1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit(void) 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 197 EVENTHANDLER_INVOKE(process_ctor, p); 198 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 199 return (0); 200 } 201 202 /* 203 * Reclaim a proc after use. 204 */ 205 static void 206 proc_dtor(void *mem, int size, void *arg) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 /* INVARIANTS checks go here */ 212 p = (struct proc *)mem; 213 td = FIRST_THREAD_IN_PROC(p); 214 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 215 if (td != NULL) { 216 #ifdef INVARIANTS 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in exiting process")); 219 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 220 #endif 221 /* Free all OSD associated to this thread. */ 222 osd_thread_exit(td); 223 } 224 EVENTHANDLER_INVOKE(process_dtor, p); 225 if (p->p_ksi != NULL) 226 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 227 SDT_PROBE3(proc, , dtor, return, p, size, arg); 228 } 229 230 /* 231 * Initialize type-stable parts of a proc (when newly created). 232 */ 233 static int 234 proc_init(void *mem, int size, int flags) 235 { 236 struct proc *p; 237 238 p = (struct proc *)mem; 239 SDT_PROBE3(proc, , init, entry, p, size, flags); 240 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 241 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 242 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 243 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 244 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 245 cv_init(&p->p_pwait, "ppwait"); 246 cv_init(&p->p_dbgwait, "dbgwait"); 247 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 248 EVENTHANDLER_INVOKE(process_init, p); 249 p->p_stats = pstats_alloc(); 250 p->p_pgrp = NULL; 251 SDT_PROBE3(proc, , init, return, p, size, flags); 252 return (0); 253 } 254 255 /* 256 * UMA should ensure that this function is never called. 257 * Freeing a proc structure would violate type stability. 258 */ 259 static void 260 proc_fini(void *mem, int size) 261 { 262 #ifdef notnow 263 struct proc *p; 264 265 p = (struct proc *)mem; 266 EVENTHANDLER_INVOKE(process_fini, p); 267 pstats_free(p->p_stats); 268 thread_free(FIRST_THREAD_IN_PROC(p)); 269 mtx_destroy(&p->p_mtx); 270 if (p->p_ksi != NULL) 271 ksiginfo_free(p->p_ksi); 272 #else 273 panic("proc reclaimed"); 274 #endif 275 } 276 277 /* 278 * Is p an inferior of the current process? 279 */ 280 int 281 inferior(struct proc *p) 282 { 283 284 sx_assert(&proctree_lock, SX_LOCKED); 285 PROC_LOCK_ASSERT(p, MA_OWNED); 286 for (; p != curproc; p = proc_realparent(p)) { 287 if (p->p_pid == 0) 288 return (0); 289 } 290 return (1); 291 } 292 293 struct proc * 294 pfind_locked(pid_t pid) 295 { 296 struct proc *p; 297 298 sx_assert(&allproc_lock, SX_LOCKED); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 } 309 return (p); 310 } 311 312 /* 313 * Locate a process by number; return only "live" processes -- i.e., neither 314 * zombies nor newly born but incompletely initialized processes. By not 315 * returning processes in the PRS_NEW state, we allow callers to avoid 316 * testing for that condition to avoid dereferencing p_ucred, et al. 317 */ 318 struct proc * 319 pfind(pid_t pid) 320 { 321 struct proc *p; 322 323 sx_slock(&allproc_lock); 324 p = pfind_locked(pid); 325 sx_sunlock(&allproc_lock); 326 return (p); 327 } 328 329 static struct proc * 330 pfind_tid_locked(pid_t tid) 331 { 332 struct proc *p; 333 struct thread *td; 334 335 sx_assert(&allproc_lock, SX_LOCKED); 336 FOREACH_PROC_IN_SYSTEM(p) { 337 PROC_LOCK(p); 338 if (p->p_state == PRS_NEW) { 339 PROC_UNLOCK(p); 340 continue; 341 } 342 FOREACH_THREAD_IN_PROC(p, td) { 343 if (td->td_tid == tid) 344 goto found; 345 } 346 PROC_UNLOCK(p); 347 } 348 found: 349 return (p); 350 } 351 352 /* 353 * Locate a process group by number. 354 * The caller must hold proctree_lock. 355 */ 356 struct pgrp * 357 pgfind(pid_t pgid) 358 { 359 struct pgrp *pgrp; 360 361 sx_assert(&proctree_lock, SX_LOCKED); 362 363 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 364 if (pgrp->pg_id == pgid) { 365 PGRP_LOCK(pgrp); 366 return (pgrp); 367 } 368 } 369 return (NULL); 370 } 371 372 /* 373 * Locate process and do additional manipulations, depending on flags. 374 */ 375 int 376 pget(pid_t pid, int flags, struct proc **pp) 377 { 378 struct proc *p; 379 int error; 380 381 sx_slock(&allproc_lock); 382 if (pid <= PID_MAX) { 383 p = pfind_locked(pid); 384 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 385 p = zpfind_locked(pid); 386 } else if ((flags & PGET_NOTID) == 0) { 387 p = pfind_tid_locked(pid); 388 } else { 389 p = NULL; 390 } 391 sx_sunlock(&allproc_lock); 392 if (p == NULL) 393 return (ESRCH); 394 if ((flags & PGET_CANSEE) != 0) { 395 error = p_cansee(curthread, p); 396 if (error != 0) 397 goto errout; 398 } 399 if ((flags & PGET_CANDEBUG) != 0) { 400 error = p_candebug(curthread, p); 401 if (error != 0) 402 goto errout; 403 } 404 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 405 error = EPERM; 406 goto errout; 407 } 408 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 409 error = ESRCH; 410 goto errout; 411 } 412 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 413 /* 414 * XXXRW: Not clear ESRCH is the right error during proc 415 * execve(). 416 */ 417 error = ESRCH; 418 goto errout; 419 } 420 if ((flags & PGET_HOLD) != 0) { 421 _PHOLD(p); 422 PROC_UNLOCK(p); 423 } 424 *pp = p; 425 return (0); 426 errout: 427 PROC_UNLOCK(p); 428 return (error); 429 } 430 431 /* 432 * Create a new process group. 433 * pgid must be equal to the pid of p. 434 * Begin a new session if required. 435 */ 436 int 437 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 438 { 439 440 sx_assert(&proctree_lock, SX_XLOCKED); 441 442 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 443 KASSERT(p->p_pid == pgid, 444 ("enterpgrp: new pgrp and pid != pgid")); 445 KASSERT(pgfind(pgid) == NULL, 446 ("enterpgrp: pgrp with pgid exists")); 447 KASSERT(!SESS_LEADER(p), 448 ("enterpgrp: session leader attempted setpgrp")); 449 450 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 451 452 if (sess != NULL) { 453 /* 454 * new session 455 */ 456 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 457 PROC_LOCK(p); 458 p->p_flag &= ~P_CONTROLT; 459 PROC_UNLOCK(p); 460 PGRP_LOCK(pgrp); 461 sess->s_leader = p; 462 sess->s_sid = p->p_pid; 463 refcount_init(&sess->s_count, 1); 464 sess->s_ttyvp = NULL; 465 sess->s_ttydp = NULL; 466 sess->s_ttyp = NULL; 467 bcopy(p->p_session->s_login, sess->s_login, 468 sizeof(sess->s_login)); 469 pgrp->pg_session = sess; 470 KASSERT(p == curproc, 471 ("enterpgrp: mksession and p != curproc")); 472 } else { 473 pgrp->pg_session = p->p_session; 474 sess_hold(pgrp->pg_session); 475 PGRP_LOCK(pgrp); 476 } 477 pgrp->pg_id = pgid; 478 LIST_INIT(&pgrp->pg_members); 479 480 /* 481 * As we have an exclusive lock of proctree_lock, 482 * this should not deadlock. 483 */ 484 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 485 pgrp->pg_jobc = 0; 486 SLIST_INIT(&pgrp->pg_sigiolst); 487 PGRP_UNLOCK(pgrp); 488 489 doenterpgrp(p, pgrp); 490 491 return (0); 492 } 493 494 /* 495 * Move p to an existing process group 496 */ 497 int 498 enterthispgrp(struct proc *p, struct pgrp *pgrp) 499 { 500 501 sx_assert(&proctree_lock, SX_XLOCKED); 502 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 503 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 504 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 505 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 506 KASSERT(pgrp->pg_session == p->p_session, 507 ("%s: pgrp's session %p, p->p_session %p.\n", 508 __func__, 509 pgrp->pg_session, 510 p->p_session)); 511 KASSERT(pgrp != p->p_pgrp, 512 ("%s: p belongs to pgrp.", __func__)); 513 514 doenterpgrp(p, pgrp); 515 516 return (0); 517 } 518 519 /* 520 * Move p to a process group 521 */ 522 static void 523 doenterpgrp(struct proc *p, struct pgrp *pgrp) 524 { 525 struct pgrp *savepgrp; 526 527 sx_assert(&proctree_lock, SX_XLOCKED); 528 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 529 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 530 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 531 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 532 533 savepgrp = p->p_pgrp; 534 535 /* 536 * Adjust eligibility of affected pgrps to participate in job control. 537 * Increment eligibility counts before decrementing, otherwise we 538 * could reach 0 spuriously during the first call. 539 */ 540 fixjobc(p, pgrp, 1); 541 fixjobc(p, p->p_pgrp, 0); 542 543 PGRP_LOCK(pgrp); 544 PGRP_LOCK(savepgrp); 545 PROC_LOCK(p); 546 LIST_REMOVE(p, p_pglist); 547 p->p_pgrp = pgrp; 548 PROC_UNLOCK(p); 549 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 550 PGRP_UNLOCK(savepgrp); 551 PGRP_UNLOCK(pgrp); 552 if (LIST_EMPTY(&savepgrp->pg_members)) 553 pgdelete(savepgrp); 554 } 555 556 /* 557 * remove process from process group 558 */ 559 int 560 leavepgrp(struct proc *p) 561 { 562 struct pgrp *savepgrp; 563 564 sx_assert(&proctree_lock, SX_XLOCKED); 565 savepgrp = p->p_pgrp; 566 PGRP_LOCK(savepgrp); 567 PROC_LOCK(p); 568 LIST_REMOVE(p, p_pglist); 569 p->p_pgrp = NULL; 570 PROC_UNLOCK(p); 571 PGRP_UNLOCK(savepgrp); 572 if (LIST_EMPTY(&savepgrp->pg_members)) 573 pgdelete(savepgrp); 574 return (0); 575 } 576 577 /* 578 * delete a process group 579 */ 580 static void 581 pgdelete(struct pgrp *pgrp) 582 { 583 struct session *savesess; 584 struct tty *tp; 585 586 sx_assert(&proctree_lock, SX_XLOCKED); 587 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 588 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 589 590 /* 591 * Reset any sigio structures pointing to us as a result of 592 * F_SETOWN with our pgid. 593 */ 594 funsetownlst(&pgrp->pg_sigiolst); 595 596 PGRP_LOCK(pgrp); 597 tp = pgrp->pg_session->s_ttyp; 598 LIST_REMOVE(pgrp, pg_hash); 599 savesess = pgrp->pg_session; 600 PGRP_UNLOCK(pgrp); 601 602 /* Remove the reference to the pgrp before deallocating it. */ 603 if (tp != NULL) { 604 tty_lock(tp); 605 tty_rel_pgrp(tp, pgrp); 606 } 607 608 mtx_destroy(&pgrp->pg_mtx); 609 free(pgrp, M_PGRP); 610 sess_release(savesess); 611 } 612 613 static void 614 pgadjustjobc(struct pgrp *pgrp, int entering) 615 { 616 617 PGRP_LOCK(pgrp); 618 if (entering) 619 pgrp->pg_jobc++; 620 else { 621 --pgrp->pg_jobc; 622 if (pgrp->pg_jobc == 0) 623 orphanpg(pgrp); 624 } 625 PGRP_UNLOCK(pgrp); 626 } 627 628 /* 629 * Adjust pgrp jobc counters when specified process changes process group. 