1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/dtrace_bsd.h> 69 #include <sys/sysctl.h> 70 #include <sys/filedesc.h> 71 #include <sys/tty.h> 72 #include <sys/signalvar.h> 73 #include <sys/sdt.h> 74 #include <sys/sx.h> 75 #include <sys/user.h> 76 #include <sys/vnode.h> 77 #include <sys/wait.h> 78 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #endif 82 83 #include <vm/vm.h> 84 #include <vm/vm_param.h> 85 #include <vm/vm_extern.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_page.h> 90 #include <vm/uma.h> 91 92 #include <fs/devfs/devfs.h> 93 94 #ifdef COMPAT_FREEBSD32 95 #include <compat/freebsd32/freebsd32.h> 96 #include <compat/freebsd32/freebsd32_util.h> 97 #endif 98 99 SDT_PROVIDER_DEFINE(proc); 100 101 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 102 MALLOC_DEFINE(M_SESSION, "session", "session header"); 103 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 104 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 105 106 static void fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp); 107 static void doenterpgrp(struct proc *, struct pgrp *); 108 static void orphanpg(struct pgrp *pg); 109 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 111 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 112 int preferthread); 113 static void pgadjustjobc(struct pgrp *pgrp, bool entering); 114 static void pgdelete(struct pgrp *); 115 static int proc_ctor(void *mem, int size, void *arg, int flags); 116 static void proc_dtor(void *mem, int size, void *arg); 117 static int proc_init(void *mem, int size, int flags); 118 static void proc_fini(void *mem, int size); 119 static void pargs_free(struct pargs *pa); 120 121 /* 122 * Other process lists 123 */ 124 struct pidhashhead *pidhashtbl; 125 struct sx *pidhashtbl_lock; 126 u_long pidhash; 127 u_long pidhashlock; 128 struct pgrphashhead *pgrphashtbl; 129 u_long pgrphash; 130 struct proclist allproc; 131 struct sx __exclusive_cache_line allproc_lock; 132 struct sx __exclusive_cache_line proctree_lock; 133 struct mtx __exclusive_cache_line ppeers_lock; 134 struct mtx __exclusive_cache_line procid_lock; 135 uma_zone_t proc_zone; 136 137 /* 138 * The offset of various fields in struct proc and struct thread. 139 * These are used by kernel debuggers to enumerate kernel threads and 140 * processes. 141 */ 142 const int proc_off_p_pid = offsetof(struct proc, p_pid); 143 const int proc_off_p_comm = offsetof(struct proc, p_comm); 144 const int proc_off_p_list = offsetof(struct proc, p_list); 145 const int proc_off_p_hash = offsetof(struct proc, p_hash); 146 const int proc_off_p_threads = offsetof(struct proc, p_threads); 147 const int thread_off_td_tid = offsetof(struct thread, td_tid); 148 const int thread_off_td_name = offsetof(struct thread, td_name); 149 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 150 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 151 const int thread_off_td_plist = offsetof(struct thread, td_plist); 152 153 EVENTHANDLER_LIST_DEFINE(process_ctor); 154 EVENTHANDLER_LIST_DEFINE(process_dtor); 155 EVENTHANDLER_LIST_DEFINE(process_init); 156 EVENTHANDLER_LIST_DEFINE(process_fini); 157 EVENTHANDLER_LIST_DEFINE(process_exit); 158 EVENTHANDLER_LIST_DEFINE(process_fork); 159 EVENTHANDLER_LIST_DEFINE(process_exec); 160 161 int kstack_pages = KSTACK_PAGES; 162 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 163 "Kernel stack size in pages"); 164 static int vmmap_skip_res_cnt = 0; 165 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 166 &vmmap_skip_res_cnt, 0, 167 "Skip calculation of the pages resident count in kern.proc.vmmap"); 168 169 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 170 #ifdef COMPAT_FREEBSD32 171 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 172 #endif 173 174 /* 175 * Initialize global process hashing structures. 