1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/refcount.h> 47 #include <sys/sysent.h> 48 #include <sys/sched.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/filedesc.h> 52 #include <sys/tty.h> 53 #include <sys/signalvar.h> 54 #include <sys/sx.h> 55 #include <sys/user.h> 56 #include <sys/jail.h> 57 #include <sys/vnode.h> 58 #ifdef KTRACE 59 #include <sys/uio.h> 60 #include <sys/ktrace.h> 61 #endif 62 63 #include <vm/vm.h> 64 #include <vm/vm_extern.h> 65 #include <vm/pmap.h> 66 #include <vm/vm_map.h> 67 #include <vm/uma.h> 68 69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 70 MALLOC_DEFINE(M_SESSION, "session", "session header"); 71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 73 74 static void doenterpgrp(struct proc *, struct pgrp *); 75 static void orphanpg(struct pgrp *pg); 76 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 77 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 78 static void pgadjustjobc(struct pgrp *pgrp, int entering); 79 static void pgdelete(struct pgrp *); 80 static int proc_ctor(void *mem, int size, void *arg, int flags); 81 static void proc_dtor(void *mem, int size, void *arg); 82 static int proc_init(void *mem, int size, int flags); 83 static void proc_fini(void *mem, int size); 84 85 /* 86 * Other process lists 87 */ 88 struct pidhashhead *pidhashtbl; 89 u_long pidhash; 90 struct pgrphashhead *pgrphashtbl; 91 u_long pgrphash; 92 struct proclist allproc; 93 struct proclist zombproc; 94 struct sx allproc_lock; 95 struct sx proctree_lock; 96 struct mtx ppeers_lock; 97 uma_zone_t proc_zone; 98 uma_zone_t ithread_zone; 99 100 int kstack_pages = KSTACK_PAGES; 101 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 102 103 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 104 105 /* 106 * Initialize global process hashing structures. 107 */ 108 void 109 procinit() 110 { 111 112 sx_init(&allproc_lock, "allproc"); 113 sx_init(&proctree_lock, "proctree"); 114 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 115 LIST_INIT(&allproc); 116 LIST_INIT(&zombproc); 117 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 118 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 119 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 120 proc_ctor, proc_dtor, proc_init, proc_fini, 121 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 122 uihashinit(); 123 } 124 125 /* 126 * Prepare a proc for use. 127 */ 128 static int 129 proc_ctor(void *mem, int size, void *arg, int flags) 130 { 131 struct proc *p; 132 133 p = (struct proc *)mem; 134 return (0); 135 } 136 137 /* 138 * Reclaim a proc after use. 139 */ 140 static void 141 proc_dtor(void *mem, int size, void *arg) 142 { 143 struct proc *p; 144 struct thread *td; 145 #ifdef INVARIANTS 146 struct ksegrp *kg; 147 #endif 148 149 /* INVARIANTS checks go here */ 150 p = (struct proc *)mem; 151 td = FIRST_THREAD_IN_PROC(p); 152 #ifdef INVARIANTS 153 KASSERT((p->p_numthreads == 1), 154 ("bad number of threads in exiting process")); 155 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 156 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 157 kg = FIRST_KSEGRP_IN_PROC(p); 158 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 159 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 160 #endif 161 162 /* Dispose of an alternate kstack, if it exists. 163 * XXX What if there are more than one thread in the proc? 164 * The first thread in the proc is special and not 165 * freed, so you gotta do this here. 166 */ 167 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 168 vm_thread_dispose_altkstack(td); 169 if (p->p_ksi != NULL) 170 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 171 } 172 173 /* 174 * Initialize type-stable parts of a proc (when newly created). 175 */ 176 static int 177 proc_init(void *mem, int size, int flags) 178 { 179 struct proc *p; 180 struct thread *td; 181 struct ksegrp *kg; 182 183 p = (struct proc *)mem; 184 p->p_sched = (struct p_sched *)&p[1]; 185 td = thread_alloc(); 186 kg = ksegrp_alloc(); 187 bzero(&p->p_mtx, sizeof(struct mtx)); 188 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 189 p->p_stats = pstats_alloc(); 190 proc_linkup(p, kg, td); 191 sched_newproc(p, kg, td); 192 return (0); 193 } 194 195 /* 196 * UMA should ensure that this function is never called. 