1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ddb.h" 34 #include "opt_ktrace.h" 35 #include "opt_kstack_pages.h" 36 #include "opt_stack.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bitstring.h> 41 #include <sys/elf.h> 42 #include <sys/eventhandler.h> 43 #include <sys/exec.h> 44 #include <sys/fcntl.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/namei.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/dtrace_bsd.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #ifdef DDB 81 #include <ddb/ddb.h> 82 #endif 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_extern.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/uma.h> 92 93 #include <fs/devfs/devfs.h> 94 95 #ifdef COMPAT_FREEBSD32 96 #include <compat/freebsd32/freebsd32.h> 97 #include <compat/freebsd32/freebsd32_util.h> 98 #endif 99 100 SDT_PROVIDER_DEFINE(proc); 101 102 MALLOC_DEFINE(M_SESSION, "session", "session header"); 103 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 104 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 105 106 static void doenterpgrp(struct proc *, struct pgrp *); 107 static void orphanpg(struct pgrp *pg); 108 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 109 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 111 int preferthread); 112 static void pgdelete(struct pgrp *); 113 static int pgrp_init(void *mem, int size, int flags); 114 static int proc_ctor(void *mem, int size, void *arg, int flags); 115 static void proc_dtor(void *mem, int size, void *arg); 116 static int proc_init(void *mem, int size, int flags); 117 static void proc_fini(void *mem, int size); 118 static void pargs_free(struct pargs *pa); 119 120 /* 121 * Other process lists 122 */ 123 struct pidhashhead *pidhashtbl = NULL; 124 struct sx *pidhashtbl_lock; 125 u_long pidhash; 126 u_long pidhashlock; 127 struct pgrphashhead *pgrphashtbl; 128 u_long pgrphash; 129 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); 130 struct sx __exclusive_cache_line allproc_lock; 131 struct sx __exclusive_cache_line proctree_lock; 132 struct mtx __exclusive_cache_line ppeers_lock; 133 struct mtx __exclusive_cache_line procid_lock; 134 uma_zone_t proc_zone; 135 uma_zone_t pgrp_zone; 136 137 /* 138 * The offset of various fields in struct proc and struct thread. 139 * These are used by kernel debuggers to enumerate kernel threads and 140 * processes. 141 */ 142 const int proc_off_p_pid = offsetof(struct proc, p_pid); 143 const int proc_off_p_comm = offsetof(struct proc, p_comm); 144 const int proc_off_p_list = offsetof(struct proc, p_list); 145 const int proc_off_p_hash = offsetof(struct proc, p_hash); 146 const int proc_off_p_threads = offsetof(struct proc, p_threads); 147 const int thread_off_td_tid = offsetof(struct thread, td_tid); 148 const int thread_off_td_name = offsetof(struct thread, td_name); 149 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 150 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 151 const int thread_off_td_plist = offsetof(struct thread, td_plist); 152 153 EVENTHANDLER_LIST_DEFINE(process_ctor); 154 EVENTHANDLER_LIST_DEFINE(process_dtor); 155 EVENTHANDLER_LIST_DEFINE(process_init); 156 EVENTHANDLER_LIST_DEFINE(process_fini); 157 EVENTHANDLER_LIST_DEFINE(process_exit); 158 EVENTHANDLER_LIST_DEFINE(process_fork); 159 EVENTHANDLER_LIST_DEFINE(process_exec); 160 161 int kstack_pages = KSTACK_PAGES; 162 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 163 &kstack_pages, 0, 164 "Kernel stack size in pages"); 165 static int vmmap_skip_res_cnt = 0; 166 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 167 &vmmap_skip_res_cnt, 0, 168 "Skip calculation of the pages resident count in kern.proc.vmmap"); 169 170 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 171 #ifdef COMPAT_FREEBSD32 172 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 173 #endif 174 175 /* 176 * Initialize global process hashing structures. 177 */ 178 void 179 procinit(void) 180 { 181 u_long i; 182 183 sx_init(&allproc_lock, "allproc"); 184 sx_init(&proctree_lock, "proctree"); 185 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 186 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 187 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 188 pidhashlock = (pidhash + 1) / 64; 189 if (pidhashlock > 0) 190 pidhashlock--; 191 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 192 M_PROC, M_WAITOK | M_ZERO); 193 for (i = 0; i < pidhashlock + 1; i++) 194 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 195 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 196 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 197 proc_ctor, proc_dtor, proc_init, proc_fini, 198 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, 200 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 201 uihashinit(); 202 } 203 204 /* 205 * Prepare a proc for use. 206 */ 207 static int 208 proc_ctor(void *mem, int size, void *arg, int flags) 209 { 210 struct proc *p; 211 struct thread *td; 212 213 p = (struct proc *)mem; 214 #ifdef KDTRACE_HOOKS 215 kdtrace_proc_ctor(p); 216 #endif 217 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 218 td = FIRST_THREAD_IN_PROC(p); 219 if (td != NULL) { 220 /* Make sure all thread constructors are executed */ 221 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 222 } 223 return (0); 224 } 225 226 /* 227 * Reclaim a proc after use. 228 */ 229 static void 230 proc_dtor(void *mem, int size, void *arg) 231 { 232 struct proc *p; 233 struct thread *td; 234 235 /* INVARIANTS checks go here */ 236 p = (struct proc *)mem; 237 td = FIRST_THREAD_IN_PROC(p); 238 if (td != NULL) { 239 #ifdef INVARIANTS 240 KASSERT((p->p_numthreads == 1), 241 ("bad number of threads in exiting process")); 242 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 243 #endif 244 /* Free all OSD associated to this thread. */ 245 osd_thread_exit(td); 246 ast_kclear(td); 247 248 /* Make sure all thread destructors are executed */ 249 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 250 } 251 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 252 #ifdef KDTRACE_HOOKS 253 kdtrace_proc_dtor(p); 254 #endif 255 if (p->p_ksi != NULL) 256 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 257 } 258 259 /* 260 * Initialize type-stable parts of a proc (when newly created). 261 */ 262 static int 263 proc_init(void *mem, int size, int flags) 264 { 265 struct proc *p; 266 267 p = (struct proc *)mem; 268 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 269 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 270 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 271 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 272 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 273 cv_init(&p->p_pwait, "ppwait"); 274 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 275 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 276 p->p_stats = pstats_alloc(); 277 p->p_pgrp = NULL; 278 TAILQ_INIT(&p->p_kqtim_stop); 279 return (0); 280 } 281 282 /* 283 * UMA should ensure that this function is never called. 284 * Freeing a proc structure would violate type stability. 285 */ 286 static void 287 proc_fini(void *mem, int size) 288 { 289 #ifdef notnow 290 struct proc *p; 291 292 p = (struct proc *)mem; 293 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 294 pstats_free(p->p_stats); 295 thread_free(FIRST_THREAD_IN_PROC(p)); 296 mtx_destroy(&p->p_mtx); 297 if (p->p_ksi != NULL) 298 ksiginfo_free(p->p_ksi); 299 #else 300 panic("proc reclaimed"); 301 #endif 302 } 303 304 static int 305 pgrp_init(void *mem, int size, int flags) 306 { 307 struct pgrp *pg; 308 309 pg = mem; 310 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 311 sx_init(&pg->pg_killsx, "killpg racer"); 312 return (0); 313 } 314 315 /* 316 * PID space management. 317 * 318 * These bitmaps are used by fork_findpid. 319 */ 320 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 321 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 322 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 323 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 324 325 static bitstr_t *proc_id_array[] = { 326 proc_id_pidmap, 327 proc_id_grpidmap, 328 proc_id_sessidmap, 329 proc_id_reapmap, 330 }; 331 332 void 333 proc_id_set(int type, pid_t id) 334 { 335 336 KASSERT(type >= 0 && type < nitems(proc_id_array), 337 ("invalid type %d\n", type)); 338 mtx_lock(&procid_lock); 339 KASSERT(bit_test(proc_id_array[type], id) == 0, 340 ("bit %d already set in %d\n", id, type)); 341 bit_set(proc_id_array[type], id); 342 mtx_unlock(&procid_lock); 343 } 344 345 void 346 proc_id_set_cond(int type, pid_t id) 347 { 348 349 KASSERT(type >= 0 && type < nitems(proc_id_array), 350 ("invalid type %d\n", type)); 351 if (bit_test(proc_id_array[type], id)) 352 return; 353 mtx_lock(&procid_lock); 354 bit_set(proc_id_array[type], id); 355 mtx_unlock(&procid_lock); 356 } 357 358 void 359 proc_id_clear(int type, pid_t id) 360 { 361 362 KASSERT(type >= 0 && type < nitems(proc_id_array), 363 ("invalid type %d\n", type)); 364 mtx_lock(&procid_lock); 365 KASSERT(bit_test(proc_id_array[type], id) != 0, 366 ("bit %d not set in %d\n", id, type)); 367 bit_clear(proc_id_array[type], id); 368 mtx_unlock(&procid_lock); 369 } 370 371 /* 372 * Is p an inferior of the current process? 373 */ 374 int 375 inferior(struct proc *p) 376 { 377 378 sx_assert(&proctree_lock, SX_LOCKED); 379 PROC_LOCK_ASSERT(p, MA_OWNED); 380 for (; p != curproc; p = proc_realparent(p)) { 381 if (p->p_pid == 0) 382 return (0); 383 } 384 return (1); 385 } 386 387 /* 388 * Shared lock all the pid hash lists. 389 */ 390 void 391 pidhash_slockall(void) 392 { 393 u_long i; 394 395 for (i = 0; i < pidhashlock + 1; i++) 396 sx_slock(&pidhashtbl_lock[i]); 397 } 398 399 /* 400 * Shared unlock all the pid hash lists. 401 */ 402 void 403 pidhash_sunlockall(void) 404 { 405 u_long i; 406 407 for (i = 0; i < pidhashlock + 1; i++) 408 sx_sunlock(&pidhashtbl_lock[i]); 409 } 410 411 /* 412 * Similar to pfind_any(), this function finds zombies. 413 */ 414 struct proc * 415 pfind_any_locked(pid_t pid) 416 { 417 struct proc *p; 418 419 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 420 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 421 if (p->p_pid == pid) { 422 PROC_LOCK(p); 423 if (p->p_state == PRS_NEW) { 424 PROC_UNLOCK(p); 425 p = NULL; 426 } 427 break; 428 } 429 } 430 return (p); 431 } 432 433 /* 434 * Locate a process by number. 435 * 436 * By not returning processes in the PRS_NEW state, we allow callers to avoid 437 * testing for that condition to avoid dereferencing p_ucred, et al. 438 */ 439 static __always_inline struct proc * 440 _pfind(pid_t pid, bool zombie) 441 { 442 struct proc *p; 443 444 p = curproc; 445 if (p->p_pid == pid) { 446 PROC_LOCK(p); 447 return (p); 448 } 449 sx_slock(PIDHASHLOCK(pid)); 450 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 451 if (p->p_pid == pid) { 452 PROC_LOCK(p); 453 if (p->p_state == PRS_NEW || 454 (!zombie && p->p_state == PRS_ZOMBIE)) { 455 PROC_UNLOCK(p); 456 p = NULL; 457 } 458 break; 459 } 460 } 461 sx_sunlock(PIDHASHLOCK(pid)); 462 return (p); 463 } 464 465 struct proc * 466 pfind(pid_t pid) 467 { 468 469 return (_pfind(pid, false)); 470 } 471 472 /* 473 * Same as pfind but allow zombies. 474 */ 475 struct proc * 476 pfind_any(pid_t pid) 477 { 478 479 return (_pfind(pid, true)); 480 } 481 482 /* 483 * Locate a process group by number. 484 * The caller must hold proctree_lock. 485 */ 486 struct pgrp * 487 pgfind(pid_t pgid) 488 { 489 struct pgrp *pgrp; 490 491 sx_assert(&proctree_lock, SX_LOCKED); 492 493 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 494 if (pgrp->pg_id == pgid) { 495 PGRP_LOCK(pgrp); 496 return (pgrp); 497 } 498 } 499 return (NULL); 500 } 501 502 /* 503 * Locate process and do additional manipulations, depending on flags. 