176 */ 177 void 178 procinit(void) 179 { 180 u_long i; 181 182 sx_init(&allproc_lock, "allproc"); 183 sx_init(&proctree_lock, "proctree"); 184 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 185 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 186 LIST_INIT(&allproc); 187 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 188 pidhashlock = (pidhash + 1) / 64; 189 if (pidhashlock > 0) 190 pidhashlock--; 191 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 192 M_PROC, M_WAITOK | M_ZERO); 193 for (i = 0; i < pidhashlock + 1; i++) 194 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 195 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 196 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 197 proc_ctor, proc_dtor, proc_init, proc_fini, 198 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 uihashinit(); 200 } 201 202 /* 203 * Prepare a proc for use. 204 */ 205 static int 206 proc_ctor(void *mem, int size, void *arg, int flags) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 p = (struct proc *)mem; 212 #ifdef KDTRACE_HOOKS 213 kdtrace_proc_ctor(p); 214 #endif 215 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 216 td = FIRST_THREAD_IN_PROC(p); 217 if (td != NULL) { 218 /* Make sure all thread constructors are executed */ 219 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 220 } 221 return (0); 222 } 223 224 /* 225 * Reclaim a proc after use. 226 */ 227 static void 228 proc_dtor(void *mem, int size, void *arg) 229 { 230 struct proc *p; 231 struct thread *td; 232 233 /* INVARIANTS checks go here */ 234 p = (struct proc *)mem; 235 td = FIRST_THREAD_IN_PROC(p); 236 if (td != NULL) { 237 #ifdef INVARIANTS 238 KASSERT((p->p_numthreads == 1), 239 ("bad number of threads in exiting process")); 240 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 241 #endif 242 /* Free all OSD associated to this thread. */ 243 osd_thread_exit(td); 244 td_softdep_cleanup(td); 245 MPASS(td->td_su == NULL); 246 247 /* Make sure all thread destructors are executed */ 248 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 249 } 250 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 251 #ifdef KDTRACE_HOOKS 252 kdtrace_proc_dtor(p); 253 #endif 254 if (p->p_ksi != NULL) 255 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 256 } 257 258 /* 259 * Initialize type-stable parts of a proc (when newly created). 260 */ 261 static int 262 proc_init(void *mem, int size, int flags) 263 { 264 struct proc *p; 265 266 p = (struct proc *)mem; 267 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 268 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 269 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 270 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 271 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 272 cv_init(&p->p_pwait, "ppwait"); 273 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 274 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 275 p->p_stats = pstats_alloc(); 276 p->p_pgrp = NULL; 277 return (0); 278 } 279 280 /* 281 * UMA should ensure that this function is never called. 282 * Freeing a proc structure would violate type stability. 