197 * Freeing a proc structure would violate type stability. 198 */ 199 static void 200 proc_fini(void *mem, int size) 201 { 202 #ifdef notnow 203 struct proc *p; 204 205 p = (struct proc *)mem; 206 pstats_free(p->p_stats); 207 ksegrp_free(FIRST_KSEGRP_IN_PROC(p)); 208 thread_free(FIRST_THREAD_IN_PROC(p)); 209 mtx_destroy(&p->p_mtx); 210 if (p->p_ksi != NULL) 211 ksiginfo_free(p->p_ksi); 212 #else 213 panic("proc reclaimed"); 214 #endif 215 } 216 217 /* 218 * Is p an inferior of the current process? 219 */ 220 int 221 inferior(p) 222 register struct proc *p; 223 { 224 225 sx_assert(&proctree_lock, SX_LOCKED); 226 for (; p != curproc; p = p->p_pptr) 227 if (p->p_pid == 0) 228 return (0); 229 return (1); 230 } 231 232 /* 233 * Locate a process by number; return only "live" processes -- i.e., neither 234 * zombies nor newly born but incompletely initialized processes. By not 235 * returning processes in the PRS_NEW state, we allow callers to avoid 236 * testing for that condition to avoid dereferencing p_ucred, et al. 237 */ 238 struct proc * 239 pfind(pid) 240 register pid_t pid; 241 { 242 register struct proc *p; 243 244 sx_slock(&allproc_lock); 245 LIST_FOREACH(p, PIDHASH(pid), p_hash) 246 if (p->p_pid == pid) { 247 if (p->p_state == PRS_NEW) { 248 p = NULL; 249 break; 250 } 251 PROC_LOCK(p); 252 break; 253 } 254 sx_sunlock(&allproc_lock); 255 return (p); 256 } 257 258 /* 259 * Locate a process group by number. 260 * The caller must hold proctree_lock. 261 */ 262 struct pgrp * 263 pgfind(pgid) 264 register pid_t pgid; 265 { 266 register struct pgrp *pgrp; 267 268 sx_assert(&proctree_lock, SX_LOCKED); 269 270 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 271 if (pgrp->pg_id == pgid) { 272 PGRP_LOCK(pgrp); 273 return (pgrp); 274 } 275 } 276 return (NULL); 277 } 278 279 /* 280 * Create a new process group. 281 * pgid must be equal to the pid of p. 282 * Begin a new session if required. 283 */ 284 int 285 enterpgrp(p, pgid, pgrp, sess) 286 register struct proc *p; 287 pid_t pgid; 288 struct pgrp *pgrp; 289 struct session *sess; 290 { 291 struct pgrp *pgrp2; 292 293 sx_assert(&proctree_lock, SX_XLOCKED); 294 295 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 296 KASSERT(p->p_pid == pgid, 297 ("enterpgrp: new pgrp and pid != pgid")); 298 299 pgrp2 = pgfind(pgid); 300 301 KASSERT(pgrp2 == NULL, 302 ("enterpgrp: pgrp with pgid exists")); 303 KASSERT(!SESS_LEADER(p), 304 ("enterpgrp: session leader attempted setpgrp")); 305 306 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 307 308 if (sess != NULL) { 309 /* 310 * new session 311 */ 312 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 313 PROC_LOCK(p); 314 p->p_flag &= ~P_CONTROLT; 315 PROC_UNLOCK(p); 316 PGRP_LOCK(pgrp); 317 sess->s_leader = p; 318 sess->s_sid = p->p_pid; 319 sess->s_count = 1; 320 sess->s_ttyvp = NULL; 321 sess->s_ttyp = NULL; 322 bcopy(p->p_session->s_login, sess->s_login, 323 sizeof(sess->s_login)); 324 pgrp->pg_session = sess; 325 KASSERT(p == curproc, 326 ("enterpgrp: mksession and p != curproc")); 327 } else { 328 pgrp->pg_session = p->p_session; 329 SESS_LOCK(pgrp->pg_session); 330 pgrp->pg_session->s_count++; 331 SESS_UNLOCK(pgrp->pg_session); 332 PGRP_LOCK(pgrp); 333 } 334 pgrp->pg_id = pgid; 335 LIST_INIT(&pgrp->pg_members); 336 337 /* 338 * As we have an exclusive lock of proctree_lock, 339 * this should not deadlock. 340 */ 341 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 342 pgrp->pg_jobc = 0; 343 SLIST_INIT(&pgrp->pg_sigiolst); 344 PGRP_UNLOCK(pgrp); 345 346 doenterpgrp(p, pgrp); 347 348 return (0); 349 } 350 351 /* 352 * Move p to an existing process group 353 */ 354 int 355 enterthispgrp(p, pgrp) 356 register struct proc *p; 357 struct pgrp *pgrp; 358 { 359 360 sx_assert(&proctree_lock, SX_XLOCKED); 361 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 362 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 363 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 364 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 365 KASSERT(pgrp->pg_session == p->p_session, 366 ("%s: pgrp's session %p, p->p_session %p.