestamp = map->timestamp;
2478 		vm_map_unlock_read(map);
2479 
2480 		kve->kve_fileid = 0;
2481 		kve->kve_fsid = 0;
2482 		freepath = NULL;
2483 		fullpath = "";
2484 		if (lobj) {
2485 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2486 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2487 				kve->kve_type = KVME_TYPE_UNKNOWN;
2488 			if (vp != NULL)
2489 				vref(vp);
2490 			if (lobj != obj)
2491 				VM_OBJECT_RUNLOCK(lobj);
2492 
2493 			kve->kve_ref_count = obj->ref_count;
2494 			kve->kve_shadow_count = obj->shadow_count;
2495 			VM_OBJECT_RUNLOCK(obj);
2496 			if (vp != NULL) {
2497 				vn_fullpath(vp, &fullpath, &freepath);
2498 				cred = curthread->td_ucred;
2499 				vn_lock(vp, LK_SHARED | LK_RETRY);
2500 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2501 					kve->kve_fileid = va.va_fileid;
2502 					/* truncate */
2503 					kve->kve_fsid = va.va_fsid;
2504 				}
2505 				vput(vp);
2506 			}
2507 		} else {
2508 			kve->kve_type = KVME_TYPE_NONE;
2509 			kve->kve_ref_count = 0;
2510 			kve->kve_shadow_count = 0;
2511 		}
2512 
2513 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2514 		if (freepath != NULL)
2515 			free(freepath, M_TEMP);
2516 
2517 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2518 		vm_map_lock_read(map);
2519 		if (error)
2520 			break;
2521 		if (last_timestamp != map->timestamp) {
2522 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2523 			entry = tmp_entry;
2524 		}
2525 	}
2526 	vm_map_unlock_read(map);
2527 	vmspace_free(vm);
2528 	PRELE(p);
2529 	free(kve, M_TEMP);
2530 	return (error);
2531 }
2532 #endif	/* COMPAT_FREEBSD7 */
2533 
2534 #ifdef KINFO_VMENTRY_SIZE
2535 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2536 #endif
2537 
2538 void
2539 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2540     int *resident_count, bool *super)
2541 {
2542 	vm_object_t obj, tobj;
2543 	vm_page_t m, m_adv;
2544 	vm_offset_t addr;
2545 	vm_paddr_t pa;
2546 	vm_pindex_t pi, pi_adv, pindex;
2547 
2548 	*super = false;
2549 	*resident_count = 0;
2550 	if (vmmap_skip_res_cnt)
2551 		return;
2552 
2553 	pa = 0;
2554 	obj = entry->object.vm_object;
2555 	addr = entry->start;
2556 	m_adv = NULL;
2557 	pi = OFF_TO_IDX(entry->offset);
2558 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2559 		if (m_adv != NULL) {
2560 			m = m_adv;
2561 		} else {
2562 			pi_adv = atop(entry->end - addr);
2563 			pindex = pi;
2564 			for (tobj = obj;; tobj = tobj->backing_object) {
2565 				m = vm_page_find_least(tobj, pindex);
2566 				if (m != NULL) {
2567 					if (m->pindex == pindex)
2568 						break;
2569 					if (pi_adv > m->pindex - pindex) {
2570 						pi_adv = m->pindex - pindex;
2571 						m_adv = m;
2572 					}
2573 				}
2574 				if (tobj->backing_object == NULL)
2575 					goto next;
2576 				pindex += OFF_TO_IDX(tobj->
2577 				    backing_object_offset);
2578 			}
2579 		}
2580 		m_adv = NULL;
2581 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2582 		    (addr & (pagesizes[1] - 1)) == 0 &&
2583 		    (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2584 			*super = true;
2585 			pi_adv = atop(pagesizes[1]);
2586 		} else {
2587 			/*
2588 			 * We do not test the found page on validity.
2589 			 * Either the page is busy and being paged in,
2590 			 * or it was invalidated.  The first case
2591 			 * should be counted as resident, the second
2592 			 * is not so clear; we do account both.
2593 			 */
2594 			pi_adv = 1;
2595 		}
2596 		*resident_count += pi_adv;
2597 next:;
2598 	}
2599 }
2600 
2601 /*
2602  * Must be called with the process locked and will return unlocked.