283 */ 284 static void 285 proc_fini(void *mem, int size) 286 { 287 #ifdef notnow 288 struct proc *p; 289 290 p = (struct proc *)mem; 291 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 292 pstats_free(p->p_stats); 293 thread_free(FIRST_THREAD_IN_PROC(p)); 294 mtx_destroy(&p->p_mtx); 295 if (p->p_ksi != NULL) 296 ksiginfo_free(p->p_ksi); 297 #else 298 panic("proc reclaimed"); 299 #endif 300 } 301 302 /* 303 * PID space management. 304 * 305 * These bitmaps are used by fork_findpid. 306 */ 307 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 308 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 309 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 310 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 311 312 static bitstr_t *proc_id_array[] = { 313 proc_id_pidmap, 314 proc_id_grpidmap, 315 proc_id_sessidmap, 316 proc_id_reapmap, 317 }; 318 319 void 320 proc_id_set(int type, pid_t id) 321 { 322 323 KASSERT(type >= 0 && type < nitems(proc_id_array), 324 ("invalid type %d\n", type)); 325 mtx_lock(&procid_lock); 326 KASSERT(bit_test(proc_id_array[type], id) == 0, 327 ("bit %d already set in %d\n", id, type)); 328 bit_set(proc_id_array[type], id); 329 mtx_unlock(&procid_lock); 330 } 331 332 void 333 proc_id_set_cond(int type, pid_t id) 334 { 335 336 KASSERT(type >= 0 && type < nitems(proc_id_array), 337 ("invalid type %d\n", type)); 338 if (bit_test(proc_id_array[type], id)) 339 return; 340 mtx_lock(&procid_lock); 341 bit_set(proc_id_array[type], id); 342 mtx_unlock(&procid_lock); 343 } 344 345 void 346 proc_id_clear(int type, pid_t id) 347 { 348 349 KASSERT(type >= 0 && type < nitems(proc_id_array), 350 ("invalid type %d\n", type)); 351 mtx_lock(&procid_lock); 352 KASSERT(bit_test(proc_id_array[type], id) != 0, 353 ("bit %d not set in %d\n", id, type)); 354 bit_clear(proc_id_array[type], id); 355 mtx_unlock(&procid_lock); 356 } 357 358 /* 359 * Is p an inferior of the current process? 360 */ 361 int 362 inferior(struct proc *p) 363 { 364 365 sx_assert(&proctree_lock, SX_LOCKED); 366 PROC_LOCK_ASSERT(p, MA_OWNED); 367 for (; p != curproc; p = proc_realparent(p)) { 368 if (p->p_pid == 0) 369 return (0); 370 } 371 return (1); 372 } 373 374 /* 375 * Shared lock all the pid hash lists. 376 */ 377 void 378 pidhash_slockall(void) 379 { 380 u_long i; 381 382 for (i = 0; i < pidhashlock + 1; i++) 383 sx_slock(&pidhashtbl_lock[i]); 384 } 385 386 /* 387 * Shared unlock all the pid hash lists. 388 */ 389 void 390 pidhash_sunlockall(void) 391 { 392 u_long i; 393 394 for (i = 0; i < pidhashlock + 1; i++) 395 sx_sunlock(&pidhashtbl_lock[i]); 396 } 397 398 /* 399 * Similar to pfind_any(), this function finds zombies. 400 */ 401 struct proc * 402 pfind_any_locked(pid_t pid) 403 { 404 struct proc *p; 405 406 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 407 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 408 if (p->p_pid == pid) { 409 PROC_LOCK(p); 410 if (p->p_state == PRS_NEW) { 411 PROC_UNLOCK(p); 412 p = NULL; 413 } 414 break; 415 } 416 } 417 return (p); 418 } 419 420 /* 421 * Locate a process by number. 422 * 423 * By not returning processes in the PRS_NEW state, we allow callers to avoid 424 * testing for that condition to avoid dereferencing p_ucred, et al. 425 */ 426 static __always_inline struct proc * 427 _pfind(pid_t pid, bool zombie) 428 { 429 struct proc *p; 430 431 p = curproc; 432 if (p->p_pid == pid) { 433 PROC_LOCK(p); 434 return (p); 435 } 436 sx_slock(PIDHASHLOCK(pid)); 437 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 438 if (p->p_pid == pid) { 439 PROC_LOCK(p); 440 if (p->p_state == PRS_NEW || 441 (!zombie && p->p_state == PRS_ZOMBIE)) { 442 PROC_UNLOCK(p); 443 p = NULL; 444 } 445 break; 446 } 447 } 448 sx_sunlock(PIDHASHLOCK(pid)); 449 return (p); 450 } 451 452 struct proc * 453 pfind(pid_t pid) 454 { 455 456 return (_pfind(pid, false)); 457 } 458 459 /* 460 * Same as pfind but allow zombies. 