\n", 367 __func__, 368 pgrp->pg_session, 369 p->p_session)); 370 KASSERT(pgrp != p->p_pgrp, 371 ("%s: p belongs to pgrp.", __func__)); 372 373 doenterpgrp(p, pgrp); 374 375 return (0); 376 } 377 378 /* 379 * Move p to a process group 380 */ 381 static void 382 doenterpgrp(p, pgrp) 383 struct proc *p; 384 struct pgrp *pgrp; 385 { 386 struct pgrp *savepgrp; 387 388 sx_assert(&proctree_lock, SX_XLOCKED); 389 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 390 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 391 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 392 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 393 394 savepgrp = p->p_pgrp; 395 396 /* 397 * Adjust eligibility of affected pgrps to participate in job control. 398 * Increment eligibility counts before decrementing, otherwise we 399 * could reach 0 spuriously during the first call. 400 */ 401 fixjobc(p, pgrp, 1); 402 fixjobc(p, p->p_pgrp, 0); 403 404 PGRP_LOCK(pgrp); 405 PGRP_LOCK(savepgrp); 406 PROC_LOCK(p); 407 LIST_REMOVE(p, p_pglist); 408 p->p_pgrp = pgrp; 409 PROC_UNLOCK(p); 410 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 411 PGRP_UNLOCK(savepgrp); 412 PGRP_UNLOCK(pgrp); 413 if (LIST_EMPTY(&savepgrp->pg_members)) 414 pgdelete(savepgrp); 415 } 416 417 /* 418 * remove process from process group 419 */ 420 int 421 leavepgrp(p) 422 register struct proc *p; 423 { 424 struct pgrp *savepgrp; 425 426 sx_assert(&proctree_lock, SX_XLOCKED); 427 savepgrp = p->p_pgrp; 428 PGRP_LOCK(savepgrp); 429 PROC_LOCK(p); 430 LIST_REMOVE(p, p_pglist); 431 p->p_pgrp = NULL; 432 PROC_UNLOCK(p); 433 PGRP_UNLOCK(savepgrp); 434 if (LIST_EMPTY(&savepgrp->pg_members)) 435 pgdelete(savepgrp); 436 return (0); 437 } 438 439 /* 440 * delete a process group 441 */ 442 static void 443 pgdelete(pgrp) 444 register struct pgrp *pgrp; 445 { 446 struct session *savesess; 447 448 sx_assert(&proctree_lock, SX_XLOCKED); 449 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 450 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 451 452 /* 453 * Reset any sigio structures pointing to us as a result of 454 * F_SETOWN with our pgid. 455 */ 456 funsetownlst(&pgrp->pg_sigiolst); 457 458 PGRP_LOCK(pgrp); 459 if (pgrp->pg_session->s_ttyp != NULL && 460 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 461 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 462 LIST_REMOVE(pgrp, pg_hash); 463 savesess = pgrp->pg_session; 464 SESSRELE(savesess); 465 PGRP_UNLOCK(pgrp); 466 mtx_destroy(&pgrp->pg_mtx); 467 FREE(pgrp, M_PGRP); 468 } 469 470 static void 471 pgadjustjobc(pgrp, entering) 472 struct pgrp *pgrp; 473 int entering; 474 { 475 476 PGRP_LOCK(pgrp); 477 if (entering) 478 pgrp->pg_jobc++; 479 else { 480 --pgrp->pg_jobc; 481 if (pgrp->pg_jobc == 0) 482 orphanpg(pgrp); 483 } 484 PGRP_UNLOCK(pgrp); 485 } 486 487 /* 488 * Adjust pgrp jobc counters when specified process changes process group. 489 * We count the number of processes in each process group that "qualify" 490 * the group for terminal job control (those with a parent in a different 491 * process group of the same session). If that count reaches zero, the 492 * process group becomes orphaned. Check both the specified process' 493 * process group and that of its children. 494 * entering == 0 => p is leaving specified group. 495 * entering == 1 => p is entering specified group. 496 */ 497 void 498 fixjobc(p, pgrp, entering) 499 register struct proc *p; 500 register struct pgrp *pgrp; 501 int entering; 502 { 503 register struct pgrp *hispgrp; 504 register struct session *mysession; 505 506 sx_assert(&proctree_lock, SX_LOCKED); 507 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 508 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 509 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 510 511 /* 512 * Check p's parent to see whether p qualifies its own process 513 * group; if so, adjust count for p's process group. 514 */ 515 mysession = pgrp->pg_session; 516 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 517 hispgrp->pg_session == mysession) 518 pgadjustjobc(pgrp, entering); 519 520 /* 521 * Check this process' children to see whether they qualify 522 * their process groups; if so, adjust counts for children's 523 * process groups. 