1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 99 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 100 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 103 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 104 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 105 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 109 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 110 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 112 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 113 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 114 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 116 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 117 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 118 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 120 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 121 122 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 123 MALLOC_DEFINE(M_SESSION, "session", "session header"); 124 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 125 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 126 127 static void doenterpgrp(struct proc *, struct pgrp *); 128 static void orphanpg(struct pgrp *pg); 129 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 130 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 131 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 132 int preferthread); 133 static void pgadjustjobc(struct pgrp *pgrp, int entering); 134 static void pgdelete(struct pgrp *); 135 static int proc_ctor(void *mem, int size, void *arg, int flags); 136 static void proc_dtor(void *mem, int size, void *arg); 137 static int proc_init(void *mem, int size, int flags); 138 static void proc_fini(void *mem, int size); 139 static void pargs_free(struct pargs *pa); 140 141 /* 142 * Other process lists 143 */ 144 struct pidhashhead *pidhashtbl; 145 u_long pidhash; 146 struct pgrphashhead *pgrphashtbl; 147 u_long pgrphash; 148 struct proclist allproc; 149 struct proclist zombproc; 150 struct sx allproc_lock; 151 struct sx proctree_lock; 152 struct mtx ppeers_lock; 153 uma_zone_t proc_zone; 154 155 int kstack_pages = KSTACK_PAGES; 156 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 157 "Kernel stack size in pages"); 158 159 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 160 #ifdef COMPAT_FREEBSD32 161 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 162 #endif 163 164 /* 165 * Initialize global process hashing structures. 166 */ 167 void 168 procinit() 169 { 170 171 sx_init(&allproc_lock, "allproc"); 172 sx_init(&proctree_lock, "proctree"); 173 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 174 LIST_INIT(&allproc); 175 LIST_INIT(&zombproc); 176 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 177 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 178 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 179 proc_ctor, proc_dtor, proc_init, proc_fini, 180 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 181 uihashinit(); 182 } 183 184 /* 185 * Prepare a proc for use. 186 */ 187 static int 188 proc_ctor(void *mem, int size, void *arg, int flags) 189 { 190 struct proc *p; 191 192 p = (struct proc *)mem; 193 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 194 EVENTHANDLER_INVOKE(process_ctor, p); 195 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 196 return (0); 197 } 198 199 /* 200 * Reclaim a proc after use. 201 */ 202 static void 203 proc_dtor(void *mem, int size, void *arg) 204 { 205 struct proc *p; 206 struct thread *td; 207 208 /* INVARIANTS checks go here */ 209 p = (struct proc *)mem; 210 td = FIRST_THREAD_IN_PROC(p); 211 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 212 if (td != NULL) { 213 #ifdef INVARIANTS 214 KASSERT((p->p_numthreads == 1), 215 ("bad number of threads in exiting process")); 216 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 217 #endif 218 /* Free all OSD associated to this thread. */ 219 osd_thread_exit(td); 220 } 221 EVENTHANDLER_INVOKE(process_dtor, p); 222 if (p->p_ksi != NULL) 223 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 224 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 225 } 226 227 /* 228 * Initialize type-stable parts of a proc (when newly created). 229 */ 230 static int 231 proc_init(void *mem, int size, int flags) 232 { 233 struct proc *p; 234 235 p = (struct proc *)mem; 236 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 237 p->p_sched = (struct p_sched *)&p[1]; 238 bzero(&p->p_mtx, sizeof(struct mtx)); 239 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 240 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 241 cv_init(&p->p_pwait, "ppwait"); 242 cv_init(&p->p_dbgwait, "dbgwait"); 243 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 244 EVENTHANDLER_INVOKE(process_init, p); 245 p->p_stats = pstats_alloc(); 246 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 247 return (0); 248 } 249 250 /* 251 * UMA should ensure that this function is never called. 252 * Freeing a proc structure would violate type stability. 253 */ 254 static void 255 proc_fini(void *mem, int size) 256 { 257 #ifdef notnow 258 struct proc *p; 259 260 p = (struct proc *)mem; 261 EVENTHANDLER_INVOKE(process_fini, p); 262 pstats_free(p->p_stats); 263 thread_free(FIRST_THREAD_IN_PROC(p)); 264 mtx_destroy(&p->p_mtx); 265 if (p->p_ksi != NULL) 266 ksiginfo_free(p->p_ksi); 267 #else 268 panic("proc reclaimed"); 269 #endif 270 } 271 272 /* 273 * Is p an inferior of the current process? 274 */ 275 int 276 inferior(p) 277 register struct proc *p; 278 { 279 280 sx_assert(&proctree_lock, SX_LOCKED); 281 for (; p != curproc; p = p->p_pptr) 282 if (p->p_pid == 0) 283 return (0); 284 return (1); 285 } 286 287 /* 288 * Locate a process by number; return only "live" processes -- i.e., neither 289 * zombies nor newly born but incompletely initialized processes. By not 290 * returning processes in the PRS_NEW state, we allow callers to avoid 291 * testing for that condition to avoid dereferencing p_ucred, et al. 292 */ 293 struct proc * 294 pfind(pid) 295 register pid_t pid; 296 { 297 register struct proc *p; 298 299 sx_slock(&allproc_lock); 300 LIST_FOREACH(p, PIDHASH(pid), p_hash) 301 if (p->p_pid == pid) { 302 PROC_LOCK(p); 303 if (p->p_state == PRS_NEW) { 304 PROC_UNLOCK(p); 305 p = NULL; 306 } 307 break; 308 } 309 sx_sunlock(&allproc_lock); 310 return (p); 311 } 312 313 static struct proc * 314 pfind_tid(pid_t tid) 315 { 316 struct proc *p; 317 struct thread *td; 318 319 sx_slock(&allproc_lock); 320 FOREACH_PROC_IN_SYSTEM(p) { 321 PROC_LOCK(p); 322 if (p->p_state == PRS_NEW) { 323 PROC_UNLOCK(p); 324 continue; 325 } 326 FOREACH_THREAD_IN_PROC(p, td) { 327 if (td->td_tid == tid) 328 goto found; 329 } 330 PROC_UNLOCK(p); 331 } 332 found: 333 sx_sunlock(&allproc_lock); 334 return (p); 335 } 336 337 /* 338 * Locate a process group by number. 339 * The caller must hold proctree_lock. 340 */ 341 struct pgrp * 342 pgfind(pgid) 343 register pid_t pgid; 344 { 345 register struct pgrp *pgrp; 346 347 sx_assert(&proctree_lock, SX_LOCKED); 348 349 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 350 if (pgrp->pg_id == pgid) { 351 PGRP_LOCK(pgrp); 352 return (pgrp); 353 } 354 } 355 return (NULL); 356 } 357 358 /* 359 * Locate process and do additional manipulations, depending on flags. 360 */ 361 int 362 pget(pid_t pid, int flags, struct proc **pp) 363 { 364 struct proc *p; 365 int error; 366 367 if (pid <= PID_MAX) 368 p = pfind(pid); 369 else if ((flags & PGET_NOTID) == 0) 370 p = pfind_tid(pid); 371 else 372 p = NULL; 373 if (p == NULL) 374 return (ESRCH); 375 if ((flags & PGET_CANSEE) != 0) { 376 error = p_cansee(curthread, p); 377 if (error != 0) 378 goto errout; 379 } 380 if ((flags & PGET_CANDEBUG) != 0) { 381 error = p_candebug(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 386 error = EPERM; 387 goto errout; 388 } 389 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 390 error = ESRCH; 391 goto errout; 392 } 393 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 394 /* 395 * XXXRW: Not clear ESRCH is the right error during proc 396 * execve(). 397 */ 398 error = ESRCH; 399 goto errout; 400 } 401 if ((flags & PGET_HOLD) != 0) { 402 _PHOLD(p); 403 PROC_UNLOCK(p); 404 } 405 *pp = p; 406 return (0); 407 errout: 408 PROC_UNLOCK(p); 409 return (error); 410 } 411 412 /* 413 * Create a new process group. 414 * pgid must be equal to the pid of p. 415 * Begin a new session if required. 