630 * We count the number of processes in each process group that "qualify" 631 * the group for terminal job control (those with a parent in a different 632 * process group of the same session). If that count reaches zero, the 633 * process group becomes orphaned. Check both the specified process' 634 * process group and that of its children. 635 * entering == 0 => p is leaving specified group. 636 * entering == 1 => p is entering specified group. 637 */ 638 void 639 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 640 { 641 struct pgrp *hispgrp; 642 struct session *mysession; 643 struct proc *q; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(q, &p->p_children, p_sibling) { 665 hispgrp = q->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 if (q->p_state == PRS_ZOMBIE) 670 continue; 671 pgadjustjobc(hispgrp, entering); 672 } 673 } 674 675 void 676 killjobc(void) 677 { 678 struct session *sp; 679 struct tty *tp; 680 struct proc *p; 681 struct vnode *ttyvp; 682 683 p = curproc; 684 MPASS(p->p_flag & P_WEXIT); 685 /* 686 * Do a quick check to see if there is anything to do with the 687 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 688 */ 689 PROC_LOCK(p); 690 if (!SESS_LEADER(p) && 691 (p->p_pgrp == p->p_pptr->p_pgrp) && 692 LIST_EMPTY(&p->p_children)) { 693 PROC_UNLOCK(p); 694 return; 695 } 696 PROC_UNLOCK(p); 697 698 sx_xlock(&proctree_lock); 699 if (SESS_LEADER(p)) { 700 sp = p->p_session; 701 702 /* 703 * s_ttyp is not zero'd; we use this to indicate that 704 * the session once had a controlling terminal. (for 705 * logging and informational purposes) 706 */ 707 SESS_LOCK(sp); 708 ttyvp = sp->s_ttyvp; 709 tp = sp->s_ttyp; 710 sp->s_ttyvp = NULL; 711 sp->s_ttydp = NULL; 712 sp->s_leader = NULL; 713 SESS_UNLOCK(sp); 714 715 /* 716 * Signal foreground pgrp and revoke access to 717 * controlling terminal if it has not been revoked 718 * already. 719 * 720 * Because the TTY may have been revoked in the mean 721 * time and could already have a new session associated 722 * with it, make sure we don't send a SIGHUP to a 723 * foreground process group that does not belong to this 724 * session. 725 */ 726 727 if (tp != NULL) { 728 tty_lock(tp); 729 if (tp->t_session == sp) 730 tty_signal_pgrp(tp, SIGHUP); 731 tty_unlock(tp); 732 } 733 734 if (ttyvp != NULL) { 735 sx_xunlock(&proctree_lock); 736 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 737 VOP_REVOKE(ttyvp, REVOKEALL); 738 VOP_UNLOCK(ttyvp, 0); 739 } 740 vrele(ttyvp); 741 sx_xlock(&proctree_lock); 742 } 743 } 744 fixjobc(p, p->p_pgrp, 0); 745 sx_xunlock(&proctree_lock); 746 } 747 748 /* 749 * A process group has become orphaned; 750 * if there are any stopped processes in the group, 751 * hang-up all process in that group. 752 */ 753 static void 754 orphanpg(struct pgrp *pg) 755 { 756 struct proc *p; 757 758 PGRP_LOCK_ASSERT(pg, MA_OWNED); 759 760 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 761 PROC_LOCK(p); 762 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 763 PROC_UNLOCK(p); 764 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 765 PROC_LOCK(p); 766 kern_psignal(p, SIGHUP); 767 kern_psignal(p, SIGCONT); 768 PROC_UNLOCK(p); 769 } 770 return; 771 } 772 PROC_UNLOCK(p); 773 } 774 } 775 776 void 777 sess_hold(struct session *s) 778 { 779 780 refcount_acquire(&s->s_count); 781 } 782 783 void 784 sess_release(struct session *s) 785 { 786 787 if (refcount_release(&s->s_count)) { 788 if (s->s_ttyp != NULL) { 789 tty_lock(s->s_ttyp); 790 tty_rel_sess(s->s_ttyp, s); 791 } 792 mtx_destroy(&s->s_mtx); 793 free(s, M_SESSION); 794 } 795 } 796 797 #ifdef DDB 798 799 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 800 { 801 struct pgrp *pgrp; 802 struct proc *p; 803 int i; 804 805 for (i = 0; i <= pgrphash; i++) { 806 if (!LIST_EMPTY(&pgrphashtbl[i])) { 807 printf("\tindx %d\n", i); 808 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 809 printf( 810 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 811 (void *)pgrp, (long)pgrp->pg_id, 812 (void *)pgrp->pg_session, 813 pgrp->pg_session->s_count, 814 (void *)LIST_FIRST(&pgrp->pg_members)); 815 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 816 printf("\t\tpid %ld addr %p pgrp %p\n", 817 (long)p->p_pid, (void *)p, 818 (void *)p->p_pgrp); 819 } 820 } 821 } 822 } 823 } 824 #endif /* DDB */ 825 826 /* 827 * Calculate the kinfo_proc members which contain process-wide 828 * informations. 829 * Must be called with the target process locked. 830 */ 831 static void 832 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 833 { 834 struct thread *td; 835 836 PROC_LOCK_ASSERT(p, MA_OWNED); 837 838 kp->ki_estcpu = 0; 839 kp->ki_pctcpu = 0; 840 FOREACH_THREAD_IN_PROC(p, td) { 841 thread_lock(td); 842 kp->ki_pctcpu += sched_pctcpu(td); 843 kp->ki_estcpu += sched_estcpu(td); 844 thread_unlock(td); 845 } 846 } 847 848 /* 849 * Clear kinfo_proc and fill in any information that is common 850 * to all threads in the process. 851 * Must be called with the target process locked. 852 */ 853 static void 854 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 855 { 856 struct thread *td0; 857 struct tty *tp; 858 struct session *sp; 859 struct ucred *cred; 860 struct sigacts *ps; 861 struct timeval boottime; 862 863 /* For proc_realparent. */ 864 sx_assert(&proctree_lock, SX_LOCKED); 865 PROC_LOCK_ASSERT(p, MA_OWNED); 866 bzero(kp, sizeof(*kp)); 867 868 kp->ki_structsize = sizeof(*kp); 869 kp->ki_paddr = p; 870 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 871 kp->ki_args = p->p_args; 872 kp->ki_textvp = p->p_textvp; 873 #ifdef KTRACE 874 kp->ki_tracep = p->p_tracevp; 875 kp->ki_traceflag = p->p_traceflag; 876 #endif 877 kp->ki_fd = p->p_fd; 878 kp->ki_vmspace = p->p_vmspace; 879 kp->ki_flag = p->p_flag; 880 kp->ki_flag2 = p->p_flag2; 881 cred = p->p_ucred; 882 if (cred) { 883 kp->ki_uid = cred->cr_uid; 884 kp->ki_ruid = cred->cr_ruid; 885 kp->ki_svuid = cred->cr_svuid; 886 kp->ki_cr_flags = 0; 887 if (cred->cr_flags & CRED_FLAG_CAPMODE) 888 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 889 /* XXX bde doesn't like KI_NGROUPS */ 890 if (cred->cr_ngroups > KI_NGROUPS) { 891 kp->ki_ngroups = KI_NGROUPS; 892 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 893 } else 894 kp->ki_ngroups = cred->cr_ngroups; 895 bcopy(cred->cr_groups, kp->ki_groups, 896 kp->ki_ngroups * sizeof(gid_t)); 897 kp->ki_rgid = cred->cr_rgid; 898 kp->ki_svgid = cred->cr_svgid; 899 /* If jailed(cred), emulate the old P_JAILED flag. */ 900 if (jailed(cred)) { 901 kp->ki_flag |= P_JAILED; 902 /* If inside the jail, use 0 as a jail ID. */ 903 if (cred->cr_prison != curthread->td_ucred->cr_prison) 904 kp->ki_jid = cred->cr_prison->pr_id; 905 } 906 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 907 sizeof(kp->ki_loginclass)); 908 } 909 ps = p->p_sigacts; 910 if (ps) { 911 mtx_lock(&ps->ps_mtx); 912 kp->ki_sigignore = ps->ps_sigignore; 913 kp->ki_sigcatch = ps->ps_sigcatch; 914 mtx_unlock(&ps->ps_mtx); 915 } 916 if (p->p_state != PRS_NEW && 917 p->p_state != PRS_ZOMBIE && 918 p->p_vmspace != NULL) { 919 struct vmspace *vm = p->p_vmspace; 920 921 kp->ki_size = vm->vm_map.size; 922 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 923 FOREACH_THREAD_IN_PROC(p, td0) { 924 if (!TD_IS_SWAPPED(td0)) 925 kp->ki_rssize += td0->td_kstack_pages; 926 } 927 kp->ki_swrss = vm->vm_swrss; 928 kp->ki_tsize = vm->vm_tsize; 929 kp->ki_dsize = vm->vm_dsize; 930 kp->ki_ssize = vm->vm_ssize; 931 } else if (p->p_state == PRS_ZOMBIE) 932 kp->ki_stat = SZOMB; 933 if (kp->ki_flag & P_INMEM) 934 kp->ki_sflag = PS_INMEM; 935 else 936 kp->ki_sflag = 0; 937 /* Calculate legacy swtime as seconds since 'swtick'. */ 938 kp->ki_swtime = (ticks - p->p_swtick) / hz; 939 kp->ki_pid = p->p_pid; 940 kp->ki_nice = p->p_nice; 941 kp->ki_fibnum = p->p_fibnum; 942 kp->ki_start = p->p_stats->p_start; 943 getboottime(&boottime); 944 timevaladd(&kp->ki_start, &boottime); 945 PROC_STATLOCK(p); 946 rufetch(p, &kp->ki_rusage); 947 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 948 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 949 PROC_STATUNLOCK(p); 950 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 951 /* Some callers want child times in a single value. */ 952 kp->ki_childtime = kp->ki_childstime; 953 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 954 955 FOREACH_THREAD_IN_PROC(p, td0) 956 kp->ki_cow += td0->td_cow; 957 958 tp = NULL; 959 if (p->p_pgrp) { 960 kp->ki_pgid = p->p_pgrp->pg_id; 961 kp->ki_jobc = p->p_pgrp->pg_jobc; 962 sp = p->p_pgrp->pg_session; 963 964 if (sp != NULL) { 965 kp->ki_sid = sp->s_sid; 966 SESS_LOCK(sp); 967 strlcpy(kp->ki_login, sp->s_login, 968 sizeof(kp->ki_login)); 969 if (sp->s_ttyvp) 970 kp->ki_kiflag |= KI_CTTY; 971 if (SESS_LEADER(p)) 972 kp->ki_kiflag |= KI_SLEADER; 973 /* XXX proctree_lock */ 974 tp = sp->s_ttyp; 975 SESS_UNLOCK(sp); 976 } 977 } 978 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 979 kp->ki_tdev = tty_udev(tp); 980 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 981 if (tp->t_session) 982 kp->ki_tsid = tp->t_session->s_sid; 983 } else 984 kp->ki_tdev = NODEV; 985 if (p->p_comm[0] != '\0') 986 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 987 if (p->p_sysent && p->p_sysent->sv_name != NULL && 988 p->p_sysent->sv_name[0] != '\0') 989 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 990 kp->ki_siglist = p->p_siglist; 991 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 992 kp->ki_acflag = p->p_acflag; 993 kp->ki_lock = p->p_lock; 994 if (p->p_pptr) { 995 kp->ki_ppid = proc_realparent(p)->p_pid; 996 if (p->p_flag & P_TRACED) 997 kp->ki_tracer = p->p_pptr->p_pid; 998 } 999 } 1000 1001 /* 1002 * Fill in information that is thread specific. Must be called with 1003 * target process locked. If 'preferthread' is set, overwrite certain 1004 * process-related fields that are maintained for both threads and 1005 * processes. 