524 */ 525 LIST_FOREACH(p, &p->p_children, p_sibling) { 526 hispgrp = p->p_pgrp; 527 if (hispgrp == pgrp || 528 hispgrp->pg_session != mysession) 529 continue; 530 PROC_LOCK(p); 531 if (p->p_state == PRS_ZOMBIE) { 532 PROC_UNLOCK(p); 533 continue; 534 } 535 PROC_UNLOCK(p); 536 pgadjustjobc(hispgrp, entering); 537 } 538 } 539 540 /* 541 * A process group has become orphaned; 542 * if there are any stopped processes in the group, 543 * hang-up all process in that group. 544 */ 545 static void 546 orphanpg(pg) 547 struct pgrp *pg; 548 { 549 register struct proc *p; 550 551 PGRP_LOCK_ASSERT(pg, MA_OWNED); 552 553 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 554 PROC_LOCK(p); 555 if (P_SHOULDSTOP(p)) { 556 PROC_UNLOCK(p); 557 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 558 PROC_LOCK(p); 559 psignal(p, SIGHUP); 560 psignal(p, SIGCONT); 561 PROC_UNLOCK(p); 562 } 563 return; 564 } 565 PROC_UNLOCK(p); 566 } 567 } 568 569 void 570 sessrele(struct session *s) 571 { 572 int i; 573 574 SESS_LOCK(s); 575 i = --s->s_count; 576 SESS_UNLOCK(s); 577 if (i == 0) { 578 if (s->s_ttyp != NULL) 579 ttyrel(s->s_ttyp); 580 mtx_destroy(&s->s_mtx); 581 FREE(s, M_SESSION); 582 } 583 } 584 585 #include "opt_ddb.h" 586 #ifdef DDB 587 #include <ddb/ddb.h> 588 589 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 590 { 591 register struct pgrp *pgrp; 592 register struct proc *p; 593 register int i; 594 595 for (i = 0; i <= pgrphash; i++) { 596 if (!LIST_EMPTY(&pgrphashtbl[i])) { 597 printf("\tindx %d\n", i); 598 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 599 printf( 600 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 601 (void *)pgrp, (long)pgrp->pg_id, 602 (void *)pgrp->pg_session, 603 pgrp->pg_session->s_count, 604 (void *)LIST_FIRST(&pgrp->pg_members)); 605 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 606 printf("\t\tpid %ld addr %p pgrp %p\n", 607 (long)p->p_pid, (void *)p, 608 (void *)p->p_pgrp); 609 } 610 } 611 } 612 } 613 } 614 #endif /* DDB */ 615 616 /* 617 * Clear kinfo_proc and fill in any information that is common 618 * to all threads in the process. 619 * Must be called with the target process locked. 620 */ 621 static void 622 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 623 { 624 struct thread *td0; 625 struct tty *tp; 626 struct session *sp; 627 struct ucred *cred; 628 struct sigacts *ps; 629 630 bzero(kp, sizeof(*kp)); 631 632 kp->ki_structsize = sizeof(*kp); 633 kp->ki_paddr = p; 634 PROC_LOCK_ASSERT(p, MA_OWNED); 635 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 636 kp->ki_args = p->p_args; 637 kp->ki_textvp = p->p_textvp; 638 #ifdef KTRACE 639 kp->ki_tracep = p->p_tracevp; 640 mtx_lock(&ktrace_mtx); 641 kp->ki_traceflag = p->p_traceflag; 642 mtx_unlock(&ktrace_mtx); 643 #endif 644 kp->ki_fd = p->p_fd; 645 kp->ki_vmspace = p->p_vmspace; 646 kp->ki_flag = p->p_flag; 647 cred = p->p_ucred; 648 if (cred) { 649 kp->ki_uid = cred->cr_uid; 650 kp->ki_ruid = cred->cr_ruid; 651 kp->ki_svuid = cred->cr_svuid; 652 /* XXX bde doesn't like KI_NGROUPS */ 653 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 654 bcopy(cred->cr_groups, kp->ki_groups, 655 kp->ki_ngroups * sizeof(gid_t)); 656 kp->ki_rgid = cred->cr_rgid; 657 kp->ki_svgid = cred->cr_svgid; 658 /* If jailed(cred), emulate the old P_JAILED flag. */ 659 if (jailed(cred)) { 660 kp->ki_flag |= P_JAILED; 661 /* If inside a jail, use 0 as a jail ID. */ 662 if (!jailed(curthread->td_ucred)) 663 kp->ki_jid = cred->cr_prison->pr_id; 664 } 665 } 666 ps = p->p_sigacts; 667 if (ps) { 668 mtx_lock(&ps->ps_mtx); 669 kp->ki_sigignore = ps->ps_sigignore; 670 kp->ki_sigcatch = ps->ps_sigcatch; 671 mtx_unlock(&ps->ps_mtx); 672 } 673 mtx_lock_spin(&sched_lock); 674 if (p->p_state != PRS_NEW && 675 p->p_state != PRS_ZOMBIE && 676 p->p_vmspace != NULL) { 677 struct vmspace *vm = p->p_vmspace; 678 679 kp->ki_size = vm->vm_map.size; 680 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 681 FOREACH_THREAD_IN_PROC(p, td0) { 682 if (!TD_IS_SWAPPED(td0)) 683 kp->ki_rssize += td0->td_kstack_pages; 684 if (td0->td_altkstack_obj != NULL) 685 kp->ki_rssize += td0->td_altkstack_pages; 686 } 687 kp->ki_swrss = vm->vm_swrss; 688 kp->ki_tsize = vm->vm_tsize; 689 kp->ki_dsize = vm->vm_dsize; 690 kp->ki_ssize = vm->vm_ssize; 691 } else if (p->p_state == PRS_ZOMBIE) 692 kp->ki_stat = SZOMB; 693 kp->ki_sflag = p->p_sflag; 694 kp->ki_swtime = p->p_swtime; 695 kp->ki_pid = p->p_pid; 696 kp->ki_nice = p->p_nice; 697 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 698 mtx_unlock_spin(&sched_lock); 699 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 700 kp->ki_start = p->p_stats->p_start; 701 timevaladd(&kp->ki_start, &boottime); 702 kp->ki_rusage = p->p_stats->p_ru; 703 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 704 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 705 706 /* Some callers want child-times in a single value */ 707 kp->ki_childtime = kp->ki_childstime; 708 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 709 } 710 tp = NULL; 711 if (p->p_pgrp) { 712 kp->ki_pgid = p->p_pgrp->pg_id; 713 kp->ki_jobc = p->p_pgrp->pg_jobc; 714 sp = p->p_pgrp->pg_session; 715 716 if (sp != NULL) { 717 kp->ki_sid = sp->s_sid; 718 SESS_LOCK(sp); 719 strlcpy(kp->ki_login, sp->s_login, 720 sizeof(kp->ki_login)); 721 if (sp->s_ttyvp) 722 kp->ki_kiflag |= KI_CTTY; 723 if (SESS_LEADER(p)) 724 kp->ki_kiflag |= KI_SLEADER; 725 tp = sp->s_ttyp; 726 SESS_UNLOCK(sp); 727 } 728 } 729 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 730 kp->ki_tdev = dev2udev(tp->t_dev); 731 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 732 if (tp->t_session) 733 kp->ki_tsid = tp->t_session->s_sid; 734 } else 735 kp->ki_tdev = NODEV; 736 if (p->p_comm[0] != '\0') { 737 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 738 /* 739 * Temporarily give the thread a default name of the process 740 * as it's erroneously used in the snmp code. 741 * Remove this when that is fixed. (soon I'm told) 742 */ 743 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 744 } 745 if (p->p_sysent && p->p_sysent->sv_name != NULL && 746 p->p_sysent->sv_name[0] != '\0') 747 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 748 kp->ki_siglist = p->p_siglist; 749 kp->ki_xstat = p->p_xstat; 750 kp->ki_acflag = p->p_acflag; 751 kp->ki_lock = p->p_lock; 752 if (p->p_pptr) 753 kp->ki_ppid = p->p_pptr->p_pid; 754 } 755 756 /* 757 * Fill in information that is thread specific. 758 * Must be called with sched_lock locked. 759 */ 760 static void 761 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 762 { 763 struct ksegrp *kg; 764 struct proc *p; 765 766 p = td->td_proc; 767 768 if (td->td_wmesg != NULL) 769 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 770 else 771 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 772 if (td->td_name[0] != '\0') 773 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 774 if (TD_ON_LOCK(td)) { 775 kp->ki_kiflag |= KI_LOCKBLOCK; 776 strlcpy(kp->ki_lockname, td->td_lockname, 777 sizeof(kp->ki_lockname)); 778 } else { 779 kp->ki_kiflag &= ~KI_LOCKBLOCK; 780 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 781 } 782 783 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 784 if (TD_ON_RUNQ(td) || 785 TD_CAN_RUN(td) || 786 TD_IS_RUNNING(td)) { 787 kp->ki_stat = SRUN; 788 } else if (P_SHOULDSTOP(p)) { 789 kp->ki_stat = SSTOP; 790 } else if (TD_IS_SLEEPING(td)) { 791 kp->ki_stat = SSLEEP; 792 } else if (TD_ON_LOCK(td)) { 793 kp->ki_stat = SLOCK; 794 } else { 795 kp->ki_stat = SWAIT; 796 } 797 } else if (p->p_state == PRS_ZOMBIE) { 798 kp->ki_stat = SZOMB; 799 } else { 800 kp->ki_stat = SIDL; 801 } 802 803 kg = td->td_ksegrp; 804 805 /* things in the KSE GROUP */ 806 kp->ki_estcpu = kg->kg_estcpu; 807 kp->ki_slptime = kg->kg_slptime; 808 kp->ki_pri.pri_user = kg->kg_user_pri; 809 kp->ki_pri.pri_class = kg->kg_pri_class; 810 811 /* Things in the thread */ 812 kp->ki_wchan = td->td_wchan; 813 kp->ki_pri.pri_level = td->td_priority; 814 kp->ki_pri.pri_native = td->td_base_pri; 815 kp->ki_lastcpu = td->td_lastcpu; 816 kp->ki_oncpu = td->td_oncpu; 817 kp->ki_tdflags = td->td_flags; 818 kp->ki_tid = td->td_tid; 819 kp->ki_numthreads = p->p_numthreads; 820 kp->ki_pcb = td->td_pcb; 821 kp->ki_kstack = (void *)td->td_kstack; 822 kp->ki_pctcpu = sched_pctcpu(td); 823 824 /* We can't get this anymore but ps etc never used it anyway. */ 825 kp->ki_rqindex = 0; 826 827 SIGSETOR(kp->ki_siglist, td->td_siglist); 828 kp->ki_sigmask = td->td_sigmask; 829 } 830 831 /* 832 * Fill in a kinfo_proc structure for the specified process. 833 * Must be called with the target process locked. 