1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit(void) 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 struct thread *td; 195 196 p = (struct proc *)mem; 197 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 198 EVENTHANDLER_INVOKE(process_ctor, p); 199 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 200 td = FIRST_THREAD_IN_PROC(p); 201 if (td != NULL) { 202 /* Make sure all thread constructors are executed */ 203 EVENTHANDLER_INVOKE(thread_ctor, td); 204 } 205 return (0); 206 } 207 208 /* 209 * Reclaim a proc after use. 210 */ 211 static void 212 proc_dtor(void *mem, int size, void *arg) 213 { 214 struct proc *p; 215 struct thread *td; 216 217 /* INVARIANTS checks go here */ 218 p = (struct proc *)mem; 219 td = FIRST_THREAD_IN_PROC(p); 220 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 221 if (td != NULL) { 222 #ifdef INVARIANTS 223 KASSERT((p->p_numthreads == 1), 224 ("bad number of threads in exiting process")); 225 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 226 #endif 227 /* Free all OSD associated to this thread. */ 228 osd_thread_exit(td); 229 230 /* Make sure all thread destructors are executed */ 231 EVENTHANDLER_INVOKE(thread_dtor, td); 232 } 233 EVENTHANDLER_INVOKE(process_dtor, p); 234 if (p->p_ksi != NULL) 235 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 236 SDT_PROBE3(proc, , dtor, return, p, size, arg); 237 } 238 239 /* 240 * Initialize type-stable parts of a proc (when newly created). 241 */ 242 static int 243 proc_init(void *mem, int size, int flags) 244 { 245 struct proc *p; 246 247 p = (struct proc *)mem; 248 SDT_PROBE3(proc, , init, entry, p, size, flags); 249 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 250 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 251 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 252 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 253 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 254 cv_init(&p->p_pwait, "ppwait"); 255 cv_init(&p->p_dbgwait, "dbgwait"); 256 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 257 EVENTHANDLER_INVOKE(process_init, p); 258 p->p_stats = pstats_alloc(); 259 p->p_pgrp = NULL; 260 SDT_PROBE3(proc, , init, return, p, size, flags); 261 return (0); 262 } 263 264 /* 265 * UMA should ensure that this function is never called. 266 * Freeing a proc structure would violate type stability. 267 */ 268 static void 269 proc_fini(void *mem, int size) 270 { 271 #ifdef notnow 272 struct proc *p; 273 274 p = (struct proc *)mem; 275 EVENTHANDLER_INVOKE(process_fini, p); 276 pstats_free(p->p_stats); 277 thread_free(FIRST_THREAD_IN_PROC(p)); 278 mtx_destroy(&p->p_mtx); 279 if (p->p_ksi != NULL) 280 ksiginfo_free(p->p_ksi); 281 #else 282 panic("proc reclaimed"); 283 #endif 284 } 285 286 /* 287 * Is p an inferior of the current process? 288 */ 289 int 290 inferior(struct proc *p) 291 { 292 293 sx_assert(&proctree_lock, SX_LOCKED); 294 PROC_LOCK_ASSERT(p, MA_OWNED); 295 for (; p != curproc; p = proc_realparent(p)) { 296 if (p->p_pid == 0) 297 return (0); 298 } 299 return (1); 300 } 301 302 struct proc * 303 pfind_locked(pid_t pid) 304 { 305 struct proc *p; 306 307 sx_assert(&allproc_lock, SX_LOCKED); 308 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 309 if (p->p_pid == pid) { 310 PROC_LOCK(p); 311 if (p->p_state == PRS_NEW) { 312 PROC_UNLOCK(p); 313 p = NULL; 314 } 315 break; 316 } 317 } 318 return (p); 319 } 320 321 /* 322 * Locate a process by number; return only "live" processes -- i.e., neither 323 * zombies nor newly born but incompletely initialized processes. By not 324 * returning processes in the PRS_NEW state, we allow callers to avoid 325 * testing for that condition to avoid dereferencing p_ucred, et al. 326 */ 327 struct proc * 328 pfind(pid_t pid) 329 { 330 struct proc *p; 331 332 sx_slock(&allproc_lock); 333 p = pfind_locked(pid); 334 sx_sunlock(&allproc_lock); 335 return (p); 336 } 337 338 static struct proc * 339 pfind_tid_locked(pid_t tid) 340 { 341 struct proc *p; 342 struct thread *td; 343 344 sx_assert(&allproc_lock, SX_LOCKED); 345 FOREACH_PROC_IN_SYSTEM(p) { 346 PROC_LOCK(p); 347 if (p->p_state == PRS_NEW) { 348 PROC_UNLOCK(p); 349 continue; 350 } 351 FOREACH_THREAD_IN_PROC(p, td) { 352 if (td->td_tid == tid) 353 goto found; 354 } 355 PROC_UNLOCK(p); 356 } 357 found: 358 return (p); 359 } 360 361 /* 362 * Locate a process group by number. 363 * The caller must hold proctree_lock. 364 */ 365 struct pgrp * 366 pgfind(pid_t pgid) 367 { 368 struct pgrp *pgrp; 369 370 sx_assert(&proctree_lock, SX_LOCKED); 371 372 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 373 if (pgrp->pg_id == pgid) { 374 PGRP_LOCK(pgrp); 375 return (pgrp); 376 } 377 } 378 return (NULL); 379 } 380 381 /* 382 * Locate process and do additional manipulations, depending on flags. 383 */ 384 int 385 pget(pid_t pid, int flags, struct proc **pp) 386 { 387 struct proc *p; 388 int error; 389 390 sx_slock(&allproc_lock); 391 if (pid <= PID_MAX) { 392 p = pfind_locked(pid); 393 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 394 p = zpfind_locked(pid); 395 } else if ((flags & PGET_NOTID) == 0) { 396 p = pfind_tid_locked(pid); 397 } else { 398 p = NULL; 399 } 400 sx_sunlock(&allproc_lock); 401 if (p == NULL) 402 return (ESRCH); 403 if ((flags & PGET_CANSEE) != 0) { 404 error = p_cansee(curthread, p); 405 if (error != 0) 406 goto errout; 407 } 408 if ((flags & PGET_CANDEBUG) != 0) { 409 error = p_candebug(curthread, p); 410 if (error != 0) 411 goto errout; 412 } 413 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 414 error = EPERM; 415 goto errout; 416 } 417 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 418 error = ESRCH; 419 goto errout; 420 } 421 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 422 /* 423 * XXXRW: Not clear ESRCH is the right error during proc 424 * execve(). 425 */ 426 error = ESRCH; 427 goto errout; 428 } 429 if ((flags & PGET_HOLD) != 0) { 430 _PHOLD(p); 431 PROC_UNLOCK(p); 432 } 433 *pp = p; 434 return (0); 435 errout: 436 PROC_UNLOCK(p); 437 return (error); 438 } 439 440 /* 441 * Create a new process group. 442 * pgid must be equal to the pid of p. 443 * Begin a new session if required. 444 */ 445 int 446 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 447 { 448 449 sx_assert(&proctree_lock, SX_XLOCKED); 450 451 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 452 KASSERT(p->p_pid == pgid, 453 ("enterpgrp: new pgrp and pid != pgid")); 454 KASSERT(pgfind(pgid) == NULL, 455 ("enterpgrp: pgrp with pgid exists")); 456 KASSERT(!SESS_LEADER(p), 457 ("enterpgrp: session leader attempted setpgrp")); 458 459 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 460 461 if (sess != NULL) { 462 /* 463 * new session 464 */ 465 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 466 PROC_LOCK(p); 467 p->p_flag &= ~P_CONTROLT; 468 PROC_UNLOCK(p); 469 PGRP_LOCK(pgrp); 470 sess->s_leader = p; 471 sess->s_sid = p->p_pid; 472 refcount_init(&sess->s_count, 1); 473 sess->s_ttyvp = NULL; 474 sess->s_ttydp = NULL; 475 sess->s_ttyp = NULL; 476 bcopy(p->p_session->s_login, sess->s_login, 477 sizeof(sess->s_login)); 478 pgrp->pg_session = sess; 479 KASSERT(p == curproc, 480 ("enterpgrp: mksession and p != curproc")); 481 } else { 482 pgrp->pg_session = p->p_session; 483 sess_hold(pgrp->pg_session); 484 PGRP_LOCK(pgrp); 485 } 486 pgrp->pg_id = pgid; 487 LIST_INIT(&pgrp->pg_members); 488 489 /* 490 * As we have an exclusive lock of proctree_lock, 491 * this should not deadlock. 492 */ 493 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 494 pgrp->pg_jobc = 0; 495 SLIST_INIT(&pgrp->pg_sigiolst); 496 PGRP_UNLOCK(pgrp); 497 498 doenterpgrp(p, pgrp); 499 500 return (0); 501 } 502 503 /* 504 * Move p to an existing process group 505 */ 506 int 507 enterthispgrp(struct proc *p, struct pgrp *pgrp) 508 { 509 510 sx_assert(&proctree_lock, SX_XLOCKED); 511 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 512 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 513 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 514 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 515 KASSERT(pgrp->pg_session == p->p_session, 516 ("%s: pgrp's session %p, p->p_session %p.\n", 517 __func__, 518 pgrp->pg_session, 519 p->p_session)); 520 KASSERT(pgrp != p->p_pgrp, 521 ("%s: p belongs to pgrp.", __func__)); 522 523 doenterpgrp(p, pgrp); 524 525 return (0); 526 } 527 528 /* 529 * Move p to a process group 530 */ 531 static void 532 doenterpgrp(struct proc *p, struct pgrp *pgrp) 533 { 534 struct pgrp *savepgrp; 535 536 sx_assert(&proctree_lock, SX_XLOCKED); 537 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 538 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 539 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 540 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 541 542 savepgrp = p->p_pgrp; 543 544 /* 545 * Adjust eligibility of affected pgrps to participate in job control. 