1006 */ 1007 static void 1008 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1009 { 1010 struct proc *p; 1011 1012 p = td->td_proc; 1013 kp->ki_tdaddr = td; 1014 PROC_LOCK_ASSERT(p, MA_OWNED); 1015 1016 if (preferthread) 1017 PROC_STATLOCK(p); 1018 thread_lock(td); 1019 if (td->td_wmesg != NULL) 1020 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1021 else 1022 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1023 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 1024 if (TD_ON_LOCK(td)) { 1025 kp->ki_kiflag |= KI_LOCKBLOCK; 1026 strlcpy(kp->ki_lockname, td->td_lockname, 1027 sizeof(kp->ki_lockname)); 1028 } else { 1029 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1030 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1031 } 1032 1033 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1034 if (TD_ON_RUNQ(td) || 1035 TD_CAN_RUN(td) || 1036 TD_IS_RUNNING(td)) { 1037 kp->ki_stat = SRUN; 1038 } else if (P_SHOULDSTOP(p)) { 1039 kp->ki_stat = SSTOP; 1040 } else if (TD_IS_SLEEPING(td)) { 1041 kp->ki_stat = SSLEEP; 1042 } else if (TD_ON_LOCK(td)) { 1043 kp->ki_stat = SLOCK; 1044 } else { 1045 kp->ki_stat = SWAIT; 1046 } 1047 } else if (p->p_state == PRS_ZOMBIE) { 1048 kp->ki_stat = SZOMB; 1049 } else { 1050 kp->ki_stat = SIDL; 1051 } 1052 1053 /* Things in the thread */ 1054 kp->ki_wchan = td->td_wchan; 1055 kp->ki_pri.pri_level = td->td_priority; 1056 kp->ki_pri.pri_native = td->td_base_pri; 1057 1058 /* 1059 * Note: legacy fields; clamp at the old NOCPU value and/or 1060 * the maximum u_char CPU value. 1061 */ 1062 if (td->td_lastcpu == NOCPU) 1063 kp->ki_lastcpu_old = NOCPU_OLD; 1064 else if (td->td_lastcpu > MAXCPU_OLD) 1065 kp->ki_lastcpu_old = MAXCPU_OLD; 1066 else 1067 kp->ki_lastcpu_old = td->td_lastcpu; 1068 1069 if (td->td_oncpu == NOCPU) 1070 kp->ki_oncpu_old = NOCPU_OLD; 1071 else if (td->td_oncpu > MAXCPU_OLD) 1072 kp->ki_oncpu_old = MAXCPU_OLD; 1073 else 1074 kp->ki_oncpu_old = td->td_oncpu; 1075 1076 kp->ki_lastcpu = td->td_lastcpu; 1077 kp->ki_oncpu = td->td_oncpu; 1078 kp->ki_tdflags = td->td_flags; 1079 kp->ki_tid = td->td_tid; 1080 kp->ki_numthreads = p->p_numthreads; 1081 kp->ki_pcb = td->td_pcb; 1082 kp->ki_kstack = (void *)td->td_kstack; 1083 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1084 kp->ki_pri.pri_class = td->td_pri_class; 1085 kp->ki_pri.pri_user = td->td_user_pri; 1086 1087 if (preferthread) { 1088 rufetchtd(td, &kp->ki_rusage); 1089 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1090 kp->ki_pctcpu = sched_pctcpu(td); 1091 kp->ki_estcpu = sched_estcpu(td); 1092 kp->ki_cow = td->td_cow; 1093 } 1094 1095 /* We can't get this anymore but ps etc never used it anyway. */ 1096 kp->ki_rqindex = 0; 1097 1098 if (preferthread) 1099 kp->ki_siglist = td->td_siglist; 1100 kp->ki_sigmask = td->td_sigmask; 1101 thread_unlock(td); 1102 if (preferthread) 1103 PROC_STATUNLOCK(p); 1104 } 1105 1106 /* 1107 * Fill in a kinfo_proc structure for the specified process. 1108 * Must be called with the target process locked. 1109 */ 1110 void 1111 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1112 { 1113 1114 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1115 1116 fill_kinfo_proc_only(p, kp); 1117 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1118 fill_kinfo_aggregate(p, kp); 1119 } 1120 1121 struct pstats * 1122 pstats_alloc(void) 1123 { 1124 1125 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1126 } 1127 1128 /* 1129 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1130 */ 1131 void 1132 pstats_fork(struct pstats *src, struct pstats *dst) 1133 { 1134 1135 bzero(&dst->pstat_startzero, 1136 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1137 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1138 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1139 } 1140 1141 void 1142 pstats_free(struct pstats *ps) 1143 { 1144 1145 free(ps, M_SUBPROC); 1146 } 1147 1148 static struct proc * 1149 zpfind_locked(pid_t pid) 1150 { 1151 struct proc *p; 1152 1153 sx_assert(&allproc_lock, SX_LOCKED); 1154 LIST_FOREACH(p, &zombproc, p_list) { 1155 if (p->p_pid == pid) { 1156 PROC_LOCK(p); 1157 break; 1158 } 1159 } 1160 return (p); 1161 } 1162 1163 /* 1164 * Locate a zombie process by number 1165 */ 1166 struct proc * 1167 zpfind(pid_t pid) 1168 { 1169 struct proc *p; 1170 1171 sx_slock(&allproc_lock); 1172 p = zpfind_locked(pid); 1173 sx_sunlock(&allproc_lock); 1174 return (p); 1175 } 1176 1177 #ifdef COMPAT_FREEBSD32 1178 1179 /* 1180 * This function is typically used to copy out the kernel address, so 1181 * it can be replaced by assignment of zero. 1182 */ 1183 static inline uint32_t 1184 ptr32_trim(void *ptr) 1185 { 1186 uintptr_t uptr; 1187 1188 uptr = (uintptr_t)ptr; 1189 return ((uptr > UINT_MAX) ? 0 : uptr); 1190 } 1191 1192 #define PTRTRIM_CP(src,dst,fld) \ 1193 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1194 1195 static void 1196 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1197 { 1198 int i; 1199 1200 bzero(ki32, sizeof(struct kinfo_proc32)); 1201 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1202 CP(*ki, *ki32, ki_layout); 1203 PTRTRIM_CP(*ki, *ki32, ki_args); 1204 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1205 PTRTRIM_CP(*ki, *ki32, ki_addr); 1206 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1207 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1208 PTRTRIM_CP(*ki, *ki32, ki_fd); 1209 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1210 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1211 CP(*ki, *ki32, ki_pid); 1212 CP(*ki, *ki32, ki_ppid); 1213 CP(*ki, *ki32, ki_pgid); 1214 CP(*ki, *ki32, ki_tpgid); 1215 CP(*ki, *ki32, ki_sid); 1216 CP(*ki, *ki32, ki_tsid); 1217 CP(*ki, *ki32, ki_jobc); 1218 CP(*ki, *ki32, ki_tdev); 1219 CP(*ki, *ki32, ki_siglist); 1220 CP(*ki, *ki32, ki_sigmask); 1221 CP(*ki, *ki32, ki_sigignore); 1222 CP(*ki, *ki32, ki_sigcatch); 1223 CP(*ki, *ki32, ki_uid); 1224 CP(*ki, *ki32, ki_ruid); 1225 CP(*ki, *ki32, ki_svuid); 1226 CP(*ki, *ki32, ki_rgid); 1227 CP(*ki, *ki32, ki_svgid); 1228 CP(*ki, *ki32, ki_ngroups); 1229 for (i = 0; i < KI_NGROUPS; i++) 1230 CP(*ki, *ki32, ki_groups[i]); 1231 CP(*ki, *ki32, ki_size); 1232 CP(*ki, *ki32, ki_rssize); 1233 CP(*ki, *ki32, ki_swrss); 1234 CP(*ki, *ki32, ki_tsize); 1235 CP(*ki, *ki32, ki_dsize); 1236 CP(*ki, *ki32, ki_ssize); 1237 CP(*ki, *ki32, ki_xstat); 1238 CP(*ki, *ki32, ki_acflag); 1239 CP(*ki, *ki32, ki_pctcpu); 1240 CP(*ki, *ki32, ki_estcpu); 1241 CP(*ki, *ki32, ki_slptime); 1242 CP(*ki, *ki32, ki_swtime); 1243 CP(*ki, *ki32, ki_cow); 1244 CP(*ki, *ki32, ki_runtime); 1245 TV_CP(*ki, *ki32, ki_start); 1246 TV_CP(*ki, *ki32, ki_childtime); 1247 CP(*ki, *ki32, ki_flag); 1248 CP(*ki, *ki32, ki_kiflag); 1249 CP(*ki, *ki32, ki_traceflag); 1250 CP(*ki, *ki32, ki_stat); 1251 CP(*ki, *ki32, ki_nice); 1252 CP(*ki, *ki32, ki_lock); 1253 CP(*ki, *ki32, ki_rqindex); 1254 CP(*ki, *ki32, ki_oncpu); 1255 CP(*ki, *ki32, ki_lastcpu); 1256 1257 /* XXX TODO: wrap cpu value as appropriate */ 1258 CP(*ki, *ki32, ki_oncpu_old); 1259 CP(*ki, *ki32, ki_lastcpu_old); 1260 1261 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1262 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1263 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1264 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1265 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1266 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1267 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1268 CP(*ki, *ki32, ki_tracer); 1269 CP(*ki, *ki32, ki_flag2); 1270 CP(*ki, *ki32, ki_fibnum); 1271 CP(*ki, *ki32, ki_cr_flags); 1272 CP(*ki, *ki32, ki_jid); 1273 CP(*ki, *ki32, ki_numthreads); 1274 CP(*ki, *ki32, ki_tid); 1275 CP(*ki, *ki32, ki_pri); 1276 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1277 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1278 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1279 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1280 PTRTRIM_CP(*ki, *ki32, ki_udata); 1281 CP(*ki, *ki32, ki_sflag); 1282 CP(*ki, *ki32, ki_tdflags); 1283 } 1284 #endif 1285 1286 int 1287 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1288 { 1289 struct thread *td; 1290 struct kinfo_proc ki; 1291 #ifdef COMPAT_FREEBSD32 1292 struct kinfo_proc32 ki32; 1293 #endif 1294 int error; 1295 1296 PROC_LOCK_ASSERT(p, MA_OWNED); 1297 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1298 1299 error = 0; 1300 fill_kinfo_proc(p, &ki); 1301 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1302 #ifdef COMPAT_FREEBSD32 