416 */ 417 int 418 enterpgrp(p, pgid, pgrp, sess) 419 register struct proc *p; 420 pid_t pgid; 421 struct pgrp *pgrp; 422 struct session *sess; 423 { 424 struct pgrp *pgrp2; 425 426 sx_assert(&proctree_lock, SX_XLOCKED); 427 428 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 429 KASSERT(p->p_pid == pgid, 430 ("enterpgrp: new pgrp and pid != pgid")); 431 432 pgrp2 = pgfind(pgid); 433 434 KASSERT(pgrp2 == NULL, 435 ("enterpgrp: pgrp with pgid exists")); 436 KASSERT(!SESS_LEADER(p), 437 ("enterpgrp: session leader attempted setpgrp")); 438 439 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 440 441 if (sess != NULL) { 442 /* 443 * new session 444 */ 445 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 446 PROC_LOCK(p); 447 p->p_flag &= ~P_CONTROLT; 448 PROC_UNLOCK(p); 449 PGRP_LOCK(pgrp); 450 sess->s_leader = p; 451 sess->s_sid = p->p_pid; 452 refcount_init(&sess->s_count, 1); 453 sess->s_ttyvp = NULL; 454 sess->s_ttydp = NULL; 455 sess->s_ttyp = NULL; 456 bcopy(p->p_session->s_login, sess->s_login, 457 sizeof(sess->s_login)); 458 pgrp->pg_session = sess; 459 KASSERT(p == curproc, 460 ("enterpgrp: mksession and p != curproc")); 461 } else { 462 pgrp->pg_session = p->p_session; 463 sess_hold(pgrp->pg_session); 464 PGRP_LOCK(pgrp); 465 } 466 pgrp->pg_id = pgid; 467 LIST_INIT(&pgrp->pg_members); 468 469 /* 470 * As we have an exclusive lock of proctree_lock, 471 * this should not deadlock. 472 */ 473 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 474 pgrp->pg_jobc = 0; 475 SLIST_INIT(&pgrp->pg_sigiolst); 476 PGRP_UNLOCK(pgrp); 477 478 doenterpgrp(p, pgrp); 479 480 return (0); 481 } 482 483 /* 484 * Move p to an existing process group 485 */ 486 int 487 enterthispgrp(p, pgrp) 488 register struct proc *p; 489 struct pgrp *pgrp; 490 { 491 492 sx_assert(&proctree_lock, SX_XLOCKED); 493 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 494 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 496 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 497 KASSERT(pgrp->pg_session == p->p_session, 498 ("%s: pgrp's session %p, p->p_session %p.\n", 499 __func__, 500 pgrp->pg_session, 501 p->p_session)); 502 KASSERT(pgrp != p->p_pgrp, 503 ("%s: p belongs to pgrp.", __func__)); 504 505 doenterpgrp(p, pgrp); 506 507 return (0); 508 } 509 510 /* 511 * Move p to a process group 512 */ 513 static void 514 doenterpgrp(p, pgrp) 515 struct proc *p; 516 struct pgrp *pgrp; 517 { 518 struct pgrp *savepgrp; 519 520 sx_assert(&proctree_lock, SX_XLOCKED); 521 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 522 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 524 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 525 526 savepgrp = p->p_pgrp; 527 528 /* 529 * Adjust eligibility of affected pgrps to participate in job control. 530 * Increment eligibility counts before decrementing, otherwise we 531 * could reach 0 spuriously during the first call. 532 */ 533 fixjobc(p, pgrp, 1); 534 fixjobc(p, p->p_pgrp, 0); 535 536 PGRP_LOCK(pgrp); 537 PGRP_LOCK(savepgrp); 538 PROC_LOCK(p); 539 LIST_REMOVE(p, p_pglist); 540 p->p_pgrp = pgrp; 541 PROC_UNLOCK(p); 542 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 543 PGRP_UNLOCK(savepgrp); 544 PGRP_UNLOCK(pgrp); 545 if (LIST_EMPTY(&savepgrp->pg_members)) 546 pgdelete(savepgrp); 547 } 548 549 /* 550 * remove process from process group 551 */ 552 int 553 leavepgrp(p) 554 register struct proc *p; 555 { 556 struct pgrp *savepgrp; 557 558 sx_assert(&proctree_lock, SX_XLOCKED); 559 savepgrp = p->p_pgrp; 560 PGRP_LOCK(savepgrp); 561 PROC_LOCK(p); 562 LIST_REMOVE(p, p_pglist); 563 p->p_pgrp = NULL; 564 PROC_UNLOCK(p); 565 PGRP_UNLOCK(savepgrp); 566 if (LIST_EMPTY(&savepgrp->pg_members)) 567 pgdelete(savepgrp); 568 return (0); 569 } 570 571 /* 572 * delete a process group 573 */ 574 static void 575 pgdelete(pgrp) 576 register struct pgrp *pgrp; 577 { 578 struct session *savesess; 579 struct tty *tp; 580 581 sx_assert(&proctree_lock, SX_XLOCKED); 582 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 583 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 584 585 /* 586 * Reset any sigio structures pointing to us as a result of 587 * F_SETOWN with our pgid. 588 */ 589 funsetownlst(&pgrp->pg_sigiolst); 590 591 PGRP_LOCK(pgrp); 592 tp = pgrp->pg_session->s_ttyp; 593 LIST_REMOVE(pgrp, pg_hash); 594 savesess = pgrp->pg_session; 595 PGRP_UNLOCK(pgrp); 596 597 /* Remove the reference to the pgrp before deallocating it. */ 598 if (tp != NULL) { 599 tty_lock(tp); 600 tty_rel_pgrp(tp, pgrp); 601 } 602 603 mtx_destroy(&pgrp->pg_mtx); 604 free(pgrp, M_PGRP); 605 sess_release(savesess); 606 } 607 608 static void 609 pgadjustjobc(pgrp, entering) 610 struct pgrp *pgrp; 611 int entering; 612 { 613 614 PGRP_LOCK(pgrp); 615 if (entering) 616 pgrp->pg_jobc++; 617 else { 618 --pgrp->pg_jobc; 619 if (pgrp->pg_jobc == 0) 620 orphanpg(pgrp); 621 } 622 PGRP_UNLOCK(pgrp); 623 } 624 625 /* 626 * Adjust pgrp jobc counters when specified process changes process group. 627 * We count the number of processes in each process group that "qualify" 628 * the group for terminal job control (those with a parent in a different 629 * process group of the same session). If that count reaches zero, the 630 * process group becomes orphaned. Check both the specified process' 631 * process group and that of its children. 632 * entering == 0 => p is leaving specified group. 633 * entering == 1 => p is entering specified group. 634 */ 635 void 636 fixjobc(p, pgrp, entering) 637 register struct proc *p; 638 register struct pgrp *pgrp; 639 int entering; 640 { 641 register struct pgrp *hispgrp; 642 register struct session *mysession; 643 644 sx_assert(&proctree_lock, SX_LOCKED); 645 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 646 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 647 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 648 649 /* 650 * Check p's parent to see whether p qualifies its own process 651 * group; if so, adjust count for p's process group. 652 */ 653 mysession = pgrp->pg_session; 654 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 655 hispgrp->pg_session == mysession) 656 pgadjustjobc(pgrp, entering); 657 658 /* 659 * Check this process' children to see whether they qualify 660 * their process groups; if so, adjust counts for children's 661 * process groups. 662 */ 663 LIST_FOREACH(p, &p->p_children, p_sibling) { 664 hispgrp = p->p_pgrp; 665 if (hispgrp == pgrp || 666 hispgrp->pg_session != mysession) 667 continue; 668 PROC_LOCK(p); 669 if (p->p_state == PRS_ZOMBIE) { 670 PROC_UNLOCK(p); 671 continue; 672 } 673 PROC_UNLOCK(p); 674 pgadjustjobc(hispgrp, entering); 675 } 676 } 677 678 /* 679 * A process group has become orphaned; 680 * if there are any stopped processes in the group, 681 * hang-up all process in that group. 682 */ 683 static void 684 orphanpg(pg) 685 struct pgrp *pg; 686 { 687 register struct proc *p; 688 689 PGRP_LOCK_ASSERT(pg, MA_OWNED); 690 691 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 692 PROC_LOCK(p); 693 if (P_SHOULDSTOP(p)) { 694 PROC_UNLOCK(p); 695 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 696 PROC_LOCK(p); 697 kern_psignal(p, SIGHUP); 698 kern_psignal(p, SIGCONT); 699 PROC_UNLOCK(p); 700 } 701 return; 702 } 703 PROC_UNLOCK(p); 704 } 705 } 706 707 void 708 sess_hold(struct session *s) 709 { 710 711 refcount_acquire(&s->s_count); 712 } 713 714 void 715 sess_release(struct session *s) 716 { 717 718 if (refcount_release(&s->s_count)) { 719 if (s->s_ttyp != NULL) { 720 tty_lock(s->s_ttyp); 721 tty_rel_sess(s->s_ttyp, s); 722 } 723 mtx_destroy(&s->s_mtx); 724 free(s, M_SESSION); 725 } 726 } 727 728 #ifdef DDB 729 730 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 731 { 732 register struct pgrp *pgrp; 733 register struct proc *p; 734 register int i; 735 736 for (i = 0; i <= pgrphash; i++) { 737 if (!LIST_EMPTY(&pgrphashtbl[i])) { 738 printf("\tindx %d\n", i); 739 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 740 printf( 741 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 742 (void *)pgrp, (long)pgrp->pg_id, 743 (void *)pgrp->pg_session, 744 pgrp->pg_session->s_count, 745 (void *)LIST_FIRST(&pgrp->pg_members)); 746 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 747 printf("\t\tpid %ld addr %p pgrp %p\n", 748 (long)p->p_pid, (void *)p, 749 (void *)p->p_pgrp); 750 } 751 } 752 } 753 } 754 } 755 #endif /* DDB */ 756 757 /* 758 * Calculate the kinfo_proc members which contain process-wide 759 * informations. 760 * Must be called with the target process locked. 761 */ 762 static void 763 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 764 { 765 struct thread *td; 766 767 PROC_LOCK_ASSERT(p, MA_OWNED); 768 769 kp->ki_estcpu = 0; 770 kp->ki_pctcpu = 0; 771 FOREACH_THREAD_IN_PROC(p, td) { 772 thread_lock(td); 773 kp->ki_pctcpu += sched_pctcpu(td); 774 kp->ki_estcpu += td->td_estcpu; 775 thread_unlock(td); 776 } 777 } 778 779 /* 780 * Clear kinfo_proc and fill in any information that is common 781 * to all threads in the process. 782 * Must be called with the target process locked. 