546 * Increment eligibility counts before decrementing, otherwise we 547 * could reach 0 spuriously during the first call. 548 */ 549 fixjobc(p, pgrp, 1); 550 fixjobc(p, p->p_pgrp, 0); 551 552 PGRP_LOCK(pgrp); 553 PGRP_LOCK(savepgrp); 554 PROC_LOCK(p); 555 LIST_REMOVE(p, p_pglist); 556 p->p_pgrp = pgrp; 557 PROC_UNLOCK(p); 558 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 559 PGRP_UNLOCK(savepgrp); 560 PGRP_UNLOCK(pgrp); 561 if (LIST_EMPTY(&savepgrp->pg_members)) 562 pgdelete(savepgrp); 563 } 564 565 /* 566 * remove process from process group 567 */ 568 int 569 leavepgrp(struct proc *p) 570 { 571 struct pgrp *savepgrp; 572 573 sx_assert(&proctree_lock, SX_XLOCKED); 574 savepgrp = p->p_pgrp; 575 PGRP_LOCK(savepgrp); 576 PROC_LOCK(p); 577 LIST_REMOVE(p, p_pglist); 578 p->p_pgrp = NULL; 579 PROC_UNLOCK(p); 580 PGRP_UNLOCK(savepgrp); 581 if (LIST_EMPTY(&savepgrp->pg_members)) 582 pgdelete(savepgrp); 583 return (0); 584 } 585 586 /* 587 * delete a process group 588 */ 589 static void 590 pgdelete(struct pgrp *pgrp) 591 { 592 struct session *savesess; 593 struct tty *tp; 594 595 sx_assert(&proctree_lock, SX_XLOCKED); 596 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 597 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 598 599 /* 600 * Reset any sigio structures pointing to us as a result of 601 * F_SETOWN with our pgid. 602 */ 603 funsetownlst(&pgrp->pg_sigiolst); 604 605 PGRP_LOCK(pgrp); 606 tp = pgrp->pg_session->s_ttyp; 607 LIST_REMOVE(pgrp, pg_hash); 608 savesess = pgrp->pg_session; 609 PGRP_UNLOCK(pgrp); 610 611 /* Remove the reference to the pgrp before deallocating it. */ 612 if (tp != NULL) { 613 tty_lock(tp); 614 tty_rel_pgrp(tp, pgrp); 615 } 616 617 mtx_destroy(&pgrp->pg_mtx); 618 free(pgrp, M_PGRP); 619 sess_release(savesess); 620 } 621 622 static void 623 pgadjustjobc(struct pgrp *pgrp, int entering) 624 { 625 626 PGRP_LOCK(pgrp); 627 if (entering) 628 pgrp->pg_jobc++; 629 else { 630 --pgrp->pg_jobc; 631 if (pgrp->pg_jobc == 0) 632 orphanpg(pgrp); 633 } 634 PGRP_UNLOCK(pgrp); 635 } 636 637 /* 638 * Adjust pgrp jobc counters when specified process changes process group. 639 * We count the number of processes in each process group that "qualify" 640 * the group for terminal job control (those with a parent in a different 641 * process group of the same session). If that count reaches zero, the 642 * process group becomes orphaned. Check both the specified process' 643 * process group and that of its children. 644 * entering == 0 => p is leaving specified group. 645 * entering == 1 => p is entering specified group. 646 */ 647 void 648 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 649 { 650 struct pgrp *hispgrp; 651 struct session *mysession; 652 struct proc *q; 653 654 sx_assert(&proctree_lock, SX_LOCKED); 655 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 656 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 657 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 658 659 /* 660 * Check p's parent to see whether p qualifies its own process 661 * group; if so, adjust count for p's process group. 662 */ 663 mysession = pgrp->pg_session; 664 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 665 hispgrp->pg_session == mysession) 666 pgadjustjobc(pgrp, entering); 667 668 /* 669 * Check this process' children to see whether they qualify 670 * their process groups; if so, adjust counts for children's 671 * process groups. 672 */ 673 LIST_FOREACH(q, &p->p_children, p_sibling) { 674 hispgrp = q->p_pgrp; 675 if (hispgrp == pgrp || 676 hispgrp->pg_session != mysession) 677 continue; 678 if (q->p_state == PRS_ZOMBIE) 679 continue; 680 pgadjustjobc(hispgrp, entering); 681 } 682 } 683 684 void 685 killjobc(void) 686 { 687 struct session *sp; 688 struct tty *tp; 689 struct proc *p; 690 struct vnode *ttyvp; 691 692 p = curproc; 693 MPASS(p->p_flag & P_WEXIT); 694 /* 695 * Do a quick check to see if there is anything to do with the 696 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 697 */ 698 PROC_LOCK(p); 699 if (!SESS_LEADER(p) && 700 (p->p_pgrp == p->p_pptr->p_pgrp) && 701 LIST_EMPTY(&p->p_children)) { 702 PROC_UNLOCK(p); 703 return; 704 } 705 PROC_UNLOCK(p); 706 707 sx_xlock(&proctree_lock); 708 if (SESS_LEADER(p)) { 709 sp = p->p_session; 710 711 /* 712 * s_ttyp is not zero'd; we use this to indicate that 713 * the session once had a controlling terminal. (for 714 * logging and informational purposes) 715 */ 716 SESS_LOCK(sp); 717 ttyvp = sp->s_ttyvp; 718 tp = sp->s_ttyp; 719 sp->s_ttyvp = NULL; 720 sp->s_ttydp = NULL; 721 sp->s_leader = NULL; 722 SESS_UNLOCK(sp); 723 724 /* 725 * Signal foreground pgrp and revoke access to 726 * controlling terminal if it has not been revoked 727 * already. 728 * 729 * Because the TTY may have been revoked in the mean 730 * time and could already have a new session associated 731 * with it, make sure we don't send a SIGHUP to a 732 * foreground process group that does not belong to this 733 * session. 734 */ 735 736 if (tp != NULL) { 737 tty_lock(tp); 738 if (tp->t_session == sp) 739 tty_signal_pgrp(tp, SIGHUP); 740 tty_unlock(tp); 741 } 742 743 if (ttyvp != NULL) { 744 sx_xunlock(&proctree_lock); 745 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 746 VOP_REVOKE(ttyvp, REVOKEALL); 747 VOP_UNLOCK(ttyvp, 0); 748 } 749 vrele(ttyvp); 750 sx_xlock(&proctree_lock); 751 } 752 } 753 fixjobc(p, p->p_pgrp, 0); 754 sx_xunlock(&proctree_lock); 755 } 756 757 /* 758 * A process group has become orphaned; 759 * if there are any stopped processes in the group, 760 * hang-up all process in that group. 761 */ 762 static void 763 orphanpg(struct pgrp *pg) 764 { 765 struct proc *p; 766 767 PGRP_LOCK_ASSERT(pg, MA_OWNED); 768 769 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 770 PROC_LOCK(p); 771 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 772 PROC_UNLOCK(p); 773 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 774 PROC_LOCK(p); 775 kern_psignal(p, SIGHUP); 776 kern_psignal(p, SIGCONT); 777 PROC_UNLOCK(p); 778 } 779 return; 780 } 781 PROC_UNLOCK(p); 782 } 783 } 784 785 void 786 sess_hold(struct session *s) 787 { 788 789 refcount_acquire(&s->s_count); 790 } 791 792 void 793 sess_release(struct session *s) 794 { 795 796 if (refcount_release(&s->s_count)) { 797 if (s->s_ttyp != NULL) { 798 tty_lock(s->s_ttyp); 799 tty_rel_sess(s->s_ttyp, s); 800 } 801 mtx_destroy(&s->s_mtx); 802 free(s, M_SESSION); 803 } 804 } 805 806 #ifdef DDB 807 808 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 809 { 810 struct pgrp *pgrp; 811 struct proc *p; 812 int i; 813 814 for (i = 0; i <= pgrphash; i++) { 815 if (!LIST_EMPTY(&pgrphashtbl[i])) { 816 printf("\tindx %d\n", i); 817 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 818 printf( 819 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 820 (void *)pgrp, (long)pgrp->pg_id, 821 (void *)pgrp->pg_session, 822 pgrp->pg_session->s_count, 823 (void *)LIST_FIRST(&pgrp->pg_members)); 824 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 825 printf("\t\tpid %ld addr %p pgrp %p\n", 826 (long)p->p_pid, (void *)p, 827 (void *)p->p_pgrp); 828 } 829 } 830 } 831 } 832 } 833 #endif /* DDB */ 834 835 /* 836 * Calculate the kinfo_proc members which contain process-wide 837 * informations. 838 * Must be called with the target process locked. 839 */ 840 static void 841 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 842 { 843 struct thread *td; 844 845 PROC_LOCK_ASSERT(p, MA_OWNED); 846 847 kp->ki_estcpu = 0; 848 kp->ki_pctcpu = 0; 849 FOREACH_THREAD_IN_PROC(p, td) { 850 thread_lock(td); 851 kp->ki_pctcpu += sched_pctcpu(td); 852 kp->ki_estcpu += sched_estcpu(td); 853 thread_unlock(td); 854 } 855 } 856 857 /* 858 * Clear kinfo_proc and fill in any information that is common 859 * to all threads in the process. 860 * Must be called with the target process locked. 861 */ 862 static void 863 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 864 { 865 struct thread *td0; 866 struct tty *tp; 867 struct session *sp; 868 struct ucred *cred; 869 struct sigacts *ps; 870 struct timeval boottime; 871 872 /* For proc_realparent. */ 873 sx_assert(&proctree_lock, SX_LOCKED); 874 PROC_LOCK_ASSERT(p, MA_OWNED); 875 bzero(kp, sizeof(*kp)); 876 877 kp->ki_structsize = sizeof(*kp); 878 kp->ki_paddr = p; 879 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 880 kp->ki_args = p->p_args; 881 kp->ki_textvp = p->p_textvp; 882 #ifdef KTRACE 883 kp->ki_tracep = p->p_tracevp; 884 kp->ki_traceflag = p->p_traceflag; 885 #endif 886 kp->ki_fd = p->p_fd; 887 kp->ki_vmspace = p->p_vmspace; 888 kp->ki_flag = p->p_flag; 889 kp->ki_flag2 = p->p_flag2; 890 cred = p->p_ucred; 891 if (cred) { 892 kp->ki_uid = cred->cr_uid; 893 kp->ki_ruid = cred->cr_ruid; 894 kp->ki_svuid = cred->cr_svuid; 895 kp->ki_cr_flags = 0; 896 if (cred->cr_flags & CRED_FLAG_CAPMODE) 897 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 898 /* XXX bde doesn't like KI_NGROUPS */ 899 if (cred->cr_ngroups > KI_NGROUPS) { 900 kp->ki_ngroups = KI_NGROUPS; 901 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 902 } else 903 kp->ki_ngroups = cred->cr_ngroups; 904 bcopy(cred->cr_groups, kp->ki_groups, 905 kp->ki_ngroups * sizeof(gid_t)); 906 kp->ki_rgid = cred->cr_rgid; 907 kp->ki_svgid = cred->cr_svgid; 908 /* If jailed(cred), emulate the old P_JAILED flag. */ 909 if (jailed(cred)) { 910 kp->ki_flag |= P_JAILED; 911 /* If inside the jail, use 0 as a jail ID. */ 912 if (cred->cr_prison != curthread->td_ucred->cr_prison) 913 kp->ki_jid = cred->cr_prison->pr_id; 914 } 915 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 916 sizeof(kp->ki_loginclass)); 917 } 918 ps = p->p_sigacts; 919 if (ps) { 920 mtx_lock(&ps->ps_mtx); 921 kp->ki_sigignore = ps->ps_sigignore; 922 kp->ki_sigcatch = ps->ps_sigcatch; 923 mtx_unlock(&ps->ps_mtx); 924 } 925 if (p->p_state != PRS_NEW && 926 p->p_state != PRS_ZOMBIE && 927 p->p_vmspace != NULL) { 928 struct vmspace *vm = p->p_vmspace; 929 930 kp->ki_size = vm->vm_map.size; 931 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 932 FOREACH_THREAD_IN_PROC(p, td0) { 933 if (!TD_IS_SWAPPED(td0)) 934 kp->ki_rssize += td0->td_kstack_pages; 935 } 936 kp->ki_swrss = vm->vm_swrss; 937 kp->ki_tsize = vm->vm_tsize; 938 kp->ki_dsize = vm->vm_dsize; 939 kp->ki_ssize = vm->vm_ssize; 940 } else if (p->p_state == PRS_ZOMBIE) 941 kp->ki_stat = SZOMB; 942 if (kp->ki_flag & P_INMEM) 943 kp->ki_sflag = PS_INMEM; 944 else 945 kp->ki_sflag = 0; 946 /* Calculate legacy swtime as seconds since 'swtick'. */ 947 kp->ki_swtime = (ticks - p->p_swtick) / hz; 948 kp->ki_pid = p->p_pid; 949 kp->ki_nice = p->p_nice; 950 kp->ki_fibnum = p->p_fibnum; 951 kp->ki_start = p->p_stats->p_start; 952 getboottime(&boottime); 953 timevaladd(&kp->ki_start, &boottime); 954 PROC_STATLOCK(p); 955 rufetch(p, &kp->ki_rusage); 956 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 957 