1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ddb.h" 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 #include "opt_stack.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/mutex.h> 47 #include <sys/proc.h> 48 #include <sys/refcount.h> 49 #include <sys/sbuf.h> 50 #include <sys/sysent.h> 51 #include <sys/sched.h> 52 #include <sys/smp.h> 53 #include <sys/stack.h> 54 #include <sys/sysctl.h> 55 #include <sys/filedesc.h> 56 #include <sys/tty.h> 57 #include <sys/signalvar.h> 58 #include <sys/sx.h> 59 #include <sys/user.h> 60 #include <sys/jail.h> 61 #include <sys/vnode.h> 62 #include <sys/eventhandler.h> 63 #ifdef KTRACE 64 #include <sys/uio.h> 65 #include <sys/ktrace.h> 66 #endif 67 68 #ifdef DDB 69 #include <ddb/ddb.h> 70 #endif 71 72 #include <vm/vm.h> 73 #include <vm/vm_extern.h> 74 #include <vm/pmap.h> 75 #include <vm/vm_map.h> 76 #include <vm/vm_object.h> 77 #include <vm/uma.h> 78 79 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 80 MALLOC_DEFINE(M_SESSION, "session", "session header"); 81 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 82 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 83 84 static void doenterpgrp(struct proc *, struct pgrp *); 85 static void orphanpg(struct pgrp *pg); 86 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 87 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 88 static void pgadjustjobc(struct pgrp *pgrp, int entering); 89 static void pgdelete(struct pgrp *); 90 static int proc_ctor(void *mem, int size, void *arg, int flags); 91 static void proc_dtor(void *mem, int size, void *arg); 92 static int proc_init(void *mem, int size, int flags); 93 static void proc_fini(void *mem, int size); 94 95 /* 96 * Other process lists 97 */ 98 struct pidhashhead *pidhashtbl; 99 u_long pidhash; 100 struct pgrphashhead *pgrphashtbl; 101 u_long pgrphash; 102 struct proclist allproc; 103 struct proclist zombproc; 104 struct sx allproc_lock; 105 struct sx proctree_lock; 106 struct mtx ppeers_lock; 107 uma_zone_t proc_zone; 108 uma_zone_t ithread_zone; 109 110 int kstack_pages = KSTACK_PAGES; 111 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 112 113 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 114 115 /* 116 * Initialize global process hashing structures. 117 */ 118 void 119 procinit() 120 { 121 122 sx_init(&allproc_lock, "allproc"); 123 sx_init(&proctree_lock, "proctree"); 124 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 125 LIST_INIT(&allproc); 126 LIST_INIT(&zombproc); 127 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 128 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 129 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 130 proc_ctor, proc_dtor, proc_init, proc_fini, 131 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 132 uihashinit(); 133 } 134 135 /* 136 * Prepare a proc for use. 137 */ 138 static int 139 proc_ctor(void *mem, int size, void *arg, int flags) 140 { 141 struct proc *p; 142 143 p = (struct proc *)mem; 144 EVENTHANDLER_INVOKE(process_ctor, p); 145 return (0); 146 } 147 148 /* 149 * Reclaim a proc after use. 150 */ 151 static void 152 proc_dtor(void *mem, int size, void *arg) 153 { 154 struct proc *p; 155 struct thread *td; 156 157 /* INVARIANTS checks go here */ 158 p = (struct proc *)mem; 159 td = FIRST_THREAD_IN_PROC(p); 160 if (td != NULL) { 161 #ifdef INVARIANTS 162 KASSERT((p->p_numthreads == 1), 163 ("bad number of threads in exiting process")); 164 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 165 #endif 166 /* Dispose of an alternate kstack, if it exists. 167 * XXX What if there are more than one thread in the proc? 168 * The first thread in the proc is special and not 169 * freed, so you gotta do this here. 170 */ 171 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 172 vm_thread_dispose_altkstack(td); 173 } 174 EVENTHANDLER_INVOKE(process_dtor, p); 175 if (p->p_ksi != NULL) 176 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 177 } 178 179 /* 180 * Initialize type-stable parts of a proc (when newly created). 181 */ 182 static int 183 proc_init(void *mem, int size, int flags) 184 { 185 struct proc *p; 186 187 p = (struct proc *)mem; 188 p->p_sched = (struct p_sched *)&p[1]; 189 bzero(&p->p_mtx, sizeof(struct mtx)); 190 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 191 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 192 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 193 EVENTHANDLER_INVOKE(process_init, p); 194 p->p_stats = pstats_alloc(); 195 return (0); 196 } 197 198 /* 199 * UMA should ensure that this function is never called. 200 * Freeing a proc structure would violate type stability. 201 */ 202 static void 203 proc_fini(void *mem, int size) 204 { 205 #ifdef notnow 206 struct proc *p; 207 208 p = (struct proc *)mem; 209 EVENTHANDLER_INVOKE(process_fini, p); 210 pstats_free(p->p_stats); 211 thread_free(FIRST_THREAD_IN_PROC(p)); 212 mtx_destroy(&p->p_mtx); 213 if (p->p_ksi != NULL) 214 ksiginfo_free(p->p_ksi); 215 #else 216 panic("proc reclaimed"); 217 #endif 218 } 219 220 /* 221 * Is p an inferior of the current process? 