1303 if ((flags & KERN_PROC_MASK32) != 0) { 1304 freebsd32_kinfo_proc_out(&ki, &ki32); 1305 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1306 error = ENOMEM; 1307 } else 1308 #endif 1309 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1310 error = ENOMEM; 1311 } else { 1312 FOREACH_THREAD_IN_PROC(p, td) { 1313 fill_kinfo_thread(td, &ki, 1); 1314 #ifdef COMPAT_FREEBSD32 1315 if ((flags & KERN_PROC_MASK32) != 0) { 1316 freebsd32_kinfo_proc_out(&ki, &ki32); 1317 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1318 error = ENOMEM; 1319 } else 1320 #endif 1321 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1322 error = ENOMEM; 1323 if (error != 0) 1324 break; 1325 } 1326 } 1327 PROC_UNLOCK(p); 1328 return (error); 1329 } 1330 1331 static int 1332 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1333 int doingzomb) 1334 { 1335 struct sbuf sb; 1336 struct kinfo_proc ki; 1337 struct proc *np; 1338 int error, error2; 1339 pid_t pid; 1340 1341 pid = p->p_pid; 1342 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1343 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1344 error = kern_proc_out(p, &sb, flags); 1345 error2 = sbuf_finish(&sb); 1346 sbuf_delete(&sb); 1347 if (error != 0) 1348 return (error); 1349 else if (error2 != 0) 1350 return (error2); 1351 if (doingzomb) 1352 np = zpfind(pid); 1353 else { 1354 if (pid == 0) 1355 return (0); 1356 np = pfind(pid); 1357 } 1358 if (np == NULL) 1359 return (ESRCH); 1360 if (np != p) { 1361 PROC_UNLOCK(np); 1362 return (ESRCH); 1363 } 1364 PROC_UNLOCK(np); 1365 return (0); 1366 } 1367 1368 static int 1369 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1370 { 1371 int *name = (int *)arg1; 1372 u_int namelen = arg2; 1373 struct proc *p; 1374 int flags, doingzomb, oid_number; 1375 int error = 0; 1376 1377 oid_number = oidp->oid_number; 1378 if (oid_number != KERN_PROC_ALL && 1379 (oid_number & KERN_PROC_INC_THREAD) == 0) 1380 flags = KERN_PROC_NOTHREADS; 1381 else { 1382 flags = 0; 1383 oid_number &= ~KERN_PROC_INC_THREAD; 1384 } 1385 #ifdef COMPAT_FREEBSD32 1386 if (req->flags & SCTL_MASK32) 1387 flags |= KERN_PROC_MASK32; 1388 #endif 1389 if (oid_number == KERN_PROC_PID) { 1390 if (namelen != 1) 1391 return (EINVAL); 1392 error = sysctl_wire_old_buffer(req, 0); 1393 if (error) 1394 return (error); 1395 sx_slock(&proctree_lock); 1396 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1397 if (error == 0) 1398 error = sysctl_out_proc(p, req, flags, 0); 1399 sx_sunlock(&proctree_lock); 1400 return (error); 1401 } 1402 1403 switch (oid_number) { 1404 case KERN_PROC_ALL: 1405 if (namelen != 0) 1406 return (EINVAL); 1407 break; 1408 case KERN_PROC_PROC: 1409 if (namelen != 0 && namelen != 1) 1410 return (EINVAL); 1411 break; 1412 default: 1413 if (namelen != 1) 1414 return (EINVAL); 1415 break; 1416 } 1417 1418 if (!req->oldptr) { 1419 /* overestimate by 5 procs */ 1420 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1421 if (error) 1422 return (error); 1423 } 1424 error = sysctl_wire_old_buffer(req, 0); 1425 if (error != 0) 1426 return (error); 1427 sx_slock(&proctree_lock); 1428 sx_slock(&allproc_lock); 1429 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1430 if (!doingzomb) 1431 p = LIST_FIRST(&allproc); 1432 else 1433 p = LIST_FIRST(&zombproc); 1434 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1435 /* 1436 * Skip embryonic processes. 1437 */ 1438 PROC_LOCK(p); 1439 if (p->p_state == PRS_NEW) { 1440 PROC_UNLOCK(p); 1441 continue; 1442 } 1443 KASSERT(p->p_ucred != NULL, 1444 ("process credential is NULL for non-NEW proc")); 1445 /* 1446 * Show a user only appropriate processes. 1447 */ 1448 if (p_cansee(curthread, p)) { 1449 PROC_UNLOCK(p); 1450 continue; 1451 } 1452 /* 1453 * TODO - make more efficient (see notes below). 1454 * do by session. 1455 */ 1456 switch (oid_number) { 1457 1458 case KERN_PROC_GID: 1459 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1460 PROC_UNLOCK(p); 1461 continue; 1462 } 1463 break; 1464 1465 case KERN_PROC_PGRP: 1466 /* could do this by traversing pgrp */ 1467 if (p->p_pgrp == NULL || 1468 p->p_pgrp->pg_id != (pid_t)name[0]) { 1469 PROC_UNLOCK(p); 1470 continue; 1471 } 1472 break; 1473 1474 case KERN_PROC_RGID: 1475 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1476 PROC_UNLOCK(p); 1477 continue; 1478 } 1479 break; 1480 1481 case KERN_PROC_SESSION: 1482 if (p->p_session == NULL || 1483 p->p_session->s_sid != (pid_t)name[0]) { 1484 PROC_UNLOCK(p); 1485 continue; 1486 } 1487 break; 1488 1489 case KERN_PROC_TTY: 1490 if ((p->p_flag & P_CONTROLT) == 0 || 1491 p->p_session == NULL) { 1492 PROC_UNLOCK(p); 1493 continue; 1494 } 1495 /* XXX proctree_lock */ 1496 SESS_LOCK(p->p_session); 1497 if (p->p_session->s_ttyp == NULL || 1498 tty_udev(p->p_session->s_ttyp) != 1499 (dev_t)name[0]) { 1500 SESS_UNLOCK(p->p_session); 1501 PROC_UNLOCK(p); 1502 continue; 1503 } 1504 SESS_UNLOCK(p->p_session); 1505 break; 1506 1507 case KERN_PROC_UID: 1508 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1509 PROC_UNLOCK(p); 1510 continue; 1511 } 1512 break; 1513 1514 case KERN_PROC_RUID: 1515 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1516 PROC_UNLOCK(p); 1517 continue; 1518 } 1519 break; 1520 1521 case KERN_PROC_PROC: 1522 break; 1523 1524 default: 1525 break; 1526 1527 } 1528 1529 error = sysctl_out_proc(p, req, flags, doingzomb); 1530 if (error) { 1531 sx_sunlock(&allproc_lock); 1532 sx_sunlock(&proctree_lock); 1533 return (error); 1534 } 1535 } 1536 } 1537 sx_sunlock(&allproc_lock); 1538 sx_sunlock(&proctree_lock); 1539 return (0); 1540 } 1541 1542 struct pargs * 1543 pargs_alloc(int len) 1544 { 1545 struct pargs *pa; 1546 1547 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1548 M_WAITOK); 1549 refcount_init(&pa->ar_ref, 1); 1550 pa->ar_length = len; 1551 return (pa); 1552 } 1553 1554 static void 1555 pargs_free(struct pargs *pa) 1556 { 1557 1558 free(pa, M_PARGS); 1559 } 1560 1561 void 1562 pargs_hold(struct pargs *pa) 1563 { 1564 1565 if (pa == NULL) 1566 return; 1567 refcount_acquire(&pa->ar_ref); 1568 } 1569 1570 void 1571 pargs_drop(struct pargs *pa) 1572 { 1573 1574 if (pa == NULL) 1575 return; 1576 if (refcount_release(&pa->ar_ref)) 1577 pargs_free(pa); 1578 } 1579 1580 static int 1581 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1582 size_t len) 1583 { 1584 ssize_t n; 1585 1586 /* 1587 * This may return a short read if the string is shorter than the chunk 1588 * and is aligned at the end of the page, and the following page is not 1589 * mapped. 1590 */ 1591 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1592 if (n <= 0) 1593 return (ENOMEM); 1594 return (0); 1595 } 1596 1597 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1598 1599 enum proc_vector_type { 1600 PROC_ARG, 1601 PROC_ENV, 1602 PROC_AUX, 1603 }; 1604 1605 #ifdef COMPAT_FREEBSD32 1606 static int 1607 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1608 size_t *vsizep, enum proc_vector_type type) 1609 { 1610 struct freebsd32_ps_strings pss; 1611 Elf32_Auxinfo aux; 1612 vm_offset_t vptr, ptr; 1613 uint32_t *proc_vector32; 1614 char **proc_vector; 1615 size_t vsize, size; 1616 int i, error; 1617 1618 error = 0; 1619 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1620 sizeof(pss)) != sizeof(pss)) 1621 return (ENOMEM); 1622 switch (type) { 1623 case PROC_ARG: 1624 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1625 vsize = pss.ps_nargvstr; 1626 if (vsize > ARG_MAX) 1627 return (ENOEXEC); 1628 size = vsize * sizeof(int32_t); 1629 break; 1630 case PROC_ENV: 1631 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1632 vsize = pss.ps_nenvstr; 1633 if (vsize > ARG_MAX) 1634 return (ENOEXEC); 1635 size = vsize * sizeof(int32_t); 1636 break; 1637 case PROC_AUX: 1638 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1639 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1640 if (vptr % 4 != 0) 1641 return (ENOEXEC); 1642 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1643 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1644 sizeof(aux)) 1645 return (ENOMEM); 1646 if (aux.a_type == AT_NULL) 1647 break; 1648 ptr += sizeof(aux); 1649 } 1650 if (aux.a_type != AT_NULL) 1651 return (ENOEXEC); 1652 vsize = i + 1; 1653 size = vsize * sizeof(aux); 1654 break; 1655 default: 1656 KASSERT(0, ("Wrong proc vector type: %d", type)); 1657 return (EINVAL); 1658 } 1659 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1660 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1661 error = ENOMEM; 1662 goto done; 1663 } 1664 if (type == PROC_AUX) { 1665 *proc_vectorp = (char **)proc_vector32; 1666 *vsizep = vsize; 1667 return (0); 1668 } 1669 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1670 for (i = 0; i < (int)vsize; i++) 1671 proc_vector[i] = PTRIN(proc_vector32[i]); 1672 *proc_vectorp = proc_vector; 1673 *vsizep = vsize; 1674 done: 1675 free(proc_vector32, M_TEMP); 1676 return (error); 1677 } 1678 #endif 1679 1680 static int 1681 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1682 size_t *vsizep, enum proc_vector_type type) 1683 { 1684 struct ps_strings pss; 1685 Elf_Auxinfo aux; 1686 vm_offset_t vptr, ptr; 1687 char **proc_vector; 1688 size_t vsize, size; 1689 int i; 1690 1691 #ifdef COMPAT_FREEBSD32 1692 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1693 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1694 #endif 1695 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1696 sizeof(pss)) != sizeof(pss)) 1697 return (ENOMEM); 1698 switch (type) { 1699 case PROC_ARG: 1700 vptr = (vm_offset_t)pss.ps_argvstr; 1701 vsize = pss.ps_nargvstr; 1702 if (vsize > ARG_MAX) 1703 return (ENOEXEC); 1704 size = vsize * sizeof(char *); 1705 break; 1706 case PROC_ENV: 1707 vptr = (vm_offset_t)pss.ps_envstr; 1708 vsize = pss.ps_nenvstr; 1709 if (vsize > ARG_MAX) 1710 return (ENOEXEC); 1711 size = vsize * sizeof(char *); 1712 break; 1713 case PROC_AUX: 1714 /* 1715 * The aux array is just above env array on the stack. Check 1716 * that the address is naturally aligned. 