834 */ 835 void 836 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 837 { 838 839 fill_kinfo_proc_only(p, kp); 840 mtx_lock_spin(&sched_lock); 841 if (FIRST_THREAD_IN_PROC(p) != NULL) 842 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 843 mtx_unlock_spin(&sched_lock); 844 } 845 846 struct pstats * 847 pstats_alloc(void) 848 { 849 850 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 851 } 852 853 /* 854 * Copy parts of p_stats; zero the rest of p_stats (statistics). 855 */ 856 void 857 pstats_fork(struct pstats *src, struct pstats *dst) 858 { 859 860 bzero(&dst->pstat_startzero, 861 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 862 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 863 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 864 } 865 866 void 867 pstats_free(struct pstats *ps) 868 { 869 870 free(ps, M_SUBPROC); 871 } 872 873 /* 874 * Locate a zombie process by number 875 */ 876 struct proc * 877 zpfind(pid_t pid) 878 { 879 struct proc *p; 880 881 sx_slock(&allproc_lock); 882 LIST_FOREACH(p, &zombproc, p_list) 883 if (p->p_pid == pid) { 884 PROC_LOCK(p); 885 break; 886 } 887 sx_sunlock(&allproc_lock); 888 return (p); 889 } 890 891 #define KERN_PROC_ZOMBMASK 0x3 892 #define KERN_PROC_NOTHREADS 0x4 893 894 /* 895 * Must be called with the process locked and will return with it unlocked. 896 */ 897 static int 898 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 899 { 900 struct thread *td; 901 struct kinfo_proc kinfo_proc; 902 int error = 0; 903 struct proc *np; 904 pid_t pid = p->p_pid; 905 906 PROC_LOCK_ASSERT(p, MA_OWNED); 907 908 fill_kinfo_proc_only(p, &kinfo_proc); 909 if (flags & KERN_PROC_NOTHREADS) { 910 mtx_lock_spin(&sched_lock); 911 if (FIRST_THREAD_IN_PROC(p) != NULL) 912 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 913 mtx_unlock_spin(&sched_lock); 914 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 915 sizeof(kinfo_proc)); 916 } else { 917 mtx_lock_spin(&sched_lock); 918 if (FIRST_THREAD_IN_PROC(p) != NULL) 919 FOREACH_THREAD_IN_PROC(p, td) { 920 fill_kinfo_thread(td, &kinfo_proc); 921 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 922 sizeof(kinfo_proc)); 923 if (error) 924 break; 925 } 926 else 927 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 928 sizeof(kinfo_proc)); 929 mtx_unlock_spin(&sched_lock); 930 } 931 PROC_UNLOCK(p); 932 if (error) 933 return (error); 934 if (flags & KERN_PROC_ZOMBMASK) 935 np = zpfind(pid); 936 else { 937 if (pid == 0) 938 return (0); 939 np = pfind(pid); 940 } 941 if (np == NULL) 942 return EAGAIN; 943 if (np != p) { 944 PROC_UNLOCK(np); 945 return EAGAIN; 946 } 947 PROC_UNLOCK(np); 948 return (0); 949 } 950 951 static int 952 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 953 { 954 int *name = (int*) arg1; 955 u_int namelen = arg2; 956 struct proc *p; 957 int flags, doingzomb, oid_number; 958 int error = 0; 959 960 oid_number = oidp->oid_number; 961 if (oid_number != KERN_PROC_ALL && 962 (oid_number & KERN_PROC_INC_THREAD) == 0) 963 flags = KERN_PROC_NOTHREADS; 964 else { 965 flags = 0; 966 oid_number &= ~KERN_PROC_INC_THREAD; 967 } 968 if (oid_number == KERN_PROC_PID) { 969 if (namelen != 1) 970 return (EINVAL); 971 error = sysctl_wire_old_buffer(req, 0); 972 if (error) 973 return (error); 974 p = pfind((pid_t)name[0]); 975 if (!p) 976 return (ESRCH); 977 if ((error = p_cansee(curthread, p))) { 978 PROC_UNLOCK(p); 979 return (error); 980 } 981 error = sysctl_out_proc(p, req, flags); 982 return (error); 983 } 984 985 switch (oid_number) { 986 case KERN_PROC_ALL: 987 if (namelen != 0) 988 return (EINVAL); 989 break; 990 case KERN_PROC_PROC: 991 if (namelen != 0 && namelen != 1) 992 return (EINVAL); 993 break; 994 default: 995 if (namelen != 1) 996 return (EINVAL); 997 break; 998 } 999 1000 if (!req->oldptr) { 1001 /* overestimate by 5 procs */ 1002 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1003 if (error) 1004 return (error); 1005 } 1006 error = sysctl_wire_old_buffer(req, 0); 1007 if (error != 0) 1008 return (error); 1009 sx_slock(&allproc_lock); 1010 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1011 if (!doingzomb) 1012 p = LIST_FIRST(&allproc); 1013 else 1014 p = LIST_FIRST(&zombproc); 1015 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1016 /* 1017 * Skip embryonic processes. 