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 958 PROC_STATUNLOCK(p); 959 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 960 /* Some callers want child times in a single value. */ 961 kp->ki_childtime = kp->ki_childstime; 962 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 963 964 FOREACH_THREAD_IN_PROC(p, td0) 965 kp->ki_cow += td0->td_cow; 966 967 tp = NULL; 968 if (p->p_pgrp) { 969 kp->ki_pgid = p->p_pgrp->pg_id; 970 kp->ki_jobc = p->p_pgrp->pg_jobc; 971 sp = p->p_pgrp->pg_session; 972 973 if (sp != NULL) { 974 kp->ki_sid = sp->s_sid; 975 SESS_LOCK(sp); 976 strlcpy(kp->ki_login, sp->s_login, 977 sizeof(kp->ki_login)); 978 if (sp->s_ttyvp) 979 kp->ki_kiflag |= KI_CTTY; 980 if (SESS_LEADER(p)) 981 kp->ki_kiflag |= KI_SLEADER; 982 /* XXX proctree_lock */ 983 tp = sp->s_ttyp; 984 SESS_UNLOCK(sp); 985 } 986 } 987 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 988 kp->ki_tdev = tty_udev(tp); 989 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 990 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 991 if (tp->t_session) 992 kp->ki_tsid = tp->t_session->s_sid; 993 } else { 994 kp->ki_tdev = NODEV; 995 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 996 } 997 if (p->p_comm[0] != '\0') 998 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 999 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1000 p->p_sysent->sv_name[0] != '\0') 1001 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1002 kp->ki_siglist = p->p_siglist; 1003 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1004 kp->ki_acflag = p->p_acflag; 1005 kp->ki_lock = p->p_lock; 1006 if (p->p_pptr) { 1007 kp->ki_ppid = proc_realparent(p)->p_pid; 1008 if (p->p_flag & P_TRACED) 1009 kp->ki_tracer = p->p_pptr->p_pid; 1010 } 1011 } 1012 1013 /* 1014 * Fill in information that is thread specific. Must be called with 1015 * target process locked. If 'preferthread' is set, overwrite certain 1016 * process-related fields that are maintained for both threads and 1017 * processes. 1018 */ 1019 static void 1020 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1021 { 1022 struct proc *p; 1023 1024 p = td->td_proc; 1025 kp->ki_tdaddr = td; 1026 PROC_LOCK_ASSERT(p, MA_OWNED); 1027 1028 if (preferthread) 1029 PROC_STATLOCK(p); 1030 thread_lock(td); 1031 if (td->td_wmesg != NULL) 1032 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1033 else 1034 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1035 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1036 sizeof(kp->ki_tdname)) { 1037 strlcpy(kp->ki_moretdname, 1038 td->td_name + sizeof(kp->ki_tdname) - 1, 1039 sizeof(kp->ki_moretdname)); 1040 } else { 1041 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1042 } 1043 if (TD_ON_LOCK(td)) { 1044 kp->ki_kiflag |= KI_LOCKBLOCK; 1045 strlcpy(kp->ki_lockname, td->td_lockname, 1046 sizeof(kp->ki_lockname)); 1047 } else { 1048 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1049 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1050 } 1051 1052 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1053 if (TD_ON_RUNQ(td) || 1054 TD_CAN_RUN(td) || 1055 TD_IS_RUNNING(td)) { 1056 kp->ki_stat = SRUN; 1057 } else if (P_SHOULDSTOP(p)) { 1058 kp->ki_stat = SSTOP; 1059 } else if (TD_IS_SLEEPING(td)) { 1060 kp->ki_stat = SSLEEP; 1061 } else if (TD_ON_LOCK(td)) { 1062 kp->ki_stat = SLOCK; 1063 } else { 1064 kp->ki_stat = SWAIT; 1065 } 1066 } else if (p->p_state == PRS_ZOMBIE) { 1067 kp->ki_stat = SZOMB; 1068 } else { 1069 kp->ki_stat = SIDL; 1070 } 1071 1072 /* Things in the thread */ 1073 kp->ki_wchan = td->td_wchan; 1074 kp->ki_pri.pri_level = td->td_priority; 1075 kp->ki_pri.pri_native = td->td_base_pri; 1076 1077 /* 1078 * Note: legacy fields; clamp at the old NOCPU value and/or 1079 * the maximum u_char CPU value. 1080 */ 1081 if (td->td_lastcpu == NOCPU) 1082 kp->ki_lastcpu_old = NOCPU_OLD; 1083 else if (td->td_lastcpu > MAXCPU_OLD) 1084 kp->ki_lastcpu_old = MAXCPU_OLD; 1085 else 1086 kp->ki_lastcpu_old = td->td_lastcpu; 1087 1088 if (td->td_oncpu == NOCPU) 1089 kp->ki_oncpu_old = NOCPU_OLD; 1090 else if (td->td_oncpu > MAXCPU_OLD) 1091 kp->ki_oncpu_old = MAXCPU_OLD; 1092 else 1093 kp->ki_oncpu_old = td->td_oncpu; 1094 1095 kp->ki_lastcpu = td->td_lastcpu; 1096 kp->ki_oncpu = td->td_oncpu; 1097 kp->ki_tdflags = td->td_flags; 1098 kp->ki_tid = td->td_tid; 1099 kp->ki_numthreads = p->p_numthreads; 1100 kp->ki_pcb = td->td_pcb; 1101 kp->ki_kstack = (void *)td->td_kstack; 1102 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1103 kp->ki_pri.pri_class = td->td_pri_class; 1104 kp->ki_pri.pri_user = td->td_user_pri; 1105 1106 if (preferthread) { 1107 rufetchtd(td, &kp->ki_rusage); 1108 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1109 kp->ki_pctcpu = sched_pctcpu(td); 1110 kp->ki_estcpu = sched_estcpu(td); 1111 kp->ki_cow = td->td_cow; 1112 } 1113 1114 /* We can't get this anymore but ps etc never used it anyway. */ 1115 kp->ki_rqindex = 0; 1116 1117 if (preferthread) 1118 kp->ki_siglist = td->td_siglist; 1119 kp->ki_sigmask = td->td_sigmask; 1120 thread_unlock(td); 1121 if (preferthread) 1122 PROC_STATUNLOCK(p); 1123 } 1124 1125 /* 1126 * Fill in a kinfo_proc structure for the specified process. 1127 * Must be called with the target process locked. 1128 */ 1129 void 1130 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1131 { 1132 1133 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1134 1135 fill_kinfo_proc_only(p, kp); 1136 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1137 fill_kinfo_aggregate(p, kp); 1138 } 1139 1140 struct pstats * 1141 pstats_alloc(void) 1142 { 1143 1144 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1145 } 1146 1147 /* 1148 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1149 */ 1150 void 1151 pstats_fork(struct pstats *src, struct pstats *dst) 1152 { 1153 1154 bzero(&dst->pstat_startzero, 1155 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1156 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1157 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1158 } 1159 1160 void 1161 pstats_free(struct pstats *ps) 1162 { 1163 1164 free(ps, M_SUBPROC); 1165 } 1166 1167 static struct proc * 1168 zpfind_locked(pid_t pid) 1169 { 1170 struct proc *p; 1171 1172 sx_assert(&allproc_lock, SX_LOCKED); 1173 LIST_FOREACH(p, &zombproc, p_list) { 1174 if (p->p_pid == pid) { 1175 PROC_LOCK(p); 1176 break; 1177 } 1178 } 1179 return (p); 1180 } 1181 1182 /* 1183 * Locate a zombie process by number 1184 */ 1185 struct proc * 1186 zpfind(pid_t pid) 1187 { 1188 struct proc *p; 1189 1190 sx_slock(&allproc_lock); 1191 p = zpfind_locked(pid); 1192 sx_sunlock(&allproc_lock); 1193 return (p); 1194 } 1195 1196 #ifdef COMPAT_FREEBSD32 1197 1198 /* 1199 * This function is typically used to copy out the kernel address, so 1200 * it can be replaced by assignment of zero. 1201 */ 1202 static inline uint32_t 1203 ptr32_trim(void *ptr) 1204 { 1205 uintptr_t uptr; 1206 1207 uptr = (uintptr_t)ptr; 1208 return ((uptr > UINT_MAX) ? 0 : uptr); 1209 } 1210 1211 #define PTRTRIM_CP(src,dst,fld) \ 1212 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1213 1214 static void 1215 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1216 { 1217 int i; 1218 1219 bzero(ki32, sizeof(struct kinfo_proc32)); 1220 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1221 CP(*ki, *ki32, ki_layout); 1222 PTRTRIM_CP(*ki, *ki32, ki_args); 1223 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1224 PTRTRIM_CP(*ki, *ki32, ki_addr); 1225 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1226 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1227 PTRTRIM_CP(*ki, *ki32, ki_fd); 1228 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1229 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1230 CP(*ki, *ki32, ki_pid); 1231 CP(*ki, *ki32, ki_ppid); 1232 CP(*ki, *ki32, ki_pgid); 1233 CP(*ki, *ki32, ki_tpgid); 1234 CP(*ki, *ki32, ki_sid); 1235 CP(*ki, *ki32, ki_tsid); 1236 CP(*ki, *ki32, ki_jobc); 1237 CP(*ki, *ki32, ki_tdev); 1238 CP(*ki, *ki32, ki_tdev_freebsd11); 1239 CP(*ki, *ki32, ki_siglist); 1240 CP(*ki, *ki32, ki_sigmask); 1241 CP(*ki, *ki32, ki_sigignore); 1242 CP(*ki, *ki32, ki_sigcatch); 1243 CP(*ki, *ki32, ki_uid); 1244 CP(*ki, *ki32, ki_ruid); 1245 CP(*ki, *ki32, ki_svuid); 1246 CP(*ki, *ki32, ki_rgid); 1247 CP(*ki, *ki32, ki_svgid); 1248 CP(*ki, *ki32, ki_ngroups); 1249 for (i = 0; i < KI_NGROUPS; i++) 1250 CP(*ki, *ki32, ki_groups[i]); 1251 CP(*ki, *ki32, ki_size); 1252 CP(*ki, *ki32, ki_rssize); 1253 CP(*ki, *ki32, ki_swrss); 1254 CP(*ki, *ki32, ki_tsize); 1255 CP(*ki, *ki32, ki_dsize); 1256 CP(*ki, *ki32, ki_ssize); 1257 CP(*ki, *ki32, ki_xstat); 1258 CP(*ki, *ki32, ki_acflag); 1259 CP(*ki, *ki32, ki_pctcpu); 1260 CP(*ki, *ki32, ki_estcpu); 1261 CP(*ki, *ki32, ki_slptime); 1262 CP(*ki, *ki32, ki_swtime); 1263 CP(*ki, *ki32, ki_cow); 1264 CP(*ki, *ki32, ki_runtime); 1265 TV_CP(*ki, *ki32, ki_start); 1266 TV_CP(*ki, *ki32, ki_childtime); 1267 CP(*ki, *ki32, ki_flag); 1268 CP(*ki, *ki32, ki_kiflag); 1269 CP(*ki, *ki32, ki_traceflag); 1270 CP(*ki, *ki32, ki_stat); 1271 CP(*ki, *ki32, ki_nice); 1272 CP(*ki, *ki32, ki_lock); 1273 CP(*ki, *ki32, ki_rqindex); 1274 CP(*ki, *ki32, ki_oncpu); 1275 CP(*ki, *ki32, ki_lastcpu); 1276 1277 /* XXX TODO: wrap cpu value as appropriate */ 1278 CP(*ki, *ki32, ki_oncpu_old); 1279 CP(*ki, *ki32, ki_lastcpu_old); 1280 1281 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1282 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1283 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1284 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1285 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1286 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1287 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1288 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1289 CP(*ki, *ki32, ki_tracer); 1290 CP(*ki, *ki32, ki_flag2); 1291 