783 */ 784 static void 785 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 786 { 787 struct thread *td0; 788 struct tty *tp; 789 struct session *sp; 790 struct ucred *cred; 791 struct sigacts *ps; 792 793 PROC_LOCK_ASSERT(p, MA_OWNED); 794 bzero(kp, sizeof(*kp)); 795 796 kp->ki_structsize = sizeof(*kp); 797 kp->ki_paddr = p; 798 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 799 kp->ki_args = p->p_args; 800 kp->ki_textvp = p->p_textvp; 801 #ifdef KTRACE 802 kp->ki_tracep = p->p_tracevp; 803 kp->ki_traceflag = p->p_traceflag; 804 #endif 805 kp->ki_fd = p->p_fd; 806 kp->ki_vmspace = p->p_vmspace; 807 kp->ki_flag = p->p_flag; 808 cred = p->p_ucred; 809 if (cred) { 810 kp->ki_uid = cred->cr_uid; 811 kp->ki_ruid = cred->cr_ruid; 812 kp->ki_svuid = cred->cr_svuid; 813 kp->ki_cr_flags = 0; 814 if (cred->cr_flags & CRED_FLAG_CAPMODE) 815 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 816 /* XXX bde doesn't like KI_NGROUPS */ 817 if (cred->cr_ngroups > KI_NGROUPS) { 818 kp->ki_ngroups = KI_NGROUPS; 819 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 820 } else 821 kp->ki_ngroups = cred->cr_ngroups; 822 bcopy(cred->cr_groups, kp->ki_groups, 823 kp->ki_ngroups * sizeof(gid_t)); 824 kp->ki_rgid = cred->cr_rgid; 825 kp->ki_svgid = cred->cr_svgid; 826 /* If jailed(cred), emulate the old P_JAILED flag. */ 827 if (jailed(cred)) { 828 kp->ki_flag |= P_JAILED; 829 /* If inside the jail, use 0 as a jail ID. */ 830 if (cred->cr_prison != curthread->td_ucred->cr_prison) 831 kp->ki_jid = cred->cr_prison->pr_id; 832 } 833 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 834 sizeof(kp->ki_loginclass)); 835 } 836 ps = p->p_sigacts; 837 if (ps) { 838 mtx_lock(&ps->ps_mtx); 839 kp->ki_sigignore = ps->ps_sigignore; 840 kp->ki_sigcatch = ps->ps_sigcatch; 841 mtx_unlock(&ps->ps_mtx); 842 } 843 if (p->p_state != PRS_NEW && 844 p->p_state != PRS_ZOMBIE && 845 p->p_vmspace != NULL) { 846 struct vmspace *vm = p->p_vmspace; 847 848 kp->ki_size = vm->vm_map.size; 849 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 850 FOREACH_THREAD_IN_PROC(p, td0) { 851 if (!TD_IS_SWAPPED(td0)) 852 kp->ki_rssize += td0->td_kstack_pages; 853 } 854 kp->ki_swrss = vm->vm_swrss; 855 kp->ki_tsize = vm->vm_tsize; 856 kp->ki_dsize = vm->vm_dsize; 857 kp->ki_ssize = vm->vm_ssize; 858 } else if (p->p_state == PRS_ZOMBIE) 859 kp->ki_stat = SZOMB; 860 if (kp->ki_flag & P_INMEM) 861 kp->ki_sflag = PS_INMEM; 862 else 863 kp->ki_sflag = 0; 864 /* Calculate legacy swtime as seconds since 'swtick'. */ 865 kp->ki_swtime = (ticks - p->p_swtick) / hz; 866 kp->ki_pid = p->p_pid; 867 kp->ki_nice = p->p_nice; 868 kp->ki_start = p->p_stats->p_start; 869 timevaladd(&kp->ki_start, &boottime); 870 PROC_SLOCK(p); 871 rufetch(p, &kp->ki_rusage); 872 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 873 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 874 PROC_SUNLOCK(p); 875 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 876 /* Some callers want child times in a single value. */ 877 kp->ki_childtime = kp->ki_childstime; 878 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 879 880 FOREACH_THREAD_IN_PROC(p, td0) 881 kp->ki_cow += td0->td_cow; 882 883 tp = NULL; 884 if (p->p_pgrp) { 885 kp->ki_pgid = p->p_pgrp->pg_id; 886 kp->ki_jobc = p->p_pgrp->pg_jobc; 887 sp = p->p_pgrp->pg_session; 888 889 if (sp != NULL) { 890 kp->ki_sid = sp->s_sid; 891 SESS_LOCK(sp); 892 strlcpy(kp->ki_login, sp->s_login, 893 sizeof(kp->ki_login)); 894 if (sp->s_ttyvp) 895 kp->ki_kiflag |= KI_CTTY; 896 if (SESS_LEADER(p)) 897 kp->ki_kiflag |= KI_SLEADER; 898 /* XXX proctree_lock */ 899 tp = sp->s_ttyp; 900 SESS_UNLOCK(sp); 901 } 902 } 903 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 904 kp->ki_tdev = tty_udev(tp); 905 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 906 if (tp->t_session) 907 kp->ki_tsid = tp->t_session->s_sid; 908 } else 909 kp->ki_tdev = NODEV; 910 if (p->p_comm[0] != '\0') 911 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 912 if (p->p_sysent && p->p_sysent->sv_name != NULL && 913 p->p_sysent->sv_name[0] != '\0') 914 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 915 kp->ki_siglist = p->p_siglist; 916 kp->ki_xstat = p->p_xstat; 917 kp->ki_acflag = p->p_acflag; 918 kp->ki_lock = p->p_lock; 919 if (p->p_pptr) 920 kp->ki_ppid = p->p_pptr->p_pid; 921 } 922 923 /* 924 * Fill in information that is thread specific. Must be called with 925 * target process locked. If 'preferthread' is set, overwrite certain 926 * process-related fields that are maintained for both threads and 927 * processes. 928 */ 929 static void 930 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 931 { 932 struct proc *p; 933 934 p = td->td_proc; 935 kp->ki_tdaddr = td; 936 PROC_LOCK_ASSERT(p, MA_OWNED); 937 938 if (preferthread) 939 PROC_SLOCK(p); 940 thread_lock(td); 941 if (td->td_wmesg != NULL) 942 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 943 else 944 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 945 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 946 if (TD_ON_LOCK(td)) { 947 kp->ki_kiflag |= KI_LOCKBLOCK; 948 strlcpy(kp->ki_lockname, td->td_lockname, 949 sizeof(kp->ki_lockname)); 950 } else { 951 kp->ki_kiflag &= ~KI_LOCKBLOCK; 952 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 953 } 954 955 if (p->p_state == PRS_NORMAL) { /* approximate. */ 956 if (TD_ON_RUNQ(td) || 957 TD_CAN_RUN(td) || 958 TD_IS_RUNNING(td)) { 959 kp->ki_stat = SRUN; 960 } else if (P_SHOULDSTOP(p)) { 961 kp->ki_stat = SSTOP; 962 } else if (TD_IS_SLEEPING(td)) { 963 kp->ki_stat = SSLEEP; 964 } else if (TD_ON_LOCK(td)) { 965 kp->ki_stat = SLOCK; 966 } else { 967 kp->ki_stat = SWAIT; 968 } 969 } else if (p->p_state == PRS_ZOMBIE) { 970 kp->ki_stat = SZOMB; 971 } else { 972 kp->ki_stat = SIDL; 973 } 974 975 /* Things in the thread */ 976 kp->ki_wchan = td->td_wchan; 977 kp->ki_pri.pri_level = td->td_priority; 978 kp->ki_pri.pri_native = td->td_base_pri; 979 kp->ki_lastcpu = td->td_lastcpu; 980 kp->ki_oncpu = td->td_oncpu; 981 kp->ki_tdflags = td->td_flags; 982 kp->ki_tid = td->td_tid; 983 kp->ki_numthreads = p->p_numthreads; 984 kp->ki_pcb = td->td_pcb; 985 kp->ki_kstack = (void *)td->td_kstack; 986 kp->ki_slptime = (ticks - td->td_slptick) / hz; 987 kp->ki_pri.pri_class = td->td_pri_class; 988 kp->ki_pri.pri_user = td->td_user_pri; 989 990 if (preferthread) { 991 rufetchtd(td, &kp->ki_rusage); 992 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 993 kp->ki_pctcpu = sched_pctcpu(td); 994 kp->ki_estcpu = td->td_estcpu; 995 kp->ki_cow = td->td_cow; 996 } 997 998 /* We can't get this anymore but ps etc never used it anyway. */ 999 kp->ki_rqindex = 0; 1000 1001 if (preferthread) 1002 kp->ki_siglist = td->td_siglist; 1003 kp->ki_sigmask = td->td_sigmask; 1004 thread_unlock(td); 1005 if (preferthread) 1006 PROC_SUNLOCK(p); 1007 } 1008 1009 /* 1010 * Fill in a kinfo_proc structure for the specified process. 1011 * Must be called with the target process locked. 1012 */ 1013 void 1014 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1015 { 1016 1017 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1018 1019 fill_kinfo_proc_only(p, kp); 1020 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1021 fill_kinfo_aggregate(p, kp); 1022 } 1023 1024 struct pstats * 1025 pstats_alloc(void) 1026 { 1027 1028 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1029 } 1030 1031 /* 1032 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1033 */ 1034 void 1035 pstats_fork(struct pstats *src, struct pstats *dst) 1036 { 1037 1038 bzero(&dst->pstat_startzero, 1039 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1040 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1041 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1042 } 1043 1044 void 1045 pstats_free(struct pstats *ps) 1046 { 1047 1048 free(ps, M_SUBPROC); 1049 } 1050 1051 /* 1052 * Locate a zombie process by number 1053 */ 1054 struct proc * 1055 zpfind(pid_t pid) 1056 { 1057 struct proc *p; 1058 1059 sx_slock(&allproc_lock); 1060 LIST_FOREACH(p, &zombproc, p_list) 1061 if (p->p_pid == pid) { 1062 PROC_LOCK(p); 1063 break; 1064 } 1065 sx_sunlock(&allproc_lock); 1066 return (p); 1067 } 1068 1069 #define KERN_PROC_ZOMBMASK 0x3 1070 #define KERN_PROC_NOTHREADS 0x4 1071 1072 #ifdef COMPAT_FREEBSD32 1073 1074 /* 1075 * This function is typically used to copy out the kernel address, so 1076 * it can be replaced by assignment of zero. 1077 */ 1078 static inline uint32_t 1079 ptr32_trim(void *ptr) 1080 { 1081 uintptr_t uptr; 1082 1083 uptr = (uintptr_t)ptr; 1084 return ((uptr > UINT_MAX) ? 