1717 */ 1718 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1719 * sizeof(char *); 1720 #if __ELF_WORD_SIZE == 64 1721 if (vptr % sizeof(uint64_t) != 0) 1722 #else 1723 if (vptr % sizeof(uint32_t) != 0) 1724 #endif 1725 return (ENOEXEC); 1726 /* 1727 * We count the array size reading the aux vectors from the 1728 * stack until AT_NULL vector is returned. So (to keep the code 1729 * simple) we read the process stack twice: the first time here 1730 * to find the size and the second time when copying the vectors 1731 * to the allocated proc_vector. 1732 */ 1733 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1734 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1735 sizeof(aux)) 1736 return (ENOMEM); 1737 if (aux.a_type == AT_NULL) 1738 break; 1739 ptr += sizeof(aux); 1740 } 1741 /* 1742 * If the PROC_AUXV_MAX entries are iterated over, and we have 1743 * not reached AT_NULL, it is most likely we are reading wrong 1744 * data: either the process doesn't have auxv array or data has 1745 * been modified. Return the error in this case. 1746 */ 1747 if (aux.a_type != AT_NULL) 1748 return (ENOEXEC); 1749 vsize = i + 1; 1750 size = vsize * sizeof(aux); 1751 break; 1752 default: 1753 KASSERT(0, ("Wrong proc vector type: %d", type)); 1754 return (EINVAL); /* In case we are built without INVARIANTS. */ 1755 } 1756 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1757 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1758 free(proc_vector, M_TEMP); 1759 return (ENOMEM); 1760 } 1761 *proc_vectorp = proc_vector; 1762 *vsizep = vsize; 1763 1764 return (0); 1765 } 1766 1767 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1768 1769 static int 1770 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1771 enum proc_vector_type type) 1772 { 1773 size_t done, len, nchr, vsize; 1774 int error, i; 1775 char **proc_vector, *sptr; 1776 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1777 1778 PROC_ASSERT_HELD(p); 1779 1780 /* 1781 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1782 */ 1783 nchr = 2 * (PATH_MAX + ARG_MAX); 1784 1785 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1786 if (error != 0) 1787 return (error); 1788 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1789 /* 1790 * The program may have scribbled into its argv array, e.g. to 1791 * remove some arguments. If that has happened, break out 1792 * before trying to read from NULL. 1793 */ 1794 if (proc_vector[i] == NULL) 1795 break; 1796 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1797 error = proc_read_string(td, p, sptr, pss_string, 1798 sizeof(pss_string)); 1799 if (error != 0) 1800 goto done; 1801 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1802 if (done + len >= nchr) 1803 len = nchr - done - 1; 1804 sbuf_bcat(sb, pss_string, len); 1805 if (len != GET_PS_STRINGS_CHUNK_SZ) 1806 break; 1807 done += GET_PS_STRINGS_CHUNK_SZ; 1808 } 1809 sbuf_bcat(sb, "", 1); 1810 done += len + 1; 1811 } 1812 done: 1813 free(proc_vector, M_TEMP); 1814 return (error); 1815 } 1816 1817 int 1818 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1819 { 1820 1821 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1822 } 1823 1824 int 1825 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1826 { 1827 1828 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1829 } 1830 1831 int 1832 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1833 { 1834 size_t vsize, size; 1835 char **auxv; 1836 int error; 1837 1838 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1839 if (error == 0) { 1840 #ifdef COMPAT_FREEBSD32 1841 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1842 size = vsize * sizeof(Elf32_Auxinfo); 1843 else 1844 #endif 1845 size = vsize * sizeof(Elf_Auxinfo); 1846 if (sbuf_bcat(sb, auxv, size) != 0) 1847 error = ENOMEM; 1848 free(auxv, M_TEMP); 1849 } 1850 return (error); 1851 } 1852 1853 /* 1854 * This sysctl allows a process to retrieve the argument list or process 1855 * title for another process without groping around in the address space 1856 * of the other process. It also allow a process to set its own "process 1857 * title to a string of its own choice. 1858 */ 1859 static int 1860 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1861 { 1862 int *name = (int *)arg1; 1863 u_int namelen = arg2; 1864 struct pargs *newpa, *pa; 1865 struct proc *p; 1866 struct sbuf sb; 1867 int flags, error = 0, error2; 1868 1869 if (namelen != 1) 1870 return (EINVAL); 1871 1872 flags = PGET_CANSEE; 1873 if (req->newptr != NULL) 1874 flags |= PGET_ISCURRENT; 1875 error = pget((pid_t)name[0], flags, &p); 1876 if (error) 1877 return (error); 1878 1879 pa = p->p_args; 1880 if (pa != NULL) { 1881 pargs_hold(pa); 1882 PROC_UNLOCK(p); 1883 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1884 pargs_drop(pa); 1885 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1886 _PHOLD(p); 1887 PROC_UNLOCK(p); 1888 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1889 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1890 error = proc_getargv(curthread, p, &sb); 1891 error2 = sbuf_finish(&sb); 1892 PRELE(p); 1893 sbuf_delete(&sb); 1894 if (error == 0 && error2 != 0) 1895 error = error2; 1896 } else { 1897 PROC_UNLOCK(p); 1898 } 1899 if (error != 0 || req->newptr == NULL) 1900 return (error); 1901 1902 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1903 return (ENOMEM); 1904 newpa = pargs_alloc(req->newlen); 1905 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1906 if (error != 0) { 1907 pargs_free(newpa); 1908 return (error); 1909 } 1910 PROC_LOCK(p); 1911 pa = p->p_args; 1912 p->p_args = newpa; 1913 PROC_UNLOCK(p); 1914 pargs_drop(pa); 1915 return (0); 1916 } 1917 1918 /* 1919 * This sysctl allows a process to retrieve environment of another process. 1920 */ 1921 static int 1922 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1923 { 1924 int *name = (int *)arg1; 1925 u_int namelen = arg2; 1926 struct proc *p; 1927 struct sbuf sb; 1928 int error, error2; 1929 1930 if (namelen != 1) 1931 return (EINVAL); 1932 1933 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1934 if (error != 0) 1935 return (error); 1936 if ((p->p_flag & P_SYSTEM) != 0) { 1937 PRELE(p); 1938 return (0); 1939 } 1940 1941 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1942 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1943 error = proc_getenvv(curthread, p, &sb); 1944 error2 = sbuf_finish(&sb); 1945 PRELE(p); 1946 sbuf_delete(&sb); 1947 return (error != 0 ? error : error2); 1948 } 1949 1950 /* 1951 * This sysctl allows a process to retrieve ELF auxiliary vector of 1952 * another process. 1953 */ 1954 static int 1955 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1956 { 1957 int *name = (int *)arg1; 1958 u_int namelen = arg2; 1959 struct proc *p; 1960 struct sbuf sb; 1961 int error, error2; 1962 1963 if (namelen != 1) 1964 return (EINVAL); 1965 1966 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1967 if (error != 0) 1968 return (error); 1969 if ((p->p_flag & P_SYSTEM) != 0) { 1970 PRELE(p); 1971 return (0); 1972 } 1973 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1974 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1975 error = proc_getauxv(curthread, p, &sb); 1976 error2 = sbuf_finish(&sb); 1977 PRELE(p); 1978 sbuf_delete(&sb); 1979 return (error != 0 ? error : error2); 1980 } 1981 1982 /* 1983 * This sysctl allows a process to retrieve the path of the executable for 1984 * itself or another process. 1985 */ 1986 static int 1987 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1988 { 1989 pid_t *pidp = (pid_t *)arg1; 1990 unsigned int arglen = arg2; 1991 struct proc *p; 1992 struct vnode *vp; 1993 char *retbuf, *freebuf; 1994 int error; 1995 1996 if (arglen != 1) 1997 return (EINVAL); 1998 if (*pidp == -1) { /* -1 means this process */ 1999 p = req->td->td_proc; 2000 } else { 2001 error = pget(*pidp, PGET_CANSEE, &p); 2002 if (error != 0) 2003 return (error); 2004 } 2005 2006 vp = p->p_textvp; 2007 if (vp == NULL) { 2008 if (*pidp != -1) 2009 PROC_UNLOCK(p); 2010 return (0); 2011 } 2012 vref(vp); 2013 if (*pidp != -1) 2014 PROC_UNLOCK(p); 2015 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2016 vrele(vp); 2017 if (error) 2018 return (error); 2019 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2020 free(freebuf, M_TEMP); 2021 return (error); 2022 } 2023 2024 static int 2025 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2026 { 2027 struct proc *p; 2028 char *sv_name; 2029 int *name; 2030 int namelen; 2031 int error; 2032 2033 namelen = arg2; 2034 if (namelen != 1) 2035 return (EINVAL); 2036 2037 name = (int *)arg1; 2038 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2039 if (error != 0) 2040 return (error); 2041 sv_name = p->p_sysent->sv_name; 2042 PROC_UNLOCK(p); 2043 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2044 } 2045 2046 #ifdef KINFO_OVMENTRY_SIZE 2047 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2048 #endif 2049 2050 #ifdef COMPAT_FREEBSD7 2051 static int 2052 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2053 { 2054 vm_map_entry_t entry, tmp_entry; 2055 unsigned int last_timestamp; 2056 char *fullpath, *freepath; 2057 struct kinfo_ovmentry *kve; 2058 struct vattr va; 2059 struct ucred *cred; 2060 int error, *name; 2061 struct vnode *vp; 2062 struct proc *p; 2063 vm_map_t map; 2064 struct vmspace *vm; 2065 2066 name = (int *)arg1; 2067 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2068 if (error != 0) 2069 return (error); 2070 vm = vmspace_acquire_ref(p); 2071 if (vm == NULL) { 2072 PRELE(p); 2073 return (ESRCH); 2074 } 2075 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2076 2077 map = &vm->vm_map; 2078 vm_map_lock_read(map); 2079 for (entry = map->header.next; entry != &map->header; 2080 entry = entry->next) { 2081 vm_object_t obj, tobj, lobj; 2082 vm_offset_t addr; 2083 2084 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2085 continue; 2086 2087 bzero(kve, sizeof(*kve)); 2088 kve->kve_structsize = sizeof(*kve); 2089 2090 kve->kve_private_resident = 0; 2091 obj = entry->object.vm_object; 2092 if (obj != NULL) { 2093 VM_OBJECT_RLOCK(obj); 2094 if (obj->shadow_count == 1) 2095 kve->kve_private_resident = 2096 obj->resident_page_count; 2097 } 2098 kve->kve_resident = 0; 2099 addr = entry->start; 2100 while (addr < entry->end) { 2101 if (pmap_extract(map->pmap, addr)) 2102 kve->kve_resident++; 2103 addr += PAGE_SIZE; 2104 } 2105 2106 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2107 if (tobj != obj) 2108 VM_OBJECT_RLOCK(tobj); 2109 if (lobj != obj) 2110 VM_OBJECT_RUNLOCK(lobj); 2111 lobj = tobj; 2112 } 2113 2114 kve->kve_start = (void*)entry->start; 2115 kve->kve_end = (void*)entry->end; 2116 kve->kve_offset = (off_t)entry->offset; 2117 2118 if (entry->protection & VM_PROT_READ) 2119 kve->kve_protection |= KVME_PROT_READ; 2120 if (entry->protection & VM_PROT_WRITE) 2121 kve->kve_protection |= KVME_PROT_WRITE; 2122 if (entry->protection & VM_PROT_EXECUTE) 2123 kve->kve_protection |= KVME_PROT_EXEC; 2124 2125 if (entry->eflags & MAP_ENTRY_COW) 2126 kve->kve_flags |= KVME_FLAG_COW; 2127 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2128 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2129 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2130 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2131 2132 last_timestamp = map->timestamp; 2133 vm_map_unlock_read(map); 2134 2135 kve->kve_fileid = 0; 2136 kve->kve_fsid = 0; 2137 freepath = NULL; 2138 fullpath = ""; 2139 if (lobj) { 2140 vp = NULL; 2141 switch (lobj->type) { 2142 case OBJT_DEFAULT: 2143 kve->kve_type = KVME_TYPE_DEFAULT; 2144 break; 2145 case OBJT_VNODE: 2146 kve->kve_type = KVME_TYPE_VNODE; 2147 vp = lobj->handle; 2148 vref(vp); 2149 break; 2150 case OBJT_SWAP: 2151 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2152 kve->kve_type = KVME_TYPE_VNODE; 2153 if ((lobj->flags & OBJ_TMPFS) != 0) { 2154 vp = lobj->un_pager.swp.swp_tmpfs; 2155 vref(vp); 2156 } 2157 } else { 2158 kve->kve_type = KVME_TYPE_SWAP; 2159 } 2160 break; 2161 case OBJT_DEVICE: 2162 kve->kve_type = KVME_TYPE_DEVICE; 2163 break; 2164 case OBJT_PHYS: 2165 kve->kve_type = KVME_TYPE_PHYS; 2166 break; 2167 case OBJT_DEAD: 2168 kve->kve_type = KVME_TYPE_DEAD; 2169 break; 2170 case OBJT_SG: 2171 kve->kve_type = KVME_TYPE_SG; 2172 break; 2173 default: 2174 kve->kve_type = KVME_TYPE_UNKNOWN; 2175 break; 2176 } 2177 if (lobj != obj) 2178 VM_OBJECT_RUNLOCK(lobj); 2179 2180 kve->kve_ref_count = obj->ref_count; 2181 kve->kve_shadow_count = obj->shadow_count; 2182 VM_OBJECT_RUNLOCK(obj); 2183 if (vp != NULL) { 2184 vn_fullpath(curthread, vp, &fullpath, 2185 &freepath); 2186 cred = curthread->td_ucred; 2187 vn_lock(vp, LK_SHARED | LK_RETRY); 2188 if (VOP_GETATTR(vp, &va, cred) == 0) { 2189 kve->kve_fileid = va.va_fileid; 2190 kve->kve_fsid = va.va_fsid; 2191 } 2192 vput(vp); 2193 } 2194 } else { 2195 kve->kve_type = KVME_TYPE_NONE; 2196 kve->kve_ref_count = 0; 2197 kve->kve_shadow_count = 0; 2198 } 2199 2200 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2201 if (freepath != NULL) 2202 free(freepath, M_TEMP); 2203 2204 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2205 vm_map_lock_read(map); 2206 if (error) 2207 break; 2208 if (last_timestamp != map->timestamp) { 2209 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2210 entry = tmp_entry; 2211 } 2212 } 2213 vm_map_unlock_read(map); 2214 vmspace_free(vm); 2215 PRELE(p); 2216 free(kve, M_TEMP); 2217 return (error); 2218 } 2219 #endif /* COMPAT_FREEBSD7 */ 2220 2221 #ifdef KINFO_VMENTRY_SIZE 2222 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2223 #endif 2224 2225 static void 2226 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2227 struct kinfo_vmentry *kve) 2228 { 2229 vm_object_t obj, tobj; 2230 vm_page_t m, m_adv; 2231 vm_offset_t addr; 2232 vm_paddr_t locked_pa; 2233 vm_pindex_t pi, pi_adv, pindex; 2234 2235 locked_pa = 0; 2236 obj = entry->object.vm_object; 2237 addr = entry->start; 2238 m_adv = NULL; 2239 pi = OFF_TO_IDX(entry->offset); 2240 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2241 if (m_adv != NULL) { 2242 m = m_adv; 2243 } else { 2244 pi_adv = OFF_TO_IDX(entry->end - addr); 2245 pindex = pi; 2246 for (tobj = obj;; tobj = tobj->backing_object) { 2247 m = vm_page_find_least(tobj, pindex); 2248 if (m != NULL) { 2249 if (m->pindex == pindex) 2250 break; 2251 if (pi_adv > m->pindex - pindex) { 2252 pi_adv = m->pindex - pindex; 2253 m_adv = m; 2254 } 2255 } 2256 if (tobj->backing_object == NULL) 2257 goto next; 2258 pindex += OFF_TO_IDX(tobj-> 2259 backing_object_offset); 2260 } 2261 } 2262 m_adv = NULL; 2263 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2264 (addr & (pagesizes[1] - 1)) == 0 && 2265 (pmap_mincore(map->pmap, addr, &locked_pa) & 2266 MINCORE_SUPER) != 0) { 2267 kve->kve_flags |= KVME_FLAG_SUPER; 2268 pi_adv = OFF_TO_IDX(pagesizes[1]); 2269 } else { 2270 /* 2271 * We do not test the found page on validity. 2272 * Either the page is busy and being paged in, 2273 * or it was invalidated. The first case 2274 * should be counted as resident, the second 2275 * is not so clear; we do account both. 2276 */ 2277 pi_adv = 1; 2278 } 2279 kve->kve_resident += pi_adv; 2280 next:; 2281 } 2282 PA_UNLOCK_COND(locked_pa); 2283 } 2284 2285 /* 2286 * Must be called with the process locked and will return unlocked. 2287 */ 2288 int 2289 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2290 { 2291 vm_map_entry_t entry, tmp_entry; 2292 struct vattr va; 2293 vm_map_t map; 2294 vm_object_t obj, tobj, lobj; 2295 char *fullpath, *freepath; 2296 struct kinfo_vmentry *kve; 2297 struct ucred *cred; 2298 struct vnode *vp; 2299 struct vmspace *vm; 2300 vm_offset_t addr; 2301 unsigned int last_timestamp; 2302 int error; 2303 2304 PROC_LOCK_ASSERT(p, MA_OWNED); 2305 2306 _PHOLD(p); 2307 PROC_UNLOCK(p); 2308 vm = vmspace_acquire_ref(p); 2309 if (vm == NULL) { 2310 PRELE(p); 2311 return (ESRCH); 2312 } 2313 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2314 2315 error = 0; 2316 map = &vm->vm_map; 2317 vm_map_lock_read(map); 2318 for (entry = map->header.next; entry != &map->header; 2319 entry = entry->next) { 2320 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2321 continue; 2322 2323 addr = entry->end; 2324 bzero(kve, sizeof(*kve)); 2325 obj = entry->object.vm_object; 2326 if (obj != NULL) { 2327 for (tobj = obj; tobj != NULL; 2328 tobj = tobj->backing_object) { 2329 VM_OBJECT_RLOCK(tobj); 2330 lobj = tobj; 2331 } 2332 if (obj->backing_object == NULL) 2333 kve->kve_private_resident = 2334 obj->resident_page_count; 2335 if (!vmmap_skip_res_cnt) 2336 kern_proc_vmmap_resident(map, entry, kve); 2337 for (tobj = obj; tobj != NULL; 2338 tobj = tobj->backing_object) { 2339 if (tobj != obj && tobj != lobj) 2340 VM_OBJECT_RUNLOCK(tobj); 2341 } 2342 } else { 2343 lobj = NULL; 2344 } 2345 2346 kve->kve_start = entry->start; 2347 kve->kve_end = entry->end; 2348 kve->kve_offset = entry->offset; 2349 2350 if (entry->protection & VM_PROT_READ) 2351 kve->kve_protection |= KVME_PROT_READ; 2352 if (entry->protection & VM_PROT_WRITE) 2353 kve->kve_protection |= KVME_PROT_WRITE; 2354 if (entry->protection & VM_PROT_EXECUTE) 2355 kve->kve_protection |= KVME_PROT_EXEC; 2356 2357 if (entry->eflags & MAP_ENTRY_COW) 2358 kve->kve_flags |= KVME_FLAG_COW; 2359 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2360 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2361 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2362 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2363 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2364 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2365 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2366 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2367 2368 last_timestamp = map->timestamp; 2369 vm_map_unlock_read(map); 2370 2371 freepath = NULL; 2372 fullpath = ""; 2373 if (lobj != NULL) { 2374 vp = NULL; 2375 switch (lobj->type) { 2376 case OBJT_DEFAULT: 2377 kve->kve_type = KVME_TYPE_DEFAULT; 2378 break; 2379 case OBJT_VNODE: 2380 kve->kve_type = KVME_TYPE_VNODE; 2381 vp = lobj->handle; 2382 vref(vp); 2383 break; 2384 case OBJT_SWAP: 2385 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2386 kve->kve_type = KVME_TYPE_VNODE; 2387 if ((lobj->flags & OBJ_TMPFS) != 0) { 2388 vp = lobj->un_pager.swp.swp_tmpfs; 2389 vref(vp); 2390 } 2391 } else { 2392 kve->kve_type = KVME_TYPE_SWAP; 2393 } 2394 break; 2395 case OBJT_DEVICE: 2396 kve->kve_type = KVME_TYPE_DEVICE; 2397 break; 2398 case OBJT_PHYS: 2399 kve->kve_type = KVME_TYPE_PHYS; 2400 break; 2401 case OBJT_DEAD: 2402 kve->kve_type = KVME_TYPE_DEAD; 2403 break; 2404 case OBJT_SG: 2405 kve->kve_type = KVME_TYPE_SG; 2406 break; 2407 case OBJT_MGTDEVICE: 2408 kve->kve_type = KVME_TYPE_MGTDEVICE; 2409 break; 2410 default: 2411 kve->kve_type = KVME_TYPE_UNKNOWN; 2412 break; 2413 } 2414 if (lobj != obj) 2415 VM_OBJECT_RUNLOCK(lobj); 2416 2417 kve->kve_ref_count = obj->ref_count; 2418 