CP(*ki, *ki32, ki_fibnum); 1292 CP(*ki, *ki32, ki_cr_flags); 1293 CP(*ki, *ki32, ki_jid); 1294 CP(*ki, *ki32, ki_numthreads); 1295 CP(*ki, *ki32, ki_tid); 1296 CP(*ki, *ki32, ki_pri); 1297 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1298 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1299 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1300 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1301 PTRTRIM_CP(*ki, *ki32, ki_udata); 1302 CP(*ki, *ki32, ki_sflag); 1303 CP(*ki, *ki32, ki_tdflags); 1304 } 1305 #endif 1306 1307 int 1308 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1309 { 1310 struct thread *td; 1311 struct kinfo_proc ki; 1312 #ifdef COMPAT_FREEBSD32 1313 struct kinfo_proc32 ki32; 1314 #endif 1315 int error; 1316 1317 PROC_LOCK_ASSERT(p, MA_OWNED); 1318 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1319 1320 error = 0; 1321 fill_kinfo_proc(p, &ki); 1322 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1323 #ifdef COMPAT_FREEBSD32 1324 if ((flags & KERN_PROC_MASK32) != 0) { 1325 freebsd32_kinfo_proc_out(&ki, &ki32); 1326 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1327 error = ENOMEM; 1328 } else 1329 #endif 1330 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1331 error = ENOMEM; 1332 } else { 1333 FOREACH_THREAD_IN_PROC(p, td) { 1334 fill_kinfo_thread(td, &ki, 1); 1335 #ifdef COMPAT_FREEBSD32 1336 if ((flags & KERN_PROC_MASK32) != 0) { 1337 freebsd32_kinfo_proc_out(&ki, &ki32); 1338 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1339 error = ENOMEM; 1340 } else 1341 #endif 1342 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1343 error = ENOMEM; 1344 if (error != 0) 1345 break; 1346 } 1347 } 1348 PROC_UNLOCK(p); 1349 return (error); 1350 } 1351 1352 static int 1353 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1354 int doingzomb) 1355 { 1356 struct sbuf sb; 1357 struct kinfo_proc ki; 1358 struct proc *np; 1359 int error, error2; 1360 pid_t pid; 1361 1362 pid = p->p_pid; 1363 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1364 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1365 error = kern_proc_out(p, &sb, flags); 1366 error2 = sbuf_finish(&sb); 1367 sbuf_delete(&sb); 1368 if (error != 0) 1369 return (error); 1370 else if (error2 != 0) 1371 return (error2); 1372 if (doingzomb) 1373 np = zpfind(pid); 1374 else { 1375 if (pid == 0) 1376 return (0); 1377 np = pfind(pid); 1378 } 1379 if (np == NULL) 1380 return (ESRCH); 1381 if (np != p) { 1382 PROC_UNLOCK(np); 1383 return (ESRCH); 1384 } 1385 PROC_UNLOCK(np); 1386 return (0); 1387 } 1388 1389 static int 1390 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1391 { 1392 int *name = (int *)arg1; 1393 u_int namelen = arg2; 1394 struct proc *p; 1395 int flags, doingzomb, oid_number; 1396 int error = 0; 1397 1398 oid_number = oidp->oid_number; 1399 if (oid_number != KERN_PROC_ALL && 1400 (oid_number & KERN_PROC_INC_THREAD) == 0) 1401 flags = KERN_PROC_NOTHREADS; 1402 else { 1403 flags = 0; 1404 oid_number &= ~KERN_PROC_INC_THREAD; 1405 } 1406 #ifdef COMPAT_FREEBSD32 1407 if (req->flags & SCTL_MASK32) 1408 flags |= KERN_PROC_MASK32; 1409 #endif 1410 if (oid_number == KERN_PROC_PID) { 1411 if (namelen != 1) 1412 return (EINVAL); 1413 error = sysctl_wire_old_buffer(req, 0); 1414 if (error) 1415 return (error); 1416 sx_slock(&proctree_lock); 1417 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1418 if (error == 0) 1419 error = sysctl_out_proc(p, req, flags, 0); 1420 sx_sunlock(&proctree_lock); 1421 return (error); 1422 } 1423 1424 switch (oid_number) { 1425 case KERN_PROC_ALL: 1426 if (namelen != 0) 1427 return (EINVAL); 1428 break; 1429 case KERN_PROC_PROC: 1430 if (namelen != 0 && namelen != 1) 1431 return (EINVAL); 1432 break; 1433 default: 1434 if (namelen != 1) 1435 return (EINVAL); 1436 break; 1437 } 1438 1439 if (!req->oldptr) { 1440 /* overestimate by 5 procs */ 1441 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1442 if (error) 1443 return (error); 1444 } 1445 error = sysctl_wire_old_buffer(req, 0); 1446 if (error != 0) 1447 return (error); 1448 sx_slock(&proctree_lock); 1449 sx_slock(&allproc_lock); 1450 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1451 if (!doingzomb) 1452 p = LIST_FIRST(&allproc); 1453 else 1454 p = LIST_FIRST(&zombproc); 1455 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1456 /* 1457 * Skip embryonic processes. 1458 */ 1459 PROC_LOCK(p); 1460 if (p->p_state == PRS_NEW) { 1461 PROC_UNLOCK(p); 1462 continue; 1463 } 1464 KASSERT(p->p_ucred != NULL, 1465 ("process credential is NULL for non-NEW proc")); 1466 /* 1467 * Show a user only appropriate processes. 1468 */ 1469 if (p_cansee(curthread, p)) { 1470 PROC_UNLOCK(p); 1471 continue; 1472 } 1473 /* 1474 * TODO - make more efficient (see notes below). 1475 * do by session. 1476 */ 1477 switch (oid_number) { 1478 1479 case KERN_PROC_GID: 1480 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1481 PROC_UNLOCK(p); 1482 continue; 1483 } 1484 break; 1485 1486 case KERN_PROC_PGRP: 1487 /* could do this by traversing pgrp */ 1488 if (p->p_pgrp == NULL || 1489 p->p_pgrp->pg_id != (pid_t)name[0]) { 1490 PROC_UNLOCK(p); 1491 continue; 1492 } 1493 break; 1494 1495 case KERN_PROC_RGID: 1496 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1497 PROC_UNLOCK(p); 1498 continue; 1499 } 1500 break; 1501 1502 case KERN_PROC_SESSION: 1503 if (p->p_session == NULL || 1504 p->p_session->s_sid != (pid_t)name[0]) { 1505 PROC_UNLOCK(p); 1506 continue; 1507 } 1508 break; 1509 1510 case KERN_PROC_TTY: 1511 if ((p->p_flag & P_CONTROLT) == 0 || 1512 p->p_session == NULL) { 1513 PROC_UNLOCK(p); 1514 continue; 1515 } 1516 /* XXX proctree_lock */ 1517 SESS_LOCK(p->p_session); 1518 if (p->p_session->s_ttyp == NULL || 1519 tty_udev(p->p_session->s_ttyp) != 1520 (dev_t)name[0]) { 1521 SESS_UNLOCK(p->p_session); 1522 PROC_UNLOCK(p); 1523 continue; 1524 } 1525 SESS_UNLOCK(p->p_session); 1526 break; 1527 1528 case KERN_PROC_UID: 1529 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1530 PROC_UNLOCK(p); 1531 continue; 1532 } 1533 break; 1534 1535 case KERN_PROC_RUID: 1536 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1537 PROC_UNLOCK(p); 1538 continue; 1539 } 1540 break; 1541 1542 case KERN_PROC_PROC: 1543 break; 1544 1545 default: 1546 break; 1547 1548 } 1549 1550 error = sysctl_out_proc(p, req, flags, doingzomb); 1551 if (error) { 1552 sx_sunlock(&allproc_lock); 1553 sx_sunlock(&proctree_lock); 1554 return (error); 1555 } 1556 } 1557 } 1558 sx_sunlock(&allproc_lock); 1559 sx_sunlock(&proctree_lock); 1560 return (0); 1561 } 1562 1563 struct pargs * 1564 pargs_alloc(int len) 1565 { 1566 struct pargs *pa; 1567 1568 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1569 M_WAITOK); 1570 refcount_init(&pa->ar_ref, 1); 1571 pa->ar_length = len; 1572 return (pa); 1573 } 1574 1575 static void 1576 pargs_free(struct pargs *pa) 1577 { 1578 1579 free(pa, M_PARGS); 1580 } 1581 1582 void 1583 pargs_hold(struct pargs *pa) 1584 { 1585 1586 if (pa == NULL) 1587 return; 1588 refcount_acquire(&pa->ar_ref); 1589 } 1590 1591 void 1592 pargs_drop(struct pargs *pa) 1593 { 1594 1595 if (pa == NULL) 1596 return; 1597 if (refcount_release(&pa->ar_ref)) 1598 pargs_free(pa); 1599 } 1600 1601 static int 1602 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1603 size_t len) 1604 { 1605 ssize_t n; 1606 1607 /* 1608 * This may return a short read if the string is shorter than the chunk 1609 * and is aligned at the end of the page, and the following page is not 1610 * mapped. 1611 */ 1612 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1613 if (n <= 0) 1614 return (ENOMEM); 1615 return (0); 1616 } 1617 1618 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1619 1620 enum proc_vector_type { 1621 PROC_ARG, 1622 PROC_ENV, 1623 PROC_AUX, 1624 }; 1625 1626 #ifdef COMPAT_FREEBSD32 1627 static int 1628 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1629 size_t *vsizep, enum proc_vector_type type) 1630 { 1631 struct freebsd32_ps_strings pss; 1632 Elf32_Auxinfo aux; 1633 vm_offset_t vptr, ptr; 1634 uint32_t *proc_vector32; 1635 char **proc_vector; 1636 size_t vsize, size; 1637 int i, error; 1638 1639 error = 0; 1640 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1641 sizeof(pss)) != sizeof(pss)) 1642 return (ENOMEM); 1643 switch (type) { 1644 case PROC_ARG: 1645 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1646 vsize = pss.ps_nargvstr; 1647 if (vsize > ARG_MAX) 1648 return (ENOEXEC); 1649 size = vsize * sizeof(int32_t); 1650 break; 1651 case PROC_ENV: 1652 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1653 vsize = pss.ps_nenvstr; 1654 if (vsize > ARG_MAX) 1655 return (ENOEXEC); 1656 size = vsize * sizeof(int32_t); 1657 break; 1658 case PROC_AUX: 1659 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1660 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1661 if (vptr % 4 != 0) 1662 return (ENOEXEC); 1663 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1664 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1665 sizeof(aux)) 1666 return (ENOMEM); 1667 if (aux.a_type == AT_NULL) 1668 break; 1669 ptr += sizeof(aux); 1670 } 1671 if (aux.a_type != AT_NULL) 1672 return (ENOEXEC); 1673 vsize = i + 1; 1674 size = vsize * sizeof(aux); 1675 break; 1676 default: 1677 KASSERT(0, ("Wrong proc vector type: %d", type)); 1678 return (EINVAL); 1679 } 1680 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1681 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1682 error = ENOMEM; 1683 goto done; 1684 } 1685 if (type == PROC_AUX) { 1686 *proc_vectorp = (char **)proc_vector32; 1687 *vsizep = vsize; 1688 return (0); 1689 } 1690 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1691 for (i = 0; i < (int)vsize; i++) 1692 proc_vector[i] = PTRIN(proc_vector32[i]); 1693 *proc_vectorp = proc_vector; 1694 *vsizep = vsize; 1695 done: 1696 free(proc_vector32, M_TEMP); 1697 return (error); 1698 } 1699 #endif 1700 1701 static int 1702 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1703 size_t *vsizep, enum proc_vector_type type) 1704 { 1705 struct ps_strings pss; 1706 Elf_Auxinfo aux; 1707 vm_offset_t vptr, ptr; 1708 char **proc_vector; 1709 size_t vsize, size; 1710 int i; 1711 1712 #ifdef COMPAT_FREEBSD32 1713 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1714 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1715 #endif 1716 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1717 sizeof(pss)) != sizeof(pss)) 1718 return (ENOMEM); 1719 switch (type) { 1720 case PROC_ARG: 1721 vptr = (vm_offset_t)pss.ps_argvstr; 1722 vsize = pss.ps_nargvstr; 1723 if (vsize > ARG_MAX) 1724 return (ENOEXEC); 1725 size = vsize * sizeof(char *); 1726 break; 1727 case PROC_ENV: 1728 vptr = (vm_offset_t)pss.ps_envstr; 1729 vsize = pss.ps_nenvstr; 1730 if (vsize > ARG_MAX) 1731 return (ENOEXEC); 1732 size = vsize * sizeof(char *); 1733 break; 1734 case PROC_AUX: 1735 /* 1736 * The aux array is just above env array on the stack. Check 1737 * that the address is naturally aligned. 