2603  */
2604 int
2605 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2606 {
2607 	vm_map_entry_t entry, tmp_entry;
2608 	struct vattr va;
2609 	vm_map_t map;
2610 	vm_object_t lobj, nobj, obj, tobj;
2611 	char *fullpath, *freepath;
2612 	struct kinfo_vmentry *kve;
2613 	struct ucred *cred;
2614 	struct vnode *vp;
2615 	struct vmspace *vm;
2616 	vm_offset_t addr;
2617 	unsigned int last_timestamp;
2618 	int error;
2619 	bool guard, super;
2620 
2621 	PROC_LOCK_ASSERT(p, MA_OWNED);
2622 
2623 	_PHOLD(p);
2624 	PROC_UNLOCK(p);
2625 	vm = vmspace_acquire_ref(p);
2626 	if (vm == NULL) {
2627 		PRELE(p);
2628 		return (ESRCH);
2629 	}
2630 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2631 
2632 	error = 0;
2633 	map = &vm->vm_map;
2634 	vm_map_lock_read(map);
2635 	VM_MAP_ENTRY_FOREACH(entry, map) {
2636 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2637 			continue;
2638 
2639 		addr = entry->end;
2640 		bzero(kve, sizeof(*kve));
2641 		obj = entry->object.vm_object;
2642 		if (obj != NULL) {
2643 			if ((obj->flags & OBJ_ANON) != 0)
2644 				kve->kve_obj = (uintptr_t)obj;
2645 
2646 			for (tobj = obj; tobj != NULL;
2647 			    tobj = tobj->backing_object) {
2648 				VM_OBJECT_RLOCK(tobj);
2649 				kve->kve_offset += tobj->backing_object_offset;
2650 				lobj = tobj;
2651 			}
2652 			if (obj->backing_object == NULL)
2653 				kve->kve_private_resident =
2654 				    obj->resident_page_count;
2655 			kern_proc_vmmap_resident(map, entry,
2656 			    &kve->kve_resident, &super);
2657 			if (super)
2658 				kve->kve_flags |= KVME_FLAG_SUPER;
2659 			for (tobj = obj; tobj != NULL; tobj = nobj) {
2660 				nobj = tobj->backing_object;
2661 				if (tobj != obj && tobj != lobj)
2662 					VM_OBJECT_RUNLOCK(tobj);
2663 			}
2664 		} else {
2665 			lobj = NULL;
2666 		}
2667 
2668 		kve->kve_start = entry->start;
2669 		kve->kve_end = entry->end;
2670 		kve->kve_offset += entry->offset;
2671 
2672 		if (entry->protection & VM_PROT_READ)
2673 			kve->kve_protection |= KVME_PROT_READ;
2674 		if (entry->protection & VM_PROT_WRITE)
2675 			kve->kve_protection |= KVME_PROT_WRITE;
2676 		if (entry->protection & VM_PROT_EXECUTE)
2677 			kve->kve_protection |= KVME_PROT_EXEC;
2678 
2679 		if (entry->eflags & MAP_ENTRY_COW)
2680 			kve->kve_flags |= KVME_FLAG_COW;
2681 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2682 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2683 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2684 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2685 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2686 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2687 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2688 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2689 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2690 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2691 
2692 		guard = (entry->eflags & MAP_ENTRY_GUARD) != 0;
2693 
2694 		last_timestamp = map->timestamp;
2695 		vm_map_unlock_read(map);
2696 
2697 		freepath = NULL;
2698 		fullpath = "";
2699 		if (lobj != NULL) {
2700 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2701 			if (vp != NULL)
2702 				vref(vp);
2703 			if (lobj != obj)
2704 				VM_OBJECT_RUNLOCK(lobj);
2705 
2706 			kve->kve_ref_count = obj->ref_count;
2707 			kve->kve_shadow_count = obj->shadow_count;
2708 			VM_OBJECT_RUNLOCK(obj);
2709 			if (vp != NULL) {
2710 				vn_fullpath(vp, &fullpath, &freepath);
2711 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2712 				cred = curthread->td_ucred;
2713 				vn_lock(vp, LK_SHARED | LK_RETRY);
2714 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2715 					kve->kve_vn_fileid = va.va_fileid;
2716 					kve->kve_vn_fsid = va.va_fsid;
2717 					kve->kve_vn_fsid_freebsd11 =
2718 					    kve->kve_vn_fsid; /* truncate */
2719 					kve->kve_vn_mode =