461 */ 462 struct proc * 463 pfind_any(pid_t pid) 464 { 465 466 return (_pfind(pid, true)); 467 } 468 469 /* 470 * Locate a process group by number. 471 * The caller must hold proctree_lock. 472 */ 473 struct pgrp * 474 pgfind(pid_t pgid) 475 { 476 struct pgrp *pgrp; 477 478 sx_assert(&proctree_lock, SX_LOCKED); 479 480 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 481 if (pgrp->pg_id == pgid) { 482 PGRP_LOCK(pgrp); 483 return (pgrp); 484 } 485 } 486 return (NULL); 487 } 488 489 /* 490 * Locate process and do additional manipulations, depending on flags. 491 */ 492 int 493 pget(pid_t pid, int flags, struct proc **pp) 494 { 495 struct proc *p; 496 struct thread *td1; 497 int error; 498 499 p = curproc; 500 if (p->p_pid == pid) { 501 PROC_LOCK(p); 502 } else { 503 p = NULL; 504 if (pid <= PID_MAX) { 505 if ((flags & PGET_NOTWEXIT) == 0) 506 p = pfind_any(pid); 507 else 508 p = pfind(pid); 509 } else if ((flags & PGET_NOTID) == 0) { 510 td1 = tdfind(pid, -1); 511 if (td1 != NULL) 512 p = td1->td_proc; 513 } 514 if (p == NULL) 515 return (ESRCH); 516 if ((flags & PGET_CANSEE) != 0) { 517 error = p_cansee(curthread, p); 518 if (error != 0) 519 goto errout; 520 } 521 } 522 if ((flags & PGET_CANDEBUG) != 0) { 523 error = p_candebug(curthread, p); 524 if (error != 0) 525 goto errout; 526 } 527 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 528 error = EPERM; 529 goto errout; 530 } 531 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 532 error = ESRCH; 533 goto errout; 534 } 535 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 536 /* 537 * XXXRW: Not clear ESRCH is the right error during proc 538 * execve(). 539 */ 540 error = ESRCH; 541 goto errout; 542 } 543 if ((flags & PGET_HOLD) != 0) { 544 _PHOLD(p); 545 PROC_UNLOCK(p); 546 } 547 *pp = p; 548 return (0); 549 errout: 550 PROC_UNLOCK(p); 551 return (error); 552 } 553 554 /* 555 * Create a new process group. 556 * pgid must be equal to the pid of p. 557 * Begin a new session if required. 558 */ 559 int 560 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 561 { 562 563 sx_assert(&proctree_lock, SX_XLOCKED); 564 565 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 566 KASSERT(p->p_pid == pgid, 567 ("enterpgrp: new pgrp and pid != pgid")); 568 KASSERT(pgfind(pgid) == NULL, 569 ("enterpgrp: pgrp with pgid exists")); 570 KASSERT(!SESS_LEADER(p), 571 ("enterpgrp: session leader attempted setpgrp")); 572 573 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 574 575 if (sess != NULL) { 576 /* 577 * new session 578 */ 579 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 580 PROC_LOCK(p); 581 p->p_flag &= ~P_CONTROLT; 582 PROC_UNLOCK(p); 583 PGRP_LOCK(pgrp); 584 sess->s_leader = p; 585 sess->s_sid = p->p_pid; 586 proc_id_set(PROC_ID_SESSION, p->p_pid); 587 refcount_init(&sess->s_count, 1); 588 sess->s_ttyvp = NULL; 589 sess->s_ttydp = NULL; 590 sess->s_ttyp = NULL; 591 bcopy(p->p_session->s_login, sess->s_login, 592 sizeof(sess->s_login)); 593 pgrp->pg_session = sess; 594 KASSERT(p == curproc, 595 ("enterpgrp: mksession and p != curproc")); 596 } else { 597 pgrp->pg_session = p->p_session; 598 sess_hold(pgrp->pg_session); 599 PGRP_LOCK(pgrp); 600 } 601 pgrp->pg_id = pgid; 602 proc_id_set(PROC_ID_GROUP, p->p_pid); 603 LIST_INIT(&pgrp->pg_members); 604 605 /* 606 * As we have an exclusive lock of proctree_lock, 607 * this should not deadlock. 