222 */ 223 int 224 inferior(p) 225 register struct proc *p; 226 { 227 228 sx_assert(&proctree_lock, SX_LOCKED); 229 for (; p != curproc; p = p->p_pptr) 230 if (p->p_pid == 0) 231 return (0); 232 return (1); 233 } 234 235 /* 236 * Locate a process by number; return only "live" processes -- i.e., neither 237 * zombies nor newly born but incompletely initialized processes. By not 238 * returning processes in the PRS_NEW state, we allow callers to avoid 239 * testing for that condition to avoid dereferencing p_ucred, et al. 240 */ 241 struct proc * 242 pfind(pid) 243 register pid_t pid; 244 { 245 register struct proc *p; 246 247 sx_slock(&allproc_lock); 248 LIST_FOREACH(p, PIDHASH(pid), p_hash) 249 if (p->p_pid == pid) { 250 if (p->p_state == PRS_NEW) { 251 p = NULL; 252 break; 253 } 254 PROC_LOCK(p); 255 break; 256 } 257 sx_sunlock(&allproc_lock); 258 return (p); 259 } 260 261 /* 262 * Locate a process group by number. 263 * The caller must hold proctree_lock. 264 */ 265 struct pgrp * 266 pgfind(pgid) 267 register pid_t pgid; 268 { 269 register struct pgrp *pgrp; 270 271 sx_assert(&proctree_lock, SX_LOCKED); 272 273 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 274 if (pgrp->pg_id == pgid) { 275 PGRP_LOCK(pgrp); 276 return (pgrp); 277 } 278 } 279 return (NULL); 280 } 281 282 /* 283 * Create a new process group. 284 * pgid must be equal to the pid of p. 285 * Begin a new session if required. 286 */ 287 int 288 enterpgrp(p, pgid, pgrp, sess) 289 register struct proc *p; 290 pid_t pgid; 291 struct pgrp *pgrp; 292 struct session *sess; 293 { 294 struct pgrp *pgrp2; 295 296 sx_assert(&proctree_lock, SX_XLOCKED); 297 298 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 299 KASSERT(p->p_pid == pgid, 300 ("enterpgrp: new pgrp and pid != pgid")); 301 302 pgrp2 = pgfind(pgid); 303 304 KASSERT(pgrp2 == NULL, 305 ("enterpgrp: pgrp with pgid exists")); 306 KASSERT(!SESS_LEADER(p), 307 ("enterpgrp: session leader attempted setpgrp")); 308 309 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 310 311 if (sess != NULL) { 312 /* 313 * new session 314 */ 315 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 316 mtx_lock(&Giant); /* XXX TTY */ 317 PROC_LOCK(p); 318 p->p_flag &= ~P_CONTROLT; 319 PROC_UNLOCK(p); 320 PGRP_LOCK(pgrp); 321 sess->s_leader = p; 322 sess->s_sid = p->p_pid; 323 sess->s_count = 1; 324 sess->s_ttyvp = NULL; 325 sess->s_ttyp = NULL; 326 bcopy(p->p_session->s_login, sess->s_login, 327 sizeof(sess->s_login)); 328 pgrp->pg_session = sess; 329 KASSERT(p == curproc, 330 ("enterpgrp: mksession and p != curproc")); 331 } else { 332 mtx_lock(&Giant); /* XXX TTY */ 333 pgrp->pg_session = p->p_session; 334 SESS_LOCK(pgrp->pg_session); 335 pgrp->pg_session->s_count++; 336 SESS_UNLOCK(pgrp->pg_session); 337 PGRP_LOCK(pgrp); 338 } 339 pgrp->pg_id = pgid; 340 LIST_INIT(&pgrp->pg_members); 341 342 /* 343 * As we have an exclusive lock of proctree_lock, 344 * this should not deadlock. 345 */ 346 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 347 pgrp->pg_jobc = 0; 348 SLIST_INIT(&pgrp->pg_sigiolst); 349 PGRP_UNLOCK(pgrp); 350 mtx_unlock(&Giant); /* XXX TTY */ 351 352 doenterpgrp(p, pgrp); 353 354 return (0); 355 } 356 357 /* 358 * Move p to an existing process group 359 */ 360 int 361 enterthispgrp(p, pgrp) 362 register struct proc *p; 363 struct pgrp *pgrp; 364 { 365 366 sx_assert(&proctree_lock, SX_XLOCKED); 367 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 368 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 369 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 370 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 371 KASSERT(pgrp->pg_session == p->p_session, 372 ("%s: pgrp's session %p, p->p_session %p.\n", 373 __func__, 374 pgrp->pg_session, 375 p->p_session)); 376 KASSERT(pgrp != p->p_pgrp, 377 ("%s: p belongs to pgrp.", __func__)); 378 379 doenterpgrp(p, pgrp); 380 381 return (0); 382 } 383 384 /* 385 * Move p to a process group 386 */ 387 static void 388 doenterpgrp(p, pgrp) 389 struct proc *p; 390 struct pgrp *pgrp; 391 { 392 struct pgrp *savepgrp; 393 394 sx_assert(&proctree_lock, SX_XLOCKED); 395 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 396 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 397 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 398 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 399 400 savepgrp = p->p_pgrp; 401 402 /* 403 * Adjust eligibility of affected pgrps to participate in job control. 404 * Increment eligibility counts before decrementing, otherwise we 405 * could reach 0 spuriously during the first call. 406 */ 407 fixjobc(p, pgrp, 1); 408 fixjobc(p, p->p_pgrp, 0); 409 410 mtx_lock(&Giant); /* XXX TTY */ 411 PGRP_LOCK(pgrp); 412 PGRP_LOCK(savepgrp); 413 PROC_LOCK(p); 414 LIST_REMOVE(p, p_pglist); 415 p->p_pgrp = pgrp; 416 PROC_UNLOCK(p); 417 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 418 PGRP_UNLOCK(savepgrp); 419 PGRP_UNLOCK(pgrp); 420 mtx_unlock(&Giant); /* XXX TTY */ 421 if (LIST_EMPTY(&savepgrp->pg_members)) 422 pgdelete(savepgrp); 423 } 424 425 /* 426 * remove process from process group 427 */ 428 int 429 leavepgrp(p) 430 register struct proc *p; 431 { 432 struct pgrp *savepgrp; 433 434 sx_assert(&proctree_lock, SX_XLOCKED); 435 savepgrp = p->p_pgrp; 436 mtx_lock(&Giant); /* XXX TTY */ 437 PGRP_LOCK(savepgrp); 438 PROC_LOCK(p); 439 LIST_REMOVE(p, p_pglist); 