xref: /freebsd/sys/kern/kern_proc.c (revision 8e6e287f8d1f4f58bb94cc71b3b46c543569f83f)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_ktrace.h"
38 #include "opt_kstack_pages.h"
39 #include "opt_stack.h"
40 
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/elf.h>
44 #include <sys/eventhandler.h>
45 #include <sys/exec.h>
46 #include <sys/jail.h>
47 #include <sys/kernel.h>
48 #include <sys/limits.h>
49 #include <sys/lock.h>
50 #include <sys/loginclass.h>
51 #include <sys/malloc.h>
52 #include <sys/mman.h>
53 #include <sys/mount.h>
54 #include <sys/mutex.h>
55 #include <sys/proc.h>
56 #include <sys/ptrace.h>
57 #include <sys/refcount.h>
58 #include <sys/resourcevar.h>
59 #include <sys/rwlock.h>
60 #include <sys/sbuf.h>
61 #include <sys/sysent.h>
62 #include <sys/sched.h>
63 #include <sys/smp.h>
64 #include <sys/stack.h>
65 #include <sys/stat.h>
66 #include <sys/sysctl.h>
67 #include <sys/filedesc.h>
68 #include <sys/tty.h>
69 #include <sys/signalvar.h>
70 #include <sys/sdt.h>
71 #include <sys/sx.h>
72 #include <sys/user.h>
73 #include <sys/vnode.h>
74 #include <sys/wait.h>
75 
76 #ifdef DDB
77 #include <ddb/ddb.h>
78 #endif
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_extern.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_page.h>
87 #include <vm/uma.h>
88 
89 #ifdef COMPAT_FREEBSD32
90 #include <compat/freebsd32/freebsd32.h>
91 #include <compat/freebsd32/freebsd32_util.h>
92 #endif
93 
94 SDT_PROVIDER_DEFINE(proc);
95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *",
96     "int");
97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *",
98     "int");
99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *",
100     "struct thread *");
101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *");
102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int");
103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int");
104 
105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
106 MALLOC_DEFINE(M_SESSION, "session", "session header");
107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
109 
110 static void doenterpgrp(struct proc *, struct pgrp *);
111 static void orphanpg(struct pgrp *pg);
112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
115     int preferthread);
116 static void pgadjustjobc(struct pgrp *pgrp, int entering);
117 static void pgdelete(struct pgrp *);
118 static int proc_ctor(void *mem, int size, void *arg, int flags);
119 static void proc_dtor(void *mem, int size, void *arg);
120 static int proc_init(void *mem, int size, int flags);
121 static void proc_fini(void *mem, int size);
122 static void pargs_free(struct pargs *pa);
123 static struct proc *zpfind_locked(pid_t pid);
124 
125 /*
126  * Other process lists
127  */
128 struct pidhashhead *pidhashtbl;
129 u_long pidhash;
130 struct pgrphashhead *pgrphashtbl;
131 u_long pgrphash;
132 struct proclist allproc;
133 struct proclist zombproc;
134 struct sx __exclusive_cache_line allproc_lock;
135 struct sx __exclusive_cache_line proctree_lock;
136 struct mtx __exclusive_cache_line ppeers_lock;
137 uma_zone_t proc_zone;
138 
139 /*
140  * The offset of various fields in struct proc and struct thread.
141  * These are used by kernel debuggers to enumerate kernel threads and
142  * processes.
143  */
144 const int proc_off_p_pid = offsetof(struct proc, p_pid);
145 const int proc_off_p_comm = offsetof(struct proc, p_comm);
146 const int proc_off_p_list = offsetof(struct proc, p_list);
147 const int proc_off_p_threads = offsetof(struct proc, p_threads);
148 const int thread_off_td_tid = offsetof(struct thread, td_tid);
149 const int thread_off_td_name = offsetof(struct thread, td_name);
150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
152 const int thread_off_td_plist = offsetof(struct thread, td_plist);
153 
154 EVENTHANDLER_LIST_DEFINE(process_ctor);
155 EVENTHANDLER_LIST_DEFINE(process_dtor);
156 EVENTHANDLER_LIST_DEFINE(process_init);
157 EVENTHANDLER_LIST_DEFINE(process_fini);
158 EVENTHANDLER_LIST_DEFINE(process_exit);
159 EVENTHANDLER_LIST_DEFINE(process_fork);
160 EVENTHANDLER_LIST_DEFINE(process_exec);
161 
162 EVENTHANDLER_LIST_DECLARE(thread_ctor);
163 EVENTHANDLER_LIST_DECLARE(thread_dtor);
164 
165 int kstack_pages = KSTACK_PAGES;
166 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
167     "Kernel stack size in pages");
168 static int vmmap_skip_res_cnt = 0;
169 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
170     &vmmap_skip_res_cnt, 0,
171     "Skip calculation of the pages resident count in kern.proc.vmmap");
172 
173 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
174 #ifdef COMPAT_FREEBSD32
175 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
176 #endif
177 
178 /*
179  * Initialize global process hashing structures.
180  */
181 void
182 procinit(void)
183 {
184 
185 	sx_init(&allproc_lock, "allproc");
186 	sx_init(&proctree_lock, "proctree");
187 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
188 	LIST_INIT(&allproc);
189 	LIST_INIT(&zombproc);
190 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
191 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
192 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
193 	    proc_ctor, proc_dtor, proc_init, proc_fini,
194 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 	uihashinit();
196 }
197 
198 /*
199  * Prepare a proc for use.
200  */
201 static int
202 proc_ctor(void *mem, int size, void *arg, int flags)
203 {
204 	struct proc *p;
205 	struct thread *td;
206 
207 	p = (struct proc *)mem;
208 	SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags);
209 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
210 	SDT_PROBE4(proc, , ctor , return, p, size, arg, flags);
211 	td = FIRST_THREAD_IN_PROC(p);
212 	if (td != NULL) {
213 		/* Make sure all thread constructors are executed */
214 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
215 	}
216 	return (0);
217 }
218 
219 /*
220  * Reclaim a proc after use.
221  */
222 static void
223 proc_dtor(void *mem, int size, void *arg)
224 {
225 	struct proc *p;
226 	struct thread *td;
227 
228 	/* INVARIANTS checks go here */
229 	p = (struct proc *)mem;
230 	td = FIRST_THREAD_IN_PROC(p);
231 	SDT_PROBE4(proc, , dtor, entry, p, size, arg, td);
232 	if (td != NULL) {
233 #ifdef INVARIANTS
234 		KASSERT((p->p_numthreads == 1),
235 		    ("bad number of threads in exiting process"));
236 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
237 #endif
238 		/* Free all OSD associated to this thread. */
239 		osd_thread_exit(td);
240 		td_softdep_cleanup(td);
241 		MPASS(td->td_su == NULL);
242 
243 		/* Make sure all thread destructors are executed */
244 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
245 	}
246 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
247 	if (p->p_ksi != NULL)
248 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
249 	SDT_PROBE3(proc, , dtor, return, p, size, arg);
250 }
251 
252 /*
253  * Initialize type-stable parts of a proc (when newly created).
254  */
255 static int
256 proc_init(void *mem, int size, int flags)
257 {
258 	struct proc *p;
259 
260 	p = (struct proc *)mem;
261 	SDT_PROBE3(proc, , init, entry, p, size, flags);
262 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
263 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
264 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
265 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
266 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
267 	cv_init(&p->p_pwait, "ppwait");
268 	cv_init(&p->p_dbgwait, "dbgwait");
269 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
270 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
271 	p->p_stats = pstats_alloc();
272 	p->p_pgrp = NULL;
273 	SDT_PROBE3(proc, , init, return, p, size, flags);
274 	return (0);
275 }
276 
277 /*
278  * UMA should ensure that this function is never called.
279  * Freeing a proc structure would violate type stability.
280  */
281 static void
282 proc_fini(void *mem, int size)
283 {
284 #ifdef notnow
285 	struct proc *p;
286 
287 	p = (struct proc *)mem;
288 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
289 	pstats_free(p->p_stats);
290 	thread_free(FIRST_THREAD_IN_PROC(p));
291 	mtx_destroy(&p->p_mtx);
292 	if (p->p_ksi != NULL)
293 		ksiginfo_free(p->p_ksi);
294 #else
295 	panic("proc reclaimed");
296 #endif
297 }
298 
299 /*
300  * Is p an inferior of the current process?
301  */
302 int
303 inferior(struct proc *p)
304 {
305 
306 	sx_assert(&proctree_lock, SX_LOCKED);
307 	PROC_LOCK_ASSERT(p, MA_OWNED);
308 	for (; p != curproc; p = proc_realparent(p)) {
309 		if (p->p_pid == 0)
310 			return (0);
311 	}
312 	return (1);
313 }
314 
315 struct proc *
316 pfind_locked(pid_t pid)
317 {
318 	struct proc *p;
319 
320 	sx_assert(&allproc_lock, SX_LOCKED);
321 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
322 		if (p->p_pid == pid) {
323 			PROC_LOCK(p);
324 			if (p->p_state == PRS_NEW) {
325 				PROC_UNLOCK(p);
326 				p = NULL;
327 			}
328 			break;
329 		}
330 	}
331 	return (p);
332 }
333 
334 /*
335  * Locate a process by number; return only "live" processes -- i.e., neither
336  * zombies nor newly born but incompletely initialized processes.  By not
337  * returning processes in the PRS_NEW state, we allow callers to avoid
338  * testing for that condition to avoid dereferencing p_ucred, et al.
339  */
340 struct proc *
341 pfind(pid_t pid)
342 {
343 	struct proc *p;
344 
345 	sx_slock(&allproc_lock);
346 	p = pfind_locked(pid);
347 	sx_sunlock(&allproc_lock);
348 	return (p);
349 }
350 
351 static struct proc *
352 pfind_tid_locked(pid_t tid)
353 {
354 	struct proc *p;
355 	struct thread *td;
356 
357 	sx_assert(&allproc_lock, SX_LOCKED);
358 	FOREACH_PROC_IN_SYSTEM(p) {
359 		PROC_LOCK(p);
360 		if (p->p_state == PRS_NEW) {
361 			PROC_UNLOCK(p);
362 			continue;
363 		}
364 		FOREACH_THREAD_IN_PROC(p, td) {
365 			if (td->td_tid == tid)
366 				goto found;
367 		}
368 		PROC_UNLOCK(p);
369 	}
370 found:
371 	return (p);
372 }
373 
374 /*
375  * Locate a process group by number.
376  * The caller must hold proctree_lock.
377  */
378 struct pgrp *
379 pgfind(pid_t pgid)
380 {
381 	struct pgrp *pgrp;
382 
383 	sx_assert(&proctree_lock, SX_LOCKED);
384 
385 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
386 		if (pgrp->pg_id == pgid) {
387 			PGRP_LOCK(pgrp);
388 			return (pgrp);
389 		}
390 	}
391 	return (NULL);
392 }
393 
394 /*
395  * Locate process and do additional manipulations, depending on flags.
396  */
397 int
398 pget(pid_t pid, int flags, struct proc **pp)
399 {
400 	struct proc *p;
401 	int error;
402 
403 	p = curproc;
404 	if (p->p_pid == pid) {
405 		PROC_LOCK(p);
406 	} else {
407 		sx_slock(&allproc_lock);
408 		if (pid <= PID_MAX) {
409 			p = pfind_locked(pid);
410 			if (p == NULL && (flags & PGET_NOTWEXIT) == 0)
411 				p = zpfind_locked(pid);
412 		} else if ((flags & PGET_NOTID) == 0) {
413 			p = pfind_tid_locked(pid);
414 		} else {
415 			p = NULL;
416 		}
417 		sx_sunlock(&allproc_lock);
418 		if (p == NULL)
419 			return (ESRCH);
420 		if ((flags & PGET_CANSEE) != 0) {
421 			error = p_cansee(curthread, p);
422 			if (error != 0)
423 				goto errout;
424 		}
425 	}
426 	if ((flags & PGET_CANDEBUG) != 0) {
427 		error = p_candebug(curthread, p);
428 		if (error != 0)
429 			goto errout;
430 	}
431 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
432 		error = EPERM;
433 		goto errout;
434 	}
435 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
436 		error = ESRCH;
437 		goto errout;
438 	}
439 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
440 		/*
441 		 * XXXRW: Not clear ESRCH is the right error during proc
442 		 * execve().