kve->kve_shadow_count = obj->shadow_count; 2419 VM_OBJECT_RUNLOCK(obj); 2420 if (vp != NULL) { 2421 vn_fullpath(curthread, vp, &fullpath, 2422 &freepath); 2423 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2424 cred = curthread->td_ucred; 2425 vn_lock(vp, LK_SHARED | LK_RETRY); 2426 if (VOP_GETATTR(vp, &va, cred) == 0) { 2427 kve->kve_vn_fileid = va.va_fileid; 2428 kve->kve_vn_fsid = va.va_fsid; 2429 kve->kve_vn_mode = 2430 MAKEIMODE(va.va_type, va.va_mode); 2431 kve->kve_vn_size = va.va_size; 2432 kve->kve_vn_rdev = va.va_rdev; 2433 kve->kve_status = KF_ATTR_VALID; 2434 } 2435 vput(vp); 2436 } 2437 } else { 2438 kve->kve_type = KVME_TYPE_NONE; 2439 kve->kve_ref_count = 0; 2440 kve->kve_shadow_count = 0; 2441 } 2442 2443 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2444 if (freepath != NULL) 2445 free(freepath, M_TEMP); 2446 2447 /* Pack record size down */ 2448 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2449 kve->kve_structsize = 2450 offsetof(struct kinfo_vmentry, kve_path) + 2451 strlen(kve->kve_path) + 1; 2452 else 2453 kve->kve_structsize = sizeof(*kve); 2454 kve->kve_structsize = roundup(kve->kve_structsize, 2455 sizeof(uint64_t)); 2456 2457 /* Halt filling and truncate rather than exceeding maxlen */ 2458 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2459 error = 0; 2460 vm_map_lock_read(map); 2461 break; 2462 } else if (maxlen != -1) 2463 maxlen -= kve->kve_structsize; 2464 2465 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2466 error = ENOMEM; 2467 vm_map_lock_read(map); 2468 if (error != 0) 2469 break; 2470 if (last_timestamp != map->timestamp) { 2471 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2472 entry = tmp_entry; 2473 } 2474 } 2475 vm_map_unlock_read(map); 2476 vmspace_free(vm); 2477 PRELE(p); 2478 free(kve, M_TEMP); 2479 return (error); 2480 } 2481 2482 static int 2483 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2484 { 2485 struct proc *p; 2486 struct sbuf sb; 2487 int error, error2, *name; 2488 2489 name = (int *)arg1; 2490 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2491 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2492 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2493 if (error != 0) { 2494 sbuf_delete(&sb); 2495 return (error); 2496 } 2497 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2498 error2 = sbuf_finish(&sb); 2499 sbuf_delete(&sb); 2500 return (error != 0 ? error : error2); 2501 } 2502 2503 #if defined(STACK) || defined(DDB) 2504 static int 2505 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2506 { 2507 struct kinfo_kstack *kkstp; 2508 int error, i, *name, numthreads; 2509 lwpid_t *lwpidarray; 2510 struct thread *td; 2511 struct stack *st; 2512 struct sbuf sb; 2513 struct proc *p; 2514 2515 name = (int *)arg1; 2516 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2517 if (error != 0) 2518 return (error); 2519 2520 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2521 st = stack_create(); 2522 2523 lwpidarray = NULL; 2524 PROC_LOCK(p); 2525 do { 2526 if (lwpidarray != NULL) { 2527 free(lwpidarray, M_TEMP); 2528 lwpidarray = NULL; 2529 } 2530 numthreads = p->p_numthreads; 2531 PROC_UNLOCK(p); 2532 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2533 M_WAITOK | M_ZERO); 2534 PROC_LOCK(p); 2535 } while (numthreads < p->p_numthreads); 2536 2537 /* 2538 * XXXRW: During the below loop, execve(2) and countless other sorts 2539 * of changes could have taken place. Should we check to see if the 2540 * vmspace has been replaced, or the like, in order to prevent 2541 * giving a snapshot that spans, say, execve(2), with some threads 2542 * before and some after? Among other things, the credentials could 2543 * have changed, in which case the right to extract debug info might 2544 * no longer be assured. 2545 */ 2546 i = 0; 2547 FOREACH_THREAD_IN_PROC(p, td) { 2548 KASSERT(i < numthreads, 2549 ("sysctl_kern_proc_kstack: numthreads")); 2550 lwpidarray[i] = td->td_tid; 2551 i++; 2552 } 2553 numthreads = i; 2554 for (i = 0; i < numthreads; i++) { 2555 td = thread_find(p, lwpidarray[i]); 2556 if (td == NULL) { 2557 continue; 2558 } 2559 bzero(kkstp, sizeof(*kkstp)); 2560 (void)sbuf_new(&sb, kkstp->kkst_trace, 2561 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2562 thread_lock(td); 2563 kkstp->kkst_tid = td->td_tid; 2564 if (TD_IS_SWAPPED(td)) { 2565 kkstp->kkst_state = KKST_STATE_SWAPPED; 2566 } else if (TD_IS_RUNNING(td)) { 2567 if (stack_save_td_running(st, td) == 0) 2568 kkstp->kkst_state = KKST_STATE_STACKOK; 2569 else 2570 kkstp->kkst_state = KKST_STATE_RUNNING; 2571 } else { 2572 kkstp->kkst_state = KKST_STATE_STACKOK; 2573 stack_save_td(st, td); 2574 } 2575 thread_unlock(td); 2576 PROC_UNLOCK(p); 2577 stack_sbuf_print(&sb, st); 2578 sbuf_finish(&sb); 2579 sbuf_delete(&sb); 2580 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2581 PROC_LOCK(p); 2582 if (error) 2583 break; 2584 } 2585 _PRELE(p); 2586 PROC_UNLOCK(p); 2587 if (lwpidarray != NULL) 2588 free(lwpidarray, M_TEMP); 2589 stack_destroy(st); 2590 free(kkstp, M_TEMP); 2591 return (error); 2592 } 2593 #endif 2594 2595 /* 2596 * This sysctl allows a process to retrieve the full list of groups from 2597 * itself or another process. 2598 */ 2599 static int 2600 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2601 { 2602 pid_t *pidp = (pid_t *)arg1; 2603 unsigned int arglen = arg2; 2604 struct proc *p; 2605 struct ucred *cred; 2606 int error; 2607 2608 if (arglen != 1) 2609 return (EINVAL); 2610 if (*pidp == -1) { /* -1 means this process */ 2611 p = req->td->td_proc; 2612 PROC_LOCK(p); 2613 } else { 2614 error = pget(*pidp, PGET_CANSEE, &p); 2615 if (error != 0) 2616 return (error); 2617 } 2618 2619 cred = crhold(p->p_ucred); 2620 PROC_UNLOCK(p); 2621 2622 error = SYSCTL_OUT(req, cred->cr_groups, 2623 cred->cr_ngroups * sizeof(gid_t)); 2624 crfree(cred); 2625 return (error); 2626 } 2627 2628 /* 2629 * This sysctl allows a process to retrieve or/and set the resource limit for 2630 * another process. 2631 */ 2632 static int 2633 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2634 { 2635 int *name = (int *)arg1; 2636 u_int namelen = arg2; 2637 struct rlimit rlim; 2638 struct proc *p; 2639 u_int which; 2640 int flags, error; 2641 2642 if (namelen != 2) 2643 return (EINVAL); 2644 2645 which = (u_int)name[1]; 2646 if (which >= RLIM_NLIMITS) 2647 return (EINVAL); 2648 2649 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2650 return (EINVAL); 2651 2652 flags = PGET_HOLD | PGET_NOTWEXIT; 2653 if (req->newptr != NULL) 2654 flags |= PGET_CANDEBUG; 2655 else 2656 flags |= PGET_CANSEE; 2657 error = pget((pid_t)name[0], flags, &p); 2658 if (error != 0) 2659 return (error); 2660 2661 /* 2662 * Retrieve limit. 2663 */ 2664 if (req->oldptr != NULL) { 2665 PROC_LOCK(p); 2666 lim_rlimit_proc(p, which, &rlim); 2667 PROC_UNLOCK(p); 2668 } 2669 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2670 if (error != 0) 2671 goto errout; 2672 2673 /* 2674 * Set limit. 2675 */ 2676 if (req->newptr != NULL) { 2677 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2678 if (error == 0) 2679 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2680 } 2681 2682 errout: 2683 PRELE(p); 2684 return (error); 2685 } 2686 2687 /* 2688 * This sysctl allows a process to retrieve ps_strings structure location of 2689 * another process. 2690 */ 2691 static int 2692 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2693 { 2694 int *name = (int *)arg1; 2695 u_int namelen = arg2; 2696 struct proc *p; 2697 vm_offset_t ps_strings; 2698 int error; 2699 #ifdef COMPAT_FREEBSD32 2700 uint32_t ps_strings32; 2701 #endif 2702 2703 if (namelen != 1) 2704 return (EINVAL); 2705 2706 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2707 if (error != 0) 2708 return (error); 2709 #ifdef COMPAT_FREEBSD32 2710 if ((req->flags & SCTL_MASK32) != 0) { 2711 /* 2712 * We return 0 if the 32 bit emulation request is for a 64 bit 2713 * process. 2714 */ 2715 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2716 PTROUT(p->p_sysent->sv_psstrings) : 0; 2717 PROC_UNLOCK(p); 2718 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2719 return (error); 2720 } 2721 #endif 2722 ps_strings = p->p_sysent->sv_psstrings; 2723 PROC_UNLOCK(p); 2724 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2725 return (error); 2726 } 2727 2728 /* 2729 * This sysctl allows a process to retrieve umask of another process. 2730 */ 2731 static int 2732 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2733 { 2734 int *name = (int *)arg1; 2735 u_int namelen = arg2; 2736 struct proc *p; 2737 int error; 2738 u_short fd_cmask; 2739 2740 if (namelen != 1) 2741 return (EINVAL); 2742 2743 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2744 if (error != 0) 2745 return (error); 2746 2747 FILEDESC_SLOCK(p->p_fd); 2748 fd_cmask = p->p_fd->fd_cmask; 2749 FILEDESC_SUNLOCK(p->p_fd); 2750 PRELE(p); 2751 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2752 return (error); 2753 } 2754 2755 /* 2756 * This sysctl allows a process to set and retrieve binary osreldate of 2757 * another process. 