0 : uptr); 1085 } 1086 1087 #define PTRTRIM_CP(src,dst,fld) \ 1088 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1089 1090 static void 1091 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1092 { 1093 int i; 1094 1095 bzero(ki32, sizeof(struct kinfo_proc32)); 1096 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1097 CP(*ki, *ki32, ki_layout); 1098 PTRTRIM_CP(*ki, *ki32, ki_args); 1099 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1100 PTRTRIM_CP(*ki, *ki32, ki_addr); 1101 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1102 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1103 PTRTRIM_CP(*ki, *ki32, ki_fd); 1104 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1105 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1106 CP(*ki, *ki32, ki_pid); 1107 CP(*ki, *ki32, ki_ppid); 1108 CP(*ki, *ki32, ki_pgid); 1109 CP(*ki, *ki32, ki_tpgid); 1110 CP(*ki, *ki32, ki_sid); 1111 CP(*ki, *ki32, ki_tsid); 1112 CP(*ki, *ki32, ki_jobc); 1113 CP(*ki, *ki32, ki_tdev); 1114 CP(*ki, *ki32, ki_siglist); 1115 CP(*ki, *ki32, ki_sigmask); 1116 CP(*ki, *ki32, ki_sigignore); 1117 CP(*ki, *ki32, ki_sigcatch); 1118 CP(*ki, *ki32, ki_uid); 1119 CP(*ki, *ki32, ki_ruid); 1120 CP(*ki, *ki32, ki_svuid); 1121 CP(*ki, *ki32, ki_rgid); 1122 CP(*ki, *ki32, ki_svgid); 1123 CP(*ki, *ki32, ki_ngroups); 1124 for (i = 0; i < KI_NGROUPS; i++) 1125 CP(*ki, *ki32, ki_groups[i]); 1126 CP(*ki, *ki32, ki_size); 1127 CP(*ki, *ki32, ki_rssize); 1128 CP(*ki, *ki32, ki_swrss); 1129 CP(*ki, *ki32, ki_tsize); 1130 CP(*ki, *ki32, ki_dsize); 1131 CP(*ki, *ki32, ki_ssize); 1132 CP(*ki, *ki32, ki_xstat); 1133 CP(*ki, *ki32, ki_acflag); 1134 CP(*ki, *ki32, ki_pctcpu); 1135 CP(*ki, *ki32, ki_estcpu); 1136 CP(*ki, *ki32, ki_slptime); 1137 CP(*ki, *ki32, ki_swtime); 1138 CP(*ki, *ki32, ki_cow); 1139 CP(*ki, *ki32, ki_runtime); 1140 TV_CP(*ki, *ki32, ki_start); 1141 TV_CP(*ki, *ki32, ki_childtime); 1142 CP(*ki, *ki32, ki_flag); 1143 CP(*ki, *ki32, ki_kiflag); 1144 CP(*ki, *ki32, ki_traceflag); 1145 CP(*ki, *ki32, ki_stat); 1146 CP(*ki, *ki32, ki_nice); 1147 CP(*ki, *ki32, ki_lock); 1148 CP(*ki, *ki32, ki_rqindex); 1149 CP(*ki, *ki32, ki_oncpu); 1150 CP(*ki, *ki32, ki_lastcpu); 1151 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1152 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1153 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1154 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1155 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1156 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1157 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1158 CP(*ki, *ki32, ki_cr_flags); 1159 CP(*ki, *ki32, ki_jid); 1160 CP(*ki, *ki32, ki_numthreads); 1161 CP(*ki, *ki32, ki_tid); 1162 CP(*ki, *ki32, ki_pri); 1163 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1164 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1165 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1166 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1167 PTRTRIM_CP(*ki, *ki32, ki_udata); 1168 CP(*ki, *ki32, ki_sflag); 1169 CP(*ki, *ki32, ki_tdflags); 1170 } 1171 1172 static int 1173 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1174 { 1175 struct kinfo_proc32 ki32; 1176 int error; 1177 1178 if (req->flags & SCTL_MASK32) { 1179 freebsd32_kinfo_proc_out(ki, &ki32); 1180 error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32)); 1181 } else 1182 error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)); 1183 return (error); 1184 } 1185 #else 1186 static int 1187 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req) 1188 { 1189 1190 return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc))); 1191 } 1192 #endif 1193 1194 /* 1195 * Must be called with the process locked and will return with it unlocked. 1196 */ 1197 static int 1198 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1199 { 1200 struct thread *td; 1201 struct kinfo_proc kinfo_proc; 1202 int error = 0; 1203 struct proc *np; 1204 pid_t pid = p->p_pid; 1205 1206 PROC_LOCK_ASSERT(p, MA_OWNED); 1207 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1208 1209 fill_kinfo_proc(p, &kinfo_proc); 1210 if (flags & KERN_PROC_NOTHREADS) 1211 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1212 else { 1213 FOREACH_THREAD_IN_PROC(p, td) { 1214 fill_kinfo_thread(td, &kinfo_proc, 1); 1215 error = sysctl_out_proc_copyout(&kinfo_proc, req); 1216 if (error) 1217 break; 1218 } 1219 } 1220 PROC_UNLOCK(p); 1221 if (error) 1222 return (error); 1223 if (flags & KERN_PROC_ZOMBMASK) 1224 np = zpfind(pid); 1225 else { 1226 if (pid == 0) 1227 return (0); 1228 np = pfind(pid); 1229 } 1230 if (np == NULL) 1231 return (ESRCH); 1232 if (np != p) { 1233 PROC_UNLOCK(np); 1234 return (ESRCH); 1235 } 1236 PROC_UNLOCK(np); 1237 return (0); 1238 } 1239 1240 static int 1241 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1242 { 1243 int *name = (int *)arg1; 1244 u_int namelen = arg2; 1245 struct proc *p; 1246 int flags, doingzomb, oid_number; 1247 int error = 0; 1248 1249 oid_number = oidp->oid_number; 1250 if (oid_number != KERN_PROC_ALL && 1251 (oid_number & KERN_PROC_INC_THREAD) == 0) 1252 flags = KERN_PROC_NOTHREADS; 1253 else { 1254 flags = 0; 1255 oid_number &= ~KERN_PROC_INC_THREAD; 1256 } 1257 if (oid_number == KERN_PROC_PID) { 1258 if (namelen != 1) 1259 return (EINVAL); 1260 error = sysctl_wire_old_buffer(req, 0); 1261 if (error) 1262 return (error); 1263 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1264 if (error != 0) 1265 return (error); 1266 error = sysctl_out_proc(p, req, flags); 1267 return (error); 1268 } 1269 1270 switch (oid_number) { 1271 case KERN_PROC_ALL: 1272 if (namelen != 0) 1273 return (EINVAL); 1274 break; 1275 case KERN_PROC_PROC: 1276 if (namelen != 0 && namelen != 1) 1277 return (EINVAL); 1278 break; 1279 default: 1280 if (namelen != 1) 1281 return (EINVAL); 1282 break; 1283 } 1284 1285 if (!req->oldptr) { 1286 /* overestimate by 5 procs */ 1287 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1288 if (error) 1289 return (error); 1290 } 1291 error = sysctl_wire_old_buffer(req, 0); 1292 if (error != 0) 1293 return (error); 1294 sx_slock(&allproc_lock); 1295 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1296 if (!doingzomb) 1297 p = LIST_FIRST(&allproc); 1298 else 1299 p = LIST_FIRST(&zombproc); 1300 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1301 /* 1302 * Skip embryonic processes. 1303 */ 1304 PROC_LOCK(p); 1305 if (p->p_state == PRS_NEW) { 1306 PROC_UNLOCK(p); 1307 continue; 1308 } 1309 KASSERT(p->p_ucred != NULL, 1310 ("process credential is NULL for non-NEW proc")); 1311 /* 1312 * Show a user only appropriate processes. 1313 */ 1314 if (p_cansee(curthread, p)) { 1315 PROC_UNLOCK(p); 1316 continue; 1317 } 1318 /* 1319 * TODO - make more efficient (see notes below). 1320 * do by session. 1321 */ 1322 switch (oid_number) { 1323 1324 case KERN_PROC_GID: 1325 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1326 PROC_UNLOCK(p); 1327 continue; 1328 } 1329 break; 1330 1331 case KERN_PROC_PGRP: 1332 /* could do this by traversing pgrp */ 1333 if (p->p_pgrp == NULL || 1334 p->p_pgrp->pg_id != (pid_t)name[0]) { 1335 PROC_UNLOCK(p); 1336 continue; 1337 } 1338 break; 1339 1340 case KERN_PROC_RGID: 1341 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1342 PROC_UNLOCK(p); 1343 continue; 1344 } 1345 break; 1346 1347 case KERN_PROC_SESSION: 1348 if (p->p_session == NULL || 1349 p->p_session->s_sid != (pid_t)name[0]) { 1350 PROC_UNLOCK(p); 1351 continue; 1352 } 1353 break; 1354 1355 case KERN_PROC_TTY: 1356 if ((p->p_flag & P_CONTROLT) == 0 || 1357 p->p_session == NULL) { 1358 PROC_UNLOCK(p); 1359 continue; 1360 } 1361 /* XXX proctree_lock */ 1362 SESS_LOCK(p->p_session); 1363 if (p->p_session->s_ttyp == NULL || 1364 tty_udev(p->p_session->s_ttyp) != 1365 (dev_t)name[0]) { 1366 SESS_UNLOCK(p->p_session); 1367 PROC_UNLOCK(p); 1368 continue; 1369 } 1370 SESS_UNLOCK(p->p_session); 1371 break; 1372 1373 case KERN_PROC_UID: 1374 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1375 PROC_UNLOCK(p); 1376 continue; 1377 } 1378 break; 1379 1380 case KERN_PROC_RUID: 1381 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1382 PROC_UNLOCK(p); 1383 continue; 1384 } 1385 break; 1386 1387 case KERN_PROC_PROC: 1388 break; 1389 1390 default: 1391 break; 1392 1393 } 1394 1395 error = sysctl_out_proc(p, req, flags | doingzomb); 1396 if (error) { 1397 sx_sunlock(&allproc_lock); 1398 return (error); 1399 } 1400 } 1401 } 1402 sx_sunlock(&allproc_lock); 1403 return (0); 1404 } 1405 1406 struct pargs * 1407 pargs_alloc(int len) 1408 { 1409 struct pargs *pa; 1410 1411 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1412 M_WAITOK); 1413 refcount_init(&pa->ar_ref, 1); 1414 pa->ar_length = len; 1415 return (pa); 1416 } 1417 1418 static void 1419 pargs_free(struct pargs *pa) 1420 { 1421 1422 free(pa, M_PARGS); 1423 } 1424 1425 void 1426 