1018 */ 1019 mtx_lock_spin(&sched_lock); 1020 if (p->p_state == PRS_NEW) { 1021 mtx_unlock_spin(&sched_lock); 1022 continue; 1023 } 1024 mtx_unlock_spin(&sched_lock); 1025 PROC_LOCK(p); 1026 KASSERT(p->p_ucred != NULL, 1027 ("process credential is NULL for non-NEW proc")); 1028 /* 1029 * Show a user only appropriate processes. 1030 */ 1031 if (p_cansee(curthread, p)) { 1032 PROC_UNLOCK(p); 1033 continue; 1034 } 1035 /* 1036 * TODO - make more efficient (see notes below). 1037 * do by session. 1038 */ 1039 switch (oid_number) { 1040 1041 case KERN_PROC_GID: 1042 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1043 PROC_UNLOCK(p); 1044 continue; 1045 } 1046 break; 1047 1048 case KERN_PROC_PGRP: 1049 /* could do this by traversing pgrp */ 1050 if (p->p_pgrp == NULL || 1051 p->p_pgrp->pg_id != (pid_t)name[0]) { 1052 PROC_UNLOCK(p); 1053 continue; 1054 } 1055 break; 1056 1057 case KERN_PROC_RGID: 1058 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1059 PROC_UNLOCK(p); 1060 continue; 1061 } 1062 break; 1063 1064 case KERN_PROC_SESSION: 1065 if (p->p_session == NULL || 1066 p->p_session->s_sid != (pid_t)name[0]) { 1067 PROC_UNLOCK(p); 1068 continue; 1069 } 1070 break; 1071 1072 case KERN_PROC_TTY: 1073 if ((p->p_flag & P_CONTROLT) == 0 || 1074 p->p_session == NULL) { 1075 PROC_UNLOCK(p); 1076 continue; 1077 } 1078 SESS_LOCK(p->p_session); 1079 if (p->p_session->s_ttyp == NULL || 1080 dev2udev(p->p_session->s_ttyp->t_dev) != 1081 (dev_t)name[0]) { 1082 SESS_UNLOCK(p->p_session); 1083 PROC_UNLOCK(p); 1084 continue; 1085 } 1086 SESS_UNLOCK(p->p_session); 1087 break; 1088 1089 case KERN_PROC_UID: 1090 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1091 PROC_UNLOCK(p); 1092 continue; 1093 } 1094 break; 1095 1096 case KERN_PROC_RUID: 1097 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1098 PROC_UNLOCK(p); 1099 continue; 1100 } 1101 break; 1102 1103 case KERN_PROC_PROC: 1104 break; 1105 1106 default: 1107 break; 1108 1109 } 1110 1111 error = sysctl_out_proc(p, req, flags | doingzomb); 1112 if (error) { 1113 sx_sunlock(&allproc_lock); 1114 return (error); 1115 } 1116 } 1117 } 1118 sx_sunlock(&allproc_lock); 1119 return (0); 1120 } 1121 1122 struct pargs * 1123 pargs_alloc(int len) 1124 { 1125 struct pargs *pa; 1126 1127 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1128 M_WAITOK); 1129 refcount_init(&pa->ar_ref, 1); 1130 pa->ar_length = len; 1131 return (pa); 1132 } 1133 1134 void 1135 pargs_free(struct pargs *pa) 1136 { 1137 1138 FREE(pa, M_PARGS); 1139 } 1140 1141 void 1142 pargs_hold(struct pargs *pa) 1143 { 1144 1145 if (pa == NULL) 1146 return; 1147 refcount_acquire(&pa->ar_ref); 1148 } 1149 1150 void 1151 pargs_drop(struct pargs *pa) 1152 { 1153 1154 if (pa == NULL) 1155 return; 1156 if (refcount_release(&pa->ar_ref)) 1157 pargs_free(pa); 1158 } 1159 1160 /* 1161 * This sysctl allows a process to retrieve the argument list or process 1162 * title for another process without groping around in the address space 1163 * of the other process. It also allow a process to set its own "process 1164 * title to a string of its own choice. 1165 */ 1166 static int 1167 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1168 { 1169 int *name = (int*) arg1; 1170 u_int namelen = arg2; 1171 struct pargs *newpa, *pa; 1172 struct proc *p; 1173 int error = 0; 1174 1175 if (namelen != 1) 1176 return (EINVAL); 1177 1178 p = pfind((pid_t)name[0]); 1179 if (!p) 1180 return (ESRCH); 1181 1182 if ((error = p_cansee(curthread, p)) != 0) { 1183 PROC_UNLOCK(p); 1184 return (error); 1185 } 1186 1187 if (req->newptr && curproc != p) { 1188 PROC_UNLOCK(p); 1189 return (EPERM); 1190 } 1191 1192 pa = p->p_args; 1193 pargs_hold(pa); 1194 PROC_UNLOCK(p); 1195 if (req->oldptr != NULL && pa != NULL) 1196 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1197 pargs_drop(pa); 1198 if (error != 0 || req->newptr == NULL) 1199 return (error); 1200 1201 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1202 return (ENOMEM); 1203 newpa = pargs_alloc(req->newlen); 1204 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1205 if (error != 0) { 1206 pargs_free(newpa); 1207 return (error); 1208 } 1209 PROC_LOCK(p); 1210 pa = p->p_args; 1211 p->p_args = newpa; 1212 PROC_UNLOCK(p); 1213 pargs_drop(pa); 1214 return (0); 1215 } 1216 1217 /* 1218 * This sysctl allows a process to retrieve the path of the executable for 1219 * itself or another process. 