443 		 */
444 		error = ESRCH;
445 		goto errout;
446 	}
447 	if ((flags & PGET_HOLD) != 0) {
448 		_PHOLD(p);
449 		PROC_UNLOCK(p);
450 	}
451 	*pp = p;
452 	return (0);
453 errout:
454 	PROC_UNLOCK(p);
455 	return (error);
456 }
457 
458 /*
459  * Create a new process group.
460  * pgid must be equal to the pid of p.
461  * Begin a new session if required.
462  */
463 int
464 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
465 {
466 
467 	sx_assert(&proctree_lock, SX_XLOCKED);
468 
469 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
470 	KASSERT(p->p_pid == pgid,
471 	    ("enterpgrp: new pgrp and pid != pgid"));
472 	KASSERT(pgfind(pgid) == NULL,
473 	    ("enterpgrp: pgrp with pgid exists"));
474 	KASSERT(!SESS_LEADER(p),
475 	    ("enterpgrp: session leader attempted setpgrp"));
476 
477 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
478 
479 	if (sess != NULL) {
480 		/*
481 		 * new session
482 		 */
483 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
484 		PROC_LOCK(p);
485 		p->p_flag &= ~P_CONTROLT;
486 		PROC_UNLOCK(p);
487 		PGRP_LOCK(pgrp);
488 		sess->s_leader = p;
489 		sess->s_sid = p->p_pid;
490 		refcount_init(&sess->s_count, 1);
491 		sess->s_ttyvp = NULL;
492 		sess->s_ttydp = NULL;
493 		sess->s_ttyp = NULL;
494 		bcopy(p->p_session->s_login, sess->s_login,
495 			    sizeof(sess->s_login));
496 		pgrp->pg_session = sess;
497 		KASSERT(p == curproc,
498 		    ("enterpgrp: mksession and p != curproc"));
499 	} else {
500 		pgrp->pg_session = p->p_session;
501 		sess_hold(pgrp->pg_session);
502 		PGRP_LOCK(pgrp);
503 	}
504 	pgrp->pg_id = pgid;
505 	LIST_INIT(&pgrp->pg_members);
506 
507 	/*
508 	 * As we have an exclusive lock of proctree_lock,
509 	 * this should not deadlock.
510 	 */
511 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
512 	pgrp->pg_jobc = 0;
513 	SLIST_INIT(&pgrp->pg_sigiolst);
514 	PGRP_UNLOCK(pgrp);
515 
516 	doenterpgrp(p, pgrp);
517 
518 	return (0);
519 }
520 
521 /*
522  * Move p to an existing process group
523  */
524 int
525 enterthispgrp(struct proc *p, struct pgrp *pgrp)
526 {
527 
528 	sx_assert(&proctree_lock, SX_XLOCKED);
529 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
530 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
531 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
532 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
533 	KASSERT(pgrp->pg_session == p->p_session,
534 		("%s: pgrp's session %p, p->p_session %p.\n",
535 		__func__,
536 		pgrp->pg_session,
537 		p->p_session));
538 	KASSERT(pgrp != p->p_pgrp,
539 		("%s: p belongs to pgrp.", __func__));
540 
541 	doenterpgrp(p, pgrp);
542 
543 	return (0);
544 }
545 
546 /*
547  * Move p to a process group
548  */
549 static void
550 doenterpgrp(struct proc *p, struct pgrp *pgrp)
551 {
552 	struct pgrp *savepgrp;
553 
554 	sx_assert(&proctree_lock, SX_XLOCKED);
555 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
556 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
557 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
558 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
559 
560 	savepgrp = p->p_pgrp;
561 
562 	/*
563 	 * Adjust eligibility of affected pgrps to participate in job control.
564 	 * Increment eligibility counts before decrementing, otherwise we
565 	 * could reach 0 spuriously during the first call.
566 	 */
567 	fixjobc(p, pgrp, 1);
568 	fixjobc(p, p->p_pgrp, 0);
569 
570 	PGRP_LOCK(pgrp);
571 	PGRP_LOCK(savepgrp);
572 	PROC_LOCK(p);
573 	LIST_REMOVE(p, p_pglist);
574 	p->p_pgrp = pgrp;
575 	PROC_UNLOCK(p);
576 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
577 	PGRP_UNLOCK(savepgrp);
578 	PGRP_UNLOCK(pgrp);
579 	if (LIST_EMPTY(&savepgrp->pg_members))
580 		pgdelete(savepgrp);
581 }
582 
583 /*
584  * remove process from process group
585  */
586 int
587 leavepgrp(struct proc *p)
588 {
589 	struct pgrp *savepgrp;
590 
591 	sx_assert(&proctree_lock, SX_XLOCKED);
592 	savepgrp = p->p_pgrp;
593 	PGRP_LOCK(savepgrp);
594 	PROC_LOCK(p);
595 	LIST_REMOVE(p, p_pglist);
596 	p->p_pgrp = NULL;
597 	PROC_UNLOCK(p);
598 	PGRP_UNLOCK(savepgrp);
599 	if (LIST_EMPTY(&savepgrp->pg_members))
600 		pgdelete(savepgrp);
601 	return (0);
602 }
603 
604 /*
605  * delete a process group
606  */
607 static void
608 pgdelete(struct pgrp *pgrp)
609 {
610 	struct session *savesess;
611 	struct tty *tp;
612 
613 	sx_assert(&proctree_lock, SX_XLOCKED);
614 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
615 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
616 
617 	/*
618 	 * Reset any sigio structures pointing to us as a result of
619 	 * F_SETOWN with our pgid.
620 	 */
621 	funsetownlst(&pgrp->pg_sigiolst);
622 
623 	PGRP_LOCK(pgrp);
624 	tp = pgrp->pg_session->s_ttyp;
625 	LIST_REMOVE(pgrp, pg_hash);
626 	savesess = pgrp->pg_session;
627 	PGRP_UNLOCK(pgrp);
628 
629 	/* Remove the reference to the pgrp before deallocating it. */
630 	if (tp != NULL) {
631 		tty_lock(tp);
632 		tty_rel_pgrp(tp, pgrp);
633 	}
634 
635 	mtx_destroy(&pgrp->pg_mtx);
636 	free(pgrp, M_PGRP);
637 	sess_release(savesess);
638 }
639 
640 static void
641 pgadjustjobc(struct pgrp *pgrp, int entering)
642 {
643 
644 	PGRP_LOCK(pgrp);
645 	if (entering)
646 		pgrp->pg_jobc++;
647 	else {
648 		--pgrp->pg_jobc;
649 		if (pgrp->pg_jobc == 0)
650 			orphanpg(pgrp);
651 	}
652 	PGRP_UNLOCK(pgrp);
653 }
654 
655 /*
656  * Adjust pgrp jobc counters when specified process changes process group.
657  * We count the number of processes in each process group that "qualify"
658  * the group for terminal job control (those with a parent in a different
659  * process group of the same session).  If that count reaches zero, the
660  * process group becomes orphaned.  Check both the specified process'
661  * process group and that of its children.
662  * entering == 0 => p is leaving specified group.
663  * entering == 1 => p is entering specified group.
664  */
665 void
666 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
667 {
668 	struct pgrp *hispgrp;
669 	struct session *mysession;
670 	struct proc *q;
671 
672 	sx_assert(&proctree_lock, SX_LOCKED);
673 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
674 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
675 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
676 
677 	/*
678 	 * Check p's parent to see whether p qualifies its own process
679 	 * group; if so, adjust count for p's process group.
680 	 */
681 	mysession = pgrp->pg_session;
682 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
683 	    hispgrp->pg_session == mysession)
684 		pgadjustjobc(pgrp, entering);
685 
686 	/*
687 	 * Check this process' children to see whether they qualify
688 	 * their process groups; if so, adjust counts for children's
689 	 * process groups.
690 	 */
691 	LIST_FOREACH(q, &p->p_children, p_sibling) {
692 		hispgrp = q->p_pgrp;
693 		if (hispgrp == pgrp ||
694 		    hispgrp->pg_session != mysession)
695 			continue;
696 		if (q->p_state == PRS_ZOMBIE)
697 			continue;
698 		pgadjustjobc(hispgrp, entering);
699 	}
700 }
701 
702 void
703 killjobc(void)
704 {
705 	struct session *sp;
706 	struct tty *tp;
707 	struct proc *p;
708 	struct vnode *ttyvp;
709 
710 	p = curproc;
711 	MPASS(p->p_flag & P_WEXIT);
712 	/*
713 	 * Do a quick check to see if there is anything to do with the
714 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
715 	 */
716 	PROC_LOCK(p);
717 	if (!SESS_LEADER(p) &&
718 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
719 	    LIST_EMPTY(&p->p_children)) {
720 		PROC_UNLOCK(p);
721 		return;
722 	}
723 	PROC_UNLOCK(p);
724 
725 	sx_xlock(&proctree_lock);
726 	if (SESS_LEADER(p)) {
727 		sp = p->p_session;
728 
729 		/*
730 		 * s_ttyp is not zero'd; we use this to indicate that
731 		 * the session once had a controlling terminal. (for
732 		 * logging and informational purposes)
733 		 */
734 		SESS_LOCK(sp);
735 		ttyvp = sp->s_ttyvp;
736 		tp = sp->s_ttyp;
737 		sp->s_ttyvp = NULL;
738 		sp->s_ttydp = NULL;
739 		sp->s_leader = NULL;
740 		SESS_UNLOCK(sp);
741 
742 		/*
743 		 * Signal foreground pgrp and revoke access to
744 		 * controlling terminal if it has not been revoked
745 		 * already.
746 		 *
747 		 * Because the TTY may have been revoked in the mean
748 		 * time and could already have a new session associated
749 		 * with it, make sure we don't send a SIGHUP to a
750 		 * foreground process group that does not belong to this
751 		 * session.
752 		 */
753 
754 		if (tp != NULL) {
755 			tty_lock(tp);
756 			if (tp->t_session == sp)
757 				tty_signal_pgrp(tp, SIGHUP);
758 			tty_unlock(tp);
759 		}
760 
761 		if (ttyvp != NULL) {
762 			sx_xunlock(&proctree_lock);
763 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
764 				VOP_REVOKE(ttyvp, REVOKEALL);
765 				VOP_UNLOCK(ttyvp, 0);
766 			}
767 			vrele(ttyvp);
768 			sx_xlock(&proctree_lock);
769 		}
770 	}
771 	fixjobc(p, p->p_pgrp, 0);
772 	sx_xunlock(&proctree_lock);
773 }
774 
775 /*
776  * A process group has become orphaned;
777  * if there are any stopped processes in the group,
778  * hang-up all process in that group.
779  */
780 static void
781 orphanpg(struct pgrp *pg)
782 {
783 	struct proc *p;
784 
785 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
786 
787 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
788 		PROC_LOCK(p);
789 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
790 			PROC_UNLOCK(p);
791 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
792 				PROC_LOCK(p);
793 				kern_psignal(p, SIGHUP);
794 				kern_psignal(p, SIGCONT);
795 				PROC_UNLOCK(p);
796 			}
797 			return;
798 		}
799 		PROC_UNLOCK(p);
800 	}
801 }
802 
803 void
804 sess_hold(struct session *s)
805 {
806 
807 	refcount_acquire(&s->s_count);
808 }
809 
810 void
811 sess_release(struct session *s)
812 {
813 
814 	if (refcount_release(&s->s_count)) {
815 		if (s->s_ttyp != NULL) {
816 			tty_lock(s->s_ttyp);
817 			tty_rel_sess(s->s_ttyp, s);
818 		}
819 		mtx_destroy(&s->s_mtx);
820 		free(s, M_SESSION);
821 	}
822 }
823 
824 #ifdef DDB
825 
826 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
827 {
828 	struct pgrp *pgrp;
829 	struct proc *p;
830 	int i;
831 
832 	for (i = 0; i <= pgrphash; i++) {
833 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
834 			printf("\tindx %d\n", i);
835 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
836 				printf(
837 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
838 				    (void *)pgrp, (long)pgrp->pg_id,
839 				    (void *)pgrp->pg_session,
840 				    pgrp->pg_session->s_count,
841 				    (void *)LIST_FIRST(&pgrp->pg_members));
842 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
843 					printf("\t\tpid %ld addr %p pgrp %p\n",
844 					    (long)p->p_pid, (void *)p,
845 					    (void *)p->p_pgrp);
846 				}
847 			}
848 		}
849 	}
850 }
851 #endif /* DDB */
852 
853 /*
854  * Calculate the kinfo_proc members which contain process-wide
855  * informations.