440 p->p_pgrp = NULL; 441 PROC_UNLOCK(p); 442 PGRP_UNLOCK(savepgrp); 443 mtx_unlock(&Giant); /* XXX TTY */ 444 if (LIST_EMPTY(&savepgrp->pg_members)) 445 pgdelete(savepgrp); 446 return (0); 447 } 448 449 /* 450 * delete a process group 451 */ 452 static void 453 pgdelete(pgrp) 454 register struct pgrp *pgrp; 455 { 456 struct session *savesess; 457 458 sx_assert(&proctree_lock, SX_XLOCKED); 459 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 460 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 461 462 /* 463 * Reset any sigio structures pointing to us as a result of 464 * F_SETOWN with our pgid. 465 */ 466 funsetownlst(&pgrp->pg_sigiolst); 467 468 mtx_lock(&Giant); /* XXX TTY */ 469 PGRP_LOCK(pgrp); 470 if (pgrp->pg_session->s_ttyp != NULL && 471 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 472 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 473 LIST_REMOVE(pgrp, pg_hash); 474 savesess = pgrp->pg_session; 475 SESSRELE(savesess); 476 PGRP_UNLOCK(pgrp); 477 mtx_destroy(&pgrp->pg_mtx); 478 FREE(pgrp, M_PGRP); 479 mtx_unlock(&Giant); /* XXX TTY */ 480 } 481 482 static void 483 pgadjustjobc(pgrp, entering) 484 struct pgrp *pgrp; 485 int entering; 486 { 487 488 PGRP_LOCK(pgrp); 489 if (entering) 490 pgrp->pg_jobc++; 491 else { 492 --pgrp->pg_jobc; 493 if (pgrp->pg_jobc == 0) 494 orphanpg(pgrp); 495 } 496 PGRP_UNLOCK(pgrp); 497 } 498 499 /* 500 * Adjust pgrp jobc counters when specified process changes process group. 501 * We count the number of processes in each process group that "qualify" 502 * the group for terminal job control (those with a parent in a different 503 * process group of the same session). If that count reaches zero, the 504 * process group becomes orphaned. Check both the specified process' 505 * process group and that of its children. 506 * entering == 0 => p is leaving specified group. 507 * entering == 1 => p is entering specified group. 508 */ 509 void 510 fixjobc(p, pgrp, entering) 511 register struct proc *p; 512 register struct pgrp *pgrp; 513 int entering; 514 { 515 register struct pgrp *hispgrp; 516 register struct session *mysession; 517 518 sx_assert(&proctree_lock, SX_LOCKED); 519 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 520 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 521 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 522 523 /* 524 * Check p's parent to see whether p qualifies its own process 525 * group; if so, adjust count for p's process group. 526 */ 527 mysession = pgrp->pg_session; 528 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 529 hispgrp->pg_session == mysession) 530 pgadjustjobc(pgrp, entering); 531 532 /* 533 * Check this process' children to see whether they qualify 534 * their process groups; if so, adjust counts for children's 535 * process groups. 536 */ 537 LIST_FOREACH(p, &p->p_children, p_sibling) { 538 hispgrp = p->p_pgrp; 539 if (hispgrp == pgrp || 540 hispgrp->pg_session != mysession) 541 continue; 542 PROC_LOCK(p); 543 if (p->p_state == PRS_ZOMBIE) { 544 PROC_UNLOCK(p); 545 continue; 546 } 547 PROC_UNLOCK(p); 548 pgadjustjobc(hispgrp, entering); 549 } 550 } 551 552 /* 553 * A process group has become orphaned; 554 * if there are any stopped processes in the group, 555 * hang-up all process in that group. 556 */ 557 static void 558 orphanpg(pg) 559 struct pgrp *pg; 560 { 561 register struct proc *p; 562 563 PGRP_LOCK_ASSERT(pg, MA_OWNED); 564 565 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 566 PROC_LOCK(p); 567 if (P_SHOULDSTOP(p)) { 568 PROC_UNLOCK(p); 569 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 570 PROC_LOCK(p); 571 psignal(p, SIGHUP); 572 psignal(p, SIGCONT); 573 PROC_UNLOCK(p); 574 } 575 return; 576 } 577 PROC_UNLOCK(p); 578 } 579 } 580 581 void 582 sessrele(struct session *s) 583 { 584 int i; 585 586 SESS_LOCK(s); 587 i = --s->s_count; 588 SESS_UNLOCK(s); 589 if (i == 0) { 590 if (s->s_ttyp != NULL) 591 ttyrel(s->s_ttyp); 592 mtx_destroy(&s->s_mtx); 593 FREE(s, M_SESSION); 594 } 595 } 596 597 #include "opt_ddb.h" 598 #ifdef DDB 599 #include <ddb/ddb.h> 600 601 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 602 { 603 register struct pgrp *pgrp; 604 register struct proc *p; 605 register int i; 606 607 for (i = 0; i <= pgrphash; i++) { 608 if (!LIST_EMPTY(&pgrphashtbl[i])) { 609 printf("\tindx %d\n", i); 610 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 611 printf( 612 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 613 (void *)pgrp, (long)pgrp->pg_id, 614 (void *)pgrp->pg_session, 615 pgrp->pg_session->s_count, 616 (void *)LIST_FIRST(&pgrp->pg_members)); 617 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 618 printf("\t\tpid %ld addr %p pgrp %p\n", 619 (long)p->p_pid, (void *)p, 620 (void *)p->p_pgrp); 621 } 622 } 623 } 624 } 625 } 626 #endif /* DDB */ 627 628 /* 629 * Clear kinfo_proc and fill in any information that is common 630 * to all threads in the process. 631 * Must be called with the target process locked. 