2758 */ 2759 static int 2760 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2761 { 2762 int *name = (int *)arg1; 2763 u_int namelen = arg2; 2764 struct proc *p; 2765 int flags, error, osrel; 2766 2767 if (namelen != 1) 2768 return (EINVAL); 2769 2770 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2771 return (EINVAL); 2772 2773 flags = PGET_HOLD | PGET_NOTWEXIT; 2774 if (req->newptr != NULL) 2775 flags |= PGET_CANDEBUG; 2776 else 2777 flags |= PGET_CANSEE; 2778 error = pget((pid_t)name[0], flags, &p); 2779 if (error != 0) 2780 return (error); 2781 2782 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2783 if (error != 0) 2784 goto errout; 2785 2786 if (req->newptr != NULL) { 2787 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2788 if (error != 0) 2789 goto errout; 2790 if (osrel < 0) { 2791 error = EINVAL; 2792 goto errout; 2793 } 2794 p->p_osrel = osrel; 2795 } 2796 errout: 2797 PRELE(p); 2798 return (error); 2799 } 2800 2801 static int 2802 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2803 { 2804 int *name = (int *)arg1; 2805 u_int namelen = arg2; 2806 struct proc *p; 2807 struct kinfo_sigtramp kst; 2808 const struct sysentvec *sv; 2809 int error; 2810 #ifdef COMPAT_FREEBSD32 2811 struct kinfo_sigtramp32 kst32; 2812 #endif 2813 2814 if (namelen != 1) 2815 return (EINVAL); 2816 2817 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2818 if (error != 0) 2819 return (error); 2820 sv = p->p_sysent; 2821 #ifdef COMPAT_FREEBSD32 2822 if ((req->flags & SCTL_MASK32) != 0) { 2823 bzero(&kst32, sizeof(kst32)); 2824 if (SV_PROC_FLAG(p, SV_ILP32)) { 2825 if (sv->sv_sigcode_base != 0) { 2826 kst32.ksigtramp_start = sv->sv_sigcode_base; 2827 kst32.ksigtramp_end = sv->sv_sigcode_base + 2828 *sv->sv_szsigcode; 2829 } else { 2830 kst32.ksigtramp_start = sv->sv_psstrings - 2831 *sv->sv_szsigcode; 2832 kst32.ksigtramp_end = sv->sv_psstrings; 2833 } 2834 } 2835 PROC_UNLOCK(p); 2836 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2837 return (error); 2838 } 2839 #endif 2840 bzero(&kst, sizeof(kst)); 2841 if (sv->sv_sigcode_base != 0) { 2842 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2843 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2844 *sv->sv_szsigcode; 2845 } else { 2846 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2847 *sv->sv_szsigcode; 2848 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2849 } 2850 PROC_UNLOCK(p); 2851 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2852 return (error); 2853 } 2854 2855 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2856 2857 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2858 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2859 "Return entire process table"); 2860 2861 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2862 sysctl_kern_proc, "Process table"); 2863 2864 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2865 sysctl_kern_proc, "Process table"); 2866 2867 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2868 sysctl_kern_proc, "Process table"); 2869 2870 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2871 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2872 2873 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2874 sysctl_kern_proc, "Process table"); 2875 2876 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2877 sysctl_kern_proc, "Process table"); 2878 2879 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2880 sysctl_kern_proc, "Process table"); 2881 2882 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2883 sysctl_kern_proc, "Process table"); 2884 2885 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2886 sysctl_kern_proc, "Return process table, no threads"); 2887 2888 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2889 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2890 sysctl_kern_proc_args, "Process argument list"); 2891 2892 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2893 sysctl_kern_proc_env, "Process environment"); 2894 2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2896 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2897 2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2899 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2900 2901 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2902 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2903 "Process syscall vector name (ABI type)"); 2904 2905 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2906 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2907 2908 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2909 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2910 2911 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2912 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2913 2914 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2915 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2916 2917 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2918 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2919 2920 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2921 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2922 2923 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2924 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2925 2926 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2927 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2928 2929 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2930 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2931 "Return process table, no threads"); 2932 2933 #ifdef COMPAT_FREEBSD7 2934 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2935 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2936 #endif 2937 2938 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2939 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2940 2941 #if defined(STACK) || defined(DDB) 2942 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2943 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2944 #endif 2945 2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2947 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2948 2949 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2950 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2951 "Process resource limits"); 2952 2953 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2954 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2955 "Process ps_strings location"); 2956 2957 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2958 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2959 2960 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2961 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2962 "Process binary osreldate"); 2963 2964 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2965 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2966 "Process signal trampoline location"); 2967 2968 int allproc_gen; 2969 2970 /* 2971 * stop_all_proc() purpose is to stop all process which have usermode, 2972 * except current process for obvious reasons. This makes it somewhat 2973 * unreliable when invoked from multithreaded process. The service 2974 * must not be user-callable anyway. 2975 */ 2976 void 2977 stop_all_proc(void) 2978 { 2979 struct proc *cp, *p; 2980 int r, gen; 2981 bool restart, seen_stopped, seen_exiting, stopped_some; 2982 2983 cp = curproc; 2984 allproc_loop: 2985 sx_xlock(&allproc_lock); 2986 gen = allproc_gen; 2987 seen_exiting = seen_stopped = stopped_some = restart = false; 2988 LIST_REMOVE(cp, p_list); 2989 LIST_INSERT_HEAD(&allproc, cp, p_list); 2990 for (;;) { 2991 p = LIST_NEXT(cp, p_list); 2992 if (p == NULL) 2993 break; 2994 LIST_REMOVE(cp, p_list); 2995 LIST_INSERT_AFTER(p, cp, p_list); 2996 PROC_LOCK(p); 2997 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 2998 PROC_UNLOCK(p); 2999 continue; 3000 } 3001 if ((p->p_flag & P_WEXIT) != 0) { 3002 seen_exiting = true; 3003 PROC_UNLOCK(p); 3004 continue; 3005 } 3006 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3007 /* 3008 * Stopped processes are tolerated when there 3009 * are no other processes which might continue 3010 * them. P_STOPPED_SINGLE but not 3011 * P_TOTAL_STOP process still has at least one 3012 * thread running. 3013 */ 3014 seen_stopped = true; 3015 PROC_UNLOCK(p); 3016 continue; 3017 } 3018 _PHOLD(p); 3019 sx_xunlock(&allproc_lock); 3020 r = thread_single(p, SINGLE_ALLPROC); 3021 if (r != 0) 3022 restart = true; 3023 else 3024 stopped_some = true; 3025 _PRELE(p); 3026 PROC_UNLOCK(p); 3027 sx_xlock(&allproc_lock); 3028 } 3029 /* Catch forked children we did not see in iteration. */ 3030 if (gen != allproc_gen) 3031 restart = true; 3032 sx_xunlock(&allproc_lock); 3033 if (restart || stopped_some || seen_exiting || seen_stopped) { 3034 kern_yield(PRI_USER); 3035 goto allproc_loop; 3036 } 3037 } 3038 3039 void 3040 resume_all_proc(void) 3041 { 3042 struct proc *cp, *p; 3043 3044 cp = curproc; 3045 sx_xlock(&allproc_lock); 3046 LIST_REMOVE(cp, p_list); 3047 LIST_INSERT_HEAD(&allproc, cp, p_list); 3048 for (;;) { 3049 p = LIST_NEXT(cp, p_list); 3050 if (p == NULL) 3051 break; 3052 LIST_REMOVE(cp, p_list); 3053 LIST_INSERT_AFTER(p, cp, p_list); 3054 PROC_LOCK(p); 3055 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3056 sx_xunlock(&allproc_lock); 3057 _PHOLD(p); 3058 thread_single_end(p, SINGLE_ALLPROC); 3059 _PRELE(p); 3060 PROC_UNLOCK(p); 3061 sx_xlock(&allproc_lock); 3062 } else { 3063 PROC_UNLOCK(p); 3064 } 3065 } 3066 sx_xunlock(&allproc_lock); 3067 } 3068 3069 /* #define TOTAL_STOP_DEBUG 1 */ 3070 #ifdef TOTAL_STOP_DEBUG 3071 volatile static int ap_resume; 3072 #include <sys/mount.h> 3073 3074 static int 3075 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3076 { 3077 int error, val; 3078 3079 val = 0; 3080 ap_resume = 0; 3081 error = sysctl_handle_int(oidp, &val, 0, req); 3082 if (error != 0 || req->newptr == NULL) 3083 return (error); 3084 if (val != 0) { 3085 stop_all_proc(); 3086 syncer_suspend(); 3087 while (ap_resume == 0) 3088 ; 3089 syncer_resume(); 3090 resume_all_proc(); 3091 } 3092 return (0); 3093 } 3094 3095 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3096 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3097 sysctl_debug_stop_all_proc, "I", 3098 ""); 3099 #endif 3100