856  * Must be called with the target process locked.
857  */
858 static void
859 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
860 {
861 	struct thread *td;
862 
863 	PROC_LOCK_ASSERT(p, MA_OWNED);
864 
865 	kp->ki_estcpu = 0;
866 	kp->ki_pctcpu = 0;
867 	FOREACH_THREAD_IN_PROC(p, td) {
868 		thread_lock(td);
869 		kp->ki_pctcpu += sched_pctcpu(td);
870 		kp->ki_estcpu += sched_estcpu(td);
871 		thread_unlock(td);
872 	}
873 }
874 
875 /*
876  * Clear kinfo_proc and fill in any information that is common
877  * to all threads in the process.
878  * Must be called with the target process locked.
879  */
880 static void
881 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
882 {
883 	struct thread *td0;
884 	struct tty *tp;
885 	struct session *sp;
886 	struct ucred *cred;
887 	struct sigacts *ps;
888 	struct timeval boottime;
889 
890 	/* For proc_realparent. */
891 	sx_assert(&proctree_lock, SX_LOCKED);
892 	PROC_LOCK_ASSERT(p, MA_OWNED);
893 	bzero(kp, sizeof(*kp));
894 
895 	kp->ki_structsize = sizeof(*kp);
896 	kp->ki_paddr = p;
897 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
898 	kp->ki_args = p->p_args;
899 	kp->ki_textvp = p->p_textvp;
900 #ifdef KTRACE
901 	kp->ki_tracep = p->p_tracevp;
902 	kp->ki_traceflag = p->p_traceflag;
903 #endif
904 	kp->ki_fd = p->p_fd;
905 	kp->ki_vmspace = p->p_vmspace;
906 	kp->ki_flag = p->p_flag;
907 	kp->ki_flag2 = p->p_flag2;
908 	cred = p->p_ucred;
909 	if (cred) {
910 		kp->ki_uid = cred->cr_uid;
911 		kp->ki_ruid = cred->cr_ruid;
912 		kp->ki_svuid = cred->cr_svuid;
913 		kp->ki_cr_flags = 0;
914 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
915 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
916 		/* XXX bde doesn't like KI_NGROUPS */
917 		if (cred->cr_ngroups > KI_NGROUPS) {
918 			kp->ki_ngroups = KI_NGROUPS;
919 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
920 		} else
921 			kp->ki_ngroups = cred->cr_ngroups;
922 		bcopy(cred->cr_groups, kp->ki_groups,
923 		    kp->ki_ngroups * sizeof(gid_t));
924 		kp->ki_rgid = cred->cr_rgid;
925 		kp->ki_svgid = cred->cr_svgid;
926 		/* If jailed(cred), emulate the old P_JAILED flag. */
927 		if (jailed(cred)) {
928 			kp->ki_flag |= P_JAILED;
929 			/* If inside the jail, use 0 as a jail ID. */
930 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
931 				kp->ki_jid = cred->cr_prison->pr_id;
932 		}
933 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
934 		    sizeof(kp->ki_loginclass));
935 	}
936 	ps = p->p_sigacts;
937 	if (ps) {
938 		mtx_lock(&ps->ps_mtx);
939 		kp->ki_sigignore = ps->ps_sigignore;
940 		kp->ki_sigcatch = ps->ps_sigcatch;
941 		mtx_unlock(&ps->ps_mtx);
942 	}
943 	if (p->p_state != PRS_NEW &&
944 	    p->p_state != PRS_ZOMBIE &&
945 	    p->p_vmspace != NULL) {
946 		struct vmspace *vm = p->p_vmspace;
947 
948 		kp->ki_size = vm->vm_map.size;
949 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
950 		FOREACH_THREAD_IN_PROC(p, td0) {
951 			if (!TD_IS_SWAPPED(td0))
952 				kp->ki_rssize += td0->td_kstack_pages;
953 		}
954 		kp->ki_swrss = vm->vm_swrss;
955 		kp->ki_tsize = vm->vm_tsize;
956 		kp->ki_dsize = vm->vm_dsize;
957 		kp->ki_ssize = vm->vm_ssize;
958 	} else if (p->p_state == PRS_ZOMBIE)
959 		kp->ki_stat = SZOMB;
960 	if (kp->ki_flag & P_INMEM)
961 		kp->ki_sflag = PS_INMEM;
962 	else
963 		kp->ki_sflag = 0;
964 	/* Calculate legacy swtime as seconds since 'swtick'. */
965 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
966 	kp->ki_pid = p->p_pid;
967 	kp->ki_nice = p->p_nice;
968 	kp->ki_fibnum = p->p_fibnum;
969 	kp->ki_start = p->p_stats->p_start;
970 	getboottime(&boottime);
971 	timevaladd(&kp->ki_start, &boottime);
972 	PROC_STATLOCK(p);
973 	rufetch(p, &kp->ki_rusage);
974 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
975 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
976 	PROC_STATUNLOCK(p);
977 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
978 	/* Some callers want child times in a single value. */
979 	kp->ki_childtime = kp->ki_childstime;
980 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
981 
982 	FOREACH_THREAD_IN_PROC(p, td0)
983 		kp->ki_cow += td0->td_cow;
984 
985 	tp = NULL;
986 	if (p->p_pgrp) {
987 		kp->ki_pgid = p->p_pgrp->pg_id;
988 		kp->ki_jobc = p->p_pgrp->pg_jobc;
989 		sp = p->p_pgrp->pg_session;
990 
991 		if (sp != NULL) {
992 			kp->ki_sid = sp->s_sid;
993 			SESS_LOCK(sp);
994 			strlcpy(kp->ki_login, sp->s_login,
995 			    sizeof(kp->ki_login));
996 			if (sp->s_ttyvp)
997 				kp->ki_kiflag |= KI_CTTY;
998 			if (SESS_LEADER(p))
999 				kp->ki_kiflag |= KI_SLEADER;
1000 			/* XXX proctree_lock */
1001 			tp = sp->s_ttyp;
1002 			SESS_UNLOCK(sp);
1003 		}
1004 	}
1005 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1006 		kp->ki_tdev = tty_udev(tp);
1007 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1008 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1009 		if (tp->t_session)
1010 			kp->ki_tsid = tp->t_session->s_sid;
1011 	} else {
1012 		kp->ki_tdev = NODEV;
1013 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1014 	}
1015 	if (p->p_comm[0] != '\0')
1016 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1017 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1018 	    p->p_sysent->sv_name[0] != '\0')
1019 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1020 	kp->ki_siglist = p->p_siglist;
1021 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1022 	kp->ki_acflag = p->p_acflag;
1023 	kp->ki_lock = p->p_lock;
1024 	if (p->p_pptr) {
1025 		kp->ki_ppid = proc_realparent(p)->p_pid;
1026 		if (p->p_flag & P_TRACED)
1027 			kp->ki_tracer = p->p_pptr->p_pid;
1028 	}
1029 }
1030 
1031 /*
1032  * Fill in information that is thread specific.  Must be called with
1033  * target process locked.  If 'preferthread' is set, overwrite certain
1034  * process-related fields that are maintained for both threads and
1035  * processes.
1036  */
1037 static void
1038 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1039 {
1040 	struct proc *p;
1041 
1042 	p = td->td_proc;
1043 	kp->ki_tdaddr = td;
1044 	PROC_LOCK_ASSERT(p, MA_OWNED);
1045 
1046 	if (preferthread)
1047 		PROC_STATLOCK(p);
1048 	thread_lock(td);
1049 	if (td->td_wmesg != NULL)
1050 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1051 	else
1052 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1053 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1054 	    sizeof(kp->ki_tdname)) {
1055 		strlcpy(kp->ki_moretdname,
1056 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1057 		    sizeof(kp->ki_moretdname));
1058 	} else {
1059 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1060 	}
1061 	if (TD_ON_LOCK(td)) {
1062 		kp->ki_kiflag |= KI_LOCKBLOCK;
1063 		strlcpy(kp->ki_lockname, td->td_lockname,
1064 		    sizeof(kp->ki_lockname));
1065 	} else {
1066 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1067 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1068 	}
1069 
1070 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1071 		if (TD_ON_RUNQ(td) ||
1072 		    TD_CAN_RUN(td) ||
1073 		    TD_IS_RUNNING(td)) {
1074 			kp->ki_stat = SRUN;
1075 		} else if (P_SHOULDSTOP(p)) {
1076 			kp->ki_stat = SSTOP;
1077 		} else if (TD_IS_SLEEPING(td)) {
1078 			kp->ki_stat = SSLEEP;
1079 		} else if (TD_ON_LOCK(td)) {
1080 			kp->ki_stat = SLOCK;
1081 		} else {
1082 			kp->ki_stat = SWAIT;
1083 		}
1084 	} else if (p->p_state == PRS_ZOMBIE) {
1085 		kp->ki_stat = SZOMB;
1086 	} else {
1087 		kp->ki_stat = SIDL;
1088 	}
1089 
1090 	/* Things in the thread */
1091 	kp->ki_wchan = td->td_wchan;
1092 	kp->ki_pri.pri_level = td->td_priority;
1093 	kp->ki_pri.pri_native = td->td_base_pri;
1094 
1095 	/*
1096 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1097 	 * the maximum u_char CPU value.
1098 	 */
1099 	if (td->td_lastcpu == NOCPU)
1100 		kp->ki_lastcpu_old = NOCPU_OLD;
1101 	else if (td->td_lastcpu > MAXCPU_OLD)
1102 		kp->ki_lastcpu_old = MAXCPU_OLD;
1103 	else
1104 		kp->ki_lastcpu_old = td->td_lastcpu;
1105 
1106 	if (td->td_oncpu == NOCPU)
1107 		kp->ki_oncpu_old = NOCPU_OLD;
1108 	else if (td->td_oncpu > MAXCPU_OLD)
1109 		kp->ki_oncpu_old = MAXCPU_OLD;
1110 	else
1111 		kp->ki_oncpu_old = td->td_oncpu;
1112 
1113 	kp->ki_lastcpu = td->td_lastcpu;
1114 	kp->ki_oncpu = td->td_oncpu;
1115 	kp->ki_tdflags = td->td_flags;
1116 	kp->ki_tid = td->td_tid;
1117 	kp->ki_numthreads = p->p_numthreads;
1118 	kp->ki_pcb = td->td_pcb;
1119 	kp->ki_kstack = (void *)td->td_kstack;
1120 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1121 	kp->ki_pri.pri_class = td->td_pri_class;
1122 	kp->ki_pri.pri_user = td->td_user_pri;
1123 
1124 	if (preferthread) {
1125 		rufetchtd(td, &kp->ki_rusage);
1126 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1127 		kp->ki_pctcpu = sched_pctcpu(td);
1128 		kp->ki_estcpu = sched_estcpu(td);
1129 		kp->ki_cow = td->td_cow;
1130 	}
1131 
1132 	/* We can't get this anymore but ps etc never used it anyway. */
1133 	kp->ki_rqindex = 0;
1134 
1135 	if (preferthread)
1136 		kp->ki_siglist = td->td_siglist;
1137 	kp->ki_sigmask = td->td_sigmask;
1138 	thread_unlock(td);
1139 	if (preferthread)
1140 		PROC_STATUNLOCK(p);
1141 }
1142 
1143 /*
1144  * Fill in a kinfo_proc structure for the specified process.
1145  * Must be called with the target process locked.