2720 					    MAKEIMODE(va.va_type, va.va_mode);
2721 					kve->kve_vn_size = va.va_size;
2722 					kve->kve_vn_rdev = va.va_rdev;
2723 					kve->kve_vn_rdev_freebsd11 =
2724 					    kve->kve_vn_rdev; /* truncate */
2725 					kve->kve_status = KF_ATTR_VALID;
2726 				}
2727 				vput(vp);
2728 			}
2729 		} else {
2730 			kve->kve_type = guard ? KVME_TYPE_GUARD :
2731 			    KVME_TYPE_NONE;
2732 			kve->kve_ref_count = 0;
2733 			kve->kve_shadow_count = 0;
2734 		}
2735 
2736 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2737 		if (freepath != NULL)
2738 			free(freepath, M_TEMP);
2739 
2740 		/* Pack record size down */
2741 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2742 			kve->kve_structsize =
2743 			    offsetof(struct kinfo_vmentry, kve_path) +
2744 			    strlen(kve->kve_path) + 1;
2745 		else
2746 			kve->kve_structsize = sizeof(*kve);
2747 		kve->kve_structsize = roundup(kve->kve_structsize,
2748 		    sizeof(uint64_t));
2749 
2750 		/* Halt filling and truncate rather than exceeding maxlen */
2751 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2752 			error = 0;
2753 			vm_map_lock_read(map);
2754 			break;
2755 		} else if (maxlen != -1)
2756 			maxlen -= kve->kve_structsize;
2757 
2758 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2759 			error = ENOMEM;
2760 		vm_map_lock_read(map);
2761 		if (error != 0)
2762 			break;
2763 		if (last_timestamp != map->timestamp) {
2764 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2765 			entry = tmp_entry;
2766 		}
2767 	}
2768 	vm_map_unlock_read(map);
2769 	vmspace_free(vm);
2770 	PRELE(p);
2771 	free(kve, M_TEMP);
2772 	return (error);
2773 }
2774 
2775 static int
2776 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2777 {
2778 	struct proc *p;
2779 	struct sbuf sb;
2780 	u_int namelen;
2781 	int error, error2, *name;
2782 
2783 	namelen = arg2;
2784 	if (namelen != 1)
2785 		return (EINVAL);
2786 
2787 	name = (int *)arg1;
2788 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2789 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2790 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2791 	if (error != 0) {
2792 		sbuf_delete(&sb);
2793 		return (error);
2794 	}
2795 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2796 	error2 = sbuf_finish(&sb);
2797 	sbuf_delete(&sb);
2798 	return (error != 0 ? error : error2);
2799 }
2800 
2801 #if defined(STACK) || defined(DDB)
2802 static int
2803 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2804 {
2805 	struct kinfo_kstack *kkstp;
2806 	int error, i, *name, numthreads;
2807 	lwpid_t *lwpidarray;
2808 	struct thread *td;
2809 	struct stack *st;
2810 	struct sbuf sb;
2811 	struct proc *p;
2812 	u_int namelen;
2813 
2814 	namelen = arg2;
2815 	if (namelen != 1)
2816 		return (EINVAL);
2817 
2818 	name = (int *)arg1;
2819 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2820 	if (error != 0)
2821 		return (error);
2822 
2823 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2824 	st = stack_create(M_WAITOK);
2825 
2826 	lwpidarray = NULL;
2827 	PROC_LOCK(p);
2828 	do {
2829 		if (lwpidarray != NULL) {
2830 			free(lwpidarray, M_TEMP);
2831 			lwpidarray = NULL;
2832 		}
2833 		numthreads = p->p_numthreads;
2834 		PROC_UNLOCK(p);
2835 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2836 		    M_WAITOK | M_ZERO);
2837 		PROC_LOCK(p);
2838 	} while (numthreads < p->p_numthreads);
2839 
2840 	/*
2841 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2842 	 * of changes could have taken place.  Should we check to see if the
2843 	 * vmspace has been replaced, or the like, in order to prevent
2844 	 * giving a snapshot that spans, say, execve(2), with some threads
2845 	 * before and some after?  Among other things, the credentials could
2846 	 * have changed, in which case the right to extract debug info might
2847 	 * no longer be assured.
