1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ktrace.h" 36 #include "opt_kstack_pages.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/refcount.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #include <sys/vnode.h> 57 #ifdef KTRACE 58 #include <sys/uio.h> 59 #include <sys/ktrace.h> 60 #endif 61 62 #include <vm/vm.h> 63 #include <vm/vm_extern.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/uma.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 76 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 77 static void pgadjustjobc(struct pgrp *pgrp, int entering); 78 static void pgdelete(struct pgrp *); 79 static int proc_ctor(void *mem, int size, void *arg, int flags); 80 static void proc_dtor(void *mem, int size, void *arg); 81 static int proc_init(void *mem, int size, int flags); 82 static void proc_fini(void *mem, int size); 83 84 /* 85 * Other process lists 86 */ 87 struct pidhashhead *pidhashtbl; 88 u_long pidhash; 89 struct pgrphashhead *pgrphashtbl; 90 u_long pgrphash; 91 struct proclist allproc; 92 struct proclist zombproc; 93 struct sx allproc_lock; 94 struct sx proctree_lock; 95 struct mtx ppeers_lock; 96 uma_zone_t proc_zone; 97 uma_zone_t ithread_zone; 98 99 int kstack_pages = KSTACK_PAGES; 100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 101 102 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 103 104 /* 105 * Initialize global process hashing structures. 106 */ 107 void 108 procinit() 109 { 110 111 sx_init(&allproc_lock, "allproc"); 112 sx_init(&proctree_lock, "proctree"); 113 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 114 LIST_INIT(&allproc); 115 LIST_INIT(&zombproc); 116 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 117 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 118 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 119 proc_ctor, proc_dtor, proc_init, proc_fini, 120 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 121 uihashinit(); 122 } 123 124 /* 125 * Prepare a proc for use. 126 */ 127 static int 128 proc_ctor(void *mem, int size, void *arg, int flags) 129 { 130 struct proc *p; 131 132 p = (struct proc *)mem; 133 return (0); 134 } 135 136 /* 137 * Reclaim a proc after use. 138 */ 139 static void 140 proc_dtor(void *mem, int size, void *arg) 141 { 142 struct proc *p; 143 struct thread *td; 144 #ifdef INVARIANTS 145 struct ksegrp *kg; 146 #endif 147 148 /* INVARIANTS checks go here */ 149 p = (struct proc *)mem; 150 td = FIRST_THREAD_IN_PROC(p); 151 #ifdef INVARIANTS 152 KASSERT((p->p_numthreads == 1), 153 ("bad number of threads in exiting process")); 154 KASSERT((p->p_numksegrps == 1), ("free proc with > 1 ksegrp")); 155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 156 kg = FIRST_KSEGRP_IN_PROC(p); 157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 158 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 159 #endif 160 161 /* Dispose of an alternate kstack, if it exists. 162 * XXX What if there are more than one thread in the proc? 163 * The first thread in the proc is special and not 164 * freed, so you gotta do this here. 165 */ 166 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 167 vm_thread_dispose_altkstack(td); 168 if (p->p_ksi != NULL) 169 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 170 } 171 172 /* 173 * Initialize type-stable parts of a proc (when newly created). 174 */ 175 static int 176 proc_init(void *mem, int size, int flags) 177 { 178 struct proc *p; 179 struct thread *td; 180 struct ksegrp *kg; 181 182 p = (struct proc *)mem; 183 p->p_sched = (struct p_sched *)&p[1]; 184 td = thread_alloc(); 185 kg = ksegrp_alloc(); 186 bzero(&p->p_mtx, sizeof(struct mtx)); 187 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 188 p->p_stats = pstats_alloc(); 189 proc_linkup(p, kg, td); 190 sched_newproc(p, kg, td); 191 return (0); 192 } 193 194 /* 195 * UMA should ensure that this function is never called. 196 * Freeing a proc structure would violate type stability. 197 */ 198 static void 199 proc_fini(void *mem, int size) 200 { 201 #ifdef notnow 202 struct proc *p; 203 204 p = (struct proc *)mem; 205 pstats_free(p->p_stats); 206 ksegrp_free(FIRST_KSEGRP_IN_PROC(p)); 207 thread_free(FIRST_THREAD_IN_PROC(p)); 208 mtx_destroy(&p->p_mtx); 209 if (p->p_ksi != NULL) 210 ksiginfo_free(p->p_ksi); 211 #else 212 panic("proc reclaimed"); 213 #endif 214 } 215 216 /* 217 * Is p an inferior of the current process? 