1146  */
1147 void
1148 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1149 {
1150 
1151 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1152 
1153 	fill_kinfo_proc_only(p, kp);
1154 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1155 	fill_kinfo_aggregate(p, kp);
1156 }
1157 
1158 struct pstats *
1159 pstats_alloc(void)
1160 {
1161 
1162 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1163 }
1164 
1165 /*
1166  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1167  */
1168 void
1169 pstats_fork(struct pstats *src, struct pstats *dst)
1170 {
1171 
1172 	bzero(&dst->pstat_startzero,
1173 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1174 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1175 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1176 }
1177 
1178 void
1179 pstats_free(struct pstats *ps)
1180 {
1181 
1182 	free(ps, M_SUBPROC);
1183 }
1184 
1185 static struct proc *
1186 zpfind_locked(pid_t pid)
1187 {
1188 	struct proc *p;
1189 
1190 	sx_assert(&allproc_lock, SX_LOCKED);
1191 	LIST_FOREACH(p, &zombproc, p_list) {
1192 		if (p->p_pid == pid) {
1193 			PROC_LOCK(p);
1194 			break;
1195 		}
1196 	}
1197 	return (p);
1198 }
1199 
1200 /*
1201  * Locate a zombie process by number
1202  */
1203 struct proc *
1204 zpfind(pid_t pid)
1205 {
1206 	struct proc *p;
1207 
1208 	sx_slock(&allproc_lock);
1209 	p = zpfind_locked(pid);
1210 	sx_sunlock(&allproc_lock);
1211 	return (p);
1212 }
1213 
1214 #ifdef COMPAT_FREEBSD32
1215 
1216 /*
1217  * This function is typically used to copy out the kernel address, so
1218  * it can be replaced by assignment of zero.
1219  */
1220 static inline uint32_t
1221 ptr32_trim(void *ptr)
1222 {
1223 	uintptr_t uptr;
1224 
1225 	uptr = (uintptr_t)ptr;
1226 	return ((uptr > UINT_MAX) ? 0 : uptr);
1227 }
1228 
1229 #define PTRTRIM_CP(src,dst,fld) \
1230 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1231 
1232 static void
1233 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1234 {
1235 	int i;
1236 
1237 	bzero(ki32, sizeof(struct kinfo_proc32));
1238 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1239 	CP(*ki, *ki32, ki_layout);
1240 	PTRTRIM_CP(*ki, *ki32, ki_args);
1241 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1242 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1243 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1244 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1245 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1246 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1247 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1248 	CP(*ki, *ki32, ki_pid);
1249 	CP(*ki, *ki32, ki_ppid);
1250 	CP(*ki, *ki32, ki_pgid);
1251 	CP(*ki, *ki32, ki_tpgid);
1252 	CP(*ki, *ki32, ki_sid);
1253 	CP(*ki, *ki32, ki_tsid);
1254 	CP(*ki, *ki32, ki_jobc);
1255 	CP(*ki, *ki32, ki_tdev);
1256 	CP(*ki, *ki32, ki_tdev_freebsd11);
1257 	CP(*ki, *ki32, ki_siglist);
1258 	CP(*ki, *ki32, ki_sigmask);
1259 	CP(*ki, *ki32, ki_sigignore);
1260 	CP(*ki, *ki32, ki_sigcatch);
1261 	CP(*ki, *ki32, ki_uid);
1262 	CP(*ki, *ki32, ki_ruid);
1263 	CP(*ki, *ki32, ki_svuid);
1264 	CP(*ki, *ki32, ki_rgid);
1265 	CP(*ki, *ki32, ki_svgid);
1266 	CP(*ki, *ki32, ki_ngroups);
1267 	for (i = 0; i < KI_NGROUPS; i++)
1268 		CP(*ki, *ki32, ki_groups[i]);
1269 	CP(*ki, *ki32, ki_size);
1270 	CP(*ki, *ki32, ki_rssize);
1271 	CP(*ki, *ki32, ki_swrss);
1272 	CP(*ki, *ki32, ki_tsize);
1273 	CP(*ki, *ki32, ki_dsize);
1274 	CP(*ki, *ki32, ki_ssize);
1275 	CP(*ki, *ki32, ki_xstat);
1276 	CP(*ki, *ki32, ki_acflag);
1277 	CP(*ki, *ki32, ki_pctcpu);
1278 	CP(*ki, *ki32, ki_estcpu);
1279 	CP(*ki, *ki32, ki_slptime);
1280 	CP(*ki, *ki32, ki_swtime);
1281 	CP(*ki, *ki32, ki_cow);
1282 	CP(*ki, *ki32, ki_runtime);
1283 	TV_CP(*ki, *ki32, ki_start);
1284 	TV_CP(*ki, *ki32, ki_childtime);
1285 	CP(*ki, *ki32, ki_flag);
1286 	CP(*ki, *ki32, ki_kiflag);
1287 	CP(*ki, *ki32, ki_traceflag);
1288 	CP(*ki, *ki32, ki_stat);
1289 	CP(*ki, *ki32, ki_nice);
1290 	CP(*ki, *ki32, ki_lock);
1291 	CP(*ki, *ki32, ki_rqindex);
1292 	CP(*ki, *ki32, ki_oncpu);
1293 	CP(*ki, *ki32, ki_lastcpu);
1294 
1295 	/* XXX TODO: wrap cpu value as appropriate */
1296 	CP(*ki, *ki32, ki_oncpu_old);
1297 	CP(*ki, *ki32, ki_lastcpu_old);
1298 
1299 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1300 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1301 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1302 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1303 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1304 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1305 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1306 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1307 	CP(*ki, *ki32, ki_tracer);
1308 	CP(*ki, *ki32, ki_flag2);
1309 	CP(*ki, *ki32, ki_fibnum);
1310 	CP(*ki, *ki32, ki_cr_flags);
1311 	CP(*ki, *ki32, ki_jid);
1312 	CP(*ki, *ki32, ki_numthreads);
1313 	CP(*ki, *ki32, ki_tid);
1314 	CP(*ki, *ki32, ki_pri);
1315 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1316 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1317 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1318 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1319 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1320 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1321 	CP(*ki, *ki32, ki_sflag);
1322 	CP(*ki, *ki32, ki_tdflags);
1323 }
1324 #endif
1325 
1326 int
1327 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1328 {
1329 	struct thread *td;
1330 	struct kinfo_proc ki;
1331 #ifdef COMPAT_FREEBSD32
1332 	struct kinfo_proc32 ki32;
1333 #endif
1334 	int error;
1335 
1336 	PROC_LOCK_ASSERT(p, MA_OWNED);
1337 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1338 
1339 	error = 0;
1340 	fill_kinfo_proc(p, &ki);
1341 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1342 #ifdef COMPAT_FREEBSD32
1343 		if ((flags & KERN_PROC_MASK32) != 0) {
1344 			freebsd32_kinfo_proc_out(&ki, &ki32);
1345 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1346 				error = ENOMEM;
1347 		} else
1348 #endif
1349 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1350 				error = ENOMEM;
1351 	} else {
1352 		FOREACH_THREAD_IN_PROC(p, td) {
1353 			fill_kinfo_thread(td, &ki, 1);
1354 #ifdef COMPAT_FREEBSD32
1355 			if ((flags & KERN_PROC_MASK32) != 0) {
1356 				freebsd32_kinfo_proc_out(&ki, &ki32);
1357 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1358 					error = ENOMEM;
1359 			} else
1360 #endif
1361 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1362 					error = ENOMEM;
1363 			if (error != 0)
1364 				break;
1365 		}
1366 	}
1367 	PROC_UNLOCK(p);
1368 	return (error);
1369 }
1370 
1371 static int
1372 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags,
1373     int doingzomb)
1374 {
1375 	struct sbuf sb;
1376 	struct kinfo_proc ki;
1377 	struct proc *np;
1378 	int error, error2;
1379 	pid_t pid;
1380 
1381 	pid = p->p_pid;
1382 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1383 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1384 	error = kern_proc_out(p, &sb, flags);
1385 	error2 = sbuf_finish(&sb);
1386 	sbuf_delete(&sb);
1387 	if (error != 0)
1388 		return (error);
1389 	else if (error2 != 0)
1390 		return (error2);
1391 	if (doingzomb)
1392 		np = zpfind(pid);
1393 	else {
1394 		if (pid == 0)
1395 			return (0);
1396 		np = pfind(pid);
1397 	}
1398 	if (np == NULL)
1399 		return (ESRCH);
1400 	if (np != p) {
1401 		PROC_UNLOCK(np);
1402 		return (ESRCH);
1403 	}
1404 	PROC_UNLOCK(np);
1405 	return (0);
1406 }
1407 
1408 static int
1409 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1410 {
1411 	int *name = (int *)arg1;
1412 	u_int namelen = arg2;
1413 	struct proc *p;
1414 	int flags, doingzomb, oid_number;
1415 	int error = 0;
1416 
1417 	oid_number = oidp->oid_number;
1418 	if (oid_number != KERN_PROC_ALL &&
1419 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1420 		flags = KERN_PROC_NOTHREADS;
1421 	else {
1422 		flags = 0;
1423 		oid_number &= ~KERN_PROC_INC_THREAD;
1424 	}
1425 #ifdef COMPAT_FREEBSD32
1426 	if (req->flags & SCTL_MASK32)
1427 		flags |= KERN_PROC_MASK32;
1428 #endif
1429 	if (oid_number == KERN_PROC_PID) {
1430 		if (namelen != 1)
1431 			return (EINVAL);
1432 		error = sysctl_wire_old_buffer(req, 0);
1433 		if (error)
1434 			return (error);
1435 		sx_slock(&proctree_lock);
1436 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1437 		if (error == 0)
1438 			error = sysctl_out_proc(p, req, flags, 0);
1439 		sx_sunlock(&proctree_lock);
1440 		return (error);
1441 	}
1442 
1443 	switch (oid_number) {
1444 	case KERN_PROC_ALL:
1445 		if (namelen != 0)
1446 			return (EINVAL);
1447 		break;
1448 	case KERN_PROC_PROC:
1449 		if (namelen != 0 && namelen != 1)
1450 			return (EINVAL);
1451 		break;
1452 	default:
1453 		if (namelen != 1)
1454 			return (EINVAL);
1455 		break;
1456 	}
1457 
1458 	if (!req->oldptr) {
1459 		/* overestimate by 5 procs */
1460 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1461 		if (error)
1462 			return (error);
1463 	}
1464 	error = sysctl_wire_old_buffer(req, 0);
1465 	if (error != 0)
1466 		return (error);
1467 	sx_slock(&proctree_lock);
1468 	sx_slock(&allproc_lock);
1469 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1470 		if (!doingzomb)
1471 			p = LIST_FIRST(&allproc);
1472 		else
1473 			p = LIST_FIRST(&zombproc);
1474 		for (; p != NULL; p = LIST_NEXT(p, p_list)) {
1475 			/*
1476 			 * Skip embryonic processes.
1477 			 */
1478 			PROC_LOCK(p);
1479 			if (p->p_state == PRS_NEW) {
1480 				PROC_UNLOCK(p);
1481 				continue;
1482 			}
1483 			KASSERT(p->p_ucred != NULL,
1484 			    ("process credential is NULL for non-NEW proc"));
1485 			/*
1486 			 * Show a user only appropriate processes.
1487 			 */
1488 			if (p_cansee(curthread, p)) {
1489 				PROC_UNLOCK(p);
1490 				continue;
1491 			}
1492 			/*
1493 			 * TODO - make more efficient (see notes below).
1494 			 * do by session.