632 */ 633 static void 634 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 635 { 636 struct thread *td0; 637 struct tty *tp; 638 struct session *sp; 639 struct ucred *cred; 640 struct sigacts *ps; 641 642 bzero(kp, sizeof(*kp)); 643 644 kp->ki_structsize = sizeof(*kp); 645 kp->ki_paddr = p; 646 PROC_LOCK_ASSERT(p, MA_OWNED); 647 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 648 kp->ki_args = p->p_args; 649 kp->ki_textvp = p->p_textvp; 650 #ifdef KTRACE 651 kp->ki_tracep = p->p_tracevp; 652 mtx_lock(&ktrace_mtx); 653 kp->ki_traceflag = p->p_traceflag; 654 mtx_unlock(&ktrace_mtx); 655 #endif 656 kp->ki_fd = p->p_fd; 657 kp->ki_vmspace = p->p_vmspace; 658 kp->ki_flag = p->p_flag; 659 cred = p->p_ucred; 660 if (cred) { 661 kp->ki_uid = cred->cr_uid; 662 kp->ki_ruid = cred->cr_ruid; 663 kp->ki_svuid = cred->cr_svuid; 664 /* XXX bde doesn't like KI_NGROUPS */ 665 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 666 bcopy(cred->cr_groups, kp->ki_groups, 667 kp->ki_ngroups * sizeof(gid_t)); 668 kp->ki_rgid = cred->cr_rgid; 669 kp->ki_svgid = cred->cr_svgid; 670 /* If jailed(cred), emulate the old P_JAILED flag. */ 671 if (jailed(cred)) { 672 kp->ki_flag |= P_JAILED; 673 /* If inside a jail, use 0 as a jail ID. */ 674 if (!jailed(curthread->td_ucred)) 675 kp->ki_jid = cred->cr_prison->pr_id; 676 } 677 } 678 ps = p->p_sigacts; 679 if (ps) { 680 mtx_lock(&ps->ps_mtx); 681 kp->ki_sigignore = ps->ps_sigignore; 682 kp->ki_sigcatch = ps->ps_sigcatch; 683 mtx_unlock(&ps->ps_mtx); 684 } 685 PROC_SLOCK(p); 686 if (p->p_state != PRS_NEW && 687 p->p_state != PRS_ZOMBIE && 688 p->p_vmspace != NULL) { 689 struct vmspace *vm = p->p_vmspace; 690 691 kp->ki_size = vm->vm_map.size; 692 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 693 FOREACH_THREAD_IN_PROC(p, td0) { 694 if (!TD_IS_SWAPPED(td0)) 695 kp->ki_rssize += td0->td_kstack_pages; 696 if (td0->td_altkstack_obj != NULL) 697 kp->ki_rssize += td0->td_altkstack_pages; 698 } 699 kp->ki_swrss = vm->vm_swrss; 700 kp->ki_tsize = vm->vm_tsize; 701 kp->ki_dsize = vm->vm_dsize; 702 kp->ki_ssize = vm->vm_ssize; 703 } else if (p->p_state == PRS_ZOMBIE) 704 kp->ki_stat = SZOMB; 705 if (kp->ki_flag & P_INMEM) 706 kp->ki_sflag = PS_INMEM; 707 else 708 kp->ki_sflag = 0; 709 /* Calculate legacy swtime as seconds since 'swtick'. */ 710 kp->ki_swtime = (ticks - p->p_swtick) / hz; 711 kp->ki_pid = p->p_pid; 712 kp->ki_nice = p->p_nice; 713 rufetch(p, &kp->ki_rusage); 714 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 715 PROC_SUNLOCK(p); 716 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 717 kp->ki_start = p->p_stats->p_start; 718 timevaladd(&kp->ki_start, &boottime); 719 PROC_SLOCK(p); 720 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 721 PROC_SUNLOCK(p); 722 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 723 724 /* Some callers want child-times in a single value */ 725 kp->ki_childtime = kp->ki_childstime; 726 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 727 } 728 tp = NULL; 729 if (p->p_pgrp) { 730 kp->ki_pgid = p->p_pgrp->pg_id; 731 kp->ki_jobc = p->p_pgrp->pg_jobc; 732 sp = p->p_pgrp->pg_session; 733 734 if (sp != NULL) { 735 kp->ki_sid = sp->s_sid; 736 SESS_LOCK(sp); 737 strlcpy(kp->ki_login, sp->s_login, 738 sizeof(kp->ki_login)); 739 if (sp->s_ttyvp) 740 kp->ki_kiflag |= KI_CTTY; 741 if (SESS_LEADER(p)) 742 kp->ki_kiflag |= KI_SLEADER; 743 tp = sp->s_ttyp; 744 SESS_UNLOCK(sp); 745 } 746 } 747 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 748 kp->ki_tdev = dev2udev(tp->t_dev); 749 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 750 if (tp->t_session) 751 kp->ki_tsid = tp->t_session->s_sid; 752 } else 753 kp->ki_tdev = NODEV; 754 if (p->p_comm[0] != '\0') 755 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 756 if (p->p_sysent && p->p_sysent->sv_name != NULL && 757 p->p_sysent->sv_name[0] != '\0') 758 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 759 kp->ki_siglist = p->p_siglist; 760 kp->ki_xstat = p->p_xstat; 761 kp->ki_acflag = p->p_acflag; 762 kp->ki_lock = p->p_lock; 763 if (p->p_pptr) 764 kp->ki_ppid = p->p_pptr->p_pid; 765 } 766 767 /* 768 * Fill in information that is thread specific. 769 * Must be called with p_slock locked. 770 */ 771 static void 772 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 773 { 774 struct proc *p; 775 776 p = td->td_proc; 777 PROC_SLOCK_ASSERT(p, MA_OWNED); 778 779 thread_lock(td); 780 if (td->td_wmesg != NULL) 781 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 782 else 783 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 784 if (td->td_name[0] != '\0') 785 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 786 if (TD_ON_LOCK(td)) { 787 kp->ki_kiflag |= KI_LOCKBLOCK; 788 strlcpy(kp->ki_lockname, td->td_lockname, 789 sizeof(kp->ki_lockname)); 790 } else { 791 kp->ki_kiflag &= ~KI_LOCKBLOCK; 792 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 793 } 794 795 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 796 if (TD_ON_RUNQ(td) || 797 TD_CAN_RUN(td) || 798 TD_IS_RUNNING(td)) { 799 kp->ki_stat = SRUN; 800 } else if (P_SHOULDSTOP(p)) { 801 kp->ki_stat = SSTOP; 802 } else if (TD_IS_SLEEPING(td)) { 803 kp->ki_stat = SSLEEP; 804 } else if (TD_ON_LOCK(td)) { 805 kp->ki_stat = SLOCK; 806 } else { 807 kp->ki_stat = SWAIT; 808 } 809 } else if (p->p_state == PRS_ZOMBIE) { 810 kp->ki_stat = SZOMB; 811 } else { 812 kp->ki_stat = SIDL; 813 } 814 815 /* Things in the thread */ 816 kp->ki_wchan = td->td_wchan; 