pargs_hold(struct pargs *pa) 1427 { 1428 1429 if (pa == NULL) 1430 return; 1431 refcount_acquire(&pa->ar_ref); 1432 } 1433 1434 void 1435 pargs_drop(struct pargs *pa) 1436 { 1437 1438 if (pa == NULL) 1439 return; 1440 if (refcount_release(&pa->ar_ref)) 1441 pargs_free(pa); 1442 } 1443 1444 static int 1445 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1446 size_t len) 1447 { 1448 struct iovec iov; 1449 struct uio uio; 1450 1451 iov.iov_base = (caddr_t)buf; 1452 iov.iov_len = len; 1453 uio.uio_iov = &iov; 1454 uio.uio_iovcnt = 1; 1455 uio.uio_offset = offset; 1456 uio.uio_resid = (ssize_t)len; 1457 uio.uio_segflg = UIO_SYSSPACE; 1458 uio.uio_rw = UIO_READ; 1459 uio.uio_td = td; 1460 1461 return (proc_rwmem(p, &uio)); 1462 } 1463 1464 static int 1465 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1466 size_t len) 1467 { 1468 size_t i; 1469 int error; 1470 1471 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1472 /* 1473 * Reading the chunk may validly return EFAULT if the string is shorter 1474 * than the chunk and is aligned at the end of the page, assuming the 1475 * next page is not mapped. So if EFAULT is returned do a fallback to 1476 * one byte read loop. 1477 */ 1478 if (error == EFAULT) { 1479 for (i = 0; i < len; i++, buf++, sptr++) { 1480 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1481 if (error != 0) 1482 return (error); 1483 if (*buf == '\0') 1484 break; 1485 } 1486 error = 0; 1487 } 1488 return (error); 1489 } 1490 1491 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1492 1493 enum proc_vector_type { 1494 PROC_ARG, 1495 PROC_ENV, 1496 PROC_AUX, 1497 }; 1498 1499 #ifdef COMPAT_FREEBSD32 1500 static int 1501 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1502 size_t *vsizep, enum proc_vector_type type) 1503 { 1504 struct freebsd32_ps_strings pss; 1505 Elf32_Auxinfo aux; 1506 vm_offset_t vptr, ptr; 1507 uint32_t *proc_vector32; 1508 char **proc_vector; 1509 size_t vsize, size; 1510 int i, error; 1511 1512 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1513 &pss, sizeof(pss)); 1514 if (error != 0) 1515 return (error); 1516 switch (type) { 1517 case PROC_ARG: 1518 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1519 vsize = pss.ps_nargvstr; 1520 if (vsize > ARG_MAX) 1521 return (ENOEXEC); 1522 size = vsize * sizeof(int32_t); 1523 break; 1524 case PROC_ENV: 1525 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1526 vsize = pss.ps_nenvstr; 1527 if (vsize > ARG_MAX) 1528 return (ENOEXEC); 1529 size = vsize * sizeof(int32_t); 1530 break; 1531 case PROC_AUX: 1532 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1533 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1534 if (vptr % 4 != 0) 1535 return (ENOEXEC); 1536 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1537 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1538 if (error != 0) 1539 return (error); 1540 if (aux.a_type == AT_NULL) 1541 break; 1542 ptr += sizeof(aux); 1543 } 1544 if (aux.a_type != AT_NULL) 1545 return (ENOEXEC); 1546 vsize = i + 1; 1547 size = vsize * sizeof(aux); 1548 break; 1549 default: 1550 KASSERT(0, ("Wrong proc vector type: %d", type)); 1551 return (EINVAL); 1552 } 1553 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1554 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1555 if (error != 0) 1556 goto done; 1557 if (type == PROC_AUX) { 1558 *proc_vectorp = (char **)proc_vector32; 1559 *vsizep = vsize; 1560 return (0); 1561 } 1562 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1563 for (i = 0; i < (int)vsize; i++) 1564 proc_vector[i] = PTRIN(proc_vector32[i]); 1565 *proc_vectorp = proc_vector; 1566 *vsizep = vsize; 1567 done: 1568 free(proc_vector32, M_TEMP); 1569 return (error); 1570 } 1571 #endif 1572 1573 static int 1574 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1575 size_t *vsizep, enum proc_vector_type type) 1576 { 1577 struct ps_strings pss; 1578 Elf_Auxinfo aux; 1579 vm_offset_t vptr, ptr; 1580 char **proc_vector; 1581 size_t vsize, size; 1582 int error, i; 1583 1584 #ifdef COMPAT_FREEBSD32 1585 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1586 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1587 #endif 1588 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1589 &pss, sizeof(pss)); 1590 if (error != 0) 1591 return (error); 1592 switch (type) { 1593 case PROC_ARG: 1594 vptr = (vm_offset_t)pss.ps_argvstr; 1595 vsize = pss.ps_nargvstr; 1596 if (vsize > ARG_MAX) 1597 return (ENOEXEC); 1598 size = vsize * sizeof(char *); 1599 break; 1600 case PROC_ENV: 1601 vptr = (vm_offset_t)pss.ps_envstr; 1602 vsize = pss.ps_nenvstr; 1603 if (vsize > ARG_MAX) 1604 return (ENOEXEC); 1605 size = vsize * sizeof(char *); 1606 break; 1607 case PROC_AUX: 1608 /* 1609 * The aux array is just above env array on the stack. Check 1610 * that the address is naturally aligned. 1611 */ 1612 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1613 * sizeof(char *); 1614 #if __ELF_WORD_SIZE == 64 1615 if (vptr % sizeof(uint64_t) != 0) 1616 #else 1617 if (vptr % sizeof(uint32_t) != 0) 1618 #endif 1619 return (ENOEXEC); 1620 /* 1621 * We count the array size reading the aux vectors from the 1622 * stack until AT_NULL vector is returned. So (to keep the code 1623 * simple) we read the process stack twice: the first time here 1624 * to find the size and the second time when copying the vectors 1625 * to the allocated proc_vector. 1626 */ 1627 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1628 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1629 if (error != 0) 1630 return (error); 1631 if (aux.a_type == AT_NULL) 1632 break; 1633 ptr += sizeof(aux); 1634 } 1635 /* 1636 * If the PROC_AUXV_MAX entries are iterated over, and we have 1637 * not reached AT_NULL, it is most likely we are reading wrong 1638 * data: either the process doesn't have auxv array or data has 1639 * been modified. Return the error in this case. 1640 */ 1641 if (aux.a_type != AT_NULL) 1642 return (ENOEXEC); 1643 vsize = i + 1; 1644 size = vsize * sizeof(aux); 1645 break; 1646 default: 1647 KASSERT(0, ("Wrong proc vector type: %d", type)); 1648 return (EINVAL); /* In case we are built without INVARIANTS. */ 1649 } 1650 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1651 if (proc_vector == NULL) 1652 return (ENOMEM); 1653 error = proc_read_mem(td, p, vptr, proc_vector, size); 1654 if (error != 0) { 1655 free(proc_vector, M_TEMP); 1656 return (error); 1657 } 1658 *proc_vectorp = proc_vector; 1659 *vsizep = vsize; 1660 1661 return (0); 1662 } 1663 1664 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1665 1666 static int 1667 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1668 enum proc_vector_type type) 1669 { 1670 size_t done, len, nchr, vsize; 1671 int error, i; 1672 char **proc_vector, *sptr; 1673 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1674 1675 PROC_ASSERT_HELD(p); 1676 1677 /* 1678 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1679 */ 1680 nchr = 2 * (PATH_MAX + ARG_MAX); 1681 1682 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1683 if (error != 0) 1684 return (error); 1685 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1686 /* 1687 * The program may have scribbled into its argv array, e.g. to 1688 * remove some arguments. If that has happened, break out 1689 * before trying to read from NULL. 1690 */ 1691 if (proc_vector[i] == NULL) 1692 break; 1693 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1694 error = proc_read_string(td, p, sptr, pss_string, 1695 sizeof(pss_string)); 1696 if (error != 0) 1697 goto done; 1698 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1699 if (done + len >= nchr) 1700 len = nchr - done - 1; 1701 sbuf_bcat(sb, pss_string, len); 1702 if (len != GET_PS_STRINGS_CHUNK_SZ) 1703 break; 1704 done += GET_PS_STRINGS_CHUNK_SZ; 1705 } 1706 sbuf_bcat(sb, "", 1); 1707 done += len + 1; 1708 } 1709 done: 1710 free(proc_vector, M_TEMP); 1711 return (error); 1712 } 1713 1714 int 1715 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1716 { 1717 1718 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1719 } 1720 1721 int 1722 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1723 { 1724 1725 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1726 } 1727 1728 /* 1729 * This sysctl allows a process to retrieve the argument list or process 1730 * title for another process without groping around in the address space 1731 * of the other process. It also allow a process to set its own "process 1732 * title to a string of its own choice. 