1738 */ 1739 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1740 * sizeof(char *); 1741 #if __ELF_WORD_SIZE == 64 1742 if (vptr % sizeof(uint64_t) != 0) 1743 #else 1744 if (vptr % sizeof(uint32_t) != 0) 1745 #endif 1746 return (ENOEXEC); 1747 /* 1748 * We count the array size reading the aux vectors from the 1749 * stack until AT_NULL vector is returned. So (to keep the code 1750 * simple) we read the process stack twice: the first time here 1751 * to find the size and the second time when copying the vectors 1752 * to the allocated proc_vector. 1753 */ 1754 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1755 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1756 sizeof(aux)) 1757 return (ENOMEM); 1758 if (aux.a_type == AT_NULL) 1759 break; 1760 ptr += sizeof(aux); 1761 } 1762 /* 1763 * If the PROC_AUXV_MAX entries are iterated over, and we have 1764 * not reached AT_NULL, it is most likely we are reading wrong 1765 * data: either the process doesn't have auxv array or data has 1766 * been modified. Return the error in this case. 1767 */ 1768 if (aux.a_type != AT_NULL) 1769 return (ENOEXEC); 1770 vsize = i + 1; 1771 size = vsize * sizeof(aux); 1772 break; 1773 default: 1774 KASSERT(0, ("Wrong proc vector type: %d", type)); 1775 return (EINVAL); /* In case we are built without INVARIANTS. */ 1776 } 1777 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1778 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1779 free(proc_vector, M_TEMP); 1780 return (ENOMEM); 1781 } 1782 *proc_vectorp = proc_vector; 1783 *vsizep = vsize; 1784 1785 return (0); 1786 } 1787 1788 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1789 1790 static int 1791 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1792 enum proc_vector_type type) 1793 { 1794 size_t done, len, nchr, vsize; 1795 int error, i; 1796 char **proc_vector, *sptr; 1797 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1798 1799 PROC_ASSERT_HELD(p); 1800 1801 /* 1802 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1803 */ 1804 nchr = 2 * (PATH_MAX + ARG_MAX); 1805 1806 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1807 if (error != 0) 1808 return (error); 1809 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1810 /* 1811 * The program may have scribbled into its argv array, e.g. to 1812 * remove some arguments. If that has happened, break out 1813 * before trying to read from NULL. 1814 */ 1815 if (proc_vector[i] == NULL) 1816 break; 1817 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1818 error = proc_read_string(td, p, sptr, pss_string, 1819 sizeof(pss_string)); 1820 if (error != 0) 1821 goto done; 1822 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1823 if (done + len >= nchr) 1824 len = nchr - done - 1; 1825 sbuf_bcat(sb, pss_string, len); 1826 if (len != GET_PS_STRINGS_CHUNK_SZ) 1827 break; 1828 done += GET_PS_STRINGS_CHUNK_SZ; 1829 } 1830 sbuf_bcat(sb, "", 1); 1831 done += len + 1; 1832 } 1833 done: 1834 free(proc_vector, M_TEMP); 1835 return (error); 1836 } 1837 1838 int 1839 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1840 { 1841 1842 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1843 } 1844 1845 int 1846 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1847 { 1848 1849 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1850 } 1851 1852 int 1853 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1854 { 1855 size_t vsize, size; 1856 char **auxv; 1857 int error; 1858 1859 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1860 if (error == 0) { 1861 #ifdef COMPAT_FREEBSD32 1862 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1863 size = vsize * sizeof(Elf32_Auxinfo); 1864 else 1865 #endif 1866 size = vsize * sizeof(Elf_Auxinfo); 1867 if (sbuf_bcat(sb, auxv, size) != 0) 1868 error = ENOMEM; 1869 free(auxv, M_TEMP); 1870 } 1871 return (error); 1872 } 1873 1874 /* 1875 * This sysctl allows a process to retrieve the argument list or process 1876 * title for another process without groping around in the address space 1877 * of the other process. It also allow a process to set its own "process 1878 * title to a string of its own choice. 1879 */ 1880 static int 1881 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1882 { 1883 int *name = (int *)arg1; 1884 u_int namelen = arg2; 1885 struct pargs *newpa, *pa; 1886 struct proc *p; 1887 struct sbuf sb; 1888 int flags, error = 0, error2; 1889 1890 if (namelen != 1) 1891 return (EINVAL); 1892 1893 flags = PGET_CANSEE; 1894 if (req->newptr != NULL) 1895 flags |= PGET_ISCURRENT; 1896 error = pget((pid_t)name[0], flags, &p); 1897 if (error) 1898 return (error); 1899 1900 pa = p->p_args; 1901 if (pa != NULL) { 1902 pargs_hold(pa); 1903 PROC_UNLOCK(p); 1904 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1905 pargs_drop(pa); 1906 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1907 _PHOLD(p); 1908 PROC_UNLOCK(p); 1909 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1910 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1911 error = proc_getargv(curthread, p, &sb); 1912 error2 = sbuf_finish(&sb); 1913 PRELE(p); 1914 sbuf_delete(&sb); 1915 if (error == 0 && error2 != 0) 1916 error = error2; 1917 } else { 1918 PROC_UNLOCK(p); 1919 } 1920 if (error != 0 || req->newptr == NULL) 1921 return (error); 1922 1923 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1924 return (ENOMEM); 1925 newpa = pargs_alloc(req->newlen); 1926 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1927 if (error != 0) { 1928 pargs_free(newpa); 1929 return (error); 1930 } 1931 PROC_LOCK(p); 1932 pa = p->p_args; 1933 p->p_args = newpa; 1934 PROC_UNLOCK(p); 1935 pargs_drop(pa); 1936 return (0); 1937 } 1938 1939 /* 1940 * This sysctl allows a process to retrieve environment of another process. 1941 */ 1942 static int 1943 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1944 { 1945 int *name = (int *)arg1; 1946 u_int namelen = arg2; 1947 struct proc *p; 1948 struct sbuf sb; 1949 int error, error2; 1950 1951 if (namelen != 1) 1952 return (EINVAL); 1953 1954 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1955 if (error != 0) 1956 return (error); 1957 if ((p->p_flag & P_SYSTEM) != 0) { 1958 PRELE(p); 1959 return (0); 1960 } 1961 1962 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1963 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1964 error = proc_getenvv(curthread, p, &sb); 1965 error2 = sbuf_finish(&sb); 1966 PRELE(p); 1967 sbuf_delete(&sb); 1968 return (error != 0 ? error : error2); 1969 } 1970 1971 /* 1972 * This sysctl allows a process to retrieve ELF auxiliary vector of 1973 * another process. 1974 */ 1975 static int 1976 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1977 { 1978 int *name = (int *)arg1; 1979 u_int namelen = arg2; 1980 struct proc *p; 1981 struct sbuf sb; 1982 int error, error2; 1983 1984 if (namelen != 1) 1985 return (EINVAL); 1986 1987 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1988 if (error != 0) 1989 return (error); 1990 if ((p->p_flag & P_SYSTEM) != 0) { 1991 PRELE(p); 1992 return (0); 1993 } 1994 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1995 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1996 error = proc_getauxv(curthread, p, &sb); 1997 error2 = sbuf_finish(&sb); 1998 PRELE(p); 1999 sbuf_delete(&sb); 2000 return (error != 0 ? error : error2); 2001 } 2002 2003 /* 2004 * This sysctl allows a process to retrieve the path of the executable for 2005 * itself or another process. 