218 */ 219 int 220 inferior(p) 221 register struct proc *p; 222 { 223 224 sx_assert(&proctree_lock, SX_LOCKED); 225 for (; p != curproc; p = p->p_pptr) 226 if (p->p_pid == 0) 227 return (0); 228 return (1); 229 } 230 231 /* 232 * Locate a process by number; return only "live" processes -- i.e., neither 233 * zombies nor newly born but incompletely initialized processes. By not 234 * returning processes in the PRS_NEW state, we allow callers to avoid 235 * testing for that condition to avoid dereferencing p_ucred, et al. 236 */ 237 struct proc * 238 pfind(pid) 239 register pid_t pid; 240 { 241 register struct proc *p; 242 243 sx_slock(&allproc_lock); 244 LIST_FOREACH(p, PIDHASH(pid), p_hash) 245 if (p->p_pid == pid) { 246 if (p->p_state == PRS_NEW) { 247 p = NULL; 248 break; 249 } 250 PROC_LOCK(p); 251 break; 252 } 253 sx_sunlock(&allproc_lock); 254 return (p); 255 } 256 257 /* 258 * Locate a process group by number. 259 * The caller must hold proctree_lock. 260 */ 261 struct pgrp * 262 pgfind(pgid) 263 register pid_t pgid; 264 { 265 register struct pgrp *pgrp; 266 267 sx_assert(&proctree_lock, SX_LOCKED); 268 269 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 270 if (pgrp->pg_id == pgid) { 271 PGRP_LOCK(pgrp); 272 return (pgrp); 273 } 274 } 275 return (NULL); 276 } 277 278 /* 279 * Create a new process group. 280 * pgid must be equal to the pid of p. 281 * Begin a new session if required. 282 */ 283 int 284 enterpgrp(p, pgid, pgrp, sess) 285 register struct proc *p; 286 pid_t pgid; 287 struct pgrp *pgrp; 288 struct session *sess; 289 { 290 struct pgrp *pgrp2; 291 292 sx_assert(&proctree_lock, SX_XLOCKED); 293 294 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 295 KASSERT(p->p_pid == pgid, 296 ("enterpgrp: new pgrp and pid != pgid")); 297 298 pgrp2 = pgfind(pgid); 299 300 KASSERT(pgrp2 == NULL, 301 ("enterpgrp: pgrp with pgid exists")); 302 KASSERT(!SESS_LEADER(p), 303 ("enterpgrp: session leader attempted setpgrp")); 304 305 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 306 307 if (sess != NULL) { 308 /* 309 * new session 310 */ 311 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 312 mtx_lock(&Giant); /* XXX TTY */ 313 PROC_LOCK(p); 314 p->p_flag &= ~P_CONTROLT; 315 PROC_UNLOCK(p); 316 PGRP_LOCK(pgrp); 317 sess->s_leader = p; 318 sess->s_sid = p->p_pid; 319 sess->s_count = 1; 320 sess->s_ttyvp = NULL; 321 sess->s_ttyp = NULL; 322 bcopy(p->p_session->s_login, sess->s_login, 323 sizeof(sess->s_login)); 324 pgrp->pg_session = sess; 325 KASSERT(p == curproc, 326 ("enterpgrp: mksession and p != curproc")); 327 } else { 328 mtx_lock(&Giant); /* XXX TTY */ 329 pgrp->pg_session = p->p_session; 330 SESS_LOCK(pgrp->pg_session); 331 pgrp->pg_session->s_count++; 332 SESS_UNLOCK(pgrp->pg_session); 333 PGRP_LOCK(pgrp); 334 } 335 pgrp->pg_id = pgid; 336 LIST_INIT(&pgrp->pg_members); 337 338 /* 339 * As we have an exclusive lock of proctree_lock, 340 * this should not deadlock. 341 */ 342 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 343 pgrp->pg_jobc = 0; 344 SLIST_INIT(&pgrp->pg_sigiolst); 345 PGRP_UNLOCK(pgrp); 346 mtx_unlock(&Giant); /* XXX TTY */ 347 348 doenterpgrp(p, pgrp); 349 350 return (0); 351 } 352 353 /* 354 * Move p to an existing process group 355 */ 356 int 357 enterthispgrp(p, pgrp) 358 register struct proc *p; 359 struct pgrp *pgrp; 360 { 361 362 sx_assert(&proctree_lock, SX_XLOCKED); 363 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 364 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 365 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 366 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 367 KASSERT(pgrp->pg_session == p->p_session, 368 ("%s: pgrp's session %p, p->p_session %p.\n", 369 __func__, 370 pgrp->pg_session, 371 p->p_session)); 372 KASSERT(pgrp != p->p_pgrp, 373 ("%s: p belongs to pgrp.", __func__)); 374 375 doenterpgrp(p, pgrp); 376 377 return (0); 378 } 379 380 /* 381 * Move p to a process group 382 */ 383 static void 384 doenterpgrp(p, pgrp) 385 struct proc *p; 386 struct pgrp *pgrp; 387 { 388 struct pgrp *savepgrp; 389 390 sx_assert(&proctree_lock, SX_XLOCKED); 391 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 392 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 393 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 394 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 395 396 savepgrp = p->p_pgrp; 397 398 /* 399 * Adjust eligibility of affected pgrps to participate in job control. 