504 */ 505 int 506 pget(pid_t pid, int flags, struct proc **pp) 507 { 508 struct proc *p; 509 struct thread *td1; 510 int error; 511 512 p = curproc; 513 if (p->p_pid == pid) { 514 PROC_LOCK(p); 515 } else { 516 p = NULL; 517 if (pid <= PID_MAX) { 518 if ((flags & PGET_NOTWEXIT) == 0) 519 p = pfind_any(pid); 520 else 521 p = pfind(pid); 522 } else if ((flags & PGET_NOTID) == 0) { 523 td1 = tdfind(pid, -1); 524 if (td1 != NULL) 525 p = td1->td_proc; 526 } 527 if (p == NULL) 528 return (ESRCH); 529 if ((flags & PGET_CANSEE) != 0) { 530 error = p_cansee(curthread, p); 531 if (error != 0) 532 goto errout; 533 } 534 } 535 if ((flags & PGET_CANDEBUG) != 0) { 536 error = p_candebug(curthread, p); 537 if (error != 0) 538 goto errout; 539 } 540 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 541 error = EPERM; 542 goto errout; 543 } 544 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 545 error = ESRCH; 546 goto errout; 547 } 548 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 549 /* 550 * XXXRW: Not clear ESRCH is the right error during proc 551 * execve(). 552 */ 553 error = ESRCH; 554 goto errout; 555 } 556 if ((flags & PGET_HOLD) != 0) { 557 _PHOLD(p); 558 PROC_UNLOCK(p); 559 } 560 *pp = p; 561 return (0); 562 errout: 563 PROC_UNLOCK(p); 564 return (error); 565 } 566 567 /* 568 * Create a new process group. 569 * pgid must be equal to the pid of p. 570 * Begin a new session if required. 571 */ 572 int 573 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 574 { 575 struct pgrp *old_pgrp; 576 577 sx_assert(&proctree_lock, SX_XLOCKED); 578 579 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 580 KASSERT(p->p_pid == pgid, 581 ("enterpgrp: new pgrp and pid != pgid")); 582 KASSERT(pgfind(pgid) == NULL, 583 ("enterpgrp: pgrp with pgid exists")); 584 KASSERT(!SESS_LEADER(p), 585 ("enterpgrp: session leader attempted setpgrp")); 586 587 old_pgrp = p->p_pgrp; 588 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 589 sx_xunlock(&proctree_lock); 590 sx_xlock(&old_pgrp->pg_killsx); 591 sx_xunlock(&old_pgrp->pg_killsx); 592 return (ERESTART); 593 } 594 MPASS(old_pgrp == p->p_pgrp); 595 596 if (sess != NULL) { 597 /* 598 * new session 599 */ 600 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 601 PROC_LOCK(p); 602 p->p_flag &= ~P_CONTROLT; 603 PROC_UNLOCK(p); 604 PGRP_LOCK(pgrp); 605 sess->s_leader = p; 606 sess->s_sid = p->p_pid; 607 proc_id_set(PROC_ID_SESSION, p->p_pid); 608 refcount_init(&sess->s_count, 1); 609 sess->s_ttyvp = NULL; 610 sess->s_ttydp = NULL; 611 sess->s_ttyp = NULL; 612 bcopy(p->p_session->s_login, sess->s_login, 613 sizeof(sess->s_login)); 614 pgrp->pg_session = sess; 615 KASSERT(p == curproc, 616 ("enterpgrp: mksession and p != curproc")); 617 } else { 618 pgrp->pg_session = p->p_session; 619 sess_hold(pgrp->pg_session); 620 PGRP_LOCK(pgrp); 621 } 622 pgrp->pg_id = pgid; 623 proc_id_set(PROC_ID_GROUP, p->p_pid); 624 LIST_INIT(&pgrp->pg_members); 625 pgrp->pg_flags = 0; 626 627 /* 628 * As we have an exclusive lock of proctree_lock, 629 * this should not deadlock. 630 */ 631 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 632 SLIST_INIT(&pgrp->pg_sigiolst); 633 PGRP_UNLOCK(pgrp); 634 635 doenterpgrp(p, pgrp); 636 637 sx_xunlock(&old_pgrp->pg_killsx); 638 return (0); 639 } 640 641 /* 642 * Move p to an existing process group 643 */ 644 int 645 enterthispgrp(struct proc *p, struct pgrp *pgrp) 646 { 647 struct pgrp *old_pgrp; 648 649 sx_assert(&proctree_lock, SX_XLOCKED); 650 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 651 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 652 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 653 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 654 KASSERT(pgrp->pg_session == p->p_session, 655 ("%s: pgrp's session %p, p->p_session %p proc %p\n", 656 __func__, pgrp->pg_session, p->p_session, p)); 657 KASSERT(pgrp != p->p_pgrp, 658 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); 659 660 old_pgrp = p->p_pgrp; 661 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 662 sx_xunlock(&proctree_lock); 663 sx_xlock(&old_pgrp->pg_killsx); 664 sx_xunlock(&old_pgrp->pg_killsx); 665 return (ERESTART); 666 } 667 MPASS(old_pgrp == p->p_pgrp); 668 if (!sx_try_xlock(&pgrp->pg_killsx)) { 669 sx_xunlock(&old_pgrp->pg_killsx); 670 sx_xunlock(&proctree_lock); 671 sx_xlock(&pgrp->pg_killsx); 672 sx_xunlock(&pgrp->pg_killsx); 673 return (ERESTART); 674 } 675 676 doenterpgrp(p, pgrp); 677 678 sx_xunlock(&pgrp->pg_killsx); 679 sx_xunlock(&old_pgrp->pg_killsx); 680 return (0); 681 } 682 683 /* 684 * If true, any child of q which belongs to group pgrp, qualifies the 685 * process group pgrp as not orphaned. 686 */ 687 static bool 688 isjobproc(struct proc *q, struct pgrp *pgrp) 689 { 690 sx_assert(&proctree_lock, SX_LOCKED); 691 692 return (q->p_pgrp != pgrp && 693 q->p_pgrp->pg_session == pgrp->pg_session); 694 } 695 696 static struct proc * 697 jobc_reaper(struct proc *p) 698 { 699 struct proc *pp; 700 701 sx_assert(&proctree_lock, SA_LOCKED); 702 703 for (pp = p;;) { 704 pp = pp->p_reaper; 705 if (pp->p_reaper == pp || 706 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 707 return (pp); 708 } 709 } 710 711 static struct proc * 712 jobc_parent(struct proc *p, struct proc *p_exiting) 713 { 714 struct proc *pp; 715 716 sx_assert(&proctree_lock, SA_LOCKED); 717 718 pp = proc_realparent(p); 719 if (pp->p_pptr == NULL || pp == p_exiting || 720 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 721 return (pp); 722 return (jobc_reaper(pp)); 723 } 724 725 static int 726 pgrp_calc_jobc(struct pgrp *pgrp) 727 { 728 struct proc *q; 729 int cnt; 730 731 #ifdef INVARIANTS 732 if (!mtx_owned(&pgrp->pg_mtx)) 733 sx_assert(&proctree_lock, SA_LOCKED); 734 #endif 735 736 cnt = 0; 737 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 738 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 739 q->p_pptr == NULL) 740 continue; 741 if (isjobproc(jobc_parent(q, NULL), pgrp)) 742 cnt++; 743 } 744 return (cnt); 745 } 746 747 /* 748 * Move p to a process group 749 */ 750 static void 751 doenterpgrp(struct proc *p, struct pgrp *pgrp) 752 { 753 struct pgrp *savepgrp; 754 struct proc *pp; 755 756 sx_assert(&proctree_lock, SX_XLOCKED); 757 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 758 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 759 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 760 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 761 762 savepgrp = p->p_pgrp; 763 pp = jobc_parent(p, NULL); 764 765 PGRP_LOCK(pgrp); 766 PGRP_LOCK(savepgrp); 767 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) 768 orphanpg(savepgrp); 769 PROC_LOCK(p); 770 LIST_REMOVE(p, p_pglist); 771 p->p_pgrp = pgrp; 772 PROC_UNLOCK(p); 773 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 774 if (isjobproc(pp, pgrp)) 775 pgrp->pg_flags &= ~PGRP_ORPHANED; 776 PGRP_UNLOCK(savepgrp); 777 PGRP_UNLOCK(pgrp); 778 if (LIST_EMPTY(&savepgrp->pg_members)) 779 pgdelete(savepgrp); 780 } 781 782 /* 783 * remove process from process group 784 */ 785 int 786 leavepgrp(struct proc *p) 787 { 788 struct pgrp *savepgrp; 789 790 sx_assert(&proctree_lock, SX_XLOCKED); 791 savepgrp = p->p_pgrp; 792 PGRP_LOCK(savepgrp); 793 PROC_LOCK(p); 794 LIST_REMOVE(p, p_pglist); 795 p->p_pgrp = NULL; 796 PROC_UNLOCK(p); 797 PGRP_UNLOCK(savepgrp); 798 if (LIST_EMPTY(&savepgrp->pg_members)) 799 pgdelete(savepgrp); 800 return (0); 801 } 802 803 /* 804 * delete a process group 805 */ 806 static void 807 pgdelete(struct pgrp *pgrp) 808 { 809 struct session *savesess; 810 struct tty *tp; 811 812 sx_assert(&proctree_lock, SX_XLOCKED); 813 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 814 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 815 816 /* 817 * Reset any sigio structures pointing to us as a result of 818 * F_SETOWN with our pgid. The proctree lock ensures that 819 * new sigio structures will not be added after this point. 820 */ 821 funsetownlst(&pgrp->pg_sigiolst); 822 823 PGRP_LOCK(pgrp); 824 tp = pgrp->pg_session->s_ttyp; 825 LIST_REMOVE(pgrp, pg_hash); 826 savesess = pgrp->pg_session; 827 PGRP_UNLOCK(pgrp); 828 829 /* Remove the reference to the pgrp before deallocating it. */ 830 if (tp != NULL) { 831 tty_lock(tp); 832 tty_rel_pgrp(tp, pgrp); 833 } 834 835 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 836 uma_zfree(pgrp_zone, pgrp); 837 sess_release(savesess); 838 } 839 840 841 static void 842 fixjobc_kill(struct proc *p) 843 { 844 struct proc *q; 845 struct pgrp *pgrp; 846 847 sx_assert(&proctree_lock, SX_LOCKED); 848 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 849 pgrp = p->p_pgrp; 850 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 851 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 852 853 /* 854 * p no longer affects process group orphanage for children. 855 * It is marked by the flag because p is only physically 856 * removed from its process group on wait(2). 857 */ 858 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 859 p->p_treeflag |= P_TREE_GRPEXITED; 860 861 /* 862 * Check if exiting p orphans its own group. 863 */ 864 pgrp = p->p_pgrp; 865 if (isjobproc(jobc_parent(p, NULL), pgrp)) { 866 PGRP_LOCK(pgrp); 867 if (pgrp_calc_jobc(pgrp) == 0) 868 orphanpg(pgrp); 869 PGRP_UNLOCK(pgrp); 870 } 871 872 /* 873 * Check this process' children to see whether they qualify 874 * their process groups after reparenting to reaper. 875 */ 876 LIST_FOREACH(q, &p->p_children, p_sibling) { 877 pgrp = q->p_pgrp; 878 PGRP_LOCK(pgrp); 879 if (pgrp_calc_jobc(pgrp) == 0) { 880 /* 881 * We want to handle exactly the children that 882 * has p as realparent. Then, when calculating 883 * jobc_parent for children, we should ignore 884 * P_TREE_GRPEXITED flag already set on p. 885 */ 886 if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) 887 orphanpg(pgrp); 888 } else 889 pgrp->pg_flags &= ~PGRP_ORPHANED; 890 PGRP_UNLOCK(pgrp); 891 } 892 LIST_FOREACH(q, &p->p_orphans, p_orphan) { 893 pgrp = q->p_pgrp; 894 PGRP_LOCK(pgrp); 895 if (pgrp_calc_jobc(pgrp) == 0) { 896 if (isjobproc(p, pgrp)) 897 orphanpg(pgrp); 898 } else 899 pgrp->pg_flags &= ~PGRP_ORPHANED; 900 PGRP_UNLOCK(pgrp); 901 } 902 } 903 904 void 905 killjobc(void) 906 { 907 struct session *sp; 908 struct tty *tp; 909 struct proc *p; 910 struct vnode *ttyvp; 911 912 p = curproc; 913 MPASS(p->p_flag & P_WEXIT); 914 sx_assert(&proctree_lock, SX_LOCKED); 915 916 if (SESS_LEADER(p)) { 917 sp = p->p_session; 918 919 /* 920 * s_ttyp is not zero'd; we use this to indicate that 921 * the session once had a controlling terminal. (for 922 * logging and informational purposes) 923 */ 924 SESS_LOCK(sp); 925 ttyvp = sp->s_ttyvp; 926 tp = sp->s_ttyp; 927 sp->s_ttyvp = NULL; 928 sp->s_ttydp = NULL; 929 sp->s_leader = NULL; 930 SESS_UNLOCK(sp); 931 932 /* 933 * Signal foreground pgrp and revoke access to 934 * controlling terminal if it has not been revoked 935 * already. 936 * 937 * Because the TTY may have been revoked in the mean 938 * time and could already have a new session associated 939 * with it, make sure we don't send a SIGHUP to a 940 * foreground process group that does not belong to this 941 * session. 942 */ 943 944 if (tp != NULL) { 945 tty_lock(tp); 946 if (tp->t_session == sp) 947 tty_signal_pgrp(tp, SIGHUP); 948 tty_unlock(tp); 949 } 950 951 if (ttyvp != NULL) { 952 sx_xunlock(&proctree_lock); 953 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 954 VOP_REVOKE(ttyvp, REVOKEALL); 955 VOP_UNLOCK(ttyvp); 956 } 957 devfs_ctty_unref(ttyvp); 958 sx_xlock(&proctree_lock); 959 } 960 } 961 fixjobc_kill(p); 962 } 963 964 /* 965 * A process group has become orphaned, mark it as such for signal 966 * delivery code. If there are any stopped processes in the group, 967 * hang-up all process in that group. 