1495 			 */
1496 			switch (oid_number) {
1497 
1498 			case KERN_PROC_GID:
1499 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1500 					PROC_UNLOCK(p);
1501 					continue;
1502 				}
1503 				break;
1504 
1505 			case KERN_PROC_PGRP:
1506 				/* could do this by traversing pgrp */
1507 				if (p->p_pgrp == NULL ||
1508 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1509 					PROC_UNLOCK(p);
1510 					continue;
1511 				}
1512 				break;
1513 
1514 			case KERN_PROC_RGID:
1515 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1516 					PROC_UNLOCK(p);
1517 					continue;
1518 				}
1519 				break;
1520 
1521 			case KERN_PROC_SESSION:
1522 				if (p->p_session == NULL ||
1523 				    p->p_session->s_sid != (pid_t)name[0]) {
1524 					PROC_UNLOCK(p);
1525 					continue;
1526 				}
1527 				break;
1528 
1529 			case KERN_PROC_TTY:
1530 				if ((p->p_flag & P_CONTROLT) == 0 ||
1531 				    p->p_session == NULL) {
1532 					PROC_UNLOCK(p);
1533 					continue;
1534 				}
1535 				/* XXX proctree_lock */
1536 				SESS_LOCK(p->p_session);
1537 				if (p->p_session->s_ttyp == NULL ||
1538 				    tty_udev(p->p_session->s_ttyp) !=
1539 				    (dev_t)name[0]) {
1540 					SESS_UNLOCK(p->p_session);
1541 					PROC_UNLOCK(p);
1542 					continue;
1543 				}
1544 				SESS_UNLOCK(p->p_session);
1545 				break;
1546 
1547 			case KERN_PROC_UID:
1548 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1549 					PROC_UNLOCK(p);
1550 					continue;
1551 				}
1552 				break;
1553 
1554 			case KERN_PROC_RUID:
1555 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1556 					PROC_UNLOCK(p);
1557 					continue;
1558 				}
1559 				break;
1560 
1561 			case KERN_PROC_PROC:
1562 				break;
1563 
1564 			default:
1565 				break;
1566 
1567 			}
1568 
1569 			error = sysctl_out_proc(p, req, flags, doingzomb);
1570 			if (error) {
1571 				sx_sunlock(&allproc_lock);
1572 				sx_sunlock(&proctree_lock);
1573 				return (error);
1574 			}
1575 		}
1576 	}
1577 	sx_sunlock(&allproc_lock);
1578 	sx_sunlock(&proctree_lock);
1579 	return (0);
1580 }
1581 
1582 struct pargs *
1583 pargs_alloc(int len)
1584 {
1585 	struct pargs *pa;
1586 
1587 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1588 		M_WAITOK);
1589 	refcount_init(&pa->ar_ref, 1);
1590 	pa->ar_length = len;
1591 	return (pa);
1592 }
1593 
1594 static void
1595 pargs_free(struct pargs *pa)
1596 {
1597 
1598 	free(pa, M_PARGS);
1599 }
1600 
1601 void
1602 pargs_hold(struct pargs *pa)
1603 {
1604 
1605 	if (pa == NULL)
1606 		return;
1607 	refcount_acquire(&pa->ar_ref);
1608 }
1609 
1610 void
1611 pargs_drop(struct pargs *pa)
1612 {
1613 
1614 	if (pa == NULL)
1615 		return;
1616 	if (refcount_release(&pa->ar_ref))
1617 		pargs_free(pa);
1618 }
1619 
1620 static int
1621 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1622     size_t len)
1623 {
1624 	ssize_t n;
1625 
1626 	/*
1627 	 * This may return a short read if the string is shorter than the chunk
1628 	 * and is aligned at the end of the page, and the following page is not
1629 	 * mapped.
1630 	 */
1631 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1632 	if (n <= 0)
1633 		return (ENOMEM);
1634 	return (0);
1635 }
1636 
1637 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1638 
1639 enum proc_vector_type {
1640 	PROC_ARG,
1641 	PROC_ENV,
1642 	PROC_AUX,
1643 };
1644 
1645 #ifdef COMPAT_FREEBSD32
1646 static int
1647 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1648     size_t *vsizep, enum proc_vector_type type)
1649 {
1650 	struct freebsd32_ps_strings pss;
1651 	Elf32_Auxinfo aux;
1652 	vm_offset_t vptr, ptr;
1653 	uint32_t *proc_vector32;
1654 	char **proc_vector;
1655 	size_t vsize, size;
1656 	int i, error;
1657 
1658 	error = 0;
1659 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1660 	    sizeof(pss)) != sizeof(pss))
1661 		return (ENOMEM);
1662 	switch (type) {
1663 	case PROC_ARG:
1664 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1665 		vsize = pss.ps_nargvstr;
1666 		if (vsize > ARG_MAX)
1667 			return (ENOEXEC);
1668 		size = vsize * sizeof(int32_t);
1669 		break;
1670 	case PROC_ENV:
1671 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1672 		vsize = pss.ps_nenvstr;
1673 		if (vsize > ARG_MAX)
1674 			return (ENOEXEC);
1675 		size = vsize * sizeof(int32_t);
1676 		break;
1677 	case PROC_AUX:
1678 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1679 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1680 		if (vptr % 4 != 0)
1681 			return (ENOEXEC);
1682 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1683 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1684 			    sizeof(aux))
1685 				return (ENOMEM);
1686 			if (aux.a_type == AT_NULL)
1687 				break;
1688 			ptr += sizeof(aux);
1689 		}
1690 		if (aux.a_type != AT_NULL)
1691 			return (ENOEXEC);
1692 		vsize = i + 1;
1693 		size = vsize * sizeof(aux);
1694 		break;
1695 	default:
1696 		KASSERT(0, ("Wrong proc vector type: %d", type));
1697 		return (EINVAL);
1698 	}
1699 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1700 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1701 		error = ENOMEM;
1702 		goto done;
1703 	}
1704 	if (type == PROC_AUX) {
1705 		*proc_vectorp = (char **)proc_vector32;
1706 		*vsizep = vsize;
1707 		return (0);
1708 	}
1709 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1710 	for (i = 0; i < (int)vsize; i++)
1711 		proc_vector[i] = PTRIN(proc_vector32[i]);
1712 	*proc_vectorp = proc_vector;
1713 	*vsizep = vsize;
1714 done:
1715 	free(proc_vector32, M_TEMP);
1716 	return (error);
1717 }
1718 #endif
1719 
1720 static int
1721 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1722     size_t *vsizep, enum proc_vector_type type)
1723 {
1724 	struct ps_strings pss;
1725 	Elf_Auxinfo aux;
1726 	vm_offset_t vptr, ptr;
1727 	char **proc_vector;
1728 	size_t vsize, size;
1729 	int i;
1730 
1731 #ifdef COMPAT_FREEBSD32
1732 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1733 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1734 #endif
1735 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1736 	    sizeof(pss)) != sizeof(pss))
1737 		return (ENOMEM);
1738 	switch (type) {
1739 	case PROC_ARG:
1740 		vptr = (vm_offset_t)pss.ps_argvstr;
1741 		vsize = pss.ps_nargvstr;
1742 		if (vsize > ARG_MAX)
1743 			return (ENOEXEC);
1744 		size = vsize * sizeof(char *);
1745 		break;
1746 	case PROC_ENV:
1747 		vptr = (vm_offset_t)pss.ps_envstr;
1748 		vsize = pss.ps_nenvstr;
1749 		if (vsize > ARG_MAX)
1750 			return (ENOEXEC);
1751 		size = vsize * sizeof(char *);
1752 		break;
1753 	case PROC_AUX:
1754 		/*
1755 		 * The aux array is just above env array on the stack. Check
1756 		 * that the address is naturally aligned.
1757 		 */
1758 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1759 		    * sizeof(char *);
1760 #if __ELF_WORD_SIZE == 64
1761 		if (vptr % sizeof(uint64_t) != 0)
1762 #else
1763 		if (vptr % sizeof(uint32_t) != 0)
1764 #endif
1765 			return (ENOEXEC);
1766 		/*
1767 		 * We count the array size reading the aux vectors from the
1768 		 * stack until AT_NULL vector is returned.  So (to keep the code
1769 		 * simple) we read the process stack twice: the first time here
1770 		 * to find the size and the second time when copying the vectors
1771 		 * to the allocated proc_vector.
1772 		 */
1773 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1774 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1775 			    sizeof(aux))
1776 				return (ENOMEM);
1777 			if (aux.a_type == AT_NULL)
1778 				break;
1779 			ptr += sizeof(aux);
1780 		}
1781 		/*
1782 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1783 		 * not reached AT_NULL, it is most likely we are reading wrong
1784 		 * data: either the process doesn't have auxv array or data has
1785 		 * been modified. Return the error in this case.
1786 		 */
1787 		if (aux.a_type != AT_NULL)
1788 			return (ENOEXEC);
1789 		vsize = i + 1;
1790 		size = vsize * sizeof(aux);
1791 		break;
1792 	default:
1793 		KASSERT(0, ("Wrong proc vector type: %d", type));
1794 		return (EINVAL); /* In case we are built without INVARIANTS. */
1795 	}
1796 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1797 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1798 		free(proc_vector, M_TEMP);
1799 		return (ENOMEM);
1800 	}
1801 	*proc_vectorp = proc_vector;
1802 	*vsizep = vsize;
1803 
1804 	return (0);
1805 }
1806 
1807 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1808 
1809 static int
1810 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1811     enum proc_vector_type type)
1812 {
1813 	size_t done, len, nchr, vsize;
1814 	int error, i;
1815 	char **proc_vector, *sptr;
1816 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1817 
1818 	PROC_ASSERT_HELD(p);
1819 
1820 	/*
1821 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1822 	 */
1823 	nchr = 2 * (PATH_MAX + ARG_MAX);
1824 
1825 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1826 	if (error != 0)
1827 		return (error);
1828 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1829 		/*
1830 		 * The program may have scribbled into its argv array, e.g. to
1831 		 * remove some arguments.  If that has happened, break out
1832 		 * before trying to read from NULL.
1833 		 */
1834 		if (proc_vector[i] == NULL)
1835 			break;
1836 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1837 			error = proc_read_string(td, p, sptr, pss_string,
1838 			    sizeof(pss_string));
1839 			if (error != 0)
1840 				goto done;
1841 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1842 			if (done + len >= nchr)
1843 				len = nchr - done - 1;
1844 			sbuf_bcat(sb, pss_string, len);
1845 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1846 				break;
1847 			done += GET_PS_STRINGS_CHUNK_SZ;
1848 		}
1849 		sbuf_bcat(sb, "", 1);
1850 		done += len + 1;
1851 	}
1852 done:
1853 	free(proc_vector, M_TEMP);
1854 	return (error);
1855 }
1856 
1857 int
1858 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1859 {
1860 
1861 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1862 }
1863 
1864 int
1865 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1866 {
1867 
1868 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1869 }
1870 
1871 int
1872 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1873 {
1874 	size_t vsize, size;
1875 	char **auxv;
1876 	int error;
1877 
1878 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1879 	if (error == 0) {
1880 #ifdef COMPAT_FREEBSD32
1881 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1882 			size = vsize * sizeof(Elf32_Auxinfo);
1883 		else
1884 #endif
1885 			size = vsize * sizeof(Elf_Auxinfo);
1886 		if (sbuf_bcat(sb, auxv, size) != 0)
1887 			error = ENOMEM;
1888 		free(auxv, M_TEMP);
1889 	}
1890 	return (error);
1891 }
1892 
1893 /*
1894  * This sysctl allows a process to retrieve the argument list or process
1895  * title for another process without groping around in the address space
1896  * of the other process.  It also allow a process to set its own "process
1897  * title to a string of its own choice.
1898  */
1899 static int
1900 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1901 {
1902 	int *name = (int *)arg1;
1903 	u_int namelen = arg2;
1904 	struct pargs *newpa, *pa;
1905 	struct proc *p;
1906 	struct sbuf sb;
1907 	int flags, error = 0, error2;
1908 
1909 	if (namelen != 1)
1910 		return (EINVAL);
1911 
1912 	flags = PGET_CANSEE;
1913 	if (req->newptr != NULL)
1914 		flags |= PGET_ISCURRENT;
1915 	error = pget((pid_t)name[0], flags, &p);
1916 	if (error)
1917 		return (error);
1918 
1919 	pa = p->p_args;
1920 	if (pa != NULL) {
1921 		pargs_hold(pa);
1922 		PROC_UNLOCK(p);
1923 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1924 		pargs_drop(pa);
1925 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
1926 		_PHOLD(p);
1927 		PROC_UNLOCK(p);
1928 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1929 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1930 		error = proc_getargv(curthread, p, &sb);
1931 		error2 = sbuf_finish(&sb);
1932 		PRELE(p);
1933 		sbuf_delete(&sb);
1934 		if (error == 0 && error2 != 0)
1935 			error = error2;
1936 	} else {
1937 		PROC_UNLOCK(p);
1938 	}
1939 	if (error != 0 || req->newptr == NULL)
1940 		return (error);
1941 
1942 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1943 		return (ENOMEM);
1944 	newpa = pargs_alloc(req->newlen);
1945 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1946 	if (error != 0) {
1947 		pargs_free(newpa);
1948 		return (error);
1949 	}
1950 	PROC_LOCK(p);
1951 	pa = p->p_args;
1952 	p->p_args = newpa;
1953 	PROC_UNLOCK(p);
1954 	pargs_drop(pa);
1955 	return (0);
1956 }
1957 
1958 /*
1959  * This sysctl allows a process to retrieve environment of another process.