400 * Increment eligibility counts before decrementing, otherwise we 401 * could reach 0 spuriously during the first call. 402 */ 403 fixjobc(p, pgrp, 1); 404 fixjobc(p, p->p_pgrp, 0); 405 406 mtx_lock(&Giant); /* XXX TTY */ 407 PGRP_LOCK(pgrp); 408 PGRP_LOCK(savepgrp); 409 PROC_LOCK(p); 410 LIST_REMOVE(p, p_pglist); 411 p->p_pgrp = pgrp; 412 PROC_UNLOCK(p); 413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 414 PGRP_UNLOCK(savepgrp); 415 PGRP_UNLOCK(pgrp); 416 mtx_unlock(&Giant); /* XXX TTY */ 417 if (LIST_EMPTY(&savepgrp->pg_members)) 418 pgdelete(savepgrp); 419 } 420 421 /* 422 * remove process from process group 423 */ 424 int 425 leavepgrp(p) 426 register struct proc *p; 427 { 428 struct pgrp *savepgrp; 429 430 sx_assert(&proctree_lock, SX_XLOCKED); 431 savepgrp = p->p_pgrp; 432 mtx_lock(&Giant); /* XXX TTY */ 433 PGRP_LOCK(savepgrp); 434 PROC_LOCK(p); 435 LIST_REMOVE(p, p_pglist); 436 p->p_pgrp = NULL; 437 PROC_UNLOCK(p); 438 PGRP_UNLOCK(savepgrp); 439 mtx_unlock(&Giant); /* XXX TTY */ 440 if (LIST_EMPTY(&savepgrp->pg_members)) 441 pgdelete(savepgrp); 442 return (0); 443 } 444 445 /* 446 * delete a process group 447 */ 448 static void 449 pgdelete(pgrp) 450 register struct pgrp *pgrp; 451 { 452 struct session *savesess; 453 454 sx_assert(&proctree_lock, SX_XLOCKED); 455 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 456 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 457 458 /* 459 * Reset any sigio structures pointing to us as a result of 460 * F_SETOWN with our pgid. 461 */ 462 funsetownlst(&pgrp->pg_sigiolst); 463 464 mtx_lock(&Giant); /* XXX TTY */ 465 PGRP_LOCK(pgrp); 466 if (pgrp->pg_session->s_ttyp != NULL && 467 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 468 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 469 LIST_REMOVE(pgrp, pg_hash); 470 savesess = pgrp->pg_session; 471 SESSRELE(savesess); 472 PGRP_UNLOCK(pgrp); 473 mtx_destroy(&pgrp->pg_mtx); 474 FREE(pgrp, M_PGRP); 475 mtx_unlock(&Giant); /* XXX TTY */ 476 } 477 478 static void 479 pgadjustjobc(pgrp, entering) 480 struct pgrp *pgrp; 481 int entering; 482 { 483 484 PGRP_LOCK(pgrp); 485 if (entering) 486 pgrp->pg_jobc++; 487 else { 488 --pgrp->pg_jobc; 489 if (pgrp->pg_jobc == 0) 490 orphanpg(pgrp); 491 } 492 PGRP_UNLOCK(pgrp); 493 } 494 495 /* 496 * Adjust pgrp jobc counters when specified process changes process group. 497 * We count the number of processes in each process group that "qualify" 498 * the group for terminal job control (those with a parent in a different 499 * process group of the same session). If that count reaches zero, the 500 * process group becomes orphaned. Check both the specified process' 501 * process group and that of its children. 502 * entering == 0 => p is leaving specified group. 503 * entering == 1 => p is entering specified group. 504 */ 505 void 506 fixjobc(p, pgrp, entering) 507 register struct proc *p; 508 register struct pgrp *pgrp; 509 int entering; 510 { 511 register struct pgrp *hispgrp; 512 register struct session *mysession; 513 514 sx_assert(&proctree_lock, SX_LOCKED); 515 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 516 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 517 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 518 519 /* 520 * Check p's parent to see whether p qualifies its own process 521 * group; if so, adjust count for p's process group. 522 */ 523 mysession = pgrp->pg_session; 524 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 525 hispgrp->pg_session == mysession) 526 pgadjustjobc(pgrp, entering); 527 528 /* 529 * Check this process' children to see whether they qualify 530 * their process groups; if so, adjust counts for children's 531 * process groups. 