2848 	 */
2849 	i = 0;
2850 	FOREACH_THREAD_IN_PROC(p, td) {
2851 		KASSERT(i < numthreads,
2852 		    ("sysctl_kern_proc_kstack: numthreads"));
2853 		lwpidarray[i] = td->td_tid;
2854 		i++;
2855 	}
2856 	PROC_UNLOCK(p);
2857 	numthreads = i;
2858 	for (i = 0; i < numthreads; i++) {
2859 		td = tdfind(lwpidarray[i], p->p_pid);
2860 		if (td == NULL) {
2861 			continue;
2862 		}
2863 		bzero(kkstp, sizeof(*kkstp));
2864 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2865 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2866 		thread_lock(td);
2867 		kkstp->kkst_tid = td->td_tid;
2868 		if (TD_IS_SWAPPED(td))
2869 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2870 		else if (stack_save_td(st, td) == 0)
2871 			kkstp->kkst_state = KKST_STATE_STACKOK;
2872 		else
2873 			kkstp->kkst_state = KKST_STATE_RUNNING;
2874 		thread_unlock(td);
2875 		PROC_UNLOCK(p);
2876 		stack_sbuf_print(&sb, st);
2877 		sbuf_finish(&sb);
2878 		sbuf_delete(&sb);
2879 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2880 		if (error)
2881 			break;
2882 	}
2883 	PRELE(p);
2884 	if (lwpidarray != NULL)
2885 		free(lwpidarray, M_TEMP);
2886 	stack_destroy(st);
2887 	free(kkstp, M_TEMP);
2888 	return (error);
2889 }
2890 #endif
2891 
2892 /*
2893  * This sysctl allows a process to retrieve the full list of groups from
2894  * itself or another process.
2895  */
2896 static int
2897 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2898 {
2899 	pid_t *pidp = (pid_t *)arg1;
2900 	unsigned int arglen = arg2;
2901 	struct proc *p;
2902 	struct ucred *cred;
2903 	int error;
2904 
2905 	if (arglen != 1)
2906 		return (EINVAL);
2907 	if (*pidp == -1) {	/* -1 means this process */
2908 		p = req->td->td_proc;
2909 		PROC_LOCK(p);
2910 	} else {
2911 		error = pget(*pidp, PGET_CANSEE, &p);
2912 		if (error != 0)
2913 			return (error);
2914 	}
2915 
2916 	cred = crhold(p->p_ucred);
2917 	PROC_UNLOCK(p);
2918 
2919 	error = SYSCTL_OUT(req, cred->cr_groups,
2920 	    cred->cr_ngroups * sizeof(gid_t));
2921 	crfree(cred);
2922 	return (error);
2923 }
2924 
2925 /*
2926  * This sysctl allows a process to retrieve or/and set the resource limit for
2927  * another process.
2928  */
2929 static int
2930 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2931 {
2932 	int *name = (int *)arg1;
2933 	u_int namelen = arg2;
2934 	struct rlimit rlim;
2935 	struct proc *p;
2936 	u_int which;
2937 	int flags, error;
2938 
2939 	if (namelen != 2)
2940 		return (EINVAL);
2941 
2942 	which = (u_int)name[1];
2943 	if (which >= RLIM_NLIMITS)
2944 		return (EINVAL);
2945 
2946 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2947 		return (EINVAL);
2948 
2949 	flags = PGET_HOLD | PGET_NOTWEXIT;
2950 	if (req->newptr != NULL)
2951 		flags |= PGET_CANDEBUG;
2952 	else
2953 		flags |= PGET_CANSEE;
2954 	error = pget((pid_t)name[0], flags, &p);
2955 	if (error != 0)
2956 		return (error);
2957 
2958 	/*
2959 	 * Retrieve limit.
2960 	 */
2961 	if (req->oldptr != NULL) {
2962 		PROC_LOCK(p);
2963 		lim_rlimit_proc(p, which, &rlim);
2964 		PROC_UNLOCK(p);
2965 	}
2966 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2967 	if (error != 0)
2968 		goto errout;
2969 
2970 	/*
2971 	 * Set limit.
2972 	 */
2973 	if (req->newptr != NULL) {
2974 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2975 		if (error == 0)
2976 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2977 	}
2978 
2979 errout:
2980 	PRELE(p);
2981 	return (error);
2982 }
2983 
2984 /*
2985  * This sysctl allows a process to retrieve ps_strings structure location of
2986  * another process.