968 */ 969 static void 970 orphanpg(struct pgrp *pg) 971 { 972 struct proc *p; 973 974 PGRP_LOCK_ASSERT(pg, MA_OWNED); 975 976 pg->pg_flags |= PGRP_ORPHANED; 977 978 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 979 PROC_LOCK(p); 980 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 981 PROC_UNLOCK(p); 982 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 983 PROC_LOCK(p); 984 kern_psignal(p, SIGHUP); 985 kern_psignal(p, SIGCONT); 986 PROC_UNLOCK(p); 987 } 988 return; 989 } 990 PROC_UNLOCK(p); 991 } 992 } 993 994 void 995 sess_hold(struct session *s) 996 { 997 998 refcount_acquire(&s->s_count); 999 } 1000 1001 void 1002 sess_release(struct session *s) 1003 { 1004 1005 if (refcount_release(&s->s_count)) { 1006 if (s->s_ttyp != NULL) { 1007 tty_lock(s->s_ttyp); 1008 tty_rel_sess(s->s_ttyp, s); 1009 } 1010 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1011 mtx_destroy(&s->s_mtx); 1012 free(s, M_SESSION); 1013 } 1014 } 1015 1016 #ifdef DDB 1017 1018 static void 1019 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1020 { 1021 db_printf( 1022 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1023 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1024 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1025 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1026 } 1027 1028 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) 1029 { 1030 struct pgrp *pgrp; 1031 struct proc *p; 1032 int i; 1033 1034 for (i = 0; i <= pgrphash; i++) { 1035 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1036 db_printf("indx %d\n", i); 1037 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1038 db_printf( 1039 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1040 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1041 pgrp->pg_session->s_count, 1042 LIST_FIRST(&pgrp->pg_members)); 1043 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1044 db_print_pgrp_one(pgrp, p); 1045 } 1046 } 1047 } 1048 } 1049 #endif /* DDB */ 1050 1051 /* 1052 * Calculate the kinfo_proc members which contain process-wide 1053 * informations. 1054 * Must be called with the target process locked. 1055 */ 1056 static void 1057 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1058 { 1059 struct thread *td; 1060 1061 PROC_LOCK_ASSERT(p, MA_OWNED); 1062 1063 kp->ki_estcpu = 0; 1064 kp->ki_pctcpu = 0; 1065 FOREACH_THREAD_IN_PROC(p, td) { 1066 thread_lock(td); 1067 kp->ki_pctcpu += sched_pctcpu(td); 1068 kp->ki_estcpu += sched_estcpu(td); 1069 thread_unlock(td); 1070 } 1071 } 1072 1073 /* 1074 * Fill in any information that is common to all threads in the process. 1075 * Must be called with the target process locked. 1076 */ 1077 static void 1078 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1079 { 1080 struct thread *td0; 1081 struct ucred *cred; 1082 struct sigacts *ps; 1083 struct timeval boottime; 1084 1085 PROC_LOCK_ASSERT(p, MA_OWNED); 1086 1087 kp->ki_structsize = sizeof(*kp); 1088 kp->ki_paddr = p; 1089 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1090 kp->ki_args = p->p_args; 1091 kp->ki_textvp = p->p_textvp; 1092 #ifdef KTRACE 1093 kp->ki_tracep = ktr_get_tracevp(p, false); 1094 kp->ki_traceflag = p->p_traceflag; 1095 #endif 1096 kp->ki_fd = p->p_fd; 1097 kp->ki_pd = p->p_pd; 1098 kp->ki_vmspace = p->p_vmspace; 1099 kp->ki_flag = p->p_flag; 1100 kp->ki_flag2 = p->p_flag2; 1101 cred = p->p_ucred; 1102 if (cred) { 1103 kp->ki_uid = cred->cr_uid; 1104 kp->ki_ruid = cred->cr_ruid; 1105 kp->ki_svuid = cred->cr_svuid; 1106 kp->ki_cr_flags = 0; 1107 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1108 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1109 /* XXX bde doesn't like KI_NGROUPS */ 1110 if (cred->cr_ngroups > KI_NGROUPS) { 1111 kp->ki_ngroups = KI_NGROUPS; 1112 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1113 } else 1114 kp->ki_ngroups = cred->cr_ngroups; 1115 bcopy(cred->cr_groups, kp->ki_groups, 1116 kp->ki_ngroups * sizeof(gid_t)); 1117 kp->ki_rgid = cred->cr_rgid; 1118 kp->ki_svgid = cred->cr_svgid; 1119 /* If jailed(cred), emulate the old P_JAILED flag. */ 1120 if (jailed(cred)) { 1121 kp->ki_flag |= P_JAILED; 1122 /* If inside the jail, use 0 as a jail ID. */ 1123 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1124 kp->ki_jid = cred->cr_prison->pr_id; 1125 } 1126 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1127 sizeof(kp->ki_loginclass)); 1128 } 1129 ps = p->p_sigacts; 1130 if (ps) { 1131 mtx_lock(&ps->ps_mtx); 1132 kp->ki_sigignore = ps->ps_sigignore; 1133 kp->ki_sigcatch = ps->ps_sigcatch; 1134 mtx_unlock(&ps->ps_mtx); 1135 } 1136 if (p->p_state != PRS_NEW && 1137 p->p_state != PRS_ZOMBIE && 1138 p->p_vmspace != NULL) { 1139 struct vmspace *vm = p->p_vmspace; 1140 1141 kp->ki_size = vm->vm_map.size; 1142 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1143 FOREACH_THREAD_IN_PROC(p, td0) 1144 kp->ki_rssize += td0->td_kstack_pages; 1145 kp->ki_swrss = vm->vm_swrss; 1146 kp->ki_tsize = vm->vm_tsize; 1147 kp->ki_dsize = vm->vm_dsize; 1148 kp->ki_ssize = vm->vm_ssize; 1149 } else if (p->p_state == PRS_ZOMBIE) 1150 kp->ki_stat = SZOMB; 1151 kp->ki_sflag = PS_INMEM; 1152 /* Calculate legacy swtime as seconds since 'swtick'. */ 1153 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1154 kp->ki_pid = p->p_pid; 1155 kp->ki_nice = p->p_nice; 1156 kp->ki_fibnum = p->p_fibnum; 1157 kp->ki_start = p->p_stats->p_start; 1158 getboottime(&boottime); 1159 timevaladd(&kp->ki_start, &boottime); 1160 PROC_STATLOCK(p); 1161 rufetch(p, &kp->ki_rusage); 1162 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1163 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1164 PROC_STATUNLOCK(p); 1165 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1166 /* Some callers want child times in a single value. */ 1167 kp->ki_childtime = kp->ki_childstime; 1168 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1169 1170 FOREACH_THREAD_IN_PROC(p, td0) 1171 kp->ki_cow += td0->td_cow; 1172 1173 if (p->p_comm[0] != '\0') 1174 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1175 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1176 p->p_sysent->sv_name[0] != '\0') 1177 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1178 kp->ki_siglist = p->p_siglist; 1179 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1180 kp->ki_acflag = p->p_acflag; 1181 kp->ki_lock = p->p_lock; 1182 if (p->p_pptr) { 1183 kp->ki_ppid = p->p_oppid; 1184 if (p->p_flag & P_TRACED) 1185 kp->ki_tracer = p->p_pptr->p_pid; 1186 } 1187 } 1188 1189 /* 1190 * Fill job-related process information. 1191 */ 1192 static void 1193 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) 1194 { 1195 struct tty *tp; 1196 struct session *sp; 1197 struct pgrp *pgrp; 1198 1199 sx_assert(&proctree_lock, SA_LOCKED); 1200 PROC_LOCK_ASSERT(p, MA_OWNED); 1201 1202 pgrp = p->p_pgrp; 1203 if (pgrp == NULL) 1204 return; 1205 1206 kp->ki_pgid = pgrp->pg_id; 1207 kp->ki_jobc = pgrp_calc_jobc(pgrp); 1208 1209 sp = pgrp->pg_session; 1210 tp = NULL; 1211 1212 if (sp != NULL) { 1213 kp->ki_sid = sp->s_sid; 1214 SESS_LOCK(sp); 1215 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); 1216 if (sp->s_ttyvp) 1217 kp->ki_kiflag |= KI_CTTY; 1218 if (SESS_LEADER(p)) 1219 kp->ki_kiflag |= KI_SLEADER; 1220 tp = sp->s_ttyp; 1221 SESS_UNLOCK(sp); 1222 } 1223 1224 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1225 kp->ki_tdev = tty_udev(tp); 1226 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1227 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1228 if (tp->t_session) 1229 kp->ki_tsid = tp->t_session->s_sid; 1230 } else { 1231 kp->ki_tdev = NODEV; 1232 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1233 } 1234 } 1235 1236 /* 1237 * Fill in information that is thread specific. Must be called with 1238 * target process locked. If 'preferthread' is set, overwrite certain 1239 * process-related fields that are maintained for both threads and 1240 * processes. 1241 */ 1242 static void 1243 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1244 { 1245 struct proc *p; 1246 1247 p = td->td_proc; 1248 kp->ki_tdaddr = td; 1249 PROC_LOCK_ASSERT(p, MA_OWNED); 1250 1251 if (preferthread) 1252 PROC_STATLOCK(p); 1253 thread_lock(td); 1254 if (td->td_wmesg != NULL) 1255 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1256 else 1257 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1258 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1259 sizeof(kp->ki_tdname)) { 1260 strlcpy(kp->ki_moretdname, 1261 td->td_name + sizeof(kp->ki_tdname) - 1, 1262 sizeof(kp->ki_moretdname)); 1263 } else { 1264 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1265 } 1266 if (TD_ON_LOCK(td)) { 1267 kp->ki_kiflag |= KI_LOCKBLOCK; 1268 strlcpy(kp->ki_lockname, td->td_lockname, 1269 sizeof(kp->ki_lockname)); 1270 } else { 1271 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1272 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1273 } 1274 1275 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1276 if (TD_ON_RUNQ(td) || 1277 TD_CAN_RUN(td) || 1278 TD_IS_RUNNING(td)) { 1279 kp->ki_stat = SRUN; 1280 } else if (P_SHOULDSTOP(p)) { 1281 kp->ki_stat = SSTOP; 1282 } else if (TD_IS_SLEEPING(td)) { 1283 kp->ki_stat = SSLEEP; 1284 } else if (TD_ON_LOCK(td)) { 1285 kp->ki_stat = SLOCK; 1286 } else { 1287 kp->ki_stat = SWAIT; 1288 } 1289 } else if (p->p_state == PRS_ZOMBIE) { 1290 kp->ki_stat = SZOMB; 1291 } else { 1292 kp->ki_stat = SIDL; 1293 } 1294 1295 /* Things in the thread */ 1296 kp->ki_wchan = td->td_wchan; 1297 kp->ki_pri.pri_level = td->td_priority; 1298 kp->ki_pri.pri_native = td->td_base_pri; 1299 1300 /* 1301 * Note: legacy fields; clamp at the old NOCPU value and/or 1302 * the maximum u_char CPU value. 1303 */ 1304 if (td->td_lastcpu == NOCPU) 1305 kp->ki_lastcpu_old = NOCPU_OLD; 1306 else if (td->td_lastcpu > MAXCPU_OLD) 1307 kp->ki_lastcpu_old = MAXCPU_OLD; 1308 else 1309 kp->ki_lastcpu_old = td->td_lastcpu; 1310 1311 if (td->td_oncpu == NOCPU) 1312 kp->ki_oncpu_old = NOCPU_OLD; 1313 else if (td->td_oncpu > MAXCPU_OLD) 1314 kp->ki_oncpu_old = MAXCPU_OLD; 1315 else 1316 kp->ki_oncpu_old = td->td_oncpu; 1317 1318 kp->ki_lastcpu = td->td_lastcpu; 1319 kp->ki_oncpu = td->td_oncpu; 1320 kp->ki_tdflags = td->td_flags; 1321 kp->ki_tid = td->td_tid; 1322 kp->ki_numthreads = p->p_numthreads; 1323 kp->ki_pcb = td->td_pcb; 1324 kp->ki_kstack = (void *)td->td_kstack; 1325 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1326 kp->ki_pri.pri_class = td->td_pri_class; 1327 kp->ki_pri.pri_user = td->td_user_pri; 1328 1329 if (preferthread) { 1330 rufetchtd(td, &kp->ki_rusage); 1331 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1332 kp->ki_pctcpu = sched_pctcpu(td); 1333 kp->ki_estcpu = sched_estcpu(td); 1334 kp->ki_cow = td->td_cow; 1335 } 1336 1337 /* We can't get this anymore but ps etc never used it anyway. */ 1338 kp->ki_rqindex = 0; 1339 1340 if (preferthread) 1341 kp->ki_siglist = td->td_siglist; 1342 kp->ki_sigmask = td->td_sigmask; 1343 thread_unlock(td); 1344 if (preferthread) 1345 PROC_STATUNLOCK(p); 1346 } 1347 1348 /* 1349 * Fill in a kinfo_proc structure for the specified process. 1350 * Must be called with the target process locked. 1351 */ 1352 void 1353 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1354 { 1355 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1356 1357 bzero(kp, sizeof(*kp)); 1358 1359 fill_kinfo_proc_pgrp(p,kp); 1360 fill_kinfo_proc_only(p, kp); 1361 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1362 fill_kinfo_aggregate(p, kp); 1363 } 1364 1365 struct pstats * 1366 pstats_alloc(void) 1367 { 1368 1369 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1370 } 1371 1372 /* 1373 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1374 */ 1375 void 1376 pstats_fork(struct pstats *src, struct pstats *dst) 1377 { 1378 1379 bzero(&dst->pstat_startzero, 1380 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1381 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1382 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1383 } 1384 1385 void 1386 pstats_free(struct pstats *ps) 1387 { 1388 1389 free(ps, M_SUBPROC); 1390 } 1391 1392 #ifdef COMPAT_FREEBSD32 1393 1394 /* 1395 * This function is typically used to copy out the kernel address, so 1396 * it can be replaced by assignment of zero. 1397 */ 1398 static inline uint32_t 1399 ptr32_trim(const void *ptr) 1400 { 1401 uintptr_t uptr; 1402 1403 uptr = (uintptr_t)ptr; 1404 return ((uptr > UINT_MAX) ? 