2006 */ 2007 static int 2008 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2009 { 2010 pid_t *pidp = (pid_t *)arg1; 2011 unsigned int arglen = arg2; 2012 struct proc *p; 2013 struct vnode *vp; 2014 char *retbuf, *freebuf; 2015 int error; 2016 2017 if (arglen != 1) 2018 return (EINVAL); 2019 if (*pidp == -1) { /* -1 means this process */ 2020 p = req->td->td_proc; 2021 } else { 2022 error = pget(*pidp, PGET_CANSEE, &p); 2023 if (error != 0) 2024 return (error); 2025 } 2026 2027 vp = p->p_textvp; 2028 if (vp == NULL) { 2029 if (*pidp != -1) 2030 PROC_UNLOCK(p); 2031 return (0); 2032 } 2033 vref(vp); 2034 if (*pidp != -1) 2035 PROC_UNLOCK(p); 2036 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2037 vrele(vp); 2038 if (error) 2039 return (error); 2040 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2041 free(freebuf, M_TEMP); 2042 return (error); 2043 } 2044 2045 static int 2046 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2047 { 2048 struct proc *p; 2049 char *sv_name; 2050 int *name; 2051 int namelen; 2052 int error; 2053 2054 namelen = arg2; 2055 if (namelen != 1) 2056 return (EINVAL); 2057 2058 name = (int *)arg1; 2059 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2060 if (error != 0) 2061 return (error); 2062 sv_name = p->p_sysent->sv_name; 2063 PROC_UNLOCK(p); 2064 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2065 } 2066 2067 #ifdef KINFO_OVMENTRY_SIZE 2068 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2069 #endif 2070 2071 #ifdef COMPAT_FREEBSD7 2072 static int 2073 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2074 { 2075 vm_map_entry_t entry, tmp_entry; 2076 unsigned int last_timestamp; 2077 char *fullpath, *freepath; 2078 struct kinfo_ovmentry *kve; 2079 struct vattr va; 2080 struct ucred *cred; 2081 int error, *name; 2082 struct vnode *vp; 2083 struct proc *p; 2084 vm_map_t map; 2085 struct vmspace *vm; 2086 2087 name = (int *)arg1; 2088 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2089 if (error != 0) 2090 return (error); 2091 vm = vmspace_acquire_ref(p); 2092 if (vm == NULL) { 2093 PRELE(p); 2094 return (ESRCH); 2095 } 2096 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2097 2098 map = &vm->vm_map; 2099 vm_map_lock_read(map); 2100 for (entry = map->header.next; entry != &map->header; 2101 entry = entry->next) { 2102 vm_object_t obj, tobj, lobj; 2103 vm_offset_t addr; 2104 2105 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2106 continue; 2107 2108 bzero(kve, sizeof(*kve)); 2109 kve->kve_structsize = sizeof(*kve); 2110 2111 kve->kve_private_resident = 0; 2112 obj = entry->object.vm_object; 2113 if (obj != NULL) { 2114 VM_OBJECT_RLOCK(obj); 2115 if (obj->shadow_count == 1) 2116 kve->kve_private_resident = 2117 obj->resident_page_count; 2118 } 2119 kve->kve_resident = 0; 2120 addr = entry->start; 2121 while (addr < entry->end) { 2122 if (pmap_extract(map->pmap, addr)) 2123 kve->kve_resident++; 2124 addr += PAGE_SIZE; 2125 } 2126 2127 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2128 if (tobj != obj) 2129 VM_OBJECT_RLOCK(tobj); 2130 if (lobj != obj) 2131 VM_OBJECT_RUNLOCK(lobj); 2132 lobj = tobj; 2133 } 2134 2135 kve->kve_start = (void*)entry->start; 2136 kve->kve_end = (void*)entry->end; 2137 kve->kve_offset = (off_t)entry->offset; 2138 2139 if (entry->protection & VM_PROT_READ) 2140 kve->kve_protection |= KVME_PROT_READ; 2141 if (entry->protection & VM_PROT_WRITE) 2142 kve->kve_protection |= KVME_PROT_WRITE; 2143 if (entry->protection & VM_PROT_EXECUTE) 2144 kve->kve_protection |= KVME_PROT_EXEC; 2145 2146 if (entry->eflags & MAP_ENTRY_COW) 2147 kve->kve_flags |= KVME_FLAG_COW; 2148 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2149 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2150 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2151 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2152 2153 last_timestamp = map->timestamp; 2154 vm_map_unlock_read(map); 2155 2156 kve->kve_fileid = 0; 2157 kve->kve_fsid = 0; 2158 freepath = NULL; 2159 fullpath = ""; 2160 if (lobj) { 2161 vp = NULL; 2162 switch (lobj->type) { 2163 case OBJT_DEFAULT: 2164 kve->kve_type = KVME_TYPE_DEFAULT; 2165 break; 2166 case OBJT_VNODE: 2167 kve->kve_type = KVME_TYPE_VNODE; 2168 vp = lobj->handle; 2169 vref(vp); 2170 break; 2171 case OBJT_SWAP: 2172 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2173 kve->kve_type = KVME_TYPE_VNODE; 2174 if ((lobj->flags & OBJ_TMPFS) != 0) { 2175 vp = lobj->un_pager.swp.swp_tmpfs; 2176 vref(vp); 2177 } 2178 } else { 2179 kve->kve_type = KVME_TYPE_SWAP; 2180 } 2181 break; 2182 case OBJT_DEVICE: 2183 kve->kve_type = KVME_TYPE_DEVICE; 2184 break; 2185 case OBJT_PHYS: 2186 kve->kve_type = KVME_TYPE_PHYS; 2187 break; 2188 case OBJT_DEAD: 2189 kve->kve_type = KVME_TYPE_DEAD; 2190 break; 2191 case OBJT_SG: 2192 kve->kve_type = KVME_TYPE_SG; 2193 break; 2194 default: 2195 kve->kve_type = KVME_TYPE_UNKNOWN; 2196 break; 2197 } 2198 if (lobj != obj) 2199 VM_OBJECT_RUNLOCK(lobj); 2200 2201 kve->kve_ref_count = obj->ref_count; 2202 kve->kve_shadow_count = obj->shadow_count; 2203 VM_OBJECT_RUNLOCK(obj); 2204 if (vp != NULL) { 2205 vn_fullpath(curthread, vp, &fullpath, 2206 &freepath); 2207 cred = curthread->td_ucred; 2208 vn_lock(vp, LK_SHARED | LK_RETRY); 2209 if (VOP_GETATTR(vp, &va, cred) == 0) { 2210 kve->kve_fileid = va.va_fileid; 2211 /* truncate */ 2212 kve->kve_fsid = va.va_fsid; 2213 } 2214 vput(vp); 2215 } 2216 } else { 2217 kve->kve_type = KVME_TYPE_NONE; 2218 kve->kve_ref_count = 0; 2219 kve->kve_shadow_count = 0; 2220 } 2221 2222 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2223 if (freepath != NULL) 2224 free(freepath, M_TEMP); 2225 2226 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2227 vm_map_lock_read(map); 2228 if (error) 2229 break; 2230 if (last_timestamp != map->timestamp) { 2231 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2232 entry = tmp_entry; 2233 } 2234 } 2235 vm_map_unlock_read(map); 2236 vmspace_free(vm); 2237 PRELE(p); 2238 free(kve, M_TEMP); 2239 return (error); 2240 } 2241 #endif /* COMPAT_FREEBSD7 */ 2242 2243 #ifdef KINFO_VMENTRY_SIZE 2244 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2245 #endif 2246 2247 static void 2248 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2249 struct kinfo_vmentry *kve) 2250 { 2251 vm_object_t obj, tobj; 2252 vm_page_t m, m_adv; 2253 vm_offset_t addr; 2254 vm_paddr_t locked_pa; 2255 vm_pindex_t pi, pi_adv, pindex; 2256 2257 locked_pa = 0; 2258 obj = entry->object.vm_object; 2259 addr = entry->start; 2260 m_adv = NULL; 2261 pi = OFF_TO_IDX(entry->offset); 2262 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2263 if (m_adv != NULL) { 2264 m = m_adv; 2265 } else { 2266 pi_adv = atop(entry->end - addr); 2267 pindex = pi; 2268 for (tobj = obj;; tobj = tobj->backing_object) { 2269 m = vm_page_find_least(tobj, pindex); 2270 if (m != NULL) { 2271 if (m->pindex == pindex) 2272 break; 2273 if (pi_adv > m->pindex - pindex) { 2274 pi_adv = m->pindex - pindex; 2275 m_adv = m; 2276 } 2277 } 2278 if (tobj->backing_object == NULL) 2279 goto next; 2280 pindex += OFF_TO_IDX(tobj-> 2281 backing_object_offset); 2282 } 2283 } 2284 m_adv = NULL; 2285 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2286 (addr & (pagesizes[1] - 1)) == 0 && 2287 (pmap_mincore(map->pmap, addr, &locked_pa) & 2288 MINCORE_SUPER) != 0) { 2289 kve->kve_flags |= KVME_FLAG_SUPER; 2290 pi_adv = atop(pagesizes[1]); 2291 } else { 2292 /* 2293 * We do not test the found page on validity. 2294 * Either the page is busy and being paged in, 2295 * or it was invalidated. The first case 2296 * should be counted as resident, the second 2297 * is not so clear; we do account both. 2298 */ 2299 pi_adv = 1; 2300 } 2301 kve->kve_resident += pi_adv; 2302 next:; 2303 } 2304 PA_UNLOCK_COND(locked_pa); 2305 } 2306 2307 /* 2308 * Must be called with the process locked and will return unlocked. 2309 */ 2310 int 2311 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2312 { 2313 vm_map_entry_t entry, tmp_entry; 2314 struct vattr va; 2315 vm_map_t map; 2316 vm_object_t obj, tobj, lobj; 2317 char *fullpath, *freepath; 2318 struct kinfo_vmentry *kve; 2319 struct ucred *cred; 2320 struct vnode *vp; 2321 struct vmspace *vm; 2322 vm_offset_t addr; 2323 unsigned int last_timestamp; 2324 int error; 2325 2326 PROC_LOCK_ASSERT(p, MA_OWNED); 2327 2328 _PHOLD(p); 2329 PROC_UNLOCK(p); 2330 vm = vmspace_acquire_ref(p); 2331 if (vm == NULL) { 2332 PRELE(p); 2333 return (ESRCH); 2334 } 2335 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2336 2337 error = 0; 2338 map = &vm->vm_map; 2339 vm_map_lock_read(map); 2340 for (entry = map->header.next; entry != &map->header; 2341 entry = entry->next) { 2342 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2343 continue; 2344 2345 addr = entry->end; 2346 bzero(kve, sizeof(*kve)); 2347 obj = entry->object.vm_object; 2348 if (obj != NULL) { 2349 for (tobj = obj; tobj != NULL; 2350 tobj = tobj->backing_object) { 2351 VM_OBJECT_RLOCK(tobj); 2352 lobj = tobj; 2353 } 2354 if (obj->backing_object == NULL) 2355 kve->kve_private_resident = 2356 obj->resident_page_count; 2357 if (!vmmap_skip_res_cnt) 2358 kern_proc_vmmap_resident(map, entry, kve); 2359 for (tobj = obj; tobj != NULL; 2360 tobj = tobj->backing_object) { 2361 if (tobj != obj && tobj != lobj) 2362 VM_OBJECT_RUNLOCK(tobj); 2363 } 2364 } else { 2365 lobj = NULL; 2366 } 2367 2368 kve->kve_start = entry->start; 2369 kve->kve_end = entry->end; 2370 kve->kve_offset = entry->offset; 2371 2372 if (entry->protection & VM_PROT_READ) 2373 kve->kve_protection |= KVME_PROT_READ; 2374 if (entry->protection & VM_PROT_WRITE) 2375 kve->kve_protection |= KVME_PROT_WRITE; 2376 if (entry->protection & VM_PROT_EXECUTE) 2377 kve->kve_protection |= KVME_PROT_EXEC; 2378 2379 if (entry->eflags & MAP_ENTRY_COW) 2380 kve->kve_flags |= KVME_FLAG_COW; 2381 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2382 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2383 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2384 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2385 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2386 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2387 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2388 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2389 2390 last_timestamp = map->timestamp; 2391 vm_map_unlock_read(map); 2392 2393 freepath = NULL; 2394 fullpath = ""; 2395 if (lobj != NULL) { 2396 vp = NULL; 2397 switch (lobj->type) { 2398 case OBJT_DEFAULT: 2399 kve->kve_type = KVME_TYPE_DEFAULT; 2400 break; 2401 case OBJT_VNODE: 2402 kve->kve_type = KVME_TYPE_VNODE; 2403 vp = lobj->handle; 2404 vref(vp); 2405 break; 2406 case OBJT_SWAP: 2407 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2408 kve->kve_type = KVME_TYPE_VNODE; 2409 if ((lobj->flags & OBJ_TMPFS) != 0) { 2410 vp = lobj->un_pager.swp.swp_tmpfs; 2411 vref(vp); 2412 } 2413 } else { 2414 kve->kve_type = KVME_TYPE_SWAP; 2415 } 2416 break; 2417 case OBJT_DEVICE: 2418 kve->kve_type = KVME_TYPE_DEVICE; 2419 break; 2420 case OBJT_PHYS: 2421 kve->kve_type = KVME_TYPE_PHYS; 2422 break; 2423 case OBJT_DEAD: 2424 kve->kve_type = KVME_TYPE_DEAD; 2425 break; 2426 