2987  */
2988 static int
2989 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2990 {
2991 	int *name = (int *)arg1;
2992 	u_int namelen = arg2;
2993 	struct proc *p;
2994 	vm_offset_t ps_strings;
2995 	int error;
2996 #ifdef COMPAT_FREEBSD32
2997 	uint32_t ps_strings32;
2998 #endif
2999 
3000 	if (namelen != 1)
3001 		return (EINVAL);
3002 
3003 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3004 	if (error != 0)
3005 		return (error);
3006 #ifdef COMPAT_FREEBSD32
3007 	if ((req->flags & SCTL_MASK32) != 0) {
3008 		/*
3009 		 * We return 0 if the 32 bit emulation request is for a 64 bit
3010 		 * process.
3011 		 */
3012 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
3013 		    PTROUT(PROC_PS_STRINGS(p)) : 0;
3014 		PROC_UNLOCK(p);
3015 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
3016 		return (error);
3017 	}
3018 #endif
3019 	ps_strings = PROC_PS_STRINGS(p);
3020 	PROC_UNLOCK(p);
3021 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
3022 	return (error);
3023 }
3024 
3025 /*
3026  * This sysctl allows a process to retrieve umask of another process.
3027  */
3028 static int
3029 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
3030 {
3031 	int *name = (int *)arg1;
3032 	u_int namelen = arg2;
3033 	struct proc *p;
3034 	int error;
3035 	u_short cmask;
3036 	pid_t pid;
3037 
3038 	if (namelen != 1)
3039 		return (EINVAL);
3040 
3041 	pid = (pid_t)name[0];
3042 	p = curproc;
3043 	if (pid == p->p_pid || pid == 0) {
3044 		cmask = p->p_pd->pd_cmask;
3045 		goto out;
3046 	}
3047 
3048 	error = pget(pid, PGET_WANTREAD, &p);
3049 	if (error != 0)
3050 		return (error);
3051 
3052 	cmask = p->p_pd->pd_cmask;
3053 	PRELE(p);
3054 out:
3055 	error = SYSCTL_OUT(req, &cmask, sizeof(cmask));
3056 	return (error);
3057 }
3058 
3059 /*
3060  * This sysctl allows a process to set and retrieve binary osreldate of
3061  * another process.
3062  */
3063 static int
3064 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
3065 {
3066 	int *name = (int *)arg1;
3067 	u_int namelen = arg2;
3068 	struct proc *p;
3069 	int flags, error, osrel;
3070 
3071 	if (namelen != 1)
3072 		return (EINVAL);
3073 
3074 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
3075 		return (EINVAL);
3076 
3077 	flags = PGET_HOLD | PGET_NOTWEXIT;
3078 	if (req->newptr != NULL)
3079 		flags |= PGET_CANDEBUG;
3080 	else
3081 		flags |= PGET_CANSEE;
3082 	error = pget((pid_t)name[0], flags, &p);
3083 	if (error != 0)
3084 		return (error);
3085 
3086 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
3087 	if (error != 0)
3088 		goto errout;
3089 
3090 	if (req->newptr != NULL) {
3091 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
3092 		if (error != 0)
3093 			goto errout;
3094 		if (osrel < 0) {
3095 			error = EINVAL;
3096 			goto errout;
3097 		}
3098 		p->p_osrel = osrel;
3099 	}
3100 errout:
3101 	PRELE(p);
3102 	return (error);
3103 }
3104 
3105 static int
3106 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
3107 {
3108 	int *name = (int *)arg1;
3109 	u_int namelen = arg2;
3110 	struct proc *p;
3111 	struct kinfo_sigtramp kst;
3112 	const struct sysentvec *sv;
3113 	int error;
3114 #ifdef COMPAT_FREEBSD32
3115 	struct kinfo_sigtramp32 kst32;
3116 #endif
3117 
3118 	if (namelen != 1)
3119 		return (EINVAL);
3120 
3121 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3122 	if (error != 0)
3123 		return (error);
3124 	sv = p->p_sysent;
3125 #ifdef COMPAT_FREEBSD32
3126 	if ((req->flags & SCTL_MASK32) != 0) {
3127 		bzero(&kst32, sizeof(kst32));
3128 		if (SV_PROC_FLAG(p, SV_ILP32)) {
3129 			if (PROC_HAS_SHP(p)) {
3130 				kst32.ksigtramp_start = PROC_SIGCODE(p);
3131 				kst32.ksigtramp_end = kst32.ksigtramp_start +
3132 				    ((sv->sv_flags & SV_DSO_SIG) == 0 ?