608 */ 609 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 610 pgrp->pg_jobc = 0; 611 SLIST_INIT(&pgrp->pg_sigiolst); 612 PGRP_UNLOCK(pgrp); 613 614 doenterpgrp(p, pgrp); 615 616 return (0); 617 } 618 619 /* 620 * Move p to an existing process group 621 */ 622 int 623 enterthispgrp(struct proc *p, struct pgrp *pgrp) 624 { 625 626 sx_assert(&proctree_lock, SX_XLOCKED); 627 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 628 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 629 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 630 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 631 KASSERT(pgrp->pg_session == p->p_session, 632 ("%s: pgrp's session %p, p->p_session %p.\n", 633 __func__, 634 pgrp->pg_session, 635 p->p_session)); 636 KASSERT(pgrp != p->p_pgrp, 637 ("%s: p belongs to pgrp.", __func__)); 638 639 doenterpgrp(p, pgrp); 640 641 return (0); 642 } 643 644 /* 645 * If true, any child of q which belongs to group pgrp, qualifies the 646 * process group pgrp as not orphaned. 647 */ 648 static bool 649 isjobproc(struct proc *q, struct pgrp *pgrp) 650 { 651 sx_assert(&proctree_lock, SX_LOCKED); 652 return (q->p_pgrp != pgrp && 653 q->p_pgrp->pg_session == pgrp->pg_session); 654 } 655 656 static struct proc * 657 jobc_reaper(struct proc *p) 658 { 659 struct proc *pp; 660 661 sx_assert(&proctree_lock, SX_LOCKED); 662 663 for (pp = p;;) { 664 pp = pp->p_reaper; 665 if (pp->p_reaper == pp || 666 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 667 return (pp); 668 } 669 } 670 671 static struct proc * 672 jobc_parent(struct proc *p) 673 { 674 struct proc *pp; 675 676 sx_assert(&proctree_lock, SX_LOCKED); 677 678 pp = proc_realparent(p); 679 if (pp->p_pptr == NULL || 680 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 681 return (pp); 682 return (jobc_reaper(pp)); 683 } 684 685 #ifdef INVARIANTS 686 static void 687 check_pgrp_jobc(struct pgrp *pgrp) 688 { 689 struct proc *q; 690 int cnt; 691 692 sx_assert(&proctree_lock, SX_LOCKED); 693 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 694 695 cnt = 0; 696 PGRP_LOCK(pgrp); 697 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 698 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 699 q->p_pptr == NULL) 700 continue; 701 if (isjobproc(jobc_parent(q), pgrp)) 702 cnt++; 703 } 704 KASSERT(pgrp->pg_jobc == cnt, ("pgrp %d %p pg_jobc %d cnt %d", 705 pgrp->pg_id, pgrp, pgrp->pg_jobc, cnt)); 706 PGRP_UNLOCK(pgrp); 707 } 708 #endif 709 710 /* 711 * Move p to a process group 712 */ 713 static void 714 doenterpgrp(struct proc *p, struct pgrp *pgrp) 715 { 716 struct pgrp *savepgrp; 717 718 sx_assert(&proctree_lock, SX_XLOCKED); 719 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 720 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 721 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 722 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 723 724 savepgrp = p->p_pgrp; 725 726 #ifdef INVARIANTS 727 check_pgrp_jobc(pgrp); 728 check_pgrp_jobc(savepgrp); 729 #endif 730 731 /* 732 * Adjust eligibility of affected pgrps to participate in job control. 733 */ 734 fixjobc_enterpgrp(p, pgrp); 735 736 PGRP_LOCK(pgrp); 737 PGRP_LOCK(savepgrp); 738 PROC_LOCK(p); 739 LIST_REMOVE(p, p_pglist); 740 p->p_pgrp = pgrp; 741 PROC_UNLOCK(p); 742 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 743 PGRP_UNLOCK(savepgrp); 744 PGRP_UNLOCK(pgrp); 745 if (LIST_EMPTY(&savepgrp->pg_members)) 746 pgdelete(savepgrp); 747 } 748 749 /* 750 * remove process from process group 751 */ 752 int 753 leavepgrp(struct proc *p) 754 { 755 struct pgrp *savepgrp; 756 757 sx_assert(&proctree_lock, SX_XLOCKED); 758 savepgrp = p->p_pgrp; 759 PGRP_LOCK(savepgrp); 760 