1733 */ 1734 static int 1735 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1736 { 1737 int *name = (int *)arg1; 1738 u_int namelen = arg2; 1739 struct pargs *newpa, *pa; 1740 struct proc *p; 1741 struct sbuf sb; 1742 int flags, error = 0, error2; 1743 1744 if (namelen != 1) 1745 return (EINVAL); 1746 1747 flags = PGET_CANSEE; 1748 if (req->newptr != NULL) 1749 flags |= PGET_ISCURRENT; 1750 error = pget((pid_t)name[0], flags, &p); 1751 if (error) 1752 return (error); 1753 1754 pa = p->p_args; 1755 if (pa != NULL) { 1756 pargs_hold(pa); 1757 PROC_UNLOCK(p); 1758 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1759 pargs_drop(pa); 1760 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1761 _PHOLD(p); 1762 PROC_UNLOCK(p); 1763 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1764 error = proc_getargv(curthread, p, &sb); 1765 error2 = sbuf_finish(&sb); 1766 PRELE(p); 1767 sbuf_delete(&sb); 1768 if (error == 0 && error2 != 0) 1769 error = error2; 1770 } else { 1771 PROC_UNLOCK(p); 1772 } 1773 if (error != 0 || req->newptr == NULL) 1774 return (error); 1775 1776 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1777 return (ENOMEM); 1778 newpa = pargs_alloc(req->newlen); 1779 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1780 if (error != 0) { 1781 pargs_free(newpa); 1782 return (error); 1783 } 1784 PROC_LOCK(p); 1785 pa = p->p_args; 1786 p->p_args = newpa; 1787 PROC_UNLOCK(p); 1788 pargs_drop(pa); 1789 return (0); 1790 } 1791 1792 /* 1793 * This sysctl allows a process to retrieve environment of another process. 1794 */ 1795 static int 1796 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1797 { 1798 int *name = (int *)arg1; 1799 u_int namelen = arg2; 1800 struct proc *p; 1801 struct sbuf sb; 1802 int error, error2; 1803 1804 if (namelen != 1) 1805 return (EINVAL); 1806 1807 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1808 if (error != 0) 1809 return (error); 1810 if ((p->p_flag & P_SYSTEM) != 0) { 1811 PRELE(p); 1812 return (0); 1813 } 1814 1815 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1816 error = proc_getenvv(curthread, p, &sb); 1817 error2 = sbuf_finish(&sb); 1818 PRELE(p); 1819 sbuf_delete(&sb); 1820 return (error != 0 ? error : error2); 1821 } 1822 1823 /* 1824 * This sysctl allows a process to retrieve ELF auxiliary vector of 1825 * another process. 1826 */ 1827 static int 1828 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1829 { 1830 int *name = (int *)arg1; 1831 u_int namelen = arg2; 1832 struct proc *p; 1833 size_t vsize, size; 1834 char **auxv; 1835 int error; 1836 1837 if (namelen != 1) 1838 return (EINVAL); 1839 1840 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1841 if (error != 0) 1842 return (error); 1843 if ((p->p_flag & P_SYSTEM) != 0) { 1844 PRELE(p); 1845 return (0); 1846 } 1847 error = get_proc_vector(curthread, p, &auxv, &vsize, PROC_AUX); 1848 if (error == 0) { 1849 #ifdef COMPAT_FREEBSD32 1850 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1851 size = vsize * sizeof(Elf32_Auxinfo); 1852 else 1853 #endif 1854 size = vsize * sizeof(Elf_Auxinfo); 1855 PRELE(p); 1856 error = SYSCTL_OUT(req, auxv, size); 1857 free(auxv, M_TEMP); 1858 } else { 1859 PRELE(p); 1860 } 1861 return (error); 1862 } 1863 1864 /* 1865 * This sysctl allows a process to retrieve the path of the executable for 1866 * itself or another process. 1867 */ 1868 static int 1869 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1870 { 1871 pid_t *pidp = (pid_t *)arg1; 1872 unsigned int arglen = arg2; 1873 struct proc *p; 1874 struct vnode *vp; 1875 char *retbuf, *freebuf; 1876 int error, vfslocked; 1877 1878 if (arglen != 1) 1879 return (EINVAL); 1880 if (*pidp == -1) { /* -1 means this process */ 1881 p = req->td->td_proc; 1882 } else { 1883 error = pget(*pidp, PGET_CANSEE, &p); 1884 if (error != 0) 1885 return (error); 1886 } 1887 1888 vp = p->p_textvp; 1889 if (vp == NULL) { 1890 if (*pidp != -1) 1891 PROC_UNLOCK(p); 1892 return (0); 1893 } 1894 vref(vp); 1895 if (*pidp != -1) 1896 PROC_UNLOCK(p); 1897 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1898 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1899 vrele(vp); 1900 VFS_UNLOCK_GIANT(vfslocked); 1901 if (error) 1902 return (error); 1903 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1904 free(freebuf, M_TEMP); 1905 return (error); 1906 } 1907 1908 static int 1909 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1910 { 1911 struct proc *p; 1912 char *sv_name; 1913 int *name; 1914 int namelen; 1915 int error; 1916 1917 namelen = arg2; 1918 if (namelen != 1) 1919 return (EINVAL); 1920 1921 name = (int *)arg1; 1922 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1923 if (error != 0) 1924 return (error); 1925 sv_name = p->p_sysent->sv_name; 1926 PROC_UNLOCK(p); 1927 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1928 } 1929 1930 #ifdef KINFO_OVMENTRY_SIZE 1931 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1932 #endif 1933 1934 #ifdef COMPAT_FREEBSD7 1935 static int 1936 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1937 { 1938 vm_map_entry_t entry, tmp_entry; 1939 unsigned int last_timestamp; 1940 char *fullpath, *freepath; 1941 struct kinfo_ovmentry *kve; 1942 struct vattr va; 1943 struct ucred *cred; 1944 int error, *name; 1945 struct vnode *vp; 1946 struct proc *p; 1947 vm_map_t map; 1948 struct vmspace *vm; 1949 1950 name = (int *)arg1; 1951 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1952 if (error != 0) 1953 return (error); 1954 vm = vmspace_acquire_ref(p); 1955 if (vm == NULL) { 1956 PRELE(p); 1957 return (ESRCH); 1958 } 1959 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1960 1961 map = &vm->vm_map; 1962 vm_map_lock_read(map); 1963 for (entry = map->header.next; entry != &map->header; 1964 entry = entry->next) { 1965 vm_object_t obj, tobj, lobj; 1966 vm_offset_t addr; 1967 int vfslocked; 1968 1969 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1970 continue; 1971 1972 bzero(kve, sizeof(*kve)); 1973 kve->kve_structsize = sizeof(*kve); 1974 1975 kve->kve_private_resident = 0; 1976 obj = entry->object.vm_object; 1977 if (obj != NULL) { 1978 VM_OBJECT_LOCK(obj); 1979 if (obj->shadow_count == 1) 1980 kve->kve_private_resident = 1981 obj->resident_page_count; 1982 } 1983 kve->kve_resident = 0; 1984 addr = entry->start; 1985 while (addr < entry->end) { 1986 if (pmap_extract(map->pmap, addr)) 1987 kve->kve_resident++; 1988 addr += PAGE_SIZE; 1989 } 1990 1991 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1992 if (tobj != obj) 1993 VM_OBJECT_LOCK(tobj); 1994 if (lobj != obj) 1995 VM_OBJECT_UNLOCK(lobj); 1996 lobj = tobj; 1997 } 1998 1999 kve->kve_start = (void*)entry->start; 2000 kve->kve_end = (void*)entry->end; 2001 kve->kve_offset = (off_t)entry->offset; 2002 2003 if (entry->protection & VM_PROT_READ) 2004 kve->kve_protection |= KVME_PROT_READ; 2005 if (entry->protection & VM_PROT_WRITE) 2006 kve->kve_protection |= KVME_PROT_WRITE; 2007 if (entry->protection & VM_PROT_EXECUTE) 2008 kve->kve_protection |= KVME_PROT_EXEC; 2009 2010 if (entry->eflags & MAP_ENTRY_COW) 2011 kve->kve_flags |= KVME_FLAG_COW; 2012 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2013 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2014 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2015 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2016 2017 last_timestamp = map->timestamp; 2018 vm_map_unlock_read(map); 2019 2020 kve->kve_fileid = 0; 2021 kve->kve_fsid = 0; 2022 freepath = NULL; 2023 fullpath = ""; 2024 if (lobj) { 2025 vp = NULL; 2026 switch (lobj->type) { 2027 case OBJT_DEFAULT: 2028 kve->kve_type = KVME_TYPE_DEFAULT; 2029 break; 2030 case OBJT_VNODE: 2031 kve->kve_type = KVME_TYPE_VNODE; 2032 vp = lobj->handle; 2033 vref(vp); 2034 break; 2035 case OBJT_SWAP: 2036 kve->kve_type = KVME_TYPE_SWAP; 2037 break; 2038 case OBJT_DEVICE: 2039 kve->kve_type = KVME_TYPE_DEVICE; 2040 break; 2041 case OBJT_PHYS: 2042 kve->kve_type = KVME_TYPE_PHYS; 2043 break; 2044 case OBJT_DEAD: 2045 kve->kve_type = KVME_TYPE_DEAD; 2046 break; 2047 case OBJT_SG: 2048 kve->kve_type = KVME_TYPE_SG; 2049 break; 2050 default: 2051 kve->kve_type = KVME_TYPE_UNKNOWN; 2052 break; 2053 } 2054 if (lobj != obj) 2055 VM_OBJECT_UNLOCK(lobj); 2056 2057 kve->kve_ref_count = obj->ref_count; 2058 kve->kve_shadow_count = obj->shadow_count; 2059 VM_OBJECT_UNLOCK(obj); 2060 if (vp != NULL) { 2061 vn_fullpath(curthread, vp, &fullpath, 2062 &freepath); 2063 cred = curthread->td_ucred; 2064 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2065 vn_lock(vp, LK_SHARED | LK_RETRY); 2066 if (VOP_GETATTR(vp, &va, cred) == 0) { 2067 kve->kve_fileid = va.va_fileid; 2068 kve->kve_fsid = va.va_fsid; 2069 } 2070 vput(vp); 2071 VFS_UNLOCK_GIANT(vfslocked); 2072 } 2073 } else { 2074 kve->kve_type = KVME_TYPE_NONE; 2075 kve->kve_ref_count = 0; 2076 kve->kve_shadow_count = 0; 2077 } 2078 2079 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2080 if (freepath != NULL) 2081 