817 kp->ki_pri.pri_level = td->td_priority; 818 kp->ki_pri.pri_native = td->td_base_pri; 819 kp->ki_lastcpu = td->td_lastcpu; 820 kp->ki_oncpu = td->td_oncpu; 821 kp->ki_tdflags = td->td_flags; 822 kp->ki_tid = td->td_tid; 823 kp->ki_numthreads = p->p_numthreads; 824 kp->ki_pcb = td->td_pcb; 825 kp->ki_kstack = (void *)td->td_kstack; 826 kp->ki_pctcpu = sched_pctcpu(td); 827 kp->ki_estcpu = td->td_estcpu; 828 kp->ki_slptime = (ticks - td->td_slptick) / hz; 829 kp->ki_pri.pri_class = td->td_pri_class; 830 kp->ki_pri.pri_user = td->td_user_pri; 831 832 /* We can't get this anymore but ps etc never used it anyway. */ 833 kp->ki_rqindex = 0; 834 835 SIGSETOR(kp->ki_siglist, td->td_siglist); 836 kp->ki_sigmask = td->td_sigmask; 837 thread_unlock(td); 838 } 839 840 /* 841 * Fill in a kinfo_proc structure for the specified process. 842 * Must be called with the target process locked. 843 */ 844 void 845 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 846 { 847 848 fill_kinfo_proc_only(p, kp); 849 PROC_SLOCK(p); 850 if (FIRST_THREAD_IN_PROC(p) != NULL) 851 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 852 PROC_SUNLOCK(p); 853 } 854 855 struct pstats * 856 pstats_alloc(void) 857 { 858 859 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 860 } 861 862 /* 863 * Copy parts of p_stats; zero the rest of p_stats (statistics). 864 */ 865 void 866 pstats_fork(struct pstats *src, struct pstats *dst) 867 { 868 869 bzero(&dst->pstat_startzero, 870 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 871 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 872 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 873 } 874 875 void 876 pstats_free(struct pstats *ps) 877 { 878 879 free(ps, M_SUBPROC); 880 } 881 882 /* 883 * Locate a zombie process by number 884 */ 885 struct proc * 886 zpfind(pid_t pid) 887 { 888 struct proc *p; 889 890 sx_slock(&allproc_lock); 891 LIST_FOREACH(p, &zombproc, p_list) 892 if (p->p_pid == pid) { 893 PROC_LOCK(p); 894 break; 895 } 896 sx_sunlock(&allproc_lock); 897 return (p); 898 } 899 900 #define KERN_PROC_ZOMBMASK 0x3 901 #define KERN_PROC_NOTHREADS 0x4 902 903 /* 904 * Must be called with the process locked and will return with it unlocked. 905 */ 906 static int 907 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 908 { 909 struct thread *td; 910 struct kinfo_proc kinfo_proc; 911 int error = 0; 912 struct proc *np; 913 pid_t pid = p->p_pid; 914 915 PROC_LOCK_ASSERT(p, MA_OWNED); 916 917 fill_kinfo_proc_only(p, &kinfo_proc); 918 if (flags & KERN_PROC_NOTHREADS) { 919 PROC_SLOCK(p); 920 if (FIRST_THREAD_IN_PROC(p) != NULL) 921 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 922 PROC_SUNLOCK(p); 923 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 924 sizeof(kinfo_proc)); 925 } else { 926 PROC_SLOCK(p); 927 if (FIRST_THREAD_IN_PROC(p) != NULL) 928 FOREACH_THREAD_IN_PROC(p, td) { 929 fill_kinfo_thread(td, &kinfo_proc); 930 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 931 sizeof(kinfo_proc)); 932 if (error) 933 break; 934 } 935 else 936 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 937 sizeof(kinfo_proc)); 938 PROC_SUNLOCK(p); 939 } 940 PROC_UNLOCK(p); 941 if (error) 942 return (error); 943 if (flags & KERN_PROC_ZOMBMASK) 944 np = zpfind(pid); 945 else { 946 if (pid == 0) 947 return (0); 948 np = pfind(pid); 949 } 950 if (np == NULL) 951 return EAGAIN; 952 if (np != p) { 953 PROC_UNLOCK(np); 954 return EAGAIN; 955 } 956 PROC_UNLOCK(np); 957 return (0); 958 } 959 960 static int 961 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 962 { 963 int *name = (int*) arg1; 964 u_int namelen = arg2; 965 struct proc *p; 966 int flags, doingzomb, oid_number; 967 int error = 0; 968 969 oid_number = oidp->oid_number; 970 if (oid_number != KERN_PROC_ALL && 971 (oid_number & KERN_PROC_INC_THREAD) == 0) 972 flags = KERN_PROC_NOTHREADS; 973 else { 974 flags = 0; 975 oid_number &= ~KERN_PROC_INC_THREAD; 976 } 977 if (oid_number == KERN_PROC_PID) { 978 if (namelen != 1) 979 return (EINVAL); 980 error = sysctl_wire_old_buffer(req, 0); 981 if (error) 982 return (error); 983 p = pfind((pid_t)name[0]); 984 if (!p) 985 return (ESRCH); 986 if ((error = p_cansee(curthread, p))) { 987 PROC_UNLOCK(p); 988 return (error); 989 } 990 error = sysctl_out_proc(p, req, flags); 991 return (error); 992 } 993 994 switch (oid_number) { 995 case KERN_PROC_ALL: 996 if (namelen != 0) 997 return (EINVAL); 998 break; 999 case KERN_PROC_PROC: 1000 if (namelen != 0 && namelen != 1) 1001 return (EINVAL); 1002 break; 1003 default: 1004 if (namelen != 1) 1005 return (EINVAL); 1006 break; 1007 } 1008 1009 if (!req->oldptr) { 1010 /* overestimate by 5 procs */ 1011 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1012 if (error) 1013 return (error); 1014 } 1015 error = sysctl_wire_old_buffer(req, 0); 1016 if (error != 0) 1017 return (error); 1018 sx_slock(&allproc_lock); 1019 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1020 if (!doingzomb) 1021 p = LIST_FIRST(&allproc); 1022 else 1023 p = LIST_FIRST(&zombproc); 1024 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1025 /* 1026 * Skip embryonic processes. 