0 : uptr); 1405 } 1406 1407 #define PTRTRIM_CP(src,dst,fld) \ 1408 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1409 1410 static void 1411 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1412 { 1413 int i; 1414 1415 bzero(ki32, sizeof(struct kinfo_proc32)); 1416 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1417 CP(*ki, *ki32, ki_layout); 1418 PTRTRIM_CP(*ki, *ki32, ki_args); 1419 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1420 PTRTRIM_CP(*ki, *ki32, ki_addr); 1421 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1422 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1423 PTRTRIM_CP(*ki, *ki32, ki_fd); 1424 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1425 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1426 CP(*ki, *ki32, ki_pid); 1427 CP(*ki, *ki32, ki_ppid); 1428 CP(*ki, *ki32, ki_pgid); 1429 CP(*ki, *ki32, ki_tpgid); 1430 CP(*ki, *ki32, ki_sid); 1431 CP(*ki, *ki32, ki_tsid); 1432 CP(*ki, *ki32, ki_jobc); 1433 CP(*ki, *ki32, ki_tdev); 1434 CP(*ki, *ki32, ki_tdev_freebsd11); 1435 CP(*ki, *ki32, ki_siglist); 1436 CP(*ki, *ki32, ki_sigmask); 1437 CP(*ki, *ki32, ki_sigignore); 1438 CP(*ki, *ki32, ki_sigcatch); 1439 CP(*ki, *ki32, ki_uid); 1440 CP(*ki, *ki32, ki_ruid); 1441 CP(*ki, *ki32, ki_svuid); 1442 CP(*ki, *ki32, ki_rgid); 1443 CP(*ki, *ki32, ki_svgid); 1444 CP(*ki, *ki32, ki_ngroups); 1445 for (i = 0; i < KI_NGROUPS; i++) 1446 CP(*ki, *ki32, ki_groups[i]); 1447 CP(*ki, *ki32, ki_size); 1448 CP(*ki, *ki32, ki_rssize); 1449 CP(*ki, *ki32, ki_swrss); 1450 CP(*ki, *ki32, ki_tsize); 1451 CP(*ki, *ki32, ki_dsize); 1452 CP(*ki, *ki32, ki_ssize); 1453 CP(*ki, *ki32, ki_xstat); 1454 CP(*ki, *ki32, ki_acflag); 1455 CP(*ki, *ki32, ki_pctcpu); 1456 CP(*ki, *ki32, ki_estcpu); 1457 CP(*ki, *ki32, ki_slptime); 1458 CP(*ki, *ki32, ki_swtime); 1459 CP(*ki, *ki32, ki_cow); 1460 CP(*ki, *ki32, ki_runtime); 1461 TV_CP(*ki, *ki32, ki_start); 1462 TV_CP(*ki, *ki32, ki_childtime); 1463 CP(*ki, *ki32, ki_flag); 1464 CP(*ki, *ki32, ki_kiflag); 1465 CP(*ki, *ki32, ki_traceflag); 1466 CP(*ki, *ki32, ki_stat); 1467 CP(*ki, *ki32, ki_nice); 1468 CP(*ki, *ki32, ki_lock); 1469 CP(*ki, *ki32, ki_rqindex); 1470 CP(*ki, *ki32, ki_oncpu); 1471 CP(*ki, *ki32, ki_lastcpu); 1472 1473 /* XXX TODO: wrap cpu value as appropriate */ 1474 CP(*ki, *ki32, ki_oncpu_old); 1475 CP(*ki, *ki32, ki_lastcpu_old); 1476 1477 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1478 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1479 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1480 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1481 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1482 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1483 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1484 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1485 CP(*ki, *ki32, ki_tracer); 1486 CP(*ki, *ki32, ki_flag2); 1487 CP(*ki, *ki32, ki_fibnum); 1488 CP(*ki, *ki32, ki_cr_flags); 1489 CP(*ki, *ki32, ki_jid); 1490 CP(*ki, *ki32, ki_numthreads); 1491 CP(*ki, *ki32, ki_tid); 1492 CP(*ki, *ki32, ki_pri); 1493 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1494 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1495 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1496 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1497 PTRTRIM_CP(*ki, *ki32, ki_udata); 1498 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1499 CP(*ki, *ki32, ki_sflag); 1500 CP(*ki, *ki32, ki_tdflags); 1501 } 1502 #endif 1503 1504 static ssize_t 1505 kern_proc_out_size(struct proc *p, int flags) 1506 { 1507 ssize_t size = 0; 1508 1509 PROC_LOCK_ASSERT(p, MA_OWNED); 1510 1511 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1512 #ifdef COMPAT_FREEBSD32 1513 if ((flags & KERN_PROC_MASK32) != 0) { 1514 size += sizeof(struct kinfo_proc32); 1515 } else 1516 #endif 1517 size += sizeof(struct kinfo_proc); 1518 } else { 1519 #ifdef COMPAT_FREEBSD32 1520 if ((flags & KERN_PROC_MASK32) != 0) 1521 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1522 else 1523 #endif 1524 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1525 } 1526 PROC_UNLOCK(p); 1527 return (size); 1528 } 1529 1530 int 1531 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1532 { 1533 struct thread *td; 1534 struct kinfo_proc ki; 1535 #ifdef COMPAT_FREEBSD32 1536 struct kinfo_proc32 ki32; 1537 #endif 1538 int error; 1539 1540 PROC_LOCK_ASSERT(p, MA_OWNED); 1541 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1542 1543 error = 0; 1544 fill_kinfo_proc(p, &ki); 1545 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1546 #ifdef COMPAT_FREEBSD32 1547 if ((flags & KERN_PROC_MASK32) != 0) { 1548 freebsd32_kinfo_proc_out(&ki, &ki32); 1549 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1550 error = ENOMEM; 1551 } else 1552 #endif 1553 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1554 error = ENOMEM; 1555 } else { 1556 FOREACH_THREAD_IN_PROC(p, td) { 1557 fill_kinfo_thread(td, &ki, 1); 1558 #ifdef COMPAT_FREEBSD32 1559 if ((flags & KERN_PROC_MASK32) != 0) { 1560 freebsd32_kinfo_proc_out(&ki, &ki32); 1561 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1562 error = ENOMEM; 1563 } else 1564 #endif 1565 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1566 error = ENOMEM; 1567 if (error != 0) 1568 break; 1569 } 1570 } 1571 PROC_UNLOCK(p); 1572 return (error); 1573 } 1574 1575 static int 1576 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1577 { 1578 struct sbuf sb; 1579 struct kinfo_proc ki; 1580 int error, error2; 1581 1582 if (req->oldptr == NULL) 1583 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1584 1585 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1586 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1587 error = kern_proc_out(p, &sb, flags); 1588 error2 = sbuf_finish(&sb); 1589 sbuf_delete(&sb); 1590 if (error != 0) 1591 return (error); 1592 else if (error2 != 0) 1593 return (error2); 1594 return (0); 1595 } 1596 1597 int 1598 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1599 { 1600 struct proc *p; 1601 int error, i, j; 1602 1603 for (i = 0; i < pidhashlock + 1; i++) { 1604 sx_slock(&proctree_lock); 1605 sx_slock(&pidhashtbl_lock[i]); 1606 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1607 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1608 if (p->p_state == PRS_NEW) 1609 continue; 1610 error = cb(p, cbarg); 1611 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1612 if (error != 0) { 1613 sx_sunlock(&pidhashtbl_lock[i]); 1614 sx_sunlock(&proctree_lock); 1615 return (error); 1616 } 1617 } 1618 } 1619 sx_sunlock(&pidhashtbl_lock[i]); 1620 sx_sunlock(&proctree_lock); 1621 } 1622 return (0); 1623 } 1624 1625 struct kern_proc_out_args { 1626 struct sysctl_req *req; 1627 int flags; 1628 int oid_number; 1629 int *name; 1630 }; 1631 1632 static int 1633 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1634 { 1635 struct kern_proc_out_args *arg = origarg; 1636 int *name = arg->name; 1637 int oid_number = arg->oid_number; 1638 int flags = arg->flags; 1639 struct sysctl_req *req = arg->req; 1640 int error = 0; 1641 1642 PROC_LOCK(p); 1643 1644 KASSERT(p->p_ucred != NULL, 1645 ("process credential is NULL for non-NEW proc")); 1646 /* 1647 * Show a user only appropriate processes. 1648 */ 1649 if (p_cansee(curthread, p)) 1650 goto skip; 1651 /* 1652 * TODO - make more efficient (see notes below). 1653 * do by session. 1654 */ 1655 switch (oid_number) { 1656 case KERN_PROC_GID: 1657 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1658 goto skip; 1659 break; 1660 1661 case KERN_PROC_PGRP: 1662 /* could do this by traversing pgrp */ 1663 if (p->p_pgrp == NULL || 1664 p->p_pgrp->pg_id != (pid_t)name[0]) 1665 goto skip; 1666 break; 1667 1668 case KERN_PROC_RGID: 1669 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1670 goto skip; 1671 break; 1672 1673 case KERN_PROC_SESSION: 1674 if (p->p_session == NULL || 1675 p->p_session->s_sid != (pid_t)name[0]) 1676 goto skip; 1677 break; 1678 1679 case KERN_PROC_TTY: 1680 if ((p->p_flag & P_CONTROLT) == 0 || 1681 p->p_session == NULL) 1682 goto skip; 1683 /* XXX proctree_lock */ 1684 SESS_LOCK(p->p_session); 1685 if (p->p_session->s_ttyp == NULL || 1686 tty_udev(p->p_session->s_ttyp) != 1687 (dev_t)name[0]) { 1688 SESS_UNLOCK(p->p_session); 1689 goto skip; 1690 } 1691 SESS_UNLOCK(p->p_session); 1692 break; 1693 1694 case KERN_PROC_UID: 1695 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1696 goto skip; 1697 break; 1698 1699 case KERN_PROC_RUID: 1700 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1701 goto skip; 1702 break; 1703 1704 case KERN_PROC_PROC: 1705 break; 1706 1707 default: 1708 break; 1709 } 1710 error = sysctl_out_proc(p, req, flags); 1711 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1712 return (error); 1713 skip: 1714 PROC_UNLOCK(p); 1715 return (0); 1716 } 1717 1718 static int 1719 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1720 { 1721 struct kern_proc_out_args iterarg; 1722 int *name = (int *)arg1; 1723 u_int namelen = arg2; 1724 struct proc *p; 1725 int flags, oid_number; 1726 int error = 0; 1727 1728 oid_number = oidp->oid_number; 1729 if (oid_number != KERN_PROC_ALL && 1730 (oid_number & KERN_PROC_INC_THREAD) == 0) 1731 flags = KERN_PROC_NOTHREADS; 1732 else { 1733 flags = 0; 1734 oid_number &= ~KERN_PROC_INC_THREAD; 1735 } 1736 #ifdef COMPAT_FREEBSD32 1737 if (req->flags & SCTL_MASK32) 1738 flags |= KERN_PROC_MASK32; 1739 #endif 1740 if (oid_number == KERN_PROC_PID) { 1741 if (namelen != 1) 1742 return (EINVAL); 1743 error = sysctl_wire_old_buffer(req, 0); 1744 if (error) 1745 return (error); 1746 sx_slock(&proctree_lock); 1747 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1748 if (error == 0) 1749 error = sysctl_out_proc(p, req, flags); 1750 sx_sunlock(&proctree_lock); 1751 return (error); 1752 } 1753 1754 switch (oid_number) { 1755 case KERN_PROC_ALL: 1756 if (namelen != 0) 1757 return (EINVAL); 1758 break; 1759 case KERN_PROC_PROC: 1760 if (namelen != 0 && namelen != 1) 1761 return (EINVAL); 1762 break; 1763 default: 1764 if (namelen != 1) 1765 return (EINVAL); 1766 break; 1767 } 1768 1769 if (req->oldptr == NULL) { 1770 /* overestimate by 5 procs */ 1771 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1772 if (error) 1773 return (error); 1774 } else { 1775 error = sysctl_wire_old_buffer(req, 0); 1776 if (error != 0) 1777 return (error); 1778 } 1779 iterarg.flags = flags; 1780 iterarg.oid_number = oid_number; 1781 iterarg.req = req; 1782 iterarg.name = name; 1783 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1784 return (error); 1785 } 1786 1787 struct pargs * 1788 pargs_alloc(int len) 1789 { 1790 struct pargs *pa; 1791 1792 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1793 M_WAITOK); 1794 refcount_init(&pa->ar_ref, 1); 1795 pa->ar_length = len; 1796 return (pa); 1797 } 1798 1799 static void 1800 pargs_free(struct pargs *pa) 1801 { 1802 1803 free(pa, M_PARGS); 1804 } 1805 1806 void 1807 pargs_hold(struct pargs *pa) 1808 { 1809 1810 if (pa == NULL) 1811 return; 1812 refcount_acquire(&pa->ar_ref); 1813 } 1814 1815 void 1816 pargs_drop(struct pargs *pa) 1817 { 1818 1819 if (pa == NULL) 1820 return; 1821 if (refcount_release(&pa->ar_ref)) 1822 pargs_free(pa); 1823 } 1824 1825 static int 1826 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1827 size_t len) 1828 { 1829 ssize_t n; 1830 1831 /* 1832 * This may return a short read if the string is shorter than the chunk 1833 * and is aligned at the end of the page, and the following page is not 1834 * mapped. 