532 */ 533 LIST_FOREACH(p, &p->p_children, p_sibling) { 534 hispgrp = p->p_pgrp; 535 if (hispgrp == pgrp || 536 hispgrp->pg_session != mysession) 537 continue; 538 PROC_LOCK(p); 539 if (p->p_state == PRS_ZOMBIE) { 540 PROC_UNLOCK(p); 541 continue; 542 } 543 PROC_UNLOCK(p); 544 pgadjustjobc(hispgrp, entering); 545 } 546 } 547 548 /* 549 * A process group has become orphaned; 550 * if there are any stopped processes in the group, 551 * hang-up all process in that group. 552 */ 553 static void 554 orphanpg(pg) 555 struct pgrp *pg; 556 { 557 register struct proc *p; 558 559 PGRP_LOCK_ASSERT(pg, MA_OWNED); 560 561 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 562 PROC_LOCK(p); 563 if (P_SHOULDSTOP(p)) { 564 PROC_UNLOCK(p); 565 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 566 PROC_LOCK(p); 567 psignal(p, SIGHUP); 568 psignal(p, SIGCONT); 569 PROC_UNLOCK(p); 570 } 571 return; 572 } 573 PROC_UNLOCK(p); 574 } 575 } 576 577 void 578 sessrele(struct session *s) 579 { 580 int i; 581 582 SESS_LOCK(s); 583 i = --s->s_count; 584 SESS_UNLOCK(s); 585 if (i == 0) { 586 if (s->s_ttyp != NULL) 587 ttyrel(s->s_ttyp); 588 mtx_destroy(&s->s_mtx); 589 FREE(s, M_SESSION); 590 } 591 } 592 593 #include "opt_ddb.h" 594 #ifdef DDB 595 #include <ddb/ddb.h> 596 597 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 598 { 599 register struct pgrp *pgrp; 600 register struct proc *p; 601 register int i; 602 603 for (i = 0; i <= pgrphash; i++) { 604 if (!LIST_EMPTY(&pgrphashtbl[i])) { 605 printf("\tindx %d\n", i); 606 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 607 printf( 608 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 609 (void *)pgrp, (long)pgrp->pg_id, 610 (void *)pgrp->pg_session, 611 pgrp->pg_session->s_count, 612 (void *)LIST_FIRST(&pgrp->pg_members)); 613 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 614 printf("\t\tpid %ld addr %p pgrp %p\n", 615 (long)p->p_pid, (void *)p, 616 (void *)p->p_pgrp); 617 } 618 } 619 } 620 } 621 } 622 #endif /* DDB */ 623 624 /* 625 * Clear kinfo_proc and fill in any information that is common 626 * to all threads in the process. 627 * Must be called with the target process locked. 628 */ 629 static void 630 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 631 { 632 struct thread *td0; 633 struct tty *tp; 634 struct session *sp; 635 struct ucred *cred; 636 struct sigacts *ps; 637 638 bzero(kp, sizeof(*kp)); 639 640 kp->ki_structsize = sizeof(*kp); 641 kp->ki_paddr = p; 642 PROC_LOCK_ASSERT(p, MA_OWNED); 643 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 644 kp->ki_args = p->p_args; 645 kp->ki_textvp = p->p_textvp; 646 #ifdef KTRACE 647 kp->ki_tracep = p->p_tracevp; 648 mtx_lock(&ktrace_mtx); 649 kp->ki_traceflag = p->p_traceflag; 650 mtx_unlock(&ktrace_mtx); 651 #endif 652 kp->ki_fd = p->p_fd; 653 kp->ki_vmspace = p->p_vmspace; 654 kp->ki_flag = p->p_flag; 655 cred = p->p_ucred; 656 if (cred) { 657 kp->ki_uid = cred->cr_uid; 658 kp->ki_ruid = cred->cr_ruid; 659 kp->ki_svuid = cred->cr_svuid; 660 /* XXX bde doesn't like KI_NGROUPS */ 661 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 662 bcopy(cred->cr_groups, kp->ki_groups, 663 kp->ki_ngroups * sizeof(gid_t)); 664 kp->ki_rgid = cred->cr_rgid; 665 kp->ki_svgid = cred->cr_svgid; 666 /* If jailed(cred), emulate the old P_JAILED flag. */ 667 if (jailed(cred)) { 668 kp->ki_flag |= P_JAILED; 669 /* If inside a jail, use 0 as a jail ID. */ 670 if (!jailed(curthread->td_ucred)) 671 kp->ki_jid = cred->cr_prison->pr_id; 672 } 673 } 674 ps = p->p_sigacts; 675 if (ps) { 676 mtx_lock(&ps->ps_mtx); 677 kp->ki_sigignore = ps->ps_sigignore; 678 kp->ki_sigcatch = ps->ps_sigcatch; 679 mtx_unlock(&ps->ps_mtx); 680 } 681 mtx_lock_spin(&sched_lock); 682 if (p->p_state != PRS_NEW && 683 p->p_state != PRS_ZOMBIE && 684 p->p_vmspace != NULL) { 685 struct vmspace *vm = p->p_vmspace; 686 687 kp->ki_size = vm->vm_map.size; 688 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 689 FOREACH_THREAD_IN_PROC(p, td0) { 690 if (!TD_IS_SWAPPED(td0)) 691 kp->ki_rssize += td0->td_kstack_pages; 692 if (td0->td_altkstack_obj != NULL) 693 kp->ki_rssize += td0->td_altkstack_pages; 694 } 695 kp->ki_swrss = vm->vm_swrss; 696 kp->ki_tsize = vm->vm_tsize; 697 kp->ki_dsize = vm->vm_dsize; 698 kp->ki_ssize = vm->vm_ssize; 699 } else if (p->p_state == PRS_ZOMBIE) 700 kp->ki_stat = SZOMB; 701 kp->ki_sflag = p->p_sflag; 702 kp->ki_swtime = p->p_swtime; 703 kp->ki_pid = p->p_pid; 704 kp->ki_nice = p->p_nice; 705 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 706 mtx_unlock_spin(&sched_lock); 707 if ((p->p_sflag & PS_INMEM) && p->p_stats != NULL) { 708 kp->ki_start = p->p_stats->p_start; 709 timevaladd(&kp->ki_start, &boottime); 710 kp->ki_rusage = p->p_stats->p_ru; 711 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 712 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 713 714 /* Some callers want child-times in a single value */ 715 kp->ki_childtime = kp->ki_childstime; 716 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 717 } 718 tp = NULL; 719 if (p->p_pgrp) { 720 kp->ki_pgid = p->p_pgrp->pg_id; 721 kp->ki_jobc = p->p_pgrp->pg_jobc; 722 sp = p->p_pgrp->pg_session; 723 724 if (sp != NULL) { 725 kp->ki_sid = sp->s_sid; 726 SESS_LOCK(sp); 727 strlcpy(kp->ki_login, sp->s_login, 728 sizeof(kp->ki_login)); 729 if (sp->s_ttyvp) 730 kp->ki_kiflag |= KI_CTTY; 731 if (SESS_LEADER(p)) 732 kp->ki_kiflag |= KI_SLEADER; 733 tp = sp->s_ttyp; 734 SESS_UNLOCK(sp); 735 } 736 } 737 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 738 kp->ki_tdev = dev2udev(tp->t_dev); 739 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 740 if (tp->t_session) 741 kp->ki_tsid = tp->t_session->s_sid; 742 } else 743 kp->ki_tdev = NODEV; 744 if (p->p_comm[0] != '\0') { 745 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 746 /* 747 * Temporarily give the thread a default name of the process 748 * as it's erroneously used in the snmp code. 749 * Remove this when that is fixed. (soon I'm told) 750 */ 751 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 752 } 753 if (p->p_sysent && p->p_sysent->sv_name != NULL && 754 p->p_sysent->sv_name[0] != '\0') 755 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 756 kp->ki_siglist = p->p_siglist; 757 kp->ki_xstat = p->p_xstat; 758 kp->ki_acflag = p->p_acflag; 759 kp->ki_lock = p->p_lock; 760 if (p->p_pptr) 761 kp->ki_ppid = p->p_pptr->p_pid; 762 } 763 764 /* 765 * Fill in information that is thread specific. 766 * Must be called with sched_lock locked. 767 */ 768 static void 769 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 770 { 771 struct ksegrp *kg; 772 struct proc *p; 773 774 p = td->td_proc; 775 776 if (td->td_wmesg != NULL) 777 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 778 else 779 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 780 if (td->td_name[0] != '\0') 781 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 782 if (TD_ON_LOCK(td)) { 783 kp->ki_kiflag |= KI_LOCKBLOCK; 784 strlcpy(kp->ki_lockname, td->td_lockname, 785 sizeof(kp->ki_lockname)); 786 } else { 787 kp->ki_kiflag &= ~KI_LOCKBLOCK; 788 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 789 } 790 791 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 792 if (TD_ON_RUNQ(td) || 793 TD_CAN_RUN(td) || 794 TD_IS_RUNNING(td)) { 795 kp->ki_stat = SRUN; 796 } else if (P_SHOULDSTOP(p)) { 797 kp->ki_stat = SSTOP; 798 } else if (TD_IS_SLEEPING(td)) { 799 kp->ki_stat = SSLEEP; 800 } else if (TD_ON_LOCK(td)) { 801 kp->ki_stat = SLOCK; 802 } else { 803 kp->ki_stat = SWAIT; 804 } 805 } else if (p->p_state == PRS_ZOMBIE) { 806 kp->ki_stat = SZOMB; 807 } else { 808 kp->ki_stat = SIDL; 809 } 810 811 kg = td->td_ksegrp; 812 813 /* things in the KSE GROUP */ 814 kp->ki_estcpu = kg->kg_estcpu; 815 kp->ki_slptime = kg->kg_slptime; 816 kp->ki_pri.pri_user = kg->kg_user_pri; 817 kp->ki_pri.pri_class = kg->kg_pri_class; 818 819 /* Things in the thread */ 820 kp->ki_wchan = td->td_wchan; 821 kp->ki_pri.pri_level = td->td_priority; 822 kp->ki_pri.pri_native = td->td_base_pri; 823 kp->ki_lastcpu = td->td_lastcpu; 824 kp->ki_oncpu = td->td_oncpu; 825 kp->ki_tdflags = td->td_flags; 826 kp->ki_tid = td->td_tid; 827 kp->ki_numthreads = p->p_numthreads; 828 kp->ki_pcb = td->td_pcb; 829 kp->ki_kstack = (void *)td->td_kstack; 830 kp->ki_pctcpu = sched_pctcpu(td); 831 832 /* We can't get this anymore but ps etc never used it anyway. */ 833 kp->ki_rqindex = 0; 834 835 SIGSETOR(kp->ki_siglist, td->td_siglist); 836 kp->ki_sigmask = td->td_sigmask; 837 } 838 839 /* 840 * Fill in a kinfo_proc structure for the specified process. 841 * Must be called with the target process locked. 