3133 				    *sv->sv_szsigcode :
3134 				    (uintptr_t)sv->sv_szsigcode);
3135 			} else {
3136 				kst32.ksigtramp_start = PROC_PS_STRINGS(p) -
3137 				    *sv->sv_szsigcode;
3138 				kst32.ksigtramp_end = PROC_PS_STRINGS(p);
3139 			}
3140 		}
3141 		PROC_UNLOCK(p);
3142 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
3143 		return (error);
3144 	}
3145 #endif
3146 	bzero(&kst, sizeof(kst));
3147 	if (PROC_HAS_SHP(p)) {
3148 		kst.ksigtramp_start = (char *)PROC_SIGCODE(p);
3149 		kst.ksigtramp_end = (char *)kst.ksigtramp_start +
3150 		    ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode :
3151 		    (uintptr_t)sv->sv_szsigcode);
3152 	} else {
3153 		kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) -
3154 		    *sv->sv_szsigcode;
3155 		kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p);
3156 	}
3157 	PROC_UNLOCK(p);
3158 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
3159 	return (error);
3160 }
3161 
3162 static int
3163 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
3164 {
3165 	int *name = (int *)arg1;
3166 	u_int namelen = arg2;
3167 	pid_t pid;
3168 	struct proc *p;
3169 	struct thread *td1;
3170 	uintptr_t addr;
3171 #ifdef COMPAT_FREEBSD32
3172 	uint32_t addr32;
3173 #endif
3174 	int error;
3175 
3176 	if (namelen != 1 || req->newptr != NULL)
3177 		return (EINVAL);
3178 
3179 	pid = (pid_t)name[0];
3180 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
3181 	if (error != 0)
3182 		return (error);
3183 
3184 	PROC_LOCK(p);
3185 #ifdef COMPAT_FREEBSD32
3186 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3187 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3188 			error = EINVAL;
3189 			goto errlocked;
3190 		}
3191 	}
3192 #endif
3193 	if (pid <= PID_MAX) {
3194 		td1 = FIRST_THREAD_IN_PROC(p);
3195 	} else {
3196 		FOREACH_THREAD_IN_PROC(p, td1) {
3197 			if (td1->td_tid == pid)
3198 				break;
3199 		}
3200 	}
3201 	if (td1 == NULL) {
3202 		error = ESRCH;
3203 		goto errlocked;
3204 	}
3205 	/*
3206 	 * The access to the private thread flags.  It is fine as far
3207 	 * as no out-of-thin-air values are read from td_pflags, and
3208 	 * usermode read of the td_sigblock_ptr is racy inherently,
3209 	 * since target process might have already changed it
3210 	 * meantime.
3211 	 */
3212 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3213 		addr = (uintptr_t)td1->td_sigblock_ptr;
3214 	else
3215 		error = ENOTTY;
3216 
3217 errlocked:
3218 	_PRELE(p);
3219 	PROC_UNLOCK(p);
3220 	if (error != 0)
3221 		return (error);
3222 
3223 #ifdef COMPAT_FREEBSD32
3224 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3225 		addr32 = addr;
3226 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3227 	} else
3228 #endif
3229 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3230 	return (error);
3231 }
3232 
3233 static int
3234 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS)
3235 {
3236 	struct kinfo_vm_layout kvm;
3237 	struct proc *p;
3238 	struct vmspace *vmspace;
3239 	int error, *name;
3240 
3241 	name = (int *)arg1;
3242 	if ((u_int)arg2 != 1)
3243 		return (EINVAL);
3244 
3245 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
3246 	if (error != 0)
3247 		return (error);
3248 #ifdef COMPAT_FREEBSD32
3249 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3250 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
3251 			PROC_UNLOCK(p);
3252 			return (EINVAL);
3253 		}
3254 	}
3255 #endif
3256 	vmspace = vmspace_acquire_ref(p);
3257 	PROC_UNLOCK(p);
3258 
3259 	memset(&kvm, 0, sizeof(kvm));
3260 	kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map);
3261 	kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map);
3262 	kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr;
3263 	kvm.kvm_text_size = vmspace->vm_tsize;
3264 	kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr;
3265 	kvm.kvm_data_size = vmspace->vm_dsize;
3266 	kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr;
3267 	kvm.kvm_stack_size = vmspace->vm_ssize;
3268 	kvm.kvm_shp_addr = vmspace->vm_shp_base;
3269 	kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len;
3270 	if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0)
3271 		kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE;
3272 	if ((vmspace->vm_map.flags & MAP_ASLR) != 0)
3273 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR;
3274 	if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0)
3275 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART;
3276 	if ((vmspace->vm_map.flags & MAP_WXORX) != 0)
3277 		kvm.kvm_map_flags |= KMAP_FLAG_WXORX;
3278 	if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0)
3279 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK;
3280 	if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base &&
3281 	    PROC_HAS_SHP(p))
3282 		kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE;
3283 
3284 #ifdef COMPAT_FREEBSD32
3285 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3286 		struct kinfo_vm_layout32 kvm32;
3287 
3288 		memset(&kvm32, 0, sizeof(kvm32));
3289 		kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr;
3290 		kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr;
3291 		kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr;
3292 		kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size;
3293 		kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr;
3294 		kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size;
3295 		kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr;
3296 		kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size;
3297 		kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr;
3298 		kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size;