1835 */ 1836 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1837 if (n <= 0) 1838 return (ENOMEM); 1839 return (0); 1840 } 1841 1842 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1843 1844 enum proc_vector_type { 1845 PROC_ARG, 1846 PROC_ENV, 1847 PROC_AUX, 1848 }; 1849 1850 #ifdef COMPAT_FREEBSD32 1851 static int 1852 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1853 size_t *vsizep, enum proc_vector_type type) 1854 { 1855 struct freebsd32_ps_strings pss; 1856 Elf32_Auxinfo aux; 1857 vm_offset_t vptr, ptr; 1858 uint32_t *proc_vector32; 1859 char **proc_vector; 1860 size_t vsize, size; 1861 int i, error; 1862 1863 error = 0; 1864 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1865 sizeof(pss)) 1866 return (ENOMEM); 1867 switch (type) { 1868 case PROC_ARG: 1869 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1870 vsize = pss.ps_nargvstr; 1871 if (vsize > ARG_MAX) 1872 return (ENOEXEC); 1873 size = vsize * sizeof(int32_t); 1874 break; 1875 case PROC_ENV: 1876 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1877 vsize = pss.ps_nenvstr; 1878 if (vsize > ARG_MAX) 1879 return (ENOEXEC); 1880 size = vsize * sizeof(int32_t); 1881 break; 1882 case PROC_AUX: 1883 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1884 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1885 if (vptr % 4 != 0) 1886 return (ENOEXEC); 1887 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1888 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1889 sizeof(aux)) 1890 return (ENOMEM); 1891 if (aux.a_type == AT_NULL) 1892 break; 1893 ptr += sizeof(aux); 1894 } 1895 if (aux.a_type != AT_NULL) 1896 return (ENOEXEC); 1897 vsize = i + 1; 1898 size = vsize * sizeof(aux); 1899 break; 1900 default: 1901 KASSERT(0, ("Wrong proc vector type: %d", type)); 1902 return (EINVAL); 1903 } 1904 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1905 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1906 error = ENOMEM; 1907 goto done; 1908 } 1909 if (type == PROC_AUX) { 1910 *proc_vectorp = (char **)proc_vector32; 1911 *vsizep = vsize; 1912 return (0); 1913 } 1914 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1915 for (i = 0; i < (int)vsize; i++) 1916 proc_vector[i] = PTRIN(proc_vector32[i]); 1917 *proc_vectorp = proc_vector; 1918 *vsizep = vsize; 1919 done: 1920 free(proc_vector32, M_TEMP); 1921 return (error); 1922 } 1923 #endif 1924 1925 static int 1926 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1927 size_t *vsizep, enum proc_vector_type type) 1928 { 1929 struct ps_strings pss; 1930 Elf_Auxinfo aux; 1931 vm_offset_t vptr, ptr; 1932 char **proc_vector; 1933 size_t vsize, size; 1934 int i; 1935 1936 #ifdef COMPAT_FREEBSD32 1937 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1938 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1939 #endif 1940 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1941 sizeof(pss)) 1942 return (ENOMEM); 1943 switch (type) { 1944 case PROC_ARG: 1945 vptr = (vm_offset_t)pss.ps_argvstr; 1946 vsize = pss.ps_nargvstr; 1947 if (vsize > ARG_MAX) 1948 return (ENOEXEC); 1949 size = vsize * sizeof(char *); 1950 break; 1951 case PROC_ENV: 1952 vptr = (vm_offset_t)pss.ps_envstr; 1953 vsize = pss.ps_nenvstr; 1954 if (vsize > ARG_MAX) 1955 return (ENOEXEC); 1956 size = vsize * sizeof(char *); 1957 break; 1958 case PROC_AUX: 1959 /* 1960 * The aux array is just above env array on the stack. Check 1961 * that the address is naturally aligned. 1962 */ 1963 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1964 * sizeof(char *); 1965 #if __ELF_WORD_SIZE == 64 1966 if (vptr % sizeof(uint64_t) != 0) 1967 #else 1968 if (vptr % sizeof(uint32_t) != 0) 1969 #endif 1970 return (ENOEXEC); 1971 /* 1972 * We count the array size reading the aux vectors from the 1973 * stack until AT_NULL vector is returned. So (to keep the code 1974 * simple) we read the process stack twice: the first time here 1975 * to find the size and the second time when copying the vectors 1976 * to the allocated proc_vector. 1977 */ 1978 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1979 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1980 sizeof(aux)) 1981 return (ENOMEM); 1982 if (aux.a_type == AT_NULL) 1983 break; 1984 ptr += sizeof(aux); 1985 } 1986 /* 1987 * If the PROC_AUXV_MAX entries are iterated over, and we have 1988 * not reached AT_NULL, it is most likely we are reading wrong 1989 * data: either the process doesn't have auxv array or data has 1990 * been modified. Return the error in this case. 1991 */ 1992 if (aux.a_type != AT_NULL) 1993 return (ENOEXEC); 1994 vsize = i + 1; 1995 size = vsize * sizeof(aux); 1996 break; 1997 default: 1998 KASSERT(0, ("Wrong proc vector type: %d", type)); 1999 return (EINVAL); /* In case we are built without INVARIANTS. */ 2000 } 2001 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2002 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2003 free(proc_vector, M_TEMP); 2004 return (ENOMEM); 2005 } 2006 *proc_vectorp = proc_vector; 2007 *vsizep = vsize; 2008 2009 return (0); 2010 } 2011 2012 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2013 2014 static int 2015 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2016 enum proc_vector_type type) 2017 { 2018 size_t done, len, nchr, vsize; 2019 int error, i; 2020 char **proc_vector, *sptr; 2021 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2022 2023 PROC_ASSERT_HELD(p); 2024 2025 /* 2026 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2027 */ 2028 nchr = 2 * (PATH_MAX + ARG_MAX); 2029 2030 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2031 if (error != 0) 2032 return (error); 2033 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2034 /* 2035 * The program may have scribbled into its argv array, e.g. to 2036 * remove some arguments. If that has happened, break out 2037 * before trying to read from NULL. 2038 */ 2039 if (proc_vector[i] == NULL) 2040 break; 2041 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2042 error = proc_read_string(td, p, sptr, pss_string, 2043 sizeof(pss_string)); 2044 if (error != 0) 2045 goto done; 2046 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2047 if (done + len >= nchr) 2048 len = nchr - done - 1; 2049 sbuf_bcat(sb, pss_string, len); 2050 if (len != GET_PS_STRINGS_CHUNK_SZ) 2051 break; 2052 done += GET_PS_STRINGS_CHUNK_SZ; 2053 } 2054 sbuf_bcat(sb, "", 1); 2055 done += len + 1; 2056 } 2057 done: 2058 free(proc_vector, M_TEMP); 2059 return (error); 2060 } 2061 2062 int 2063 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2064 { 2065 2066 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2067 } 2068 2069 int 2070 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2071 { 2072 2073 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2074 } 2075 2076 int 2077 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2078 { 2079 size_t vsize, size; 2080 char **auxv; 2081 int error; 2082 2083 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2084 if (error == 0) { 2085 #ifdef COMPAT_FREEBSD32 2086 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2087 size = vsize * sizeof(Elf32_Auxinfo); 2088 else 2089 #endif 2090 size = vsize * sizeof(Elf_Auxinfo); 2091 if (sbuf_bcat(sb, auxv, size) != 0) 2092 error = ENOMEM; 2093 free(auxv, M_TEMP); 2094 } 2095 return (error); 2096 } 2097 2098 /* 2099 * This sysctl allows a process to retrieve the argument list or process 2100 * title for another process without groping around in the address space 2101 * of the other process. It also allow a process to set its own "process 2102 * title to a string of its own choice. 2103 */ 2104 static int 2105 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2106 { 2107 int *name = (int *)arg1; 2108 u_int namelen = arg2; 2109 struct pargs *newpa, *pa; 2110 struct proc *p; 2111 struct sbuf sb; 2112 int flags, error = 0, error2; 2113 pid_t pid; 2114 2115 if (namelen != 1) 2116 return (EINVAL); 2117 2118 p = curproc; 2119 pid = (pid_t)name[0]; 2120 if (pid == -1) { 2121 pid = p->p_pid; 2122 } 2123 2124 /* 2125 * If the query is for this process and it is single-threaded, there 2126 * is nobody to modify pargs, thus we can just read. 2127 */ 2128 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2129 (pa = p->p_args) != NULL) 2130 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2131 2132 flags = PGET_CANSEE; 2133 if (req->newptr != NULL) 2134 flags |= PGET_ISCURRENT; 2135 error = pget(pid, flags, &p); 2136 if (error) 2137 return (error); 2138 2139 pa = p->p_args; 2140 if (pa != NULL) { 2141 pargs_hold(pa); 2142 PROC_UNLOCK(p); 2143 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2144 pargs_drop(pa); 2145 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2146 _PHOLD(p); 2147 PROC_UNLOCK(p); 2148 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2149 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2150 error = proc_getargv(curthread, p, &sb); 2151 error2 = sbuf_finish(&sb); 2152 PRELE(p); 2153 sbuf_delete(&sb); 2154 if (error == 0 && error2 != 0) 2155 error = error2; 2156 } else { 2157 PROC_UNLOCK(p); 2158 } 2159 if (error != 0 || req->newptr == NULL) 2160 return (error); 2161 2162 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2163 return (ENOMEM); 2164 2165 if (req->newlen == 0) { 2166 /* 2167 * Clear the argument pointer, so that we'll fetch arguments 2168 * with proc_getargv() until further notice. 2169 */ 2170 newpa = NULL; 2171 } else { 2172 newpa = pargs_alloc(req->newlen); 2173 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2174 if (error != 0) { 2175 pargs_free(newpa); 2176 return (error); 2177 } 2178 } 2179 PROC_LOCK(p); 2180 pa = p->p_args; 2181 p->p_args = newpa; 2182 PROC_UNLOCK(p); 2183 pargs_drop(pa); 2184 return (0); 2185 } 2186 2187 /* 2188 * This sysctl allows a process to retrieve environment of another process. 2189 */ 2190 static int 2191 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2192 { 2193 int *name = (int *)arg1; 2194 u_int namelen = arg2; 2195 struct proc *p; 2196 struct sbuf sb; 2197 int error, error2; 2198 2199 if (namelen != 1) 2200 return (EINVAL); 2201 2202 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2203 if (error != 0) 2204 return (error); 2205 if ((p->p_flag & P_SYSTEM) != 0) { 2206 PRELE(p); 2207 return (0); 2208 } 2209 2210 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2211 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2212 error = proc_getenvv(curthread, p, &sb); 2213 error2 = sbuf_finish(&sb); 2214 PRELE(p); 2215 sbuf_delete(&sb); 2216 return (error != 0 ? error : error2); 2217 } 2218 2219 /* 2220 * This sysctl allows a process to retrieve ELF auxiliary vector of 2221 * another process. 2222 */ 2223 static int 2224 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2225 { 2226 int *name = (int *)arg1; 2227 u_int namelen = arg2; 2228 struct proc *p; 2229 struct sbuf sb; 2230 int error, error2; 2231 2232 if (namelen != 1) 2233 return (EINVAL); 2234 2235 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2236 if (error != 0) 2237 return (error); 2238 if ((p->p_flag & P_SYSTEM) != 0) { 2239 PRELE(p); 2240 return (0); 2241 } 2242 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2243 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2244 error = proc_getauxv(curthread, p, &sb); 2245 error2 = sbuf_finish(&sb); 2246 PRELE(p); 2247 sbuf_delete(&sb); 2248 return (error != 0 ? error : error2); 2249 } 2250 2251 /* 2252 * Look up the canonical executable path running in the specified process. 2253 * It tries to return the same hardlink name as was used for execve(2). 2254 * This allows the programs that modify their behavior based on their progname, 2255 * to operate correctly. 2256 * 2257 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() 2258 * calling conventions. 2259 * binname is a pointer to temporary string buffer of length MAXPATHLEN, 2260 * allocated and freed by caller. 2261 * freebuf should be freed by caller, from the M_TEMP malloc type. 2262 */ 2263 int 2264 proc_get_binpath(struct proc *p, char *binname, char **retbuf, 2265 char **freebuf) 2266 { 2267 struct nameidata nd; 2268 struct vnode *vp, *dvp; 2269 size_t freepath_size; 2270 int error; 2271 bool do_fullpath; 2272 2273 PROC_LOCK_ASSERT(p, MA_OWNED); 2274 2275 vp = p->p_textvp; 2276 if (vp == NULL) { 2277 PROC_UNLOCK(p); 2278 *retbuf = ""; 2279 *freebuf = NULL; 2280 return (0); 2281 } 2282 vref(vp); 2283 dvp = p->p_textdvp; 2284 if (dvp != NULL) 2285 vref(dvp); 2286 if (p->p_binname != NULL) 2287 strlcpy(binname, p->p_binname, MAXPATHLEN); 2288 PROC_UNLOCK(p); 2289 2290 do_fullpath = true; 2291 *freebuf = NULL; 2292 if (dvp != NULL && binname[0] != '\0') { 2293 freepath_size = MAXPATHLEN; 2294 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), 2295 retbuf, freebuf, &freepath_size) == 0) { 2296 /* 2297 * Recheck the looked up path. The binary 2298 * might have been renamed or replaced, in 2299 * which case we should not report old name. 2300 */ 2301 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); 2302 error = namei(&nd); 2303 if (error == 0) { 2304 if (nd.ni_vp == vp) 2305 do_fullpath = false; 2306 vrele(nd.ni_vp); 2307 NDFREE_PNBUF(&nd); 2308 } 2309 } 2310 } 2311 if (do_fullpath) { 2312 free(*freebuf, M_TEMP); 2313 *freebuf = NULL; 2314 error = vn_fullpath(vp, retbuf, freebuf); 2315 } 2316 vrele(vp); 2317 if (dvp != NULL) 2318 vrele(dvp); 2319 return (error); 2320 } 2321 2322 /* 2323 * This sysctl allows a process to retrieve the path of the executable for 2324 * itself or another process. 