case OBJT_SG: 2427 kve->kve_type = KVME_TYPE_SG; 2428 break; 2429 case OBJT_MGTDEVICE: 2430 kve->kve_type = KVME_TYPE_MGTDEVICE; 2431 break; 2432 default: 2433 kve->kve_type = KVME_TYPE_UNKNOWN; 2434 break; 2435 } 2436 if (lobj != obj) 2437 VM_OBJECT_RUNLOCK(lobj); 2438 2439 kve->kve_ref_count = obj->ref_count; 2440 kve->kve_shadow_count = obj->shadow_count; 2441 VM_OBJECT_RUNLOCK(obj); 2442 if (vp != NULL) { 2443 vn_fullpath(curthread, vp, &fullpath, 2444 &freepath); 2445 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2446 cred = curthread->td_ucred; 2447 vn_lock(vp, LK_SHARED | LK_RETRY); 2448 if (VOP_GETATTR(vp, &va, cred) == 0) { 2449 kve->kve_vn_fileid = va.va_fileid; 2450 kve->kve_vn_fsid = va.va_fsid; 2451 kve->kve_vn_fsid_freebsd11 = 2452 kve->kve_vn_fsid; /* truncate */ 2453 kve->kve_vn_mode = 2454 MAKEIMODE(va.va_type, va.va_mode); 2455 kve->kve_vn_size = va.va_size; 2456 kve->kve_vn_rdev = va.va_rdev; 2457 kve->kve_vn_rdev_freebsd11 = 2458 kve->kve_vn_rdev; /* truncate */ 2459 kve->kve_status = KF_ATTR_VALID; 2460 } 2461 vput(vp); 2462 } 2463 } else { 2464 kve->kve_type = KVME_TYPE_NONE; 2465 kve->kve_ref_count = 0; 2466 kve->kve_shadow_count = 0; 2467 } 2468 2469 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2470 if (freepath != NULL) 2471 free(freepath, M_TEMP); 2472 2473 /* Pack record size down */ 2474 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2475 kve->kve_structsize = 2476 offsetof(struct kinfo_vmentry, kve_path) + 2477 strlen(kve->kve_path) + 1; 2478 else 2479 kve->kve_structsize = sizeof(*kve); 2480 kve->kve_structsize = roundup(kve->kve_structsize, 2481 sizeof(uint64_t)); 2482 2483 /* Halt filling and truncate rather than exceeding maxlen */ 2484 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2485 error = 0; 2486 vm_map_lock_read(map); 2487 break; 2488 } else if (maxlen != -1) 2489 maxlen -= kve->kve_structsize; 2490 2491 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2492 error = ENOMEM; 2493 vm_map_lock_read(map); 2494 if (error != 0) 2495 break; 2496 if (last_timestamp != map->timestamp) { 2497 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2498 entry = tmp_entry; 2499 } 2500 } 2501 vm_map_unlock_read(map); 2502 vmspace_free(vm); 2503 PRELE(p); 2504 free(kve, M_TEMP); 2505 return (error); 2506 } 2507 2508 static int 2509 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2510 { 2511 struct proc *p; 2512 struct sbuf sb; 2513 int error, error2, *name; 2514 2515 name = (int *)arg1; 2516 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2517 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2518 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2519 if (error != 0) { 2520 sbuf_delete(&sb); 2521 return (error); 2522 } 2523 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2524 error2 = sbuf_finish(&sb); 2525 sbuf_delete(&sb); 2526 return (error != 0 ? error : error2); 2527 } 2528 2529 #if defined(STACK) || defined(DDB) 2530 static int 2531 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2532 { 2533 struct kinfo_kstack *kkstp; 2534 int error, i, *name, numthreads; 2535 lwpid_t *lwpidarray; 2536 struct thread *td; 2537 struct stack *st; 2538 struct sbuf sb; 2539 struct proc *p; 2540 2541 name = (int *)arg1; 2542 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2543 if (error != 0) 2544 return (error); 2545 2546 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2547 st = stack_create(); 2548 2549 lwpidarray = NULL; 2550 PROC_LOCK(p); 2551 do { 2552 if (lwpidarray != NULL) { 2553 free(lwpidarray, M_TEMP); 2554 lwpidarray = NULL; 2555 } 2556 numthreads = p->p_numthreads; 2557 PROC_UNLOCK(p); 2558 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2559 M_WAITOK | M_ZERO); 2560 PROC_LOCK(p); 2561 } while (numthreads < p->p_numthreads); 2562 2563 /* 2564 * XXXRW: During the below loop, execve(2) and countless other sorts 2565 * of changes could have taken place. Should we check to see if the 2566 * vmspace has been replaced, or the like, in order to prevent 2567 * giving a snapshot that spans, say, execve(2), with some threads 2568 * before and some after? Among other things, the credentials could 2569 * have changed, in which case the right to extract debug info might 2570 * no longer be assured. 2571 */ 2572 i = 0; 2573 FOREACH_THREAD_IN_PROC(p, td) { 2574 KASSERT(i < numthreads, 2575 ("sysctl_kern_proc_kstack: numthreads")); 2576 lwpidarray[i] = td->td_tid; 2577 i++; 2578 } 2579 numthreads = i; 2580 for (i = 0; i < numthreads; i++) { 2581 td = thread_find(p, lwpidarray[i]); 2582 if (td == NULL) { 2583 continue; 2584 } 2585 bzero(kkstp, sizeof(*kkstp)); 2586 (void)sbuf_new(&sb, kkstp->kkst_trace, 2587 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2588 thread_lock(td); 2589 kkstp->kkst_tid = td->td_tid; 2590 if (TD_IS_SWAPPED(td)) { 2591 kkstp->kkst_state = KKST_STATE_SWAPPED; 2592 } else if (TD_IS_RUNNING(td)) { 2593 if (stack_save_td_running(st, td) == 0) 2594 kkstp->kkst_state = KKST_STATE_STACKOK; 2595 else 2596 kkstp->kkst_state = KKST_STATE_RUNNING; 2597 } else { 2598 kkstp->kkst_state = KKST_STATE_STACKOK; 2599 stack_save_td(st, td); 2600 } 2601 thread_unlock(td); 2602 PROC_UNLOCK(p); 2603 stack_sbuf_print(&sb, st); 2604 sbuf_finish(&sb); 2605 sbuf_delete(&sb); 2606 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2607 PROC_LOCK(p); 2608 if (error) 2609 break; 2610 } 2611 _PRELE(p); 2612 PROC_UNLOCK(p); 2613 if (lwpidarray != NULL) 2614 free(lwpidarray, M_TEMP); 2615 stack_destroy(st); 2616 free(kkstp, M_TEMP); 2617 return (error); 2618 } 2619 #endif 2620 2621 /* 2622 * This sysctl allows a process to retrieve the full list of groups from 2623 * itself or another process. 2624 */ 2625 static int 2626 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2627 { 2628 pid_t *pidp = (pid_t *)arg1; 2629 unsigned int arglen = arg2; 2630 struct proc *p; 2631 struct ucred *cred; 2632 int error; 2633 2634 if (arglen != 1) 2635 return (EINVAL); 2636 if (*pidp == -1) { /* -1 means this process */ 2637 p = req->td->td_proc; 2638 PROC_LOCK(p); 2639 } else { 2640 error = pget(*pidp, PGET_CANSEE, &p); 2641 if (error != 0) 2642 return (error); 2643 } 2644 2645 cred = crhold(p->p_ucred); 2646 PROC_UNLOCK(p); 2647 2648 error = SYSCTL_OUT(req, cred->cr_groups, 2649 cred->cr_ngroups * sizeof(gid_t)); 2650 crfree(cred); 2651 return (error); 2652 } 2653 2654 /* 2655 * This sysctl allows a process to retrieve or/and set the resource limit for 2656 * another process. 2657 */ 2658 static int 2659 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2660 { 2661 int *name = (int *)arg1; 2662 u_int namelen = arg2; 2663 struct rlimit rlim; 2664 struct proc *p; 2665 u_int which; 2666 int flags, error; 2667 2668 if (namelen != 2) 2669 return (EINVAL); 2670 2671 which = (u_int)name[1]; 2672 if (which >= RLIM_NLIMITS) 2673 return (EINVAL); 2674 2675 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2676 return (EINVAL); 2677 2678 flags = PGET_HOLD | PGET_NOTWEXIT; 2679 if (req->newptr != NULL) 2680 flags |= PGET_CANDEBUG; 2681 else 2682 flags |= PGET_CANSEE; 2683 error = pget((pid_t)name[0], flags, &p); 2684 if (error != 0) 2685 return (error); 2686 2687 /* 2688 * Retrieve limit. 2689 */ 2690 if (req->oldptr != NULL) { 2691 PROC_LOCK(p); 2692 lim_rlimit_proc(p, which, &rlim); 2693 PROC_UNLOCK(p); 2694 } 2695 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2696 if (error != 0) 2697 goto errout; 2698 2699 /* 2700 * Set limit. 2701 */ 2702 if (req->newptr != NULL) { 2703 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2704 if (error == 0) 2705 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2706 } 2707 2708 errout: 2709 PRELE(p); 2710 return (error); 2711 } 2712 2713 /* 2714 * This sysctl allows a process to retrieve ps_strings structure location of 2715 * another process. 2716 */ 2717 static int 2718 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2719 { 2720 int *name = (int *)arg1; 2721 u_int namelen = arg2; 2722 struct proc *p; 2723 vm_offset_t ps_strings; 2724 int error; 2725 #ifdef COMPAT_FREEBSD32 2726 uint32_t ps_strings32; 2727 #endif 2728 2729 if (namelen != 1) 2730 return (EINVAL); 2731 2732 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2733 if (error != 0) 2734 return (error); 2735 #ifdef COMPAT_FREEBSD32 2736 if ((req->flags & SCTL_MASK32) != 0) { 2737 /* 2738 * We return 0 if the 32 bit emulation request is for a 64 bit 2739 * process. 2740 */ 2741 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2742 PTROUT(p->p_sysent->sv_psstrings) : 0; 2743 PROC_UNLOCK(p); 2744 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2745 return (error); 2746 } 2747 #endif 2748 ps_strings = p->p_sysent->sv_psstrings; 2749 PROC_UNLOCK(p); 2750 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2751 return (error); 2752 } 2753 2754 /* 2755 * This sysctl allows a process to retrieve umask of another process. 2756 */ 2757 static int 2758 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2759 { 2760 int *name = (int *)arg1; 2761 u_int namelen = arg2; 2762 struct proc *p; 2763 int error; 2764 u_short fd_cmask; 2765 2766 if (namelen != 1) 2767 return (EINVAL); 2768 2769 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2770 if (error != 0) 2771 return (error); 2772 2773 FILEDESC_SLOCK(p->p_fd); 2774 fd_cmask = p->p_fd->fd_cmask; 2775 FILEDESC_SUNLOCK(p->p_fd); 2776 PRELE(p); 2777 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2778 return (error); 2779 } 2780 2781 /* 2782 * This sysctl allows a process to set and retrieve binary osreldate of 2783 * another process. 