1960  */
1961 static int
1962 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
1963 {
1964 	int *name = (int *)arg1;
1965 	u_int namelen = arg2;
1966 	struct proc *p;
1967 	struct sbuf sb;
1968 	int error, error2;
1969 
1970 	if (namelen != 1)
1971 		return (EINVAL);
1972 
1973 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
1974 	if (error != 0)
1975 		return (error);
1976 	if ((p->p_flag & P_SYSTEM) != 0) {
1977 		PRELE(p);
1978 		return (0);
1979 	}
1980 
1981 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
1982 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1983 	error = proc_getenvv(curthread, p, &sb);
1984 	error2 = sbuf_finish(&sb);
1985 	PRELE(p);
1986 	sbuf_delete(&sb);
1987 	return (error != 0 ? error : error2);
1988 }
1989 
1990 /*
1991  * This sysctl allows a process to retrieve ELF auxiliary vector of
1992  * another process.
1993  */
1994 static int
1995 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
1996 {
1997 	int *name = (int *)arg1;
1998 	u_int namelen = arg2;
1999 	struct proc *p;
2000 	struct sbuf sb;
2001 	int error, error2;
2002 
2003 	if (namelen != 1)
2004 		return (EINVAL);
2005 
2006 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2007 	if (error != 0)
2008 		return (error);
2009 	if ((p->p_flag & P_SYSTEM) != 0) {
2010 		PRELE(p);
2011 		return (0);
2012 	}
2013 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2014 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2015 	error = proc_getauxv(curthread, p, &sb);
2016 	error2 = sbuf_finish(&sb);
2017 	PRELE(p);
2018 	sbuf_delete(&sb);
2019 	return (error != 0 ? error : error2);
2020 }
2021 
2022 /*
2023  * This sysctl allows a process to retrieve the path of the executable for
2024  * itself or another process.
2025  */
2026 static int
2027 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2028 {
2029 	pid_t *pidp = (pid_t *)arg1;
2030 	unsigned int arglen = arg2;
2031 	struct proc *p;
2032 	struct vnode *vp;
2033 	char *retbuf, *freebuf;
2034 	int error;
2035 
2036 	if (arglen != 1)
2037 		return (EINVAL);
2038 	if (*pidp == -1) {	/* -1 means this process */
2039 		p = req->td->td_proc;
2040 	} else {
2041 		error = pget(*pidp, PGET_CANSEE, &p);
2042 		if (error != 0)
2043 			return (error);
2044 	}
2045 
2046 	vp = p->p_textvp;
2047 	if (vp == NULL) {
2048 		if (*pidp != -1)
2049 			PROC_UNLOCK(p);
2050 		return (0);
2051 	}
2052 	vref(vp);
2053 	if (*pidp != -1)
2054 		PROC_UNLOCK(p);
2055 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2056 	vrele(vp);
2057 	if (error)
2058 		return (error);
2059 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2060 	free(freebuf, M_TEMP);
2061 	return (error);
2062 }
2063 
2064 static int
2065 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2066 {
2067 	struct proc *p;
2068 	char *sv_name;
2069 	int *name;
2070 	int namelen;
2071 	int error;
2072 
2073 	namelen = arg2;
2074 	if (namelen != 1)
2075 		return (EINVAL);
2076 
2077 	name = (int *)arg1;
2078 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2079 	if (error != 0)
2080 		return (error);
2081 	sv_name = p->p_sysent->sv_name;
2082 	PROC_UNLOCK(p);
2083 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2084 }
2085 
2086 #ifdef KINFO_OVMENTRY_SIZE
2087 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2088 #endif
2089 
2090 #ifdef COMPAT_FREEBSD7
2091 static int
2092 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2093 {
2094 	vm_map_entry_t entry, tmp_entry;
2095 	unsigned int last_timestamp;
2096 	char *fullpath, *freepath;
2097 	struct kinfo_ovmentry *kve;
2098 	struct vattr va;
2099 	struct ucred *cred;
2100 	int error, *name;
2101 	struct vnode *vp;
2102 	struct proc *p;
2103 	vm_map_t map;
2104 	struct vmspace *vm;
2105 
2106 	name = (int *)arg1;
2107 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2108 	if (error != 0)
2109 		return (error);
2110 	vm = vmspace_acquire_ref(p);
2111 	if (vm == NULL) {
2112 		PRELE(p);
2113 		return (ESRCH);
2114 	}
2115 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2116 
2117 	map = &vm->vm_map;
2118 	vm_map_lock_read(map);
2119 	for (entry = map->header.next; entry != &map->header;
2120 	    entry = entry->next) {
2121 		vm_object_t obj, tobj, lobj;
2122 		vm_offset_t addr;
2123 
2124 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2125 			continue;
2126 
2127 		bzero(kve, sizeof(*kve));
2128 		kve->kve_structsize = sizeof(*kve);
2129 
2130 		kve->kve_private_resident = 0;
2131 		obj = entry->object.vm_object;
2132 		if (obj != NULL) {
2133 			VM_OBJECT_RLOCK(obj);
2134 			if (obj->shadow_count == 1)
2135 				kve->kve_private_resident =
2136 				    obj->resident_page_count;
2137 		}
2138 		kve->kve_resident = 0;
2139 		addr = entry->start;
2140 		while (addr < entry->end) {
2141 			if (pmap_extract(map->pmap, addr))
2142 				kve->kve_resident++;
2143 			addr += PAGE_SIZE;
2144 		}
2145 
2146 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2147 			if (tobj != obj)
2148 				VM_OBJECT_RLOCK(tobj);
2149 			if (lobj != obj)
2150 				VM_OBJECT_RUNLOCK(lobj);
2151 			lobj = tobj;
2152 		}
2153 
2154 		kve->kve_start = (void*)entry->start;
2155 		kve->kve_end = (void*)entry->end;
2156 		kve->kve_offset = (off_t)entry->offset;
2157 
2158 		if (entry->protection & VM_PROT_READ)
2159 			kve->kve_protection |= KVME_PROT_READ;
2160 		if (entry->protection & VM_PROT_WRITE)
2161 			kve->kve_protection |= KVME_PROT_WRITE;
2162 		if (entry->protection & VM_PROT_EXECUTE)
2163 			kve->kve_protection |= KVME_PROT_EXEC;
2164 
2165 		if (entry->eflags & MAP_ENTRY_COW)
2166 			kve->kve_flags |= KVME_FLAG_COW;
2167 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2168 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2169 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2170 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2171 
2172 		last_timestamp = map->timestamp;
2173 		vm_map_unlock_read(map);
2174 
2175 		kve->kve_fileid = 0;
2176 		kve->kve_fsid = 0;
2177 		freepath = NULL;
2178 		fullpath = "";
2179 		if (lobj) {
2180 			vp = NULL;
2181 			switch (lobj->type) {
2182 			case OBJT_DEFAULT:
2183 				kve->kve_type = KVME_TYPE_DEFAULT;
2184 				break;
2185 			case OBJT_VNODE:
2186 				kve->kve_type = KVME_TYPE_VNODE;
2187 				vp = lobj->handle;
2188 				vref(vp);
2189 				break;
2190 			case OBJT_SWAP:
2191 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2192 					kve->kve_type = KVME_TYPE_VNODE;
2193 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2194 						vp = lobj->un_pager.swp.swp_tmpfs;
2195 						vref(vp);
2196 					}
2197 				} else {
2198 					kve->kve_type = KVME_TYPE_SWAP;
2199 				}
2200 				break;
2201 			case OBJT_DEVICE:
2202 				kve->kve_type = KVME_TYPE_DEVICE;
2203 				break;
2204 			case OBJT_PHYS:
2205 				kve->kve_type = KVME_TYPE_PHYS;
2206 				break;
2207 			case OBJT_DEAD:
2208 				kve->kve_type = KVME_TYPE_DEAD;
2209 				break;
2210 			case OBJT_SG:
2211 				kve->kve_type = KVME_TYPE_SG;
2212 				break;
2213 			default:
2214 				kve->kve_type = KVME_TYPE_UNKNOWN;
2215 				break;
2216 			}
2217 			if (lobj != obj)
2218 				VM_OBJECT_RUNLOCK(lobj);
2219 
2220 			kve->kve_ref_count = obj->ref_count;
2221 			kve->kve_shadow_count = obj->shadow_count;
2222 			VM_OBJECT_RUNLOCK(obj);
2223 			if (vp != NULL) {
2224 				vn_fullpath(curthread, vp, &fullpath,
2225 				    &freepath);
2226 				cred = curthread->td_ucred;
2227 				vn_lock(vp, LK_SHARED | LK_RETRY);
2228 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2229 					kve->kve_fileid = va.va_fileid;
2230 					/* truncate */
2231 					kve->kve_fsid = va.va_fsid;
2232 				}
2233 				vput(vp);
2234 			}
2235 		} else {
2236 			kve->kve_type = KVME_TYPE_NONE;
2237 			kve->kve_ref_count = 0;
2238 			kve->kve_shadow_count = 0;
2239 		}
2240 
2241 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2242 		if (freepath != NULL)
2243 			free(freepath, M_TEMP);
2244 
2245 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2246 		vm_map_lock_read(map);
2247 		if (error)
2248 			break;
2249 		if (last_timestamp != map->timestamp) {
2250 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2251 			entry = tmp_entry;
2252 		}
2253 	}
2254 	vm_map_unlock_read(map);
2255 	vmspace_free(vm);
2256 	PRELE(p);
2257 	free(kve, M_TEMP);
2258 	return (error);
2259 }
2260 #endif	/* COMPAT_FREEBSD7 */
2261 
2262 #ifdef KINFO_VMENTRY_SIZE
2263 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2264 #endif
2265 
2266 static void
2267 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2268     struct kinfo_vmentry *kve)
2269 {
2270 	vm_object_t obj, tobj;
2271 	vm_page_t m, m_adv;
2272 	vm_offset_t addr;
2273 	vm_paddr_t locked_pa;
2274 	vm_pindex_t pi, pi_adv, pindex;
2275 
2276 	locked_pa = 0;
2277 	obj = entry->object.vm_object;
2278 	addr = entry->start;
2279 	m_adv = NULL;
2280 	pi = OFF_TO_IDX(entry->offset);
2281 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2282 		if (m_adv != NULL) {
2283 			m = m_adv;
2284 		} else {
2285 			pi_adv = atop(entry->end - addr);
2286 			pindex = pi;
2287 			for (tobj = obj;; tobj = tobj->backing_object) {
2288 				m = vm_page_find_least(tobj, pindex);
2289 				if (m != NULL) {
2290 					if (m->pindex == pindex)
2291 						break;
2292 					if (pi_adv > m->pindex - pindex) {
2293 						pi_adv = m->pindex - pindex;
2294 						m_adv = m;
2295 					}
2296 				}
2297 				if (tobj->backing_object == NULL)
2298 					goto next;
2299 				pindex += OFF_TO_IDX(tobj->
2300 				    backing_object_offset);
2301 			}
2302 		}
2303 		m_adv = NULL;
2304 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2305 		    (addr & (pagesizes[1] - 1)) == 0 &&
2306 		    (pmap_mincore(map->pmap, addr, &locked_pa) &
2307 		    MINCORE_SUPER) != 0) {
2308 			kve->kve_flags |= KVME_FLAG_SUPER;
2309 			pi_adv = atop(pagesizes[1]);
2310 		} else {
2311 			/*
2312 			 * We do not test the found page on validity.
2313 			 * Either the page is busy and being paged in,
2314 			 * or it was invalidated.  The first case
2315 			 * should be counted as resident, the second
2316 			 * is not so clear; we do account both.
2317 			 */
2318 			pi_adv = 1;
2319 		}
2320 		kve->kve_resident += pi_adv;
2321 next:;
2322 	}
2323 	PA_UNLOCK_COND(locked_pa);
2324 }
2325 
2326 /*
2327  * Must be called with the process locked and will return unlocked.