2325 */ 2326 static int 2327 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2328 { 2329 pid_t *pidp = (pid_t *)arg1; 2330 unsigned int arglen = arg2; 2331 struct proc *p; 2332 char *retbuf, *freebuf, *binname; 2333 int error; 2334 2335 if (arglen != 1) 2336 return (EINVAL); 2337 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2338 binname[0] = '\0'; 2339 if (*pidp == -1) { /* -1 means this process */ 2340 error = 0; 2341 p = req->td->td_proc; 2342 PROC_LOCK(p); 2343 } else { 2344 error = pget(*pidp, PGET_CANSEE, &p); 2345 } 2346 2347 if (error == 0) 2348 error = proc_get_binpath(p, binname, &retbuf, &freebuf); 2349 free(binname, M_TEMP); 2350 if (error != 0) 2351 return (error); 2352 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2353 free(freebuf, M_TEMP); 2354 return (error); 2355 } 2356 2357 static int 2358 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2359 { 2360 struct proc *p; 2361 char *sv_name; 2362 int *name; 2363 int namelen; 2364 int error; 2365 2366 namelen = arg2; 2367 if (namelen != 1) 2368 return (EINVAL); 2369 2370 name = (int *)arg1; 2371 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2372 if (error != 0) 2373 return (error); 2374 sv_name = p->p_sysent->sv_name; 2375 PROC_UNLOCK(p); 2376 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2377 } 2378 2379 #ifdef KINFO_OVMENTRY_SIZE 2380 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2381 #endif 2382 2383 #ifdef COMPAT_FREEBSD7 2384 static int 2385 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2386 { 2387 vm_map_entry_t entry, tmp_entry; 2388 unsigned int last_timestamp, namelen; 2389 char *fullpath, *freepath; 2390 struct kinfo_ovmentry *kve; 2391 struct vattr va; 2392 struct ucred *cred; 2393 int error, *name; 2394 struct vnode *vp; 2395 struct proc *p; 2396 vm_map_t map; 2397 struct vmspace *vm; 2398 2399 namelen = arg2; 2400 if (namelen != 1) 2401 return (EINVAL); 2402 2403 name = (int *)arg1; 2404 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2405 if (error != 0) 2406 return (error); 2407 vm = vmspace_acquire_ref(p); 2408 if (vm == NULL) { 2409 PRELE(p); 2410 return (ESRCH); 2411 } 2412 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2413 2414 map = &vm->vm_map; 2415 vm_map_lock_read(map); 2416 VM_MAP_ENTRY_FOREACH(entry, map) { 2417 vm_object_t obj, tobj, lobj; 2418 vm_offset_t addr; 2419 2420 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2421 continue; 2422 2423 bzero(kve, sizeof(*kve)); 2424 kve->kve_structsize = sizeof(*kve); 2425 2426 kve->kve_private_resident = 0; 2427 obj = entry->object.vm_object; 2428 if (obj != NULL) { 2429 VM_OBJECT_RLOCK(obj); 2430 if (obj->shadow_count == 1) 2431 kve->kve_private_resident = 2432 obj->resident_page_count; 2433 } 2434 kve->kve_resident = 0; 2435 addr = entry->start; 2436 while (addr < entry->end) { 2437 if (pmap_extract(map->pmap, addr)) 2438 kve->kve_resident++; 2439 addr += PAGE_SIZE; 2440 } 2441 2442 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2443 if (tobj != obj) { 2444 VM_OBJECT_RLOCK(tobj); 2445 kve->kve_offset += tobj->backing_object_offset; 2446 } 2447 if (lobj != obj) 2448 VM_OBJECT_RUNLOCK(lobj); 2449 lobj = tobj; 2450 } 2451 2452 kve->kve_start = (void*)entry->start; 2453 kve->kve_end = (void*)entry->end; 2454 kve->kve_offset += (off_t)entry->offset; 2455 2456 if (entry->protection & VM_PROT_READ) 2457 kve->kve_protection |= KVME_PROT_READ; 2458 if (entry->protection & VM_PROT_WRITE) 2459 kve->kve_protection |= KVME_PROT_WRITE; 2460 if (entry->protection & VM_PROT_EXECUTE) 2461 kve->kve_protection |= KVME_PROT_EXEC; 2462 2463 if (entry->eflags & MAP_ENTRY_COW) 2464 kve->kve_flags |= KVME_FLAG_COW; 2465 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2466 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2467 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2468 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2469 2470 last_timestamp = map->timestamp; 2471 vm_map_unlock_read(map); 2472 2473 kve->kve_fileid = 0; 2474 kve->kve_fsid = 0; 2475 freepath = NULL; 2476 fullpath = ""; 2477 if (lobj) { 2478 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2479 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2480 kve->kve_type = KVME_TYPE_UNKNOWN; 2481 if (vp != NULL) 2482 vref(vp); 2483 if (lobj != obj) 2484 VM_OBJECT_RUNLOCK(lobj); 2485 2486 kve->kve_ref_count = obj->ref_count; 2487 kve->kve_shadow_count = obj->shadow_count; 2488 VM_OBJECT_RUNLOCK(obj); 2489 if (vp != NULL) { 2490 vn_fullpath(vp, &fullpath, &freepath); 2491 cred = curthread->td_ucred; 2492 vn_lock(vp, LK_SHARED | LK_RETRY); 2493 if (VOP_GETATTR(vp, &va, cred) == 0) { 2494 kve->kve_fileid = va.va_fileid; 2495 /* truncate */ 2496 kve->kve_fsid = va.va_fsid; 2497 } 2498 vput(vp); 2499 } 2500 } else { 2501 kve->kve_type = KVME_TYPE_NONE; 2502 kve->kve_ref_count = 0; 2503 kve->kve_shadow_count = 0; 2504 } 2505 2506 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2507 if (freepath != NULL) 2508 free(freepath, M_TEMP); 2509 2510 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2511 vm_map_lock_read(map); 2512 if (error) 2513 break; 2514 if (last_timestamp != map->timestamp) { 2515 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2516 entry = tmp_entry; 2517 } 2518 } 2519 vm_map_unlock_read(map); 2520 vmspace_free(vm); 2521 PRELE(p); 2522 free(kve, M_TEMP); 2523 return (error); 2524 } 2525 #endif /* COMPAT_FREEBSD7 */ 2526 2527 #ifdef KINFO_VMENTRY_SIZE 2528 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2529 #endif 2530 2531 void 2532 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2533 int *resident_count, bool *super) 2534 { 2535 vm_object_t obj, tobj; 2536 vm_page_t m, m_adv; 2537 vm_offset_t addr; 2538 vm_paddr_t pa; 2539 vm_pindex_t pi, pi_adv, pindex; 2540 int incore; 2541 2542 *super = false; 2543 *resident_count = 0; 2544 if (vmmap_skip_res_cnt) 2545 return; 2546 2547 pa = 0; 2548 obj = entry->object.vm_object; 2549 addr = entry->start; 2550 m_adv = NULL; 2551 pi = OFF_TO_IDX(entry->offset); 2552 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2553 if (m_adv != NULL) { 2554 m = m_adv; 2555 } else { 2556 pi_adv = atop(entry->end - addr); 2557 pindex = pi; 2558 for (tobj = obj;; tobj = tobj->backing_object) { 2559 m = vm_page_find_least(tobj, pindex); 2560 if (m != NULL) { 2561 if (m->pindex == pindex) 2562 break; 2563 if (pi_adv > m->pindex - pindex) { 2564 pi_adv = m->pindex - pindex; 2565 m_adv = m; 2566 } 2567 } 2568 if (tobj->backing_object == NULL) 2569 goto next; 2570 pindex += OFF_TO_IDX(tobj-> 2571 backing_object_offset); 2572 } 2573 } 2574 m_adv = NULL; 2575 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2576 (addr & (pagesizes[1] - 1)) == 0 && (incore = 2577 pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2578 *super = true; 2579 /* 2580 * The virtual page might be smaller than the physical 2581 * page, so we use the page size reported by the pmap 2582 * rather than m->psind. 2583 */ 2584 pi_adv = atop(pagesizes[incore >> MINCORE_PSIND_SHIFT]); 2585 } else { 2586 /* 2587 * We do not test the found page on validity. 2588 * Either the page is busy and being paged in, 2589 * or it was invalidated. The first case 2590 * should be counted as resident, the second 2591 * is not so clear; we do account both. 2592 */ 2593 pi_adv = 1; 2594 } 2595 *resident_count += pi_adv; 2596 next:; 2597 } 2598 } 2599 2600 /* 2601 * Must be called with the process locked and will return unlocked. 2602 */ 2603 int 2604 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2605 { 2606 vm_map_entry_t entry, tmp_entry; 2607 struct vattr va; 2608 vm_map_t map; 2609 vm_object_t lobj, nobj, obj, tobj; 2610 char *fullpath, *freepath; 2611 struct kinfo_vmentry *kve; 2612 struct ucred *cred; 2613 struct vnode *vp; 2614 struct vmspace *vm; 2615 vm_offset_t addr; 2616 unsigned int last_timestamp; 2617 int error; 2618 bool guard, super; 2619 2620 PROC_LOCK_ASSERT(p, MA_OWNED); 2621 2622 _PHOLD(p); 2623 PROC_UNLOCK(p); 2624 vm = vmspace_acquire_ref(p); 2625 if (vm == NULL) { 2626 PRELE(p); 2627 return (ESRCH); 2628 } 2629 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2630 2631 error = 0; 2632 map = &vm->vm_map; 2633 vm_map_lock_read(map); 2634 VM_MAP_ENTRY_FOREACH(entry, map) { 2635 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2636 continue; 2637 2638 addr = entry->end; 2639 bzero(kve, sizeof(*kve)); 2640 obj = entry->object.vm_object; 2641 if (obj != NULL) { 2642 if ((obj->flags & OBJ_ANON) != 0) 2643 kve->kve_obj = (uintptr_t)obj; 2644 2645 for (tobj = obj; tobj != NULL; 2646 tobj = tobj->backing_object) { 2647 VM_OBJECT_RLOCK(tobj); 2648 kve->kve_offset += tobj->backing_object_offset; 2649 lobj = tobj; 2650 } 2651 if (obj->backing_object == NULL) 2652 kve->kve_private_resident = 2653 obj->resident_page_count; 2654 kern_proc_vmmap_resident(map, entry, 2655 &kve->kve_resident, &super); 2656 if (super) 2657 kve->kve_flags |= KVME_FLAG_SUPER; 2658 for (tobj = obj; tobj != NULL; tobj = nobj) { 2659 nobj = tobj->backing_object; 2660 if (tobj != obj && tobj != lobj) 2661 VM_OBJECT_RUNLOCK(tobj); 2662 } 2663 } else { 2664 lobj = NULL; 2665 } 2666 2667 kve->kve_start = entry->start; 2668 kve->kve_end = entry->end; 2669 kve->kve_offset += entry->offset; 2670 2671 if (entry->protection & VM_PROT_READ) 2672 kve->kve_protection |= KVME_PROT_READ; 2673 if (entry->protection & VM_PROT_WRITE) 2674 kve->kve_protection |= KVME_PROT_WRITE; 2675 if (entry->protection & VM_PROT_EXECUTE) 2676 kve->kve_protection |= KVME_PROT_EXEC; 2677 2678 if (entry->eflags & MAP_ENTRY_COW) 2679 kve->kve_flags |= KVME_FLAG_COW; 2680 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2681 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2682 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2683 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2684 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2685 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2686 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2687 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2688 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2689 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2690 2691 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; 2692 2693 last_timestamp = map->timestamp; 2694 vm_map_unlock_read(map); 2695 2696 freepath = NULL; 2697 fullpath = ""; 2698 if (lobj != NULL) { 2699 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2700 if (vp != NULL) 2701 vref(vp); 2702 if (lobj != obj) 2703 VM_OBJECT_RUNLOCK(lobj); 2704 2705 kve->kve_ref_count = obj->ref_count; 2706 kve->kve_shadow_count = obj->shadow_count; 2707 VM_OBJECT_RUNLOCK(obj); 2708 if (vp != NULL) { 2709 vn_fullpath(vp, &fullpath, &freepath); 2710 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2711 cred = curthread->td_ucred; 2712 vn_lock(vp, LK_SHARED | LK_RETRY); 2713 if (VOP_GETATTR(vp, &va, cred) == 0) { 2714 kve->kve_vn_fileid = va.va_fileid; 2715 kve->kve_vn_fsid = va.va_fsid; 2716 kve->kve_vn_fsid_freebsd11 = 2717 kve->kve_vn_fsid; /* truncate */ 2718 kve->kve_vn_mode = 2719 MAKEIMODE(va.va_type, va.va_mode); 2720 kve->kve_vn_size = va.va_size; 2721 kve->kve_vn_rdev = va.va_rdev; 2722 kve->kve_vn_rdev_freebsd11 = 2723 kve->kve_vn_rdev; /* truncate */ 2724 kve->kve_status = KF_ATTR_VALID; 2725 } 2726 vput(vp); 2727 } 2728 } else { 2729 kve->kve_type = guard ? KVME_TYPE_GUARD : 2730 KVME_TYPE_NONE; 2731 kve->kve_ref_count = 0; 2732 kve->kve_shadow_count = 0; 2733 } 2734 2735 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2736 if (freepath != NULL) 2737 free(freepath, M_TEMP); 2738 2739 /* Pack record size down */ 2740 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2741 kve->kve_structsize = 2742 offsetof(struct kinfo_vmentry, kve_path) + 2743 strlen(kve->kve_path) + 1; 2744 else 2745 kve->kve_structsize = sizeof(*kve); 2746 kve->kve_structsize = roundup(kve->kve_structsize, 2747 sizeof(uint64_t)); 