842 */ 843 void 844 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 845 { 846 847 fill_kinfo_proc_only(p, kp); 848 mtx_lock_spin(&sched_lock); 849 if (FIRST_THREAD_IN_PROC(p) != NULL) 850 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 851 mtx_unlock_spin(&sched_lock); 852 } 853 854 struct pstats * 855 pstats_alloc(void) 856 { 857 858 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 859 } 860 861 /* 862 * Copy parts of p_stats; zero the rest of p_stats (statistics). 863 */ 864 void 865 pstats_fork(struct pstats *src, struct pstats *dst) 866 { 867 868 bzero(&dst->pstat_startzero, 869 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 870 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 871 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 872 } 873 874 void 875 pstats_free(struct pstats *ps) 876 { 877 878 free(ps, M_SUBPROC); 879 } 880 881 /* 882 * Locate a zombie process by number 883 */ 884 struct proc * 885 zpfind(pid_t pid) 886 { 887 struct proc *p; 888 889 sx_slock(&allproc_lock); 890 LIST_FOREACH(p, &zombproc, p_list) 891 if (p->p_pid == pid) { 892 PROC_LOCK(p); 893 break; 894 } 895 sx_sunlock(&allproc_lock); 896 return (p); 897 } 898 899 #define KERN_PROC_ZOMBMASK 0x3 900 #define KERN_PROC_NOTHREADS 0x4 901 902 /* 903 * Must be called with the process locked and will return with it unlocked. 904 */ 905 static int 906 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 907 { 908 struct thread *td; 909 struct kinfo_proc kinfo_proc; 910 int error = 0; 911 struct proc *np; 912 pid_t pid = p->p_pid; 913 914 PROC_LOCK_ASSERT(p, MA_OWNED); 915 916 fill_kinfo_proc_only(p, &kinfo_proc); 917 if (flags & KERN_PROC_NOTHREADS) { 918 mtx_lock_spin(&sched_lock); 919 if (FIRST_THREAD_IN_PROC(p) != NULL) 920 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 921 mtx_unlock_spin(&sched_lock); 922 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 923 sizeof(kinfo_proc)); 924 } else { 925 mtx_lock_spin(&sched_lock); 926 if (FIRST_THREAD_IN_PROC(p) != NULL) 927 FOREACH_THREAD_IN_PROC(p, td) { 928 fill_kinfo_thread(td, &kinfo_proc); 929 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 930 sizeof(kinfo_proc)); 931 if (error) 932 break; 933 } 934 else 935 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 936 sizeof(kinfo_proc)); 937 mtx_unlock_spin(&sched_lock); 938 } 939 PROC_UNLOCK(p); 940 if (error) 941 return (error); 942 if (flags & KERN_PROC_ZOMBMASK) 943 np = zpfind(pid); 944 else { 945 if (pid == 0) 946 return (0); 947 np = pfind(pid); 948 } 949 if (np == NULL) 950 return EAGAIN; 951 if (np != p) { 952 PROC_UNLOCK(np); 953 return EAGAIN; 954 } 955 PROC_UNLOCK(np); 956 return (0); 957 } 958 959 static int 960 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 961 { 962 int *name = (int*) arg1; 963 u_int namelen = arg2; 964 struct proc *p; 965 int flags, doingzomb, oid_number; 966 int error = 0; 967 968 oid_number = oidp->oid_number; 969 if (oid_number != KERN_PROC_ALL && 970 (oid_number & KERN_PROC_INC_THREAD) == 0) 971 flags = KERN_PROC_NOTHREADS; 972 else { 973 flags = 0; 974 oid_number &= ~KERN_PROC_INC_THREAD; 975 } 976 if (oid_number == KERN_PROC_PID) { 977 if (namelen != 1) 978 return (EINVAL); 979 error = sysctl_wire_old_buffer(req, 0); 980 if (error) 981 return (error); 982 p = pfind((pid_t)name[0]); 983 if (!p) 984 return (ESRCH); 985 if ((error = p_cansee(curthread, p))) { 986 PROC_UNLOCK(p); 987 return (error); 988 } 989 error = sysctl_out_proc(p, req, flags); 990 return (error); 991 } 992 993 switch (oid_number) { 994 case KERN_PROC_ALL: 995 if (namelen != 0) 996 return (EINVAL); 997 break; 998 case KERN_PROC_PROC: 999 if (namelen != 0 && namelen != 1) 1000 return (EINVAL); 1001 break; 1002 default: 1003 if (namelen != 1) 1004 return (EINVAL); 1005 break; 1006 } 1007 1008 if (!req->oldptr) { 1009 /* overestimate by 5 procs */ 1010 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1011 if (error) 1012 return (error); 1013 } 1014 error = sysctl_wire_old_buffer(req, 0); 1015 if (error != 0) 1016 return (error); 1017 sx_slock(&allproc_lock); 1018 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1019 if (!doingzomb) 1020 p = LIST_FIRST(&allproc); 1021 else 1022 p = LIST_FIRST(&zombproc); 1023 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1024 /* 1025 * Skip embryonic processes. 