free(freepath, M_TEMP); 2082 2083 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2084 vm_map_lock_read(map); 2085 if (error) 2086 break; 2087 if (last_timestamp != map->timestamp) { 2088 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2089 entry = tmp_entry; 2090 } 2091 } 2092 vm_map_unlock_read(map); 2093 vmspace_free(vm); 2094 PRELE(p); 2095 free(kve, M_TEMP); 2096 return (error); 2097 } 2098 #endif /* COMPAT_FREEBSD7 */ 2099 2100 #ifdef KINFO_VMENTRY_SIZE 2101 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2102 #endif 2103 2104 static int 2105 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2106 { 2107 vm_map_entry_t entry, tmp_entry; 2108 unsigned int last_timestamp; 2109 char *fullpath, *freepath; 2110 struct kinfo_vmentry *kve; 2111 struct vattr va; 2112 struct ucred *cred; 2113 int error, *name; 2114 struct vnode *vp; 2115 struct proc *p; 2116 struct vmspace *vm; 2117 vm_map_t map; 2118 2119 name = (int *)arg1; 2120 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2121 if (error != 0) 2122 return (error); 2123 vm = vmspace_acquire_ref(p); 2124 if (vm == NULL) { 2125 PRELE(p); 2126 return (ESRCH); 2127 } 2128 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2129 2130 map = &vm->vm_map; 2131 vm_map_lock_read(map); 2132 for (entry = map->header.next; entry != &map->header; 2133 entry = entry->next) { 2134 vm_object_t obj, tobj, lobj; 2135 vm_offset_t addr; 2136 vm_paddr_t locked_pa; 2137 int vfslocked, mincoreinfo; 2138 2139 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2140 continue; 2141 2142 bzero(kve, sizeof(*kve)); 2143 2144 kve->kve_private_resident = 0; 2145 obj = entry->object.vm_object; 2146 if (obj != NULL) { 2147 VM_OBJECT_LOCK(obj); 2148 if (obj->shadow_count == 1) 2149 kve->kve_private_resident = 2150 obj->resident_page_count; 2151 } 2152 kve->kve_resident = 0; 2153 addr = entry->start; 2154 while (addr < entry->end) { 2155 locked_pa = 0; 2156 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2157 if (locked_pa != 0) 2158 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2159 if (mincoreinfo & MINCORE_INCORE) 2160 kve->kve_resident++; 2161 if (mincoreinfo & MINCORE_SUPER) 2162 kve->kve_flags |= KVME_FLAG_SUPER; 2163 addr += PAGE_SIZE; 2164 } 2165 2166 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2167 if (tobj != obj) 2168 VM_OBJECT_LOCK(tobj); 2169 if (lobj != obj) 2170 VM_OBJECT_UNLOCK(lobj); 2171 lobj = tobj; 2172 } 2173 2174 kve->kve_start = entry->start; 2175 kve->kve_end = entry->end; 2176 kve->kve_offset = entry->offset; 2177 2178 if (entry->protection & VM_PROT_READ) 2179 kve->kve_protection |= KVME_PROT_READ; 2180 if (entry->protection & VM_PROT_WRITE) 2181 kve->kve_protection |= KVME_PROT_WRITE; 2182 if (entry->protection & VM_PROT_EXECUTE) 2183 kve->kve_protection |= KVME_PROT_EXEC; 2184 2185 if (entry->eflags & MAP_ENTRY_COW) 2186 kve->kve_flags |= KVME_FLAG_COW; 2187 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2188 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2189 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2190 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2191 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2192 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2193 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2194 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2195 2196 last_timestamp = map->timestamp; 2197 vm_map_unlock_read(map); 2198 2199 freepath = NULL; 2200 fullpath = ""; 2201 if (lobj) { 2202 vp = NULL; 2203 switch (lobj->type) { 2204 case OBJT_DEFAULT: 2205 kve->kve_type = KVME_TYPE_DEFAULT; 2206 break; 2207 case OBJT_VNODE: 2208 kve->kve_type = KVME_TYPE_VNODE; 2209 vp = lobj->handle; 2210 vref(vp); 2211 break; 2212 case OBJT_SWAP: 2213 kve->kve_type = KVME_TYPE_SWAP; 2214 break; 2215 case OBJT_DEVICE: 2216 kve->kve_type = KVME_TYPE_DEVICE; 2217 break; 2218 case OBJT_PHYS: 2219 kve->kve_type = KVME_TYPE_PHYS; 2220 break; 2221 case OBJT_DEAD: 2222 kve->kve_type = KVME_TYPE_DEAD; 2223 break; 2224 case OBJT_SG: 2225 kve->kve_type = KVME_TYPE_SG; 2226 break; 2227 default: 2228 kve->kve_type = KVME_TYPE_UNKNOWN; 2229 break; 2230 } 2231 if (lobj != obj) 2232 VM_OBJECT_UNLOCK(lobj); 2233 2234 kve->kve_ref_count = obj->ref_count; 2235 kve->kve_shadow_count = obj->shadow_count; 2236 VM_OBJECT_UNLOCK(obj); 2237 if (vp != NULL) { 2238 vn_fullpath(curthread, vp, &fullpath, 2239 &freepath); 2240 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2241 cred = curthread->td_ucred; 2242 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 2243 vn_lock(vp, LK_SHARED | LK_RETRY); 2244 if (VOP_GETATTR(vp, &va, cred) == 0) { 2245 kve->kve_vn_fileid = va.va_fileid; 2246 kve->kve_vn_fsid = va.va_fsid; 2247 kve->kve_vn_mode = 2248 MAKEIMODE(va.va_type, va.va_mode); 2249 kve->kve_vn_size = va.va_size; 2250 kve->kve_vn_rdev = va.va_rdev; 2251 kve->kve_status = KF_ATTR_VALID; 2252 } 2253 vput(vp); 2254 VFS_UNLOCK_GIANT(vfslocked); 2255 } 2256 } else { 2257 kve->kve_type = KVME_TYPE_NONE; 2258 kve->kve_ref_count = 0; 2259 kve->kve_shadow_count = 0; 2260 } 2261 2262 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2263 if (freepath != NULL) 2264 free(freepath, M_TEMP); 2265 2266 /* Pack record size down */ 2267 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2268 strlen(kve->kve_path) + 1; 2269 kve->kve_structsize = roundup(kve->kve_structsize, 2270 sizeof(uint64_t)); 2271 error = SYSCTL_OUT(req, kve, kve->kve_structsize); 2272 vm_map_lock_read(map); 2273 if (error) 2274 break; 2275 if (last_timestamp != map->timestamp) { 2276 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2277 entry = tmp_entry; 2278 } 2279 } 2280 vm_map_unlock_read(map); 2281 vmspace_free(vm); 2282 PRELE(p); 2283 free(kve, M_TEMP); 2284 return (error); 2285 } 2286 2287 #if defined(STACK) || defined(DDB) 2288 static int 2289 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2290 { 2291 struct kinfo_kstack *kkstp; 2292 int error, i, *name, numthreads; 2293 lwpid_t *lwpidarray; 2294 struct thread *td; 2295 struct stack *st; 2296 struct sbuf sb; 2297 struct proc *p; 2298 2299 name = (int *)arg1; 2300 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2301 if (error != 0) 2302 return (error); 2303 2304 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2305 st = stack_create(); 2306 2307 lwpidarray = NULL; 2308 numthreads = 0; 2309 PROC_LOCK(p); 2310 repeat: 2311 if (numthreads < p->p_numthreads) { 2312 if (lwpidarray != NULL) { 2313 free(lwpidarray, M_TEMP); 2314 lwpidarray = NULL; 2315 } 2316 numthreads = p->p_numthreads; 2317 PROC_UNLOCK(p); 2318 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2319 M_WAITOK | M_ZERO); 2320 PROC_LOCK(p); 2321 goto repeat; 2322 } 2323 i = 0; 2324 2325 /* 2326 * XXXRW: During the below loop, execve(2) and countless other sorts 2327 * of changes could have taken place. Should we check to see if the 2328 * vmspace has been replaced, or the like, in order to prevent 2329 * giving a snapshot that spans, say, execve(2), with some threads 2330 * before and some after? Among other things, the credentials could 2331 * have changed, in which case the right to extract debug info might 2332 * no longer be assured. 2333 */ 2334 FOREACH_THREAD_IN_PROC(p, td) { 2335 KASSERT(i < numthreads, 2336 ("sysctl_kern_proc_kstack: numthreads")); 2337 lwpidarray[i] = td->td_tid; 2338 i++; 2339 } 2340 numthreads = i; 2341 for (i = 0; i < numthreads; i++) { 2342 td = thread_find(p, lwpidarray[i]); 2343 if (td == NULL) { 2344 continue; 2345 } 2346 bzero(kkstp, sizeof(*kkstp)); 2347 (void)sbuf_new(&sb, kkstp->kkst_trace, 2348 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2349 thread_lock(td); 2350 kkstp->kkst_tid = td->td_tid; 2351 if (TD_IS_SWAPPED(td)) 2352 kkstp->kkst_state = KKST_STATE_SWAPPED; 2353 else if (TD_IS_RUNNING(td)) 2354 kkstp->kkst_state = KKST_STATE_RUNNING; 2355 else { 2356 kkstp->kkst_state = KKST_STATE_STACKOK; 2357 stack_save_td(st, td); 2358 } 2359 thread_unlock(td); 2360 PROC_UNLOCK(p); 2361 stack_sbuf_print(&sb, st); 2362 sbuf_finish(&sb); 2363 sbuf_delete(&sb); 2364 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2365 PROC_LOCK(p); 2366 if (error) 2367 break; 2368 } 2369 _PRELE(p); 2370 PROC_UNLOCK(p); 2371 if (lwpidarray != NULL) 2372 free(lwpidarray, M_TEMP); 2373 stack_destroy(st); 2374 free(kkstp, M_TEMP); 2375 return (error); 2376 } 2377 #endif 2378 2379 /* 2380 * This sysctl allows a process to retrieve the full list of groups from 2381 * itself or another process. 