2748 2749 /* Halt filling and truncate rather than exceeding maxlen */ 2750 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2751 error = 0; 2752 vm_map_lock_read(map); 2753 break; 2754 } else if (maxlen != -1) 2755 maxlen -= kve->kve_structsize; 2756 2757 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2758 error = ENOMEM; 2759 vm_map_lock_read(map); 2760 if (error != 0) 2761 break; 2762 if (last_timestamp != map->timestamp) { 2763 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2764 entry = tmp_entry; 2765 } 2766 } 2767 vm_map_unlock_read(map); 2768 vmspace_free(vm); 2769 PRELE(p); 2770 free(kve, M_TEMP); 2771 return (error); 2772 } 2773 2774 static int 2775 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2776 { 2777 struct proc *p; 2778 struct sbuf sb; 2779 u_int namelen; 2780 int error, error2, *name; 2781 2782 namelen = arg2; 2783 if (namelen != 1) 2784 return (EINVAL); 2785 2786 name = (int *)arg1; 2787 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2788 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2789 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2790 if (error != 0) { 2791 sbuf_delete(&sb); 2792 return (error); 2793 } 2794 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2795 error2 = sbuf_finish(&sb); 2796 sbuf_delete(&sb); 2797 return (error != 0 ? error : error2); 2798 } 2799 2800 #if defined(STACK) || defined(DDB) 2801 static int 2802 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2803 { 2804 struct kinfo_kstack *kkstp; 2805 int error, i, *name, numthreads; 2806 lwpid_t *lwpidarray; 2807 struct thread *td; 2808 struct stack *st; 2809 struct sbuf sb; 2810 struct proc *p; 2811 u_int namelen; 2812 2813 namelen = arg2; 2814 if (namelen != 1) 2815 return (EINVAL); 2816 2817 name = (int *)arg1; 2818 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2819 if (error != 0) 2820 return (error); 2821 2822 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2823 st = stack_create(M_WAITOK); 2824 2825 lwpidarray = NULL; 2826 PROC_LOCK(p); 2827 do { 2828 if (lwpidarray != NULL) { 2829 free(lwpidarray, M_TEMP); 2830 lwpidarray = NULL; 2831 } 2832 numthreads = p->p_numthreads; 2833 PROC_UNLOCK(p); 2834 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2835 M_WAITOK | M_ZERO); 2836 PROC_LOCK(p); 2837 } while (numthreads < p->p_numthreads); 2838 2839 /* 2840 * XXXRW: During the below loop, execve(2) and countless other sorts 2841 * of changes could have taken place. Should we check to see if the 2842 * vmspace has been replaced, or the like, in order to prevent 2843 * giving a snapshot that spans, say, execve(2), with some threads 2844 * before and some after? Among other things, the credentials could 2845 * have changed, in which case the right to extract debug info might 2846 * no longer be assured. 2847 */ 2848 i = 0; 2849 FOREACH_THREAD_IN_PROC(p, td) { 2850 KASSERT(i < numthreads, 2851 ("sysctl_kern_proc_kstack: numthreads")); 2852 lwpidarray[i] = td->td_tid; 2853 i++; 2854 } 2855 PROC_UNLOCK(p); 2856 numthreads = i; 2857 for (i = 0; i < numthreads; i++) { 2858 td = tdfind(lwpidarray[i], p->p_pid); 2859 if (td == NULL) { 2860 continue; 2861 } 2862 bzero(kkstp, sizeof(*kkstp)); 2863 (void)sbuf_new(&sb, kkstp->kkst_trace, 2864 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2865 thread_lock(td); 2866 kkstp->kkst_tid = td->td_tid; 2867 if (stack_save_td(st, td) == 0) 2868 kkstp->kkst_state = KKST_STATE_STACKOK; 2869 else 2870 kkstp->kkst_state = KKST_STATE_RUNNING; 2871 thread_unlock(td); 2872 PROC_UNLOCK(p); 2873 stack_sbuf_print(&sb, st); 2874 sbuf_finish(&sb); 2875 sbuf_delete(&sb); 2876 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2877 if (error) 2878 break; 2879 } 2880 PRELE(p); 2881 if (lwpidarray != NULL) 2882 free(lwpidarray, M_TEMP); 2883 stack_destroy(st); 2884 free(kkstp, M_TEMP); 2885 return (error); 2886 } 2887 #endif 2888 2889 /* 2890 * This sysctl allows a process to retrieve the full list of groups from 2891 * itself or another process. 2892 */ 2893 static int 2894 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2895 { 2896 pid_t *pidp = (pid_t *)arg1; 2897 unsigned int arglen = arg2; 2898 struct proc *p; 2899 struct ucred *cred; 2900 int error; 2901 2902 if (arglen != 1) 2903 return (EINVAL); 2904 if (*pidp == -1) { /* -1 means this process */ 2905 p = req->td->td_proc; 2906 PROC_LOCK(p); 2907 } else { 2908 error = pget(*pidp, PGET_CANSEE, &p); 2909 if (error != 0) 2910 return (error); 2911 } 2912 2913 cred = crhold(p->p_ucred); 2914 PROC_UNLOCK(p); 2915 2916 error = SYSCTL_OUT(req, cred->cr_groups, 2917 cred->cr_ngroups * sizeof(gid_t)); 2918 crfree(cred); 2919 return (error); 2920 } 2921 2922 /* 2923 * This sysctl allows a process to retrieve or/and set the resource limit for 2924 * another process. 2925 */ 2926 static int 2927 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2928 { 2929 int *name = (int *)arg1; 2930 u_int namelen = arg2; 2931 struct rlimit rlim; 2932 struct proc *p; 2933 u_int which; 2934 int flags, error; 2935 2936 if (namelen != 2) 2937 return (EINVAL); 2938 2939 which = (u_int)name[1]; 2940 if (which >= RLIM_NLIMITS) 2941 return (EINVAL); 2942 2943 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2944 return (EINVAL); 2945 2946 flags = PGET_HOLD | PGET_NOTWEXIT; 2947 if (req->newptr != NULL) 2948 flags |= PGET_CANDEBUG; 2949 else 2950 flags |= PGET_CANSEE; 2951 error = pget((pid_t)name[0], flags, &p); 2952 if (error != 0) 2953 return (error); 2954 2955 /* 2956 * Retrieve limit. 2957 */ 2958 if (req->oldptr != NULL) { 2959 PROC_LOCK(p); 2960 lim_rlimit_proc(p, which, &rlim); 2961 PROC_UNLOCK(p); 2962 } 2963 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2964 if (error != 0) 2965 goto errout; 2966 2967 /* 2968 * Set limit. 2969 */ 2970 if (req->newptr != NULL) { 2971 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2972 if (error == 0) 2973 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2974 } 2975 2976 errout: 2977 PRELE(p); 2978 return (error); 2979 } 2980 2981 /* 2982 * This sysctl allows a process to retrieve ps_strings structure location of 2983 * another process. 2984 */ 2985 static int 2986 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2987 { 2988 int *name = (int *)arg1; 2989 u_int namelen = arg2; 2990 struct proc *p; 2991 vm_offset_t ps_strings; 2992 int error; 2993 #ifdef COMPAT_FREEBSD32 2994 uint32_t ps_strings32; 2995 #endif 2996 2997 if (namelen != 1) 2998 return (EINVAL); 2999 3000 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3001 if (error != 0) 3002 return (error); 3003 #ifdef COMPAT_FREEBSD32 3004 if ((req->flags & SCTL_MASK32) != 0) { 3005 /* 3006 * We return 0 if the 32 bit emulation request is for a 64 bit 3007 * process. 3008 */ 3009 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 3010 PTROUT(PROC_PS_STRINGS(p)) : 0; 3011 PROC_UNLOCK(p); 3012 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 3013 return (error); 3014 } 3015 #endif 3016 ps_strings = PROC_PS_STRINGS(p); 3017 PROC_UNLOCK(p); 3018 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 3019 return (error); 3020 } 3021 3022 /* 3023 * This sysctl allows a process to retrieve umask of another process. 3024 */ 3025 static int 3026 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 3027 { 3028 int *name = (int *)arg1; 3029 u_int namelen = arg2; 3030 struct proc *p; 3031 int error; 3032 u_short cmask; 3033 pid_t pid; 3034 3035 if (namelen != 1) 3036 return (EINVAL); 3037 3038 pid = (pid_t)name[0]; 3039 p = curproc; 3040 if (pid == p->p_pid || pid == 0) { 3041 cmask = p->p_pd->pd_cmask; 3042 goto out; 3043 } 3044 3045 error = pget(pid, PGET_WANTREAD, &p); 3046 if (error != 0) 3047 return (error); 3048 3049 cmask = p->p_pd->pd_cmask; 3050 PRELE(p); 3051 out: 3052 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3053 return (error); 3054 } 3055 3056 /* 3057 * This sysctl allows a process to set and retrieve binary osreldate of 3058 * another process. 3059 */ 3060 static int 3061 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3062 { 3063 int *name = (int *)arg1; 3064 u_int namelen = arg2; 3065 struct proc *p; 3066 int flags, error, osrel; 3067 3068 if (namelen != 1) 3069 return (EINVAL); 3070 3071 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3072 return (EINVAL); 3073 3074 flags = PGET_HOLD | PGET_NOTWEXIT; 3075 if (req->newptr != NULL) 3076 flags |= PGET_CANDEBUG; 3077 else 3078 flags |= PGET_CANSEE; 3079 error = pget((pid_t)name[0], flags, &p); 3080 if (error != 0) 3081 return (error); 3082 3083 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3084 if (error != 0) 3085 goto errout; 3086 3087 if (req->newptr != NULL) { 3088 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3089 if (error != 0) 3090 goto errout; 3091 if (osrel < 0) { 3092 error = EINVAL; 3093 goto errout; 3094 } 3095 p->p_osrel = osrel; 3096 } 3097 errout: 3098 PRELE(p); 3099 return (error); 3100 } 3101 3102 static int 3103 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3104 { 3105 int *name = (int *)arg1; 3106 u_int namelen = arg2; 3107 struct proc *p; 3108 struct kinfo_sigtramp kst; 3109 const struct sysentvec *sv; 3110 int error; 3111 #ifdef COMPAT_FREEBSD32 3112 struct kinfo_sigtramp32 kst32; 3113 #endif 3114 3115 if (namelen != 1) 3116 return (EINVAL); 3117 3118 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3119 if (error != 0) 3120 return (error); 3121 sv = p->p_sysent; 3122 #ifdef COMPAT_FREEBSD32 3123 if ((req->flags & SCTL_MASK32) != 0) { 3124 bzero(&kst32, sizeof(kst32)); 3125 if (SV_PROC_FLAG(p, SV_ILP32)) { 3126 if (PROC_HAS_SHP(p)) { 3127 kst32.ksigtramp_start = PROC_SIGCODE(p); 3128 kst32.ksigtramp_end = kst32.ksigtramp_start + 3129 ((sv->sv_flags & SV_DSO_SIG) == 0 ? 3130 *sv->sv_szsigcode : 3131 (uintptr_t)sv->sv_szsigcode); 3132 } else { 3133 kst32.ksigtramp_start = PROC_PS_STRINGS(p) - 3134 *sv->sv_szsigcode; 3135 kst32.ksigtramp_end = PROC_PS_STRINGS(p); 3136 } 3137 } 3138 PROC_UNLOCK(p); 3139 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3140 return (error); 3141 } 3142 #endif 3143 bzero(&kst, sizeof(kst)); 3144 if (PROC_HAS_SHP(p)) { 3145 kst.ksigtramp_start = (char *)PROC_SIGCODE(p); 3146 kst.ksigtramp_end = (char *)kst.ksigtramp_start + 3147 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : 3148 (uintptr_t)sv->sv_szsigcode); 3149 } else { 3150 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - 3151 *sv->sv_szsigcode; 3152 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); 3153 } 3154 PROC_UNLOCK(p); 3155 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3156 return (error); 3157 } 3158 3159 static int 3160 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3161 { 3162 int *name = (int *)arg1; 3163 u_int namelen = arg2; 3164 pid_t pid; 3165 struct proc *p; 3166 struct thread *td1; 3167 uintptr_t addr; 3168 #ifdef COMPAT_FREEBSD32 3169 uint32_t addr32; 3170 #endif 3171 int error; 3172 3173 if (namelen != 1 || req->newptr != NULL) 3174 return (EINVAL); 3175 3176 pid = (pid_t)name[0]; 3177 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3178 if (error != 0) 3179 return (error); 3180 3181 PROC_LOCK(p); 3182 #ifdef COMPAT_FREEBSD32 3183 if (SV_CURPROC_FLAG(SV_ILP32)) { 3184 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3185 error = EINVAL; 3186 goto errlocked; 3187 } 3188 } 3189 #endif 3190 if (pid <= PID_MAX) { 3191 td1 = FIRST_THREAD_IN_PROC(p); 3192 } else { 3193 FOREACH_THREAD_IN_PROC(p, td1) { 3194 if (td1->td_tid == pid) 3195 break; 3196 } 3197 } 3198 if (td1 == NULL) { 3199 error = ESRCH; 3200 goto errlocked; 3201 } 3202 /* 3203 * The access to the private thread flags. It is fine as far 3204 * as no out-of-thin-air values are read from td_pflags, and 3205 * usermode read of the td_sigblock_ptr is racy inherently, 3206 * since target process might have already changed it 3207 * meantime. 