PROC_LOCK(p); 761 LIST_REMOVE(p, p_pglist); 762 p->p_pgrp = NULL; 763 PROC_UNLOCK(p); 764 PGRP_UNLOCK(savepgrp); 765 if (LIST_EMPTY(&savepgrp->pg_members)) 766 pgdelete(savepgrp); 767 return (0); 768 } 769 770 /* 771 * delete a process group 772 */ 773 static void 774 pgdelete(struct pgrp *pgrp) 775 { 776 struct session *savesess; 777 struct tty *tp; 778 779 sx_assert(&proctree_lock, SX_XLOCKED); 780 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 781 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 782 783 /* 784 * Reset any sigio structures pointing to us as a result of 785 * F_SETOWN with our pgid. The proctree lock ensures that 786 * new sigio structures will not be added after this point. 787 */ 788 funsetownlst(&pgrp->pg_sigiolst); 789 790 PGRP_LOCK(pgrp); 791 tp = pgrp->pg_session->s_ttyp; 792 LIST_REMOVE(pgrp, pg_hash); 793 savesess = pgrp->pg_session; 794 PGRP_UNLOCK(pgrp); 795 796 /* Remove the reference to the pgrp before deallocating it. */ 797 if (tp != NULL) { 798 tty_lock(tp); 799 tty_rel_pgrp(tp, pgrp); 800 } 801 802 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 803 mtx_destroy(&pgrp->pg_mtx); 804 free(pgrp, M_PGRP); 805 sess_release(savesess); 806 } 807 808 static void 809 pgadjustjobc(struct pgrp *pgrp, bool entering) 810 { 811 812 PGRP_LOCK(pgrp); 813 if (entering) { 814 MPASS(pgrp->pg_jobc >= 0); 815 pgrp->pg_jobc++; 816 } else { 817 MPASS(pgrp->pg_jobc > 0); 818 --pgrp->pg_jobc; 819 if (pgrp->pg_jobc == 0) 820 orphanpg(pgrp); 821 } 822 PGRP_UNLOCK(pgrp); 823 } 824 825 static void 826 fixjobc_enterpgrp_q(struct pgrp *pgrp, struct proc *p, struct proc *q, bool adj) 827 { 828 struct pgrp *childpgrp; 829 bool future_jobc; 830 831 sx_assert(&proctree_lock, SX_LOCKED); 832 833 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 834 return; 835 childpgrp = q->p_pgrp; 836 future_jobc = childpgrp != pgrp && 837 childpgrp->pg_session == pgrp->pg_session; 838 839 if ((adj && !isjobproc(p, childpgrp) && future_jobc) || 840 (!adj && isjobproc(p, childpgrp) && !future_jobc)) 841 pgadjustjobc(childpgrp, adj); 842 } 843 844 /* 845 * Adjust pgrp jobc counters when specified process changes process group. 846 * We count the number of processes in each process group that "qualify" 847 * the group for terminal job control (those with a parent in a different 848 * process group of the same session). If that count reaches zero, the 849 * process group becomes orphaned. Check both the specified process' 850 * process group and that of its children. 851 * We increment eligibility counts before decrementing, otherwise we 852 * could reach 0 spuriously during the decrement. 853 */ 854 static void 855 fixjobc_enterpgrp(struct proc *p, struct pgrp *pgrp) 856 { 857 struct proc *q; 858 859 sx_assert(&proctree_lock, SX_LOCKED); 860 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 861 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 862 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 863 864 if (p->p_pgrp == pgrp) 865 return; 866 867 if (isjobproc(jobc_parent(p), pgrp)) 868 pgadjustjobc(pgrp, true); 869 LIST_FOREACH(q, &p->p_children, p_sibling) { 870 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 871 continue; 872 fixjobc_enterpgrp_q(pgrp, p, q, true); 873 } 874 LIST_FOREACH(q, &p->p_orphans, p_orphan) 875 fixjobc_enterpgrp_q(pgrp, p, q, true); 876 877 if (isjobproc(jobc_parent(p), p->p_pgrp)) 878 pgadjustjobc(p->p_pgrp, false); 879 LIST_FOREACH(q, &p->p_children, p_sibling) { 880 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 881 continue; 882 fixjobc_enterpgrp_q(pgrp, p, q, false); 883 } 884 LIST_FOREACH(q, &p->p_orphans, p_orphan) 885 fixjobc_enterpgrp_q(pgrp, p, q, false); 886 } 887 888 static void 889 fixjobc_kill_q(struct proc *p, struct proc *q, bool adj) 890 { 891 struct pgrp *childpgrp; 892 893 sx_assert(&proctree_lock, SX_LOCKED); 894 895 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0) 896 return; 897 childpgrp = q->p_pgrp; 898 899 if ((adj && isjobproc(jobc_reaper(q), childpgrp) && 900 !isjobproc(p, childpgrp)) || (!adj && !isjobproc(jobc_reaper(q), 901 childpgrp) && isjobproc(p, childpgrp))) 902 pgadjustjobc(childpgrp, adj); 903 } 904 905 static void 906 fixjobc_kill(struct proc *p) 907 { 908 struct proc *q; 909 struct pgrp *pgrp; 910 911 sx_assert(&proctree_lock, SX_LOCKED); 912 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 913 pgrp = p->p_pgrp; 914 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 915 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 916 #ifdef INVARIANTS 917 check_pgrp_jobc(pgrp); 918 #endif 919 920 /* 921 * p no longer affects process group orphanage for children. 922 * It is marked by the flag because p is only physically 923 * removed from its process group on wait(2). 924 */ 925 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 926 p->p_treeflag |= P_TREE_GRPEXITED; 927 928 /* 929 * Check p's parent to see whether p qualifies its own process 930 * group; if so, adjust count for p's process group. 931 */ 932 if (isjobproc(jobc_parent(p), pgrp)) 933 pgadjustjobc(pgrp, false); 934 935 /* 936 * Check this process' children to see whether they qualify 937 * their process groups after reparenting to reaper. If so, 938 * adjust counts for children's process groups. 939 */ 940 LIST_FOREACH(q, &p->p_children, p_sibling) { 941 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 942 continue; 943 fixjobc_kill_q(p, q, true); 944 } 945 LIST_FOREACH(q, &p->p_orphans, p_orphan) 946 fixjobc_kill_q(p, q, true); 947 LIST_FOREACH(q, &p->p_children, p_sibling) { 948 if ((q->p_treeflag & P_TREE_ORPHANED) != 0) 949 continue; 950 fixjobc_kill_q(p, q, false); 951 } 952 LIST_FOREACH(q, &p->p_orphans, p_orphan) 953 fixjobc_kill_q(p, q, false); 954 955 #ifdef INVARIANTS 956 check_pgrp_jobc(pgrp); 957 #endif 958 } 959 960 void 961 killjobc(void) 962 { 963 struct session *sp; 964 struct tty *tp; 965 struct proc *p; 966 struct vnode *ttyvp; 967 968 p = curproc; 969 MPASS(p->p_flag & P_WEXIT); 970 sx_assert(&proctree_lock, SX_LOCKED); 971 972 if (SESS_LEADER(p)) { 973 sp = p->p_session; 974 975 /* 976 * s_ttyp is not zero'd; we use this to indicate that 977 * the session once had a controlling terminal. (for 978 * logging and informational purposes) 979 */ 980 SESS_LOCK(sp); 981 ttyvp = sp->s_ttyvp; 982 tp = sp->s_ttyp; 983 sp->s_ttyvp = NULL; 984 sp->s_ttydp = NULL; 985 sp->s_leader = NULL; 986 SESS_UNLOCK(sp); 987 988 /* 989 * Signal foreground pgrp and revoke access to 990 * controlling terminal if it has not been revoked 991 * already. 992 * 993 * Because the TTY may have been revoked in the mean 994 * time and could already have a new session associated 995 * with it, make sure we don't send a SIGHUP to a 996 * foreground process group that does not belong to this 997 * session. 998 */ 999 1000 if (tp != NULL) { 1001 tty_lock(tp); 1002 if (tp->t_session == sp) 1003 tty_signal_pgrp(tp, SIGHUP); 1004 tty_unlock(tp); 1005 } 1006 1007 if (ttyvp != NULL) { 1008 sx_xunlock(&proctree_lock); 1009 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 1010 VOP_REVOKE(ttyvp, REVOKEALL); 1011 VOP_UNLOCK(ttyvp); 1012 } 1013 devfs_ctty_unref(ttyvp); 1014 sx_xlock(&proctree_lock); 1015 } 1016 } 1017 fixjobc_kill(p); 1018 } 1019 1020 /* 1021 * A process group has become orphaned; 1022 * if there are any stopped processes in the group, 1023 * hang-up all process in that group. 