2382 */ 2383 static int 2384 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2385 { 2386 pid_t *pidp = (pid_t *)arg1; 2387 unsigned int arglen = arg2; 2388 struct proc *p; 2389 struct ucred *cred; 2390 int error; 2391 2392 if (arglen != 1) 2393 return (EINVAL); 2394 if (*pidp == -1) { /* -1 means this process */ 2395 p = req->td->td_proc; 2396 } else { 2397 error = pget(*pidp, PGET_CANSEE, &p); 2398 if (error != 0) 2399 return (error); 2400 } 2401 2402 cred = crhold(p->p_ucred); 2403 if (*pidp != -1) 2404 PROC_UNLOCK(p); 2405 2406 error = SYSCTL_OUT(req, cred->cr_groups, 2407 cred->cr_ngroups * sizeof(gid_t)); 2408 crfree(cred); 2409 return (error); 2410 } 2411 2412 /* 2413 * This sysctl allows a process to retrieve or/and set the resource limit for 2414 * another process. 2415 */ 2416 static int 2417 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2418 { 2419 int *name = (int *)arg1; 2420 u_int namelen = arg2; 2421 struct rlimit rlim; 2422 struct proc *p; 2423 u_int which; 2424 int flags, error; 2425 2426 if (namelen != 2) 2427 return (EINVAL); 2428 2429 which = (u_int)name[1]; 2430 if (which >= RLIM_NLIMITS) 2431 return (EINVAL); 2432 2433 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2434 return (EINVAL); 2435 2436 flags = PGET_HOLD | PGET_NOTWEXIT; 2437 if (req->newptr != NULL) 2438 flags |= PGET_CANDEBUG; 2439 else 2440 flags |= PGET_CANSEE; 2441 error = pget((pid_t)name[0], flags, &p); 2442 if (error != 0) 2443 return (error); 2444 2445 /* 2446 * Retrieve limit. 2447 */ 2448 if (req->oldptr != NULL) { 2449 PROC_LOCK(p); 2450 lim_rlimit(p, which, &rlim); 2451 PROC_UNLOCK(p); 2452 } 2453 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2454 if (error != 0) 2455 goto errout; 2456 2457 /* 2458 * Set limit. 2459 */ 2460 if (req->newptr != NULL) { 2461 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2462 if (error == 0) 2463 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2464 } 2465 2466 errout: 2467 PRELE(p); 2468 return (error); 2469 } 2470 2471 /* 2472 * This sysctl allows a process to retrieve ps_strings structure location of 2473 * another process. 2474 */ 2475 static int 2476 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2477 { 2478 int *name = (int *)arg1; 2479 u_int namelen = arg2; 2480 struct proc *p; 2481 vm_offset_t ps_strings; 2482 int error; 2483 #ifdef COMPAT_FREEBSD32 2484 uint32_t ps_strings32; 2485 #endif 2486 2487 if (namelen != 1) 2488 return (EINVAL); 2489 2490 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2491 if (error != 0) 2492 return (error); 2493 #ifdef COMPAT_FREEBSD32 2494 if ((req->flags & SCTL_MASK32) != 0) { 2495 /* 2496 * We return 0 if the 32 bit emulation request is for a 64 bit 2497 * process. 2498 */ 2499 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2500 PTROUT(p->p_sysent->sv_psstrings) : 0; 2501 PROC_UNLOCK(p); 2502 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2503 return (error); 2504 } 2505 #endif 2506 ps_strings = p->p_sysent->sv_psstrings; 2507 PROC_UNLOCK(p); 2508 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2509 return (error); 2510 } 2511 2512 /* 2513 * This sysctl allows a process to retrieve umask of another process. 2514 */ 2515 static int 2516 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2517 { 2518 int *name = (int *)arg1; 2519 u_int namelen = arg2; 2520 struct proc *p; 2521 int error; 2522 u_short fd_cmask; 2523 2524 if (namelen != 1) 2525 return (EINVAL); 2526 2527 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2528 if (error != 0) 2529 return (error); 2530 2531 FILEDESC_SLOCK(p->p_fd); 2532 fd_cmask = p->p_fd->fd_cmask; 2533 FILEDESC_SUNLOCK(p->p_fd); 2534 PRELE(p); 2535 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2536 return (error); 2537 } 2538 2539 /* 2540 * This sysctl allows a process to set and retrieve binary osreldate of 2541 * another process. 2542 */ 2543 static int 2544 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2545 { 2546 int *name = (int *)arg1; 2547 u_int namelen = arg2; 2548 struct proc *p; 2549 int flags, error, osrel; 2550 2551 if (namelen != 1) 2552 return (EINVAL); 2553 2554 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2555 return (EINVAL); 2556 2557 flags = PGET_HOLD | PGET_NOTWEXIT; 2558 if (req->newptr != NULL) 2559 flags |= PGET_CANDEBUG; 2560 else 2561 flags |= PGET_CANSEE; 2562 error = pget((pid_t)name[0], flags, &p); 2563 if (error != 0) 2564 return (error); 2565 2566 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2567 if (error != 0) 2568 goto errout; 2569 2570 if (req->newptr != NULL) { 2571 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2572 if (error != 0) 2573 goto errout; 2574 if (osrel < 0) { 2575 error = EINVAL; 2576 goto errout; 2577 } 2578 p->p_osrel = osrel; 2579 } 2580 errout: 2581 PRELE(p); 2582 return (error); 2583 } 2584 2585 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2586 2587 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2588 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2589 "Return entire process table"); 2590 2591 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2592 sysctl_kern_proc, "Process table"); 2593 2594 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2595 sysctl_kern_proc, "Process table"); 2596 2597 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2598 sysctl_kern_proc, "Process table"); 2599 2600 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2601 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2602 2603 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2604 sysctl_kern_proc, "Process table"); 2605 2606 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2607 sysctl_kern_proc, "Process table"); 2608 2609 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2610 sysctl_kern_proc, "Process table"); 2611 2612 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2613 sysctl_kern_proc, "Process table"); 2614 2615 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2616 sysctl_kern_proc, "Return process table, no threads"); 2617 2618 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2619 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2620 sysctl_kern_proc_args, "Process argument list"); 2621 2622 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2623 sysctl_kern_proc_env, "Process environment"); 2624 2625 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2626 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2627 2628 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2629 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2630 2631 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2632 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2633 "Process syscall vector name (ABI type)"); 2634 2635 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2636 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2637 2638 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2639 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2640 2641 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2642 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2643 2644 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2645 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2646 2647 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2648 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2649 2650 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2651 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2652 2653 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2654 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2655 2656 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2657 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2658 2659 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2660 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2661 "Return process table, no threads"); 2662 2663 #ifdef COMPAT_FREEBSD7 2664 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2665 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2666 #endif 2667 2668 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2669 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2670 2671 #if defined(STACK) || defined(DDB) 2672 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2673 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2674 #endif 2675 2676 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2677 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2678 2679 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2680 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2681 "Process resource limits"); 2682 2683 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2684 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2685 "Process ps_strings location"); 2686 2687 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2688 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2689 2690 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2691 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2692 "Process binary osreldate"); 2693