3208 */ 3209 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3210 addr = (uintptr_t)td1->td_sigblock_ptr; 3211 else 3212 error = ENOTTY; 3213 3214 errlocked: 3215 _PRELE(p); 3216 PROC_UNLOCK(p); 3217 if (error != 0) 3218 return (error); 3219 3220 #ifdef COMPAT_FREEBSD32 3221 if (SV_CURPROC_FLAG(SV_ILP32)) { 3222 addr32 = addr; 3223 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3224 } else 3225 #endif 3226 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3227 return (error); 3228 } 3229 3230 static int 3231 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) 3232 { 3233 struct kinfo_vm_layout kvm; 3234 struct proc *p; 3235 struct vmspace *vmspace; 3236 int error, *name; 3237 3238 name = (int *)arg1; 3239 if ((u_int)arg2 != 1) 3240 return (EINVAL); 3241 3242 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3243 if (error != 0) 3244 return (error); 3245 #ifdef COMPAT_FREEBSD32 3246 if (SV_CURPROC_FLAG(SV_ILP32)) { 3247 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3248 PROC_UNLOCK(p); 3249 return (EINVAL); 3250 } 3251 } 3252 #endif 3253 vmspace = vmspace_acquire_ref(p); 3254 PROC_UNLOCK(p); 3255 3256 memset(&kvm, 0, sizeof(kvm)); 3257 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); 3258 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); 3259 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; 3260 kvm.kvm_text_size = vmspace->vm_tsize; 3261 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; 3262 kvm.kvm_data_size = vmspace->vm_dsize; 3263 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; 3264 kvm.kvm_stack_size = vmspace->vm_ssize; 3265 kvm.kvm_shp_addr = vmspace->vm_shp_base; 3266 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; 3267 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) 3268 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; 3269 if ((vmspace->vm_map.flags & MAP_ASLR) != 0) 3270 kvm.kvm_map_flags |= KMAP_FLAG_ASLR; 3271 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) 3272 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; 3273 if ((vmspace->vm_map.flags & MAP_WXORX) != 0) 3274 kvm.kvm_map_flags |= KMAP_FLAG_WXORX; 3275 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) 3276 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; 3277 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && 3278 PROC_HAS_SHP(p)) 3279 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; 3280 3281 #ifdef COMPAT_FREEBSD32 3282 if (SV_CURPROC_FLAG(SV_ILP32)) { 3283 struct kinfo_vm_layout32 kvm32; 3284 3285 memset(&kvm32, 0, sizeof(kvm32)); 3286 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; 3287 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; 3288 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; 3289 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; 3290 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; 3291 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; 3292 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; 3293 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; 3294 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; 3295 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; 3296 kvm32.kvm_map_flags = kvm.kvm_map_flags; 3297 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); 3298 goto out; 3299 } 3300 #endif 3301 3302 error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); 3303 #ifdef COMPAT_FREEBSD32 3304 out: 3305 #endif 3306 vmspace_free(vmspace); 3307 return (error); 3308 } 3309 3310 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3311 "Process table"); 3312 3313 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3314 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3315 "Return entire process table"); 3316 3317 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3318 sysctl_kern_proc, "Process table"); 3319 3320 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3321 sysctl_kern_proc, "Process table"); 3322 3323 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3324 sysctl_kern_proc, "Process table"); 3325 3326 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3327 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3328 3329 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3330 sysctl_kern_proc, "Process table"); 3331 3332 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3333 sysctl_kern_proc, "Process table"); 3334 3335 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3336 sysctl_kern_proc, "Process table"); 3337 3338 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3339 sysctl_kern_proc, "Process table"); 3340 3341 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3342 sysctl_kern_proc, "Return process table, no threads"); 3343 3344 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3345 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3346 sysctl_kern_proc_args, "Process argument list"); 3347 3348 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3349 sysctl_kern_proc_env, "Process environment"); 3350 3351 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3352 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3353 3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3355 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3356 3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3358 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3359 "Process syscall vector name (ABI type)"); 3360 3361 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3362 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3363 3364 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3365 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3366 3367 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3368 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3369 3370 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3371 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3372 3373 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3374 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3375 3376 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3377 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3378 3379 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3380 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3381 3382 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3383 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3384 3385 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3386 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3387 "Return process table, including threads"); 3388 3389 #ifdef COMPAT_FREEBSD7 3390 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3391 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3392 #endif 3393 3394 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3395 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3396 3397 #if defined(STACK) || defined(DDB) 3398 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3399 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3400 #endif 3401 3402 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3403 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3404 3405 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3406 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3407 "Process resource limits"); 3408 3409 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3410 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3411 "Process ps_strings location"); 3412 3413 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3414 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3415 3416 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3417 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3418 "Process binary osreldate"); 3419 3420 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3421 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3422 "Process signal trampoline location"); 3423 3424 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3425 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3426 "Thread sigfastblock address"); 3427 3428 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | 3429 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, 3430 "Process virtual address space layout info"); 3431 3432 static struct sx stop_all_proc_blocker; 3433 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); 3434 3435 bool 3436 stop_all_proc_block(void) 3437 { 3438 return (sx_xlock_sig(&stop_all_proc_blocker) == 0); 3439 } 3440 3441 void 3442 stop_all_proc_unblock(void) 3443 { 3444 sx_xunlock(&stop_all_proc_blocker); 3445 } 3446 3447 int allproc_gen; 3448 3449 /* 3450 * stop_all_proc() purpose is to stop all process which have usermode, 3451 * except current process for obvious reasons. This makes it somewhat 3452 * unreliable when invoked from multithreaded process. The service 3453 * must not be user-callable anyway. 3454 */ 3455 void 3456 stop_all_proc(void) 3457 { 3458 struct proc *cp, *p; 3459 int r, gen; 3460 bool restart, seen_stopped, seen_exiting, stopped_some; 3461 3462 if (!stop_all_proc_block()) 3463 return; 3464 3465 cp = curproc; 3466 allproc_loop: 3467 sx_xlock(&allproc_lock); 3468 gen = allproc_gen; 3469 seen_exiting = seen_stopped = stopped_some = restart = false; 3470 LIST_REMOVE(cp, p_list); 3471 LIST_INSERT_HEAD(&allproc, cp, p_list); 3472 for (;;) { 3473 p = LIST_NEXT(cp, p_list); 3474 if (p == NULL) 3475 break; 3476 LIST_REMOVE(cp, p_list); 3477 LIST_INSERT_AFTER(p, cp, p_list); 3478 PROC_LOCK(p); 3479 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP | 3480 P_STOPPED_SIG)) != 0) { 3481 PROC_UNLOCK(p); 3482 continue; 3483 } 3484 if ((p->p_flag2 & P2_WEXIT) != 0) { 3485 seen_exiting = true; 3486 PROC_UNLOCK(p); 3487 continue; 3488 } 3489 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3490 /* 3491 * Stopped processes are tolerated when there 3492 * are no other processes which might continue 3493 * them. P_STOPPED_SINGLE but not 3494 * P_TOTAL_STOP process still has at least one 3495 * thread running. 3496 */ 3497 seen_stopped = true; 3498 PROC_UNLOCK(p); 3499 continue; 3500 } 3501 if ((p->p_flag & P_TRACED) != 0) { 3502 /* 3503 * thread_single() below cannot stop traced p, 3504 * so skip it. OTOH, we cannot require 3505 * restart because debugger might be either 3506 * already stopped or traced as well. 3507 */ 3508 PROC_UNLOCK(p); 3509 continue; 3510 } 3511 sx_xunlock(&allproc_lock); 3512 _PHOLD(p); 3513 r = thread_single(p, SINGLE_ALLPROC); 3514 if (r != 0) 3515 restart = true; 3516 else 3517 stopped_some = true; 3518 _PRELE(p); 3519 PROC_UNLOCK(p); 3520 sx_xlock(&allproc_lock); 3521 } 3522 /* Catch forked children we did not see in iteration. */ 3523 if (gen != allproc_gen) 3524 restart = true; 3525 sx_xunlock(&allproc_lock); 3526 if (restart || stopped_some || seen_exiting || seen_stopped) { 3527 kern_yield(PRI_USER); 3528 goto allproc_loop; 3529 } 3530 } 3531 3532 void 3533 resume_all_proc(void) 3534 { 3535 struct proc *cp, *p; 3536 3537 cp = curproc; 3538 sx_xlock(&allproc_lock); 3539 again: 3540 LIST_REMOVE(cp, p_list); 3541 LIST_INSERT_HEAD(&allproc, cp, p_list); 3542 for (;;) { 3543 p = LIST_NEXT(cp, p_list); 3544 if (p == NULL) 3545 break; 3546 LIST_REMOVE(cp, p_list); 3547 LIST_INSERT_AFTER(p, cp, p_list); 3548 PROC_LOCK(p); 3549 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3550 sx_xunlock(&allproc_lock); 3551 _PHOLD(p); 3552 thread_single_end(p, SINGLE_ALLPROC); 3553 _PRELE(p); 3554 PROC_UNLOCK(p); 3555 sx_xlock(&allproc_lock); 3556 } else { 3557 PROC_UNLOCK(p); 3558 } 3559 } 3560 /* Did the loop above missed any stopped process ? */ 3561 FOREACH_PROC_IN_SYSTEM(p) { 3562 /* No need for proc lock. */ 3563 if ((p->p_flag & P_TOTAL_STOP) != 0) 3564 goto again; 3565 } 3566 sx_xunlock(&allproc_lock); 3567 3568 stop_all_proc_unblock(); 3569 } 3570 3571 /* #define TOTAL_STOP_DEBUG 1 */ 3572 #ifdef TOTAL_STOP_DEBUG 3573 volatile static int ap_resume; 3574 #include <sys/mount.h> 3575 3576 static int 3577 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3578 { 3579 int error, val; 3580 3581 val = 0; 3582 ap_resume = 0; 3583 error = sysctl_handle_int(oidp, &val, 0, req); 3584 if (error != 0 || req->newptr == NULL) 3585 return (error); 3586 if (val != 0) { 3587 stop_all_proc(); 3588 syncer_suspend(); 3589 while (ap_resume == 0) 3590 ; 3591 syncer_resume(); 3592 resume_all_proc(); 3593 } 3594 return (0); 3595 } 3596 3597 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3598 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3599 sysctl_debug_stop_all_proc, "I", 3600 ""); 3601 #endif 3602