2328  */
2329 int
2330 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2331 {
2332 	vm_map_entry_t entry, tmp_entry;
2333 	struct vattr va;
2334 	vm_map_t map;
2335 	vm_object_t obj, tobj, lobj;
2336 	char *fullpath, *freepath;
2337 	struct kinfo_vmentry *kve;
2338 	struct ucred *cred;
2339 	struct vnode *vp;
2340 	struct vmspace *vm;
2341 	vm_offset_t addr;
2342 	unsigned int last_timestamp;
2343 	int error;
2344 
2345 	PROC_LOCK_ASSERT(p, MA_OWNED);
2346 
2347 	_PHOLD(p);
2348 	PROC_UNLOCK(p);
2349 	vm = vmspace_acquire_ref(p);
2350 	if (vm == NULL) {
2351 		PRELE(p);
2352 		return (ESRCH);
2353 	}
2354 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2355 
2356 	error = 0;
2357 	map = &vm->vm_map;
2358 	vm_map_lock_read(map);
2359 	for (entry = map->header.next; entry != &map->header;
2360 	    entry = entry->next) {
2361 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2362 			continue;
2363 
2364 		addr = entry->end;
2365 		bzero(kve, sizeof(*kve));
2366 		obj = entry->object.vm_object;
2367 		if (obj != NULL) {
2368 			for (tobj = obj; tobj != NULL;
2369 			    tobj = tobj->backing_object) {
2370 				VM_OBJECT_RLOCK(tobj);
2371 				lobj = tobj;
2372 			}
2373 			if (obj->backing_object == NULL)
2374 				kve->kve_private_resident =
2375 				    obj->resident_page_count;
2376 			if (!vmmap_skip_res_cnt)
2377 				kern_proc_vmmap_resident(map, entry, kve);
2378 			for (tobj = obj; tobj != NULL;
2379 			    tobj = tobj->backing_object) {
2380 				if (tobj != obj && tobj != lobj)
2381 					VM_OBJECT_RUNLOCK(tobj);
2382 			}
2383 		} else {
2384 			lobj = NULL;
2385 		}
2386 
2387 		kve->kve_start = entry->start;
2388 		kve->kve_end = entry->end;
2389 		kve->kve_offset = entry->offset;
2390 
2391 		if (entry->protection & VM_PROT_READ)
2392 			kve->kve_protection |= KVME_PROT_READ;
2393 		if (entry->protection & VM_PROT_WRITE)
2394 			kve->kve_protection |= KVME_PROT_WRITE;
2395 		if (entry->protection & VM_PROT_EXECUTE)
2396 			kve->kve_protection |= KVME_PROT_EXEC;
2397 
2398 		if (entry->eflags & MAP_ENTRY_COW)
2399 			kve->kve_flags |= KVME_FLAG_COW;
2400 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2401 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2402 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2403 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2404 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2405 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2406 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2407 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2408 
2409 		last_timestamp = map->timestamp;
2410 		vm_map_unlock_read(map);
2411 
2412 		freepath = NULL;
2413 		fullpath = "";
2414 		if (lobj != NULL) {
2415 			vp = NULL;
2416 			switch (lobj->type) {
2417 			case OBJT_DEFAULT:
2418 				kve->kve_type = KVME_TYPE_DEFAULT;
2419 				break;
2420 			case OBJT_VNODE:
2421 				kve->kve_type = KVME_TYPE_VNODE;
2422 				vp = lobj->handle;
2423 				vref(vp);
2424 				break;
2425 			case OBJT_SWAP:
2426 				if ((lobj->flags & OBJ_TMPFS_NODE) != 0) {
2427 					kve->kve_type = KVME_TYPE_VNODE;
2428 					if ((lobj->flags & OBJ_TMPFS) != 0) {
2429 						vp = lobj->un_pager.swp.swp_tmpfs;
2430 						vref(vp);
2431 					}
2432 				} else {
2433 					kve->kve_type = KVME_TYPE_SWAP;
2434 				}
2435 				break;
2436 			case OBJT_DEVICE:
2437 				kve->kve_type = KVME_TYPE_DEVICE;
2438 				break;
2439 			case OBJT_PHYS:
2440 				kve->kve_type = KVME_TYPE_PHYS;
2441 				break;
2442 			case OBJT_DEAD:
2443 				kve->kve_type = KVME_TYPE_DEAD;
2444 				break;
2445 			case OBJT_SG:
2446 				kve->kve_type = KVME_TYPE_SG;
2447 				break;
2448 			case OBJT_MGTDEVICE:
2449 				kve->kve_type = KVME_TYPE_MGTDEVICE;
2450 				break;
2451 			default:
2452 				kve->kve_type = KVME_TYPE_UNKNOWN;
2453 				break;
2454 			}
2455 			if (lobj != obj)
2456 				VM_OBJECT_RUNLOCK(lobj);
2457 
2458 			kve->kve_ref_count = obj->ref_count;
2459 			kve->kve_shadow_count = obj->shadow_count;
2460 			VM_OBJECT_RUNLOCK(obj);
2461 			if (vp != NULL) {
2462 				vn_fullpath(curthread, vp, &fullpath,
2463 				    &freepath);
2464 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2465 				cred = curthread->td_ucred;
2466 				vn_lock(vp, LK_SHARED | LK_RETRY);
2467 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2468 					kve->kve_vn_fileid = va.va_fileid;
2469 					kve->kve_vn_fsid = va.va_fsid;
2470 					kve->kve_vn_fsid_freebsd11 =
2471 					    kve->kve_vn_fsid; /* truncate */
2472 					kve->kve_vn_mode =
2473 					    MAKEIMODE(va.va_type, va.va_mode);
2474 					kve->kve_vn_size = va.va_size;
2475 					kve->kve_vn_rdev = va.va_rdev;
2476 					kve->kve_vn_rdev_freebsd11 =
2477 					    kve->kve_vn_rdev; /* truncate */
2478 					kve->kve_status = KF_ATTR_VALID;
2479 				}
2480 				vput(vp);
2481 			}
2482 		} else {
2483 			kve->kve_type = KVME_TYPE_NONE;
2484 			kve->kve_ref_count = 0;
2485 			kve->kve_shadow_count = 0;
2486 		}
2487 
2488 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2489 		if (freepath != NULL)
2490 			free(freepath, M_TEMP);
2491 
2492 		/* Pack record size down */
2493 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2494 			kve->kve_structsize =
2495 			    offsetof(struct kinfo_vmentry, kve_path) +
2496 			    strlen(kve->kve_path) + 1;
2497 		else
2498 			kve->kve_structsize = sizeof(*kve);
2499 		kve->kve_structsize = roundup(kve->kve_structsize,
2500 		    sizeof(uint64_t));
2501 
2502 		/* Halt filling and truncate rather than exceeding maxlen */
2503 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2504 			error = 0;
2505 			vm_map_lock_read(map);
2506 			break;
2507 		} else if (maxlen != -1)
2508 			maxlen -= kve->kve_structsize;
2509 
2510 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2511 			error = ENOMEM;
2512 		vm_map_lock_read(map);
2513 		if (error != 0)
2514 			break;
2515 		if (last_timestamp != map->timestamp) {
2516 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2517 			entry = tmp_entry;
2518 		}
2519 	}
2520 	vm_map_unlock_read(map);
2521 	vmspace_free(vm);
2522 	PRELE(p);
2523 	free(kve, M_TEMP);
2524 	return (error);
2525 }
2526 
2527 static int
2528 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2529 {
2530 	struct proc *p;
2531 	struct sbuf sb;
2532 	int error, error2, *name;
2533 
2534 	name = (int *)arg1;
2535 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2536 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2537 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2538 	if (error != 0) {
2539 		sbuf_delete(&sb);
2540 		return (error);
2541 	}
2542 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2543 	error2 = sbuf_finish(&sb);
2544 	sbuf_delete(&sb);
2545 	return (error != 0 ? error : error2);
2546 }
2547 
2548 #if defined(STACK) || defined(DDB)
2549 static int
2550 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2551 {
2552 	struct kinfo_kstack *kkstp;
2553 	int error, i, *name, numthreads;
2554 	lwpid_t *lwpidarray;
2555 	struct thread *td;
2556 	struct stack *st;
2557 	struct sbuf sb;
2558 	struct proc *p;
2559 
2560 	name = (int *)arg1;
2561 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2562 	if (error != 0)
2563 		return (error);
2564 
2565 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2566 	st = stack_create(M_WAITOK);
2567 
2568 	lwpidarray = NULL;
2569 	PROC_LOCK(p);
2570 	do {
2571 		if (lwpidarray != NULL) {
2572 			free(lwpidarray, M_TEMP);
2573 			lwpidarray = NULL;
2574 		}
2575 		numthreads = p->p_numthreads;
2576 		PROC_UNLOCK(p);
2577 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2578 		    M_WAITOK | M_ZERO);
2579 		PROC_LOCK(p);
2580 	} while (numthreads < p->p_numthreads);
2581 
2582 	/*
2583 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2584 	 * of changes could have taken place.  Should we check to see if the
2585 	 * vmspace has been replaced, or the like, in order to prevent
2586 	 * giving a snapshot that spans, say, execve(2), with some threads
2587 	 * before and some after?  Among other things, the credentials could
2588 	 * have changed, in which case the right to extract debug info might
2589 	 * no longer be assured.
2590 	 */
2591 	i = 0;
2592 	FOREACH_THREAD_IN_PROC(p, td) {
2593 		KASSERT(i < numthreads,
2594 		    ("sysctl_kern_proc_kstack: numthreads"));
2595 		lwpidarray[i] = td->td_tid;
2596 		i++;
2597 	}
2598 	numthreads = i;
2599 	for (i = 0; i < numthreads; i++) {
2600 		td = thread_find(p, lwpidarray[i]);
2601 		if (td == NULL) {
2602 			continue;
2603 		}
2604 		bzero(kkstp, sizeof(*kkstp));
2605 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2606 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2607 		thread_lock(td);
2608 		kkstp->kkst_tid = td->td_tid;
2609 		if (TD_IS_SWAPPED(td)) {
2610 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2611 		} else if (TD_IS_RUNNING(td)) {
2612 			if (stack_save_td_running(st, td) == 0)
2613 				kkstp->kkst_state = KKST_STATE_STACKOK;
2614 			else
2615 				kkstp->kkst_state = KKST_STATE_RUNNING;
2616 		} else {
2617 			kkstp->kkst_state = KKST_STATE_STACKOK;
2618 			stack_save_td(st, td);
2619 		}
2620 		thread_unlock(td);
2621 		PROC_UNLOCK(p);
2622 		stack_sbuf_print(&sb, st);
2623 		sbuf_finish(&sb);
2624 		sbuf_delete(&sb);
2625 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2626 		PROC_LOCK(p);
2627 		if (error)
2628 			break;
2629 	}
2630 	_PRELE(p);
2631 	PROC_UNLOCK(p);
2632 	if (lwpidarray != NULL)
2633 		free(lwpidarray, M_TEMP);
2634 	stack_destroy(st);
2635 	free(kkstp, M_TEMP);
2636 	return (error);
2637 }
2638 #endif
2639 
2640 /*
2641  * This sysctl allows a process to retrieve the full list of groups from
2642  * itself or another process.
2643  */
2644 static int
2645 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2646 {
2647 	pid_t *pidp = (pid_t *)arg1;
2648 	unsigned int arglen = arg2;
2649 	struct proc *p;
2650 	struct ucred *cred;
2651 	int error;
2652 
2653 	if (arglen != 1)
2654 		return (EINVAL);
2655 	if (*pidp == -1) {	/* -1 means this process */
2656 		p = req->td->td_proc;
2657 		PROC_LOCK(p);
2658 	} else {
2659 		error = pget(*pidp, PGET_CANSEE, &p);
2660 		if (error != 0)
2661 			return (error);
2662 	}
2663 
2664 	cred = crhold(p->p_ucred);
2665 	PROC_UNLOCK(p);
2666 
2667 	error = SYSCTL_OUT(req, cred->cr_groups,
2668 	    cred->cr_ngroups * sizeof(gid_t));
2669 	crfree(cred);
2670 	return (error);
2671 }
2672 
2673 /*
2674  * This sysctl allows a process to retrieve or/and set the resource limit for
2675  * another process.