1024 */ 1025 static void 1026 orphanpg(struct pgrp *pg) 1027 { 1028 struct proc *p; 1029 1030 PGRP_LOCK_ASSERT(pg, MA_OWNED); 1031 1032 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1033 PROC_LOCK(p); 1034 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 1035 PROC_UNLOCK(p); 1036 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 1037 PROC_LOCK(p); 1038 kern_psignal(p, SIGHUP); 1039 kern_psignal(p, SIGCONT); 1040 PROC_UNLOCK(p); 1041 } 1042 return; 1043 } 1044 PROC_UNLOCK(p); 1045 } 1046 } 1047 1048 void 1049 sess_hold(struct session *s) 1050 { 1051 1052 refcount_acquire(&s->s_count); 1053 } 1054 1055 void 1056 sess_release(struct session *s) 1057 { 1058 1059 if (refcount_release(&s->s_count)) { 1060 if (s->s_ttyp != NULL) { 1061 tty_lock(s->s_ttyp); 1062 tty_rel_sess(s->s_ttyp, s); 1063 } 1064 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1065 mtx_destroy(&s->s_mtx); 1066 free(s, M_SESSION); 1067 } 1068 } 1069 1070 #ifdef DDB 1071 1072 static void 1073 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1074 { 1075 db_printf( 1076 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1077 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1078 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1079 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1080 } 1081 1082 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 1083 { 1084 struct pgrp *pgrp; 1085 struct proc *p; 1086 int i; 1087 1088 for (i = 0; i <= pgrphash; i++) { 1089 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1090 db_printf("indx %d\n", i); 1091 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1092 db_printf( 1093 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1094 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1095 pgrp->pg_session->s_count, 1096 LIST_FIRST(&pgrp->pg_members)); 1097 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1098 db_print_pgrp_one(pgrp, p); 1099 } 1100 } 1101 } 1102 } 1103 #endif /* DDB */ 1104 1105 /* 1106 * Calculate the kinfo_proc members which contain process-wide 1107 * informations. 1108 * Must be called with the target process locked. 1109 */ 1110 static void 1111 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1112 { 1113 struct thread *td; 1114 1115 PROC_LOCK_ASSERT(p, MA_OWNED); 1116 1117 kp->ki_estcpu = 0; 1118 kp->ki_pctcpu = 0; 1119 FOREACH_THREAD_IN_PROC(p, td) { 1120 thread_lock(td); 1121 kp->ki_pctcpu += sched_pctcpu(td); 1122 kp->ki_estcpu += sched_estcpu(td); 1123 thread_unlock(td); 1124 } 1125 } 1126 1127 /* 1128 * Clear kinfo_proc and fill in any information that is common 1129 * to all threads in the process. 1130 * Must be called with the target process locked. 1131 */ 1132 static void 1133 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1134 { 1135 struct thread *td0; 1136 struct tty *tp; 1137 struct session *sp; 1138 struct ucred *cred; 1139 struct sigacts *ps; 1140 struct timeval boottime; 1141 1142 PROC_LOCK_ASSERT(p, MA_OWNED); 1143 bzero(kp, sizeof(*kp)); 1144 1145 kp->ki_structsize = sizeof(*kp); 1146 kp->ki_paddr = p; 1147 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1148 kp->ki_args = p->p_args; 1149 kp->ki_textvp = p->p_textvp; 1150 #ifdef KTRACE 1151 kp->ki_tracep = p->p_tracevp; 1152 kp->ki_traceflag = p->p_traceflag; 1153 #endif 1154 kp->ki_fd = p->p_fd; 1155 kp->ki_pd = p->p_pd; 1156 kp->ki_vmspace = p->p_vmspace; 1157 kp->ki_flag = p->p