1027 */ 1028 PROC_SLOCK(p); 1029 if (p->p_state == PRS_NEW) { 1030 PROC_SUNLOCK(p); 1031 continue; 1032 } 1033 PROC_SUNLOCK(p); 1034 PROC_LOCK(p); 1035 KASSERT(p->p_ucred != NULL, 1036 ("process credential is NULL for non-NEW proc")); 1037 /* 1038 * Show a user only appropriate processes. 1039 */ 1040 if (p_cansee(curthread, p)) { 1041 PROC_UNLOCK(p); 1042 continue; 1043 } 1044 /* 1045 * TODO - make more efficient (see notes below). 1046 * do by session. 1047 */ 1048 switch (oid_number) { 1049 1050 case KERN_PROC_GID: 1051 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1052 PROC_UNLOCK(p); 1053 continue; 1054 } 1055 break; 1056 1057 case KERN_PROC_PGRP: 1058 /* could do this by traversing pgrp */ 1059 if (p->p_pgrp == NULL || 1060 p->p_pgrp->pg_id != (pid_t)name[0]) { 1061 PROC_UNLOCK(p); 1062 continue; 1063 } 1064 break; 1065 1066 case KERN_PROC_RGID: 1067 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1068 PROC_UNLOCK(p); 1069 continue; 1070 } 1071 break; 1072 1073 case KERN_PROC_SESSION: 1074 if (p->p_session == NULL || 1075 p->p_session->s_sid != (pid_t)name[0]) { 1076 PROC_UNLOCK(p); 1077 continue; 1078 } 1079 break; 1080 1081 case KERN_PROC_TTY: 1082 if ((p->p_flag & P_CONTROLT) == 0 || 1083 p->p_session == NULL) { 1084 PROC_UNLOCK(p); 1085 continue; 1086 } 1087 SESS_LOCK(p->p_session); 1088 if (p->p_session->s_ttyp == NULL || 1089 dev2udev(p->p_session->s_ttyp->t_dev) != 1090 (dev_t)name[0]) { 1091 SESS_UNLOCK(p->p_session); 1092 PROC_UNLOCK(p); 1093 continue; 1094 } 1095 SESS_UNLOCK(p->p_session); 1096 break; 1097 1098 case KERN_PROC_UID: 1099 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1100 PROC_UNLOCK(p); 1101 continue; 1102 } 1103 break; 1104 1105 case KERN_PROC_RUID: 1106 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1107 PROC_UNLOCK(p); 1108 continue; 1109 } 1110 break; 1111 1112 case KERN_PROC_PROC: 1113 break; 1114 1115 default: 1116 break; 1117 1118 } 1119 1120 error = sysctl_out_proc(p, req, flags | doingzomb); 1121 if (error) { 1122 sx_sunlock(&allproc_lock); 1123 return (error); 1124 } 1125 } 1126 } 1127 sx_sunlock(&allproc_lock); 1128 return (0); 1129 } 1130 1131 struct pargs * 1132 pargs_alloc(int len) 1133 { 1134 struct pargs *pa; 1135 1136 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1137 M_WAITOK); 1138 refcount_init(&pa->ar_ref, 1); 1139 pa->ar_length = len; 1140 return (pa); 1141 } 1142 1143 void 1144 pargs_free(struct pargs *pa) 1145 { 1146 1147 FREE(pa, M_PARGS); 1148 } 1149 1150 void 1151 pargs_hold(struct pargs *pa) 1152 { 1153 1154 if (pa == NULL) 1155 return; 1156 refcount_acquire(&pa->ar_ref); 1157 } 1158 1159 void 1160 pargs_drop(struct pargs *pa) 1161 { 1162 1163 if (pa == NULL) 1164 return; 1165 if (refcount_release(&pa->ar_ref)) 1166 pargs_free(pa); 1167 } 1168 1169 /* 1170 * This sysctl allows a process to retrieve the argument list or process 1171 * title for another process without groping around in the address space 1172 * of the other process. It also allow a process to set its own "process 1173 * title to a string of its own choice. 1174 */ 1175 static int 1176 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1177 { 1178 int *name = (int*) arg1; 1179 u_int namelen = arg2; 1180 struct pargs *newpa, *pa; 1181 struct proc *p; 1182 int error = 0; 1183 1184 if (namelen != 1) 1185 return (EINVAL); 1186 1187 p = pfind((pid_t)name[0]); 1188 if (!p) 1189 return (ESRCH); 1190 1191 if ((error = p_cansee(curthread, p)) != 0) { 1192 PROC_UNLOCK(p); 1193 return (error); 1194 } 1195 1196 if (req->newptr && curproc != p) { 1197 PROC_UNLOCK(p); 1198 return (EPERM); 1199 } 1200 1201 pa = p->p_args; 1202 pargs_hold(pa); 1203 PROC_UNLOCK(p); 1204 if (req->oldptr != NULL && pa != NULL) 1205 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1206 pargs_drop(pa); 1207 if (error != 0 || req->newptr == NULL) 1208 return (error); 1209 1210 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1211 return (ENOMEM); 1212 newpa = pargs_alloc(req->newlen); 1213 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1214 if (error != 0) { 1215 pargs_free(newpa); 1216 return (error); 1217 } 1218 PROC_LOCK(p); 1219 pa = p->p_args; 1220 p->p_args = newpa; 1221 PROC_UNLOCK(p); 1222 pargs_drop(pa); 1223 return (0); 1224 } 1225 1226 /* 1227 * This sysctl allows a process to retrieve the path of the executable for 1228 * itself or another process. 1229 */ 1230 static int 1231 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1232 { 1233 pid_t *pidp = (pid_t *)arg1; 1234 unsigned int arglen = arg2; 1235 struct proc *p; 1236 struct vnode *vp; 1237 char *retbuf, *freebuf; 1238 int error; 1239 1240 if (arglen != 1) 1241 return (EINVAL); 1242 if (*pidp == -1) { /* -1 means this process */ 1243 p = req->td->td_proc; 1244 } else { 1245 p = pfind(*pidp); 1246 if (p == NULL) 1247 return (ESRCH); 1248 if ((error = p_cansee(curthread, p)) != 0) { 1249 PROC_UNLOCK(p); 1250 return (error); 1251 } 1252 } 1253 1254 vp = p->p_textvp; 1255 if (vp == NULL) { 1256 if (*pidp != -1) 1257 PROC_UNLOCK(p); 1258 return (0); 1259 } 1260 vref(vp); 1261 if (*pidp != -1) 1262 PROC_UNLOCK(p); 1263 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1264 vrele(vp); 1265 if (error) 1266 return (error); 1267 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1268 free(freebuf, M_TEMP); 1269 return (error); 