3299 		kvm32.kvm_map_flags = kvm.kvm_map_flags;
3300 		error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32));
3301 		goto out;
3302 	}
3303 #endif
3304 
3305 	error = SYSCTL_OUT(req, &kvm, sizeof(kvm));
3306 #ifdef COMPAT_FREEBSD32
3307 out:
3308 #endif
3309 	vmspace_free(vmspace);
3310 	return (error);
3311 }
3312 
3313 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3314     "Process table");
3315 
3316 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3317 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3318 	"Return entire process table");
3319 
3320 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3321 	sysctl_kern_proc, "Process table");
3322 
3323 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3324 	sysctl_kern_proc, "Process table");
3325 
3326 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3327 	sysctl_kern_proc, "Process table");
3328 
3329 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3330 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3331 
3332 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3333 	sysctl_kern_proc, "Process table");
3334 
3335 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3336 	sysctl_kern_proc, "Process table");
3337 
3338 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3339 	sysctl_kern_proc, "Process table");
3340 
3341 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3342 	sysctl_kern_proc, "Process table");
3343 
3344 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3345 	sysctl_kern_proc, "Return process table, no threads");
3346 
3347 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3348 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3349 	sysctl_kern_proc_args, "Process argument list");
3350 
3351 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3352 	sysctl_kern_proc_env, "Process environment");
3353 
3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3355 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3356 
3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3358 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3359 
3360 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3361 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3362 	"Process syscall vector name (ABI type)");
3363 
3364 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3365 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3366 
3367 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3368 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3369 
3370 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3371 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3372 
3373 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3374 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3375 
3376 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3377 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3378 
3379 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3380 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3381 
3382 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3383 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3384 
3385 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3386 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3387 
3388 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3389 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3390 	"Return process table, including threads");
3391 
3392 #ifdef COMPAT_FREEBSD7
3393 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3394 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3395 #endif
3396 
3397 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3398 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3399 
3400 #if defined(STACK) || defined(DDB)
3401 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3402 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3403 #endif
3404 
3405 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3406 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3407 
3408 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3409 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3410 	"Process resource limits");
3411 
3412 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3413 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3414 	"Process ps_strings location");
3415 
3416 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3417 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3418 
3419 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3420 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3421 	"Process binary osreldate");
3422 
3423 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3424 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3425 	"Process signal trampoline location");
3426 
3427 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3428 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3429 	"Thread sigfastblock address");
3430 
3431 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD |
3432 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout,
3433 	"Process virtual address space layout info");
3434 
3435 static struct sx stop_all_proc_blocker;
3436 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk");
3437 
3438 bool
3439 stop_all_proc_block(void)
3440 {
3441 	return (sx_xlock_sig(&stop_all_proc_blocker) == 0);
3442 }
3443 
3444 void
3445 stop_all_proc_unblock(void)
3446 {
3447 	sx_xunlock(&stop_all_proc_blocker);
3448 }
3449 
3450 int allproc_gen;
3451 
3452 /*
3453  * stop_all_proc() purpose is to stop all process which have usermode,
3454  * except current process for obvious reasons.  This makes it somewhat
3455  * unreliable when invoked from multithreaded process.  The service
3456  * must not be user-callable anyway.