1026 */ 1027 mtx_lock_spin(&sched_lock); 1028 if (p->p_state == PRS_NEW) { 1029 mtx_unlock_spin(&sched_lock); 1030 continue; 1031 } 1032 mtx_unlock_spin(&sched_lock); 1033 PROC_LOCK(p); 1034 KASSERT(p->p_ucred != NULL, 1035 ("process credential is NULL for non-NEW proc")); 1036 /* 1037 * Show a user only appropriate processes. 1038 */ 1039 if (p_cansee(curthread, p)) { 1040 PROC_UNLOCK(p); 1041 continue; 1042 } 1043 /* 1044 * TODO - make more efficient (see notes below). 1045 * do by session. 1046 */ 1047 switch (oid_number) { 1048 1049 case KERN_PROC_GID: 1050 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1051 PROC_UNLOCK(p); 1052 continue; 1053 } 1054 break; 1055 1056 case KERN_PROC_PGRP: 1057 /* could do this by traversing pgrp */ 1058 if (p->p_pgrp == NULL || 1059 p->p_pgrp->pg_id != (pid_t)name[0]) { 1060 PROC_UNLOCK(p); 1061 continue; 1062 } 1063 break; 1064 1065 case KERN_PROC_RGID: 1066 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1067 PROC_UNLOCK(p); 1068 continue; 1069 } 1070 break; 1071 1072 case KERN_PROC_SESSION: 1073 if (p->p_session == NULL || 1074 p->p_session->s_sid != (pid_t)name[0]) { 1075 PROC_UNLOCK(p); 1076 continue; 1077 } 1078 break; 1079 1080 case KERN_PROC_TTY: 1081 if ((p->p_flag & P_CONTROLT) == 0 || 1082 p->p_session == NULL) { 1083 PROC_UNLOCK(p); 1084 continue; 1085 } 1086 SESS_LOCK(p->p_session); 1087 if (p->p_session->s_ttyp == NULL || 1088 dev2udev(p->p_session->s_ttyp->t_dev) != 1089 (dev_t)name[0]) { 1090 SESS_UNLOCK(p->p_session); 1091 PROC_UNLOCK(p); 1092 continue; 1093 } 1094 SESS_UNLOCK(p->p_session); 1095 break; 1096 1097 case KERN_PROC_UID: 1098 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1099 PROC_UNLOCK(p); 1100 continue; 1101 } 1102 break; 1103 1104 case KERN_PROC_RUID: 1105 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1106 PROC_UNLOCK(p); 1107 continue; 1108 } 1109 break; 1110 1111 case KERN_PROC_PROC: 1112 break; 1113 1114 default: 1115 break; 1116 1117 } 1118 1119 error = sysctl_out_proc(p, req, flags | doingzomb); 1120 if (error) { 1121 sx_sunlock(&allproc_lock); 1122 return (error); 1123 } 1124 } 1125 } 1126 sx_sunlock(&allproc_lock); 1127 return (0); 1128 } 1129 1130 struct pargs * 1131 pargs_alloc(int len) 1132 { 1133 struct pargs *pa; 1134 1135 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1136 M_WAITOK); 1137 refcount_init(&pa->ar_ref, 1); 1138 pa->ar_length = len; 1139 return (pa); 1140 } 1141 1142 void 1143 pargs_free(struct pargs *pa) 1144 { 1145 1146 FREE(pa, M_PARGS); 1147 } 1148 1149 void 1150 pargs_hold(struct pargs *pa) 1151 { 1152 1153 if (pa == NULL) 1154 return; 1155 refcount_acquire(&pa->ar_ref); 1156 } 1157 1158 void 1159 pargs_drop(struct pargs *pa) 1160 { 1161 1162 if (pa == NULL) 1163 return; 1164 if (refcount_release(&pa->ar_ref)) 1165 pargs_free(pa); 1166 } 1167 1168 /* 1169 * This sysctl allows a process to retrieve the argument list or process 1170 * title for another process without groping around in the address space 1171 * of the other process. It also allow a process to set its own "process 1172 * title to a string of its own choice. 1173 */ 1174 static int 1175 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1176 { 1177 int *name = (int*) arg1; 1178 u_int namelen = arg2; 1179 struct pargs *newpa, *pa; 1180 struct proc *p; 1181 int error = 0; 1182 1183 if (namelen != 1) 1184 return (EINVAL); 1185 1186 p = pfind((pid_t)name[0]); 1187 if (!p) 1188 return (ESRCH); 1189 1190 if ((error = p_cansee(curthread, p)) != 0) { 1191 PROC_UNLOCK(p); 1192 return (error); 1193 } 1194 1195 if (req->newptr && curproc != p) { 1196 PROC_UNLOCK(p); 1197 return (EPERM); 1198 } 1199 1200 pa = p->p_args; 1201 pargs_hold(pa); 1202 PROC_UNLOCK(p); 1203 if (req->oldptr != NULL && pa != NULL) 1204 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1205 pargs_drop(pa); 1206 if (error != 0 || req->newptr == NULL) 1207 return (error); 1208 1209 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1210 return (ENOMEM); 1211 newpa = pargs_alloc(req->newlen); 1212 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1213 if (error != 0) { 1214 pargs_free(newpa); 1215 return (error); 1216 } 1217 PROC_LOCK(p); 1218 pa = p->p_args; 1219 p->p_args = newpa; 1220 PROC_UNLOCK(p); 1221 pargs_drop(pa); 1222 return (0); 1223 } 1224 1225 /* 1226 * This sysctl allows a process to retrieve the path of the executable for 1227 * itself or another process. 