1270 } 1271 1272 static int 1273 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1274 { 1275 struct proc *p; 1276 char *sv_name; 1277 int *name; 1278 int namelen; 1279 int error; 1280 1281 namelen = arg2; 1282 if (namelen != 1) 1283 return (EINVAL); 1284 1285 name = (int *)arg1; 1286 if ((p = pfind((pid_t)name[0])) == NULL) 1287 return (ESRCH); 1288 if ((error = p_cansee(curthread, p))) { 1289 PROC_UNLOCK(p); 1290 return (error); 1291 } 1292 sv_name = p->p_sysent->sv_name; 1293 PROC_UNLOCK(p); 1294 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1295 } 1296 1297 static int 1298 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 1299 { 1300 vm_map_entry_t entry, tmp_entry; 1301 unsigned int last_timestamp; 1302 char *fullpath, *freepath; 1303 struct kinfo_vmentry *kve; 1304 int error, *name; 1305 struct vnode *vp; 1306 struct proc *p; 1307 vm_map_t map; 1308 1309 name = (int *)arg1; 1310 if ((p = pfind((pid_t)name[0])) == NULL) 1311 return (ESRCH); 1312 if (p->p_flag & P_WEXIT) { 1313 PROC_UNLOCK(p); 1314 return (ESRCH); 1315 } 1316 if ((error = p_candebug(curthread, p))) { 1317 PROC_UNLOCK(p); 1318 return (error); 1319 } 1320 _PHOLD(p); 1321 PROC_UNLOCK(p); 1322 1323 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 1324 1325 map = &p->p_vmspace->vm_map; /* XXXRW: More locking required? */ 1326 vm_map_lock_read(map); 1327 for (entry = map->header.next; entry != &map->header; 1328 entry = entry->next) { 1329 vm_object_t obj, tobj, lobj; 1330 vm_offset_t addr; 1331 int vfslocked; 1332 1333 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1334 continue; 1335 1336 bzero(kve, sizeof(*kve)); 1337 kve->kve_structsize = sizeof(*kve); 1338 1339 kve->kve_private_resident = 0; 1340 obj = entry->object.vm_object; 1341 if (obj != NULL) { 1342 VM_OBJECT_LOCK(obj); 1343 if (obj->shadow_count == 1) 1344 kve->kve_private_resident = 1345 obj->resident_page_count; 1346 } 1347 kve->kve_resident = 0; 1348 addr = entry->start; 1349 while (addr < entry->end) { 1350 if (pmap_extract(map->pmap, addr)) 1351 kve->kve_resident++; 1352 addr += PAGE_SIZE; 1353 } 1354 1355 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 1356 if (tobj != obj) 1357 VM_OBJECT_LOCK(tobj); 1358 if (lobj != obj) 1359 VM_OBJECT_UNLOCK(lobj); 1360 lobj = tobj; 1361 } 1362 1363 freepath = NULL; 1364 fullpath = ""; 1365 if (lobj) { 1366 vp = NULL; 1367 switch(lobj->type) { 1368 case OBJT_DEFAULT: 1369 kve->kve_type = KVME_TYPE_DEFAULT; 1370 break; 1371 case OBJT_VNODE: 1372 kve->kve_type = KVME_TYPE_VNODE; 1373 vp = lobj->handle; 1374 vref(vp); 1375 break; 1376 case OBJT_SWAP: 1377 kve->kve_type = KVME_TYPE_SWAP; 1378 break; 1379 case OBJT_DEVICE: 1380 kve->kve_type = KVME_TYPE_DEVICE; 1381 break; 1382 case OBJT_PHYS: 1383 kve->kve_type = KVME_TYPE_PHYS; 1384 break; 1385 case OBJT_DEAD: 1386 kve->kve_type = KVME_TYPE_DEAD; 1387 break; 1388 default: 1389 kve->kve_type = KVME_TYPE_UNKNOWN; 1390 break; 1391 } 1392 if (lobj != obj) 1393 VM_OBJECT_UNLOCK(lobj); 1394 1395 kve->kve_ref_count = obj->ref_count; 1396 kve->kve_shadow_count = obj->shadow_count; 1397 VM_OBJECT_UNLOCK(obj); 1398 if (vp != NULL) { 1399 vfslocked = VFS_LOCK_GIANT(vp->v_mount); 1400 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, 1401 curthread); 1402 vn_fullpath(curthread, vp, &fullpath, 1403 &freepath); 1404 vput(vp); 1405 VFS_UNLOCK_GIANT(vfslocked); 1406 } 1407 } else { 1408 kve->kve_type = KVME_TYPE_NONE; 1409 kve->kve_ref_count = 0; 1410 kve->kve_shadow_count = 0; 1411 } 1412 1413 kve->kve_start = (void*)entry->start; 1414 kve->kve_end = (void*)entry->end; 1415 1416 if (entry->protection & VM_PROT_READ) 1417 kve->kve_protection |= KVME_PROT_READ; 1418 if (entry->protection & VM_PROT_WRITE) 1419 kve->kve_protection |= KVME_PROT_WRITE; 1420 if (entry->protection & VM_PROT_EXECUTE) 1421 kve->kve_protection |= KVME_PROT_EXEC; 1422 1423 if (entry->eflags & MAP_ENTRY_COW) 1424 kve->kve_flags |= KVME_FLAG_COW; 1425 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 1426 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 1427 1428 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 1429 if (freepath != NULL) 1430 free(freepath, M_TEMP); 1431 1432 last_timestamp = map->timestamp; 1433 vm_map_unlock_read(map); 1434 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 1435 vm_map_lock_read(map); 1436 if (error) 1437 break; 1438 if (last_timestamp + 1 != map->timestamp) { 1439 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 1440 entry = tmp_entry; 1441 } 1442 } 1443 vm_map_unlock_read(map); 1444 PRELE(p); 1445 free(kve, M_TEMP); 1446 return (error); 1447 } 1448 1449 #if defined(STACK) || defined(DDB) 1450 static int 1451 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 1452 { 1453 struct kinfo_kstack *kkstp; 1454 int error, i, *name, numthreads; 1455 lwpid_t *lwpidarray; 1456 struct thread *td; 1457 struct stack *st; 1458 struct sbuf sb; 1459 struct proc *p; 1460 1461 name = (int *)arg1; 1462 if ((p = pfind((pid_t)name[0])) == NULL) 1463 return (ESRCH); 1464 /* XXXRW: Not clear ESRCH is the right error during proc execve(). */ 1465 if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) { 1466 PROC_UNLOCK(p); 1467 return (ESRCH); 1468 } 1469 if ((error = p_candebug(curthread, p))) { 1470 PROC_UNLOCK(p); 1471 return (error); 1472 } 1473 _PHOLD(p); 1474 PROC_UNLOCK(p); 1475 1476 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 1477 st = stack_create(); 1478 1479 lwpidarray = NULL; 1480 numthreads = 0; 1481 PROC_SLOCK(p); 1482 repeat: 1483 if (numthreads < p->p_numthreads) { 1484 if (lwpidarray != NULL) { 1485 free(lwpidarray, M_TEMP); 1486 lwpidarray = NULL; 1487 } 1488 numthreads = p->p_numthreads; 1489 PROC_SUNLOCK(p); 1490 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 1491 M_WAITOK | M_ZERO); 1492 PROC_SLOCK(p); 1493 goto repeat; 1494 } 1495 PROC_SUNLOCK(p); 1496 i = 0; 1497 1498 /* 1499 * XXXRW: During the below loop, execve(2) and countless other sorts 1500 * of changes could have taken place. Should we check to see if the 1501 * vmspace has been replaced, or the like, in order to prevent 1502 * giving a snapshot that spans, say, execve(2), with some threads 1503 * before and some after? Among other things, the credentials could 1504 * have changed, in which case the right to extract debug info might 1505 * no longer be assured. 1506 */ 1507 PROC_LOCK(p); 1508 FOREACH_THREAD_IN_PROC(p, td) { 1509 KASSERT(i < numthreads, 1510 ("sysctl_kern_proc_kstack: numthreads")); 1511 lwpidarray[i] = td->td_tid; 1512 i++; 1513 } 1514 numthreads = i; 1515 for (i = 0; i < numthreads; i++) { 1516 td = thread_find(p, lwpidarray[i]); 1517 if (td == NULL) { 1518 continue; 1519 } 1520 bzero(kkstp, sizeof(*kkstp)); 1521 (void)sbuf_new(&sb, kkstp->kkst_trace, 1522 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 1523 thread_lock(td); 1524 kkstp->kkst_tid = td->td_tid; 1525 if (TD_IS_SWAPPED(td)) 1526 kkstp->kkst_state = KKST_STATE_SWAPPED; 1527 else if (TD_IS_RUNNING(td)) 1528 kkstp->kkst_state = KKST_STATE_RUNNING; 1529 else { 1530 kkstp->kkst_state = KKST_STATE_STACKOK; 1531 stack_save_td(st, td); 1532 } 1533 thread_unlock(td); 1534 PROC_UNLOCK(p); 1535 stack_sbuf_print(&sb, st); 1536 sbuf_finish(&sb); 1537 sbuf_delete(&sb); 1538 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 1539 PROC_LOCK(p); 1540 if (error) 1541 break; 1542 } 1543 _PRELE(p); 1544 PROC_UNLOCK(p); 1545 if (lwpidarray != NULL) 1546 free(lwpidarray, M_TEMP); 1547 stack_destroy(st); 1548 free(kkstp, M_TEMP); 1549 return (error); 1550 } 1551 #endif 1552 1553 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1554 1555 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1556 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1557 1558 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1559 sysctl_kern_proc, "Process table"); 1560 1561 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1562 sysctl_kern_proc, "Process table"); 1563 1564 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1565 sysctl_kern_proc, "Process table"); 1566 1567 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1568 sysctl_kern_proc, "Process table"); 1569 1570 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1571 sysctl_kern_proc, "Process table"); 1572 1573 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1574 sysctl_kern_proc, "Process table"); 1575 1576 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1577 sysctl_kern_proc, "Process table"); 1578 1579 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1580 sysctl_kern_proc, "Process table"); 1581 1582 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1583 sysctl_kern_proc, "Return process table, no threads"); 1584 1585 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1586 CTLFLAG_RW | CTLFLAG_ANYBODY, 1587 sysctl_kern_proc_args, "Process argument list"); 1588 1589 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1590 sysctl_kern_proc_pathname, "Process executable path"); 1591 1592 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1593 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1594 1595 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1596 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1597 1598 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1599 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1600 1601 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1602 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1603 1604 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1605 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1606 1607 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1608 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1609 1610 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1611 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1612 1613 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1614 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1615 1616 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1617 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1618 1619 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1620 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1621 1622 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD, 1623 sysctl_kern_proc_vmmap, "Process vm map entries"); 1624 1625 #if defined(STACK) || defined(DDB) 1626 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD, 1627 sysctl_kern_proc_kstack, "Process kernel stacks"); 1628 #endif 1629