1220 */ 1221 static int 1222 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1223 { 1224 pid_t *pidp = (pid_t *)arg1; 1225 unsigned int arglen = arg2; 1226 struct proc *p; 1227 struct vnode *vp; 1228 char *retbuf, *freebuf; 1229 int error; 1230 1231 if (arglen != 1) 1232 return (EINVAL); 1233 if (*pidp == -1) { /* -1 means this process */ 1234 p = req->td->td_proc; 1235 } else { 1236 p = pfind(*pidp); 1237 if (p == NULL) 1238 return (ESRCH); 1239 if ((error = p_cansee(curthread, p)) != 0) { 1240 PROC_UNLOCK(p); 1241 return (error); 1242 } 1243 } 1244 1245 vp = p->p_textvp; 1246 vref(vp); 1247 if (*pidp != -1) 1248 PROC_UNLOCK(p); 1249 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1250 vrele(vp); 1251 if (error) 1252 return (error); 1253 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1254 free(freebuf, M_TEMP); 1255 return (error); 1256 } 1257 1258 static int 1259 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1260 { 1261 struct proc *p; 1262 char *sv_name; 1263 int *name; 1264 int namelen; 1265 int error; 1266 1267 namelen = arg2; 1268 if (namelen != 1) 1269 return (EINVAL); 1270 1271 name = (int *)arg1; 1272 if ((p = pfind((pid_t)name[0])) == NULL) 1273 return (ESRCH); 1274 if ((error = p_cansee(curthread, p))) { 1275 PROC_UNLOCK(p); 1276 return (error); 1277 } 1278 sv_name = p->p_sysent->sv_name; 1279 PROC_UNLOCK(p); 1280 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1281 } 1282 1283 1284 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1285 1286 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1287 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1288 1289 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1290 sysctl_kern_proc, "Process table"); 1291 1292 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1293 sysctl_kern_proc, "Process table"); 1294 1295 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1296 sysctl_kern_proc, "Process table"); 1297 1298 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1299 sysctl_kern_proc, "Process table"); 1300 1301 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1302 sysctl_kern_proc, "Process table"); 1303 1304 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1305 sysctl_kern_proc, "Process table"); 1306 1307 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1308 sysctl_kern_proc, "Process table"); 1309 1310 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1311 sysctl_kern_proc, "Process table"); 1312 1313 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1314 sysctl_kern_proc, "Return process table, no threads"); 1315 1316 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1317 CTLFLAG_RW | CTLFLAG_ANYBODY, 1318 sysctl_kern_proc_args, "Process argument list"); 1319 1320 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1321 sysctl_kern_proc_pathname, "Process executable path"); 1322 1323 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1324 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1325 1326 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1327 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1328 1329 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1330 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1331 1332 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1333 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1334 1335 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1336 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1337 1338 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1339 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1340 1341 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1342 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1343 1344 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1345 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1346 1347 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1348 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1349 1350 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1351 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1352