1228 */ 1229 static int 1230 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1231 { 1232 pid_t *pidp = (pid_t *)arg1; 1233 unsigned int arglen = arg2; 1234 struct proc *p; 1235 struct vnode *vp; 1236 char *retbuf, *freebuf; 1237 int error; 1238 1239 if (arglen != 1) 1240 return (EINVAL); 1241 if (*pidp == -1) { /* -1 means this process */ 1242 p = req->td->td_proc; 1243 } else { 1244 p = pfind(*pidp); 1245 if (p == NULL) 1246 return (ESRCH); 1247 if ((error = p_cansee(curthread, p)) != 0) { 1248 PROC_UNLOCK(p); 1249 return (error); 1250 } 1251 } 1252 1253 vp = p->p_textvp; 1254 vref(vp); 1255 if (*pidp != -1) 1256 PROC_UNLOCK(p); 1257 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1258 vrele(vp); 1259 if (error) 1260 return (error); 1261 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1262 free(freebuf, M_TEMP); 1263 return (error); 1264 } 1265 1266 static int 1267 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1268 { 1269 struct proc *p; 1270 char *sv_name; 1271 int *name; 1272 int namelen; 1273 int error; 1274 1275 namelen = arg2; 1276 if (namelen != 1) 1277 return (EINVAL); 1278 1279 name = (int *)arg1; 1280 if ((p = pfind((pid_t)name[0])) == NULL) 1281 return (ESRCH); 1282 if ((error = p_cansee(curthread, p))) { 1283 PROC_UNLOCK(p); 1284 return (error); 1285 } 1286 sv_name = p->p_sysent->sv_name; 1287 PROC_UNLOCK(p); 1288 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1289 } 1290 1291 1292 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1293 1294 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1295 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1296 1297 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1298 sysctl_kern_proc, "Process table"); 1299 1300 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1301 sysctl_kern_proc, "Process table"); 1302 1303 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1304 sysctl_kern_proc, "Process table"); 1305 1306 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1307 sysctl_kern_proc, "Process table"); 1308 1309 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1310 sysctl_kern_proc, "Process table"); 1311 1312 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1313 sysctl_kern_proc, "Process table"); 1314 1315 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1316 sysctl_kern_proc, "Process table"); 1317 1318 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1319 sysctl_kern_proc, "Process table"); 1320 1321 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1322 sysctl_kern_proc, "Return process table, no threads"); 1323 1324 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1325 CTLFLAG_RW | CTLFLAG_ANYBODY, 1326 sysctl_kern_proc_args, "Process argument list"); 1327 1328 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1329 sysctl_kern_proc_pathname, "Process executable path"); 1330 1331 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1332 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1333 1334 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1335 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1336 1337 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1338 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1339 1340 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1341 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1342 1343 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1344 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1345 1346 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1347 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1348 1349 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1350 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1351 1352 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1353 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1354 1355 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1356 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1357 1358 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1359 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1360