3457  */
3458 void
3459 stop_all_proc(void)
3460 {
3461 	struct proc *cp, *p;
3462 	int r, gen;
3463 	bool restart, seen_stopped, seen_exiting, stopped_some;
3464 
3465 	if (!stop_all_proc_block())
3466 		return;
3467 
3468 	cp = curproc;
3469 allproc_loop:
3470 	sx_xlock(&allproc_lock);
3471 	gen = allproc_gen;
3472 	seen_exiting = seen_stopped = stopped_some = restart = false;
3473 	LIST_REMOVE(cp, p_list);
3474 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3475 	for (;;) {
3476 		p = LIST_NEXT(cp, p_list);
3477 		if (p == NULL)
3478 			break;
3479 		LIST_REMOVE(cp, p_list);
3480 		LIST_INSERT_AFTER(p, cp, p_list);
3481 		PROC_LOCK(p);
3482 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3483 			PROC_UNLOCK(p);
3484 			continue;
3485 		}
3486 		if ((p->p_flag2 & P2_WEXIT) != 0) {
3487 			seen_exiting = true;
3488 			PROC_UNLOCK(p);
3489 			continue;
3490 		}
3491 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3492 			/*
3493 			 * Stopped processes are tolerated when there
3494 			 * are no other processes which might continue
3495 			 * them.  P_STOPPED_SINGLE but not
3496 			 * P_TOTAL_STOP process still has at least one
3497 			 * thread running.
3498 			 */
3499 			seen_stopped = true;
3500 			PROC_UNLOCK(p);
3501 			continue;
3502 		}
3503 		sx_xunlock(&allproc_lock);
3504 		_PHOLD(p);
3505 		r = thread_single(p, SINGLE_ALLPROC);
3506 		if (r != 0)
3507 			restart = true;
3508 		else
3509 			stopped_some = true;
3510 		_PRELE(p);
3511 		PROC_UNLOCK(p);
3512 		sx_xlock(&allproc_lock);
3513 	}
3514 	/* Catch forked children we did not see in iteration. */
3515 	if (gen != allproc_gen)
3516 		restart = true;
3517 	sx_xunlock(&allproc_lock);
3518 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3519 		kern_yield(PRI_USER);
3520 		goto allproc_loop;
3521 	}
3522 }
3523 
3524 void
3525 resume_all_proc(void)
3526 {
3527 	struct proc *cp, *p;
3528 
3529 	cp = curproc;
3530 	sx_xlock(&allproc_lock);
3531 again:
3532 	LIST_REMOVE(cp, p_list);
3533 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3534 	for (;;) {
3535 		p = LIST_NEXT(cp, p_list);
3536 		if (p == NULL)
3537 			break;
3538 		LIST_REMOVE(cp, p_list);
3539 		LIST_INSERT_AFTER(p, cp, p_list);
3540 		PROC_LOCK(p);
3541 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3542 			sx_xunlock(&allproc_lock);
3543 			_PHOLD(p);
3544 			thread_single_end(p, SINGLE_ALLPROC);
3545 			_PRELE(p);
3546 			PROC_UNLOCK(p);
3547 			sx_xlock(&allproc_lock);
3548 		} else {
3549 			PROC_UNLOCK(p);
3550 		}
3551 	}
3552 	/*  Did the loop above missed any stopped process ? */
3553 	FOREACH_PROC_IN_SYSTEM(p) {
3554 		/* No need for proc lock. */
3555 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3556 			goto again;
3557 	}
3558 	sx_xunlock(&allproc_lock);
3559 
3560 	stop_all_proc_unblock();
3561 }
3562 
3563 /* #define	TOTAL_STOP_DEBUG	1 */
3564 #ifdef TOTAL_STOP_DEBUG
3565 volatile static int ap_resume;
3566 #include <sys/mount.h>
3567 
3568 static int
3569 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3570 {
3571 	int error, val;
3572 
3573 	val = 0;
3574 	ap_resume = 0;
3575 	error = sysctl_handle_int(oidp, &val, 0, req);
3576 	if (error != 0 || req->newptr == NULL)
3577 		return (error);
3578 	if (val != 0) {
3579 		stop_all_proc();
3580 		syncer_suspend();
3581 		while (ap_resume == 0)
3582 			;
3583 		syncer_resume();
3584 		resume_all_proc();
3585 	}
3586 	return (0);
3587 }
3588 
3589 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3590     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3591     sysctl_debug_stop_all_proc, "I",
3592     "");
3593 #endif
3594