2676  */
2677 static int
2678 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2679 {
2680 	int *name = (int *)arg1;
2681 	u_int namelen = arg2;
2682 	struct rlimit rlim;
2683 	struct proc *p;
2684 	u_int which;
2685 	int flags, error;
2686 
2687 	if (namelen != 2)
2688 		return (EINVAL);
2689 
2690 	which = (u_int)name[1];
2691 	if (which >= RLIM_NLIMITS)
2692 		return (EINVAL);
2693 
2694 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2695 		return (EINVAL);
2696 
2697 	flags = PGET_HOLD | PGET_NOTWEXIT;
2698 	if (req->newptr != NULL)
2699 		flags |= PGET_CANDEBUG;
2700 	else
2701 		flags |= PGET_CANSEE;
2702 	error = pget((pid_t)name[0], flags, &p);
2703 	if (error != 0)
2704 		return (error);
2705 
2706 	/*
2707 	 * Retrieve limit.
2708 	 */
2709 	if (req->oldptr != NULL) {
2710 		PROC_LOCK(p);
2711 		lim_rlimit_proc(p, which, &rlim);
2712 		PROC_UNLOCK(p);
2713 	}
2714 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2715 	if (error != 0)
2716 		goto errout;
2717 
2718 	/*
2719 	 * Set limit.
2720 	 */
2721 	if (req->newptr != NULL) {
2722 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2723 		if (error == 0)
2724 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2725 	}
2726 
2727 errout:
2728 	PRELE(p);
2729 	return (error);
2730 }
2731 
2732 /*
2733  * This sysctl allows a process to retrieve ps_strings structure location of
2734  * another process.
2735  */
2736 static int
2737 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2738 {
2739 	int *name = (int *)arg1;
2740 	u_int namelen = arg2;
2741 	struct proc *p;
2742 	vm_offset_t ps_strings;
2743 	int error;
2744 #ifdef COMPAT_FREEBSD32
2745 	uint32_t ps_strings32;
2746 #endif
2747 
2748 	if (namelen != 1)
2749 		return (EINVAL);
2750 
2751 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2752 	if (error != 0)
2753 		return (error);
2754 #ifdef COMPAT_FREEBSD32
2755 	if ((req->flags & SCTL_MASK32) != 0) {
2756 		/*
2757 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2758 		 * process.
2759 		 */
2760 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2761 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2762 		PROC_UNLOCK(p);
2763 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2764 		return (error);
2765 	}
2766 #endif
2767 	ps_strings = p->p_sysent->sv_psstrings;
2768 	PROC_UNLOCK(p);
2769 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2770 	return (error);
2771 }
2772 
2773 /*
2774  * This sysctl allows a process to retrieve umask of another process.
2775  */
2776 static int
2777 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2778 {
2779 	int *name = (int *)arg1;
2780 	u_int namelen = arg2;
2781 	struct proc *p;
2782 	int error;
2783 	u_short fd_cmask;
2784 	pid_t pid;
2785 
2786 	if (namelen != 1)
2787 		return (EINVAL);
2788 
2789 	pid = (pid_t)name[0];
2790 	p = curproc;
2791 	if (pid == p->p_pid || pid == 0) {
2792 		fd_cmask = p->p_fd->fd_cmask;
2793 		goto out;
2794 	}
2795 
2796 	error = pget(pid, PGET_WANTREAD, &p);
2797 	if (error != 0)
2798 		return (error);
2799 
2800 	fd_cmask = p->p_fd->fd_cmask;
2801 	PRELE(p);
2802 out:
2803 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2804 	return (error);
2805 }
2806 
2807 /*
2808  * This sysctl allows a process to set and retrieve binary osreldate of
2809  * another process.
2810  */
2811 static int
2812 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2813 {
2814 	int *name = (int *)arg1;
2815 	u_int namelen = arg2;
2816 	struct proc *p;
2817 	int flags, error, osrel;
2818 
2819 	if (namelen != 1)
2820 		return (EINVAL);
2821 
2822 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2823 		return (EINVAL);
2824 
2825 	flags = PGET_HOLD | PGET_NOTWEXIT;
2826 	if (req->newptr != NULL)
2827 		flags |= PGET_CANDEBUG;
2828 	else
2829 		flags |= PGET_CANSEE;
2830 	error = pget((pid_t)name[0], flags, &p);
2831 	if (error != 0)
2832 		return (error);
2833 
2834 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2835 	if (error != 0)
2836 		goto errout;
2837 
2838 	if (req->newptr != NULL) {
2839 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2840 		if (error != 0)
2841 			goto errout;
2842 		if (osrel < 0) {
2843 			error = EINVAL;
2844 			goto errout;
2845 		}
2846 		p->p_osrel = osrel;
2847 	}
2848 errout:
2849 	PRELE(p);
2850 	return (error);
2851 }
2852 
2853 static int
2854 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2855 {
2856 	int *name = (int *)arg1;
2857 	u_int namelen = arg2;
2858 	struct proc *p;
2859 	struct kinfo_sigtramp kst;
2860 	const struct sysentvec *sv;
2861 	int error;
2862 #ifdef COMPAT_FREEBSD32
2863 	struct kinfo_sigtramp32 kst32;
2864 #endif
2865 
2866 	if (namelen != 1)
2867 		return (EINVAL);
2868 
2869 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2870 	if (error != 0)
2871 		return (error);
2872 	sv = p->p_sysent;
2873 #ifdef COMPAT_FREEBSD32
2874 	if ((req->flags & SCTL_MASK32) != 0) {
2875 		bzero(&kst32, sizeof(kst32));
2876 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2877 			if (sv->sv_sigcode_base != 0) {
2878 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2879 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2880 				    *sv->sv_szsigcode;
2881 			} else {
2882 				kst32.ksigtramp_start = sv->sv_psstrings -
2883 				    *sv->sv_szsigcode;
2884 				kst32.ksigtramp_end = sv->sv_psstrings;
2885 			}
2886 		}
2887 		PROC_UNLOCK(p);
2888 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2889 		return (error);
2890 	}
2891 #endif
2892 	bzero(&kst, sizeof(kst));
2893 	if (sv->sv_sigcode_base != 0) {
2894 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2895 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2896 		    *sv->sv_szsigcode;
2897 	} else {
2898 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2899 		    *sv->sv_szsigcode;
2900 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2901 	}
2902 	PROC_UNLOCK(p);
2903 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2904 	return (error);
2905 }
2906 
2907 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
2908 
2909 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
2910 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
2911 	"Return entire process table");
2912 
2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2914 	sysctl_kern_proc, "Process table");
2915 
2916 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
2917 	sysctl_kern_proc, "Process table");
2918 
2919 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2920 	sysctl_kern_proc, "Process table");
2921 
2922 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2923 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2924 
2925 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2926 	sysctl_kern_proc, "Process table");
2927 
2928 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2929 	sysctl_kern_proc, "Process table");
2930 
2931 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2932 	sysctl_kern_proc, "Process table");
2933 
2934 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2935 	sysctl_kern_proc, "Process table");
2936 
2937 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2938 	sysctl_kern_proc, "Return process table, no threads");
2939 
2940 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2941 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2942 	sysctl_kern_proc_args, "Process argument list");
2943 
2944 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
2945 	sysctl_kern_proc_env, "Process environment");
2946 
2947 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
2948 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
2949 
2950 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2951 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2952 
2953 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2954 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2955 	"Process syscall vector name (ABI type)");
2956 
2957 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2958 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2959 
2960 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2961 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2962 
2963 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2964 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2965 
2966 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2967 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2968 
2969 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2970 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2971 
2972 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2973 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2974 
2975 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2976 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2977 
2978 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2979 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2980 
2981 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2982 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2983 	"Return process table, no threads");
2984 
2985 #ifdef COMPAT_FREEBSD7
2986 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2987 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2988 #endif
2989 
2990 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2991 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2992 
2993 #if defined(STACK) || defined(DDB)
2994 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2995 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2996 #endif
2997 
2998 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2999 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3000 
3001 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3002 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3003 	"Process resource limits");
3004 
3005 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3006 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3007 	"Process ps_strings location");
3008 
3009 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3010 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3011 
3012 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3013 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3014 	"Process binary osreldate");
3015 
3016 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3017 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3018 	"Process signal trampoline location");
3019 
3020 int allproc_gen;
3021 
3022 /*
3023  * stop_all_proc() purpose is to stop all process which have usermode,
3024  * except current process for obvious reasons.  This makes it somewhat
3025  * unreliable when invoked from multithreaded process.  The service
3026  * must not be user-callable anyway.
3027  */
3028 void
3029 stop_all_proc(void)
3030 {
3031 	struct proc *cp, *p;
3032 	int r, gen;
3033 	bool restart, seen_stopped, seen_exiting, stopped_some;
3034 
3035 	cp = curproc;
3036 allproc_loop:
3037 	sx_xlock(&allproc_lock);
3038 	gen = allproc_gen;
3039 	seen_exiting = seen_stopped = stopped_some = restart = false;
3040 	LIST_REMOVE(cp, p_list);
3041 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3042 	for (;;) {
3043 		p = LIST_NEXT(cp, p_list);
3044 		if (p == NULL)
3045 			break;
3046 		LIST_REMOVE(cp, p_list);
3047 		LIST_INSERT_AFTER(p, cp, p_list);
3048 		PROC_LOCK(p);
3049 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3050 			PROC_UNLOCK(p);
3051 			continue;
3052 		}
3053 		if ((p->p_flag & P_WEXIT) != 0) {
3054 			seen_exiting = true;
3055 			PROC_UNLOCK(p);
3056 			continue;
3057 		}
3058 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3059 			/*
3060 			 * Stopped processes are tolerated when there
3061 			 * are no other processes which might continue
3062 			 * them.  P_STOPPED_SINGLE but not
3063 			 * P_TOTAL_STOP process still has at least one
3064 			 * thread running.
3065 			 */
3066 			seen_stopped = true;
3067 			PROC_UNLOCK(p);
3068 			continue;
3069 		}
3070 		_PHOLD(p);
3071 		sx_xunlock(&allproc_lock);
3072 		r = thread_single(p, SINGLE_ALLPROC);
3073 		if (r != 0)
3074 			restart = true;
3075 		else
3076 			stopped_some = true;
3077 		_PRELE(p);
3078 		PROC_UNLOCK(p);
3079 		sx_xlock(&allproc_lock);
3080 	}
3081 	/* Catch forked children we did not see in iteration. */
3082 	if (gen != allproc_gen)
3083 		restart = true;
3084 	sx_xunlock(&allproc_lock);
3085 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3086 		kern_yield(PRI_USER);
3087 		goto allproc_loop;
3088 	}
3089 }
3090 
3091 void
3092 resume_all_proc(void)
3093 {
3094 	struct proc *cp, *p;
3095 
3096 	cp = curproc;
3097 	sx_xlock(&allproc_lock);
3098 	LIST_REMOVE(cp, p_list);
3099 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3100 	for (;;) {
3101 		p = LIST_NEXT(cp, p_list);
3102 		if (p == NULL)
3103 			break;
3104 		LIST_REMOVE(cp, p_list);
3105 		LIST_INSERT_AFTER(p, cp, p_list);
3106 		PROC_LOCK(p);
3107 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3108 			sx_xunlock(&allproc_lock);
3109 			_PHOLD(p);
3110 			thread_single_end(p, SINGLE_ALLPROC);
3111 			_PRELE(p);
3112 			PROC_UNLOCK(p);
3113 			sx_xlock(&allproc_lock);
3114 		} else {
3115 			PROC_UNLOCK(p);
3116 		}
3117 	}
3118 	sx_xunlock(&allproc_lock);
3119 }
3120 
3121 /* #define	TOTAL_STOP_DEBUG	1 */
3122 #ifdef TOTAL_STOP_DEBUG
3123 volatile static int ap_resume;
3124 #include <sys/mount.h>
3125 
3126 static int
3127 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3128 {
3129 	int error, val;
3130 
3131 	val = 0;
3132 	ap_resume = 0;
3133 	error = sysctl_handle_int(oidp, &val, 0, req);
3134 	if (error != 0 || req->newptr == NULL)
3135 		return (error);
3136 	if (val != 0) {
3137 		stop_all_proc();
3138 		syncer_suspend();
3139 		while (ap_resume == 0)
3140 			;
3141 		syncer_resume();
3142 		resume_all_proc();
3143 	}
3144 	return (0);
3145 }
3146 
3147 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3148     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3149     sysctl_debug_stop_all_proc, "I",
3150     "");
3151 #endif
3152