2784 */ 2785 static int 2786 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2787 { 2788 int *name = (int *)arg1; 2789 u_int namelen = arg2; 2790 struct proc *p; 2791 int flags, error, osrel; 2792 2793 if (namelen != 1) 2794 return (EINVAL); 2795 2796 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2797 return (EINVAL); 2798 2799 flags = PGET_HOLD | PGET_NOTWEXIT; 2800 if (req->newptr != NULL) 2801 flags |= PGET_CANDEBUG; 2802 else 2803 flags |= PGET_CANSEE; 2804 error = pget((pid_t)name[0], flags, &p); 2805 if (error != 0) 2806 return (error); 2807 2808 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2809 if (error != 0) 2810 goto errout; 2811 2812 if (req->newptr != NULL) { 2813 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2814 if (error != 0) 2815 goto errout; 2816 if (osrel < 0) { 2817 error = EINVAL; 2818 goto errout; 2819 } 2820 p->p_osrel = osrel; 2821 } 2822 errout: 2823 PRELE(p); 2824 return (error); 2825 } 2826 2827 static int 2828 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2829 { 2830 int *name = (int *)arg1; 2831 u_int namelen = arg2; 2832 struct proc *p; 2833 struct kinfo_sigtramp kst; 2834 const struct sysentvec *sv; 2835 int error; 2836 #ifdef COMPAT_FREEBSD32 2837 struct kinfo_sigtramp32 kst32; 2838 #endif 2839 2840 if (namelen != 1) 2841 return (EINVAL); 2842 2843 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2844 if (error != 0) 2845 return (error); 2846 sv = p->p_sysent; 2847 #ifdef COMPAT_FREEBSD32 2848 if ((req->flags & SCTL_MASK32) != 0) { 2849 bzero(&kst32, sizeof(kst32)); 2850 if (SV_PROC_FLAG(p, SV_ILP32)) { 2851 if (sv->sv_sigcode_base != 0) { 2852 kst32.ksigtramp_start = sv->sv_sigcode_base; 2853 kst32.ksigtramp_end = sv->sv_sigcode_base + 2854 *sv->sv_szsigcode; 2855 } else { 2856 kst32.ksigtramp_start = sv->sv_psstrings - 2857 *sv->sv_szsigcode; 2858 kst32.ksigtramp_end = sv->sv_psstrings; 2859 } 2860 } 2861 PROC_UNLOCK(p); 2862 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2863 return (error); 2864 } 2865 #endif 2866 bzero(&kst, sizeof(kst)); 2867 if (sv->sv_sigcode_base != 0) { 2868 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2869 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2870 *sv->sv_szsigcode; 2871 } else { 2872 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2873 *sv->sv_szsigcode; 2874 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2875 } 2876 PROC_UNLOCK(p); 2877 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2878 return (error); 2879 } 2880 2881 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2882 2883 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2884 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2885 "Return entire process table"); 2886 2887 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2888 sysctl_kern_proc, "Process table"); 2889 2890 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2891 sysctl_kern_proc, "Process table"); 2892 2893 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2894 sysctl_kern_proc, "Process table"); 2895 2896 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2897 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2898 2899 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2900 sysctl_kern_proc, "Process table"); 2901 2902 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2903 sysctl_kern_proc, "Process table"); 2904 2905 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2906 sysctl_kern_proc, "Process table"); 2907 2908 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2909 sysctl_kern_proc, "Process table"); 2910 2911 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2912 sysctl_kern_proc, "Return process table, no threads"); 2913 2914 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2915 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2916 sysctl_kern_proc_args, "Process argument list"); 2917 2918 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2919 sysctl_kern_proc_env, "Process environment"); 2920 2921 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2922 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2923 2924 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2925 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2926 2927 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2928 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2929 "Process syscall vector name (ABI type)"); 2930 2931 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2932 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2933 2934 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2935 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2936 2937 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2938 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2939 2940 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2941 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2942 2943 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2944 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2945 2946 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2947 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2948 2949 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2950 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2951 2952 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2953 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2954 2955 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2956 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2957 "Return process table, no threads"); 2958 2959 #ifdef COMPAT_FREEBSD7 2960 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2961 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2962 #endif 2963 2964 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2965 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2966 2967 #if defined(STACK) || defined(DDB) 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2969 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2970 #endif 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2973 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2974 2975 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2976 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2977 "Process resource limits"); 2978 2979 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2980 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2981 "Process ps_strings location"); 2982 2983 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2984 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2985 2986 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2987 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2988 "Process binary osreldate"); 2989 2990 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2991 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2992 "Process signal trampoline location"); 2993 2994 int allproc_gen; 2995 2996 /* 2997 * stop_all_proc() purpose is to stop all process which have usermode, 2998 * except current process for obvious reasons. This makes it somewhat 2999 * unreliable when invoked from multithreaded process. The service 3000 * must not be user-callable anyway. 3001 */ 3002 void 3003 stop_all_proc(void) 3004 { 3005 struct proc *cp, *p; 3006 int r, gen; 3007 bool restart, seen_stopped, seen_exiting, stopped_some; 3008 3009 cp = curproc; 3010 allproc_loop: 3011 sx_xlock(&allproc_lock); 3012 gen = allproc_gen; 3013 seen_exiting = seen_stopped = stopped_some = restart = false; 3014 LIST_REMOVE(cp, p_list); 3015 LIST_INSERT_HEAD(&allproc, cp, p_list); 3016 for (;;) { 3017 p = LIST_NEXT(cp, p_list); 3018 if (p == NULL) 3019 break; 3020 LIST_REMOVE(cp, p_list); 3021 LIST_INSERT_AFTER(p, cp, p_list); 3022 PROC_LOCK(p); 3023 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3024 PROC_UNLOCK(p); 3025 continue; 3026 } 3027 if ((p->p_flag & P_WEXIT) != 0) { 3028 seen_exiting = true; 3029 PROC_UNLOCK(p); 3030 continue; 3031 } 3032 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3033 /* 3034 * Stopped processes are tolerated when there 3035 * are no other processes which might continue 3036 * them. P_STOPPED_SINGLE but not 3037 * P_TOTAL_STOP process still has at least one 3038 * thread running. 3039 */ 3040 seen_stopped = true; 3041 PROC_UNLOCK(p); 3042 continue; 3043 } 3044 _PHOLD(p); 3045 sx_xunlock(&allproc_lock); 3046 r = thread_single(p, SINGLE_ALLPROC); 3047 if (r != 0) 3048 restart = true; 3049 else 3050 stopped_some = true; 3051 _PRELE(p); 3052 PROC_UNLOCK(p); 3053 sx_xlock(&allproc_lock); 3054 } 3055 /* Catch forked children we did not see in iteration. */ 3056 if (gen != allproc_gen) 3057 restart = true; 3058 sx_xunlock(&allproc_lock); 3059 if (restart || stopped_some || seen_exiting || seen_stopped) { 3060 kern_yield(PRI_USER); 3061 goto allproc_loop; 3062 } 3063 } 3064 3065 void 3066 resume_all_proc(void) 3067 { 3068 struct proc *cp, *p; 3069 3070 cp = curproc; 3071 sx_xlock(&allproc_lock); 3072 LIST_REMOVE(cp, p_list); 3073 LIST_INSERT_HEAD(&allproc, cp, p_list); 3074 for (;;) { 3075 p = LIST_NEXT(cp, p_list); 3076 if (p == NULL) 3077 break; 3078 LIST_REMOVE(cp, p_list); 3079 LIST_INSERT_AFTER(p, cp, p_list); 3080 PROC_LOCK(p); 3081 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3082 sx_xunlock(&allproc_lock); 3083 _PHOLD(p); 3084 thread_single_end(p, SINGLE_ALLPROC); 3085 _PRELE(p); 3086 PROC_UNLOCK(p); 3087 sx_xlock(&allproc_lock); 3088 } else { 3089 PROC_UNLOCK(p); 3090 } 3091 } 3092 sx_xunlock(&allproc_lock); 3093 } 3094 3095 /* #define TOTAL_STOP_DEBUG 1 */ 3096 #ifdef TOTAL_STOP_DEBUG 3097 volatile static int ap_resume; 3098 #include <sys/mount.h> 3099 3100 static int 3101 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3102 { 3103 int error, val; 3104 3105 val = 0; 3106 ap_resume = 0; 3107 error = sysctl_handle_int(oidp, &val, 0, req); 3108 if (error != 0 || req->newptr == NULL) 3109 return (error); 3110 if (val != 0) { 3111 stop_all_proc(); 3112 syncer_suspend(); 3113 while (ap_resume == 0) 3114 ; 3115 syncer_resume(); 3116 resume_all_proc(); 3117 } 3118 return (0); 3119 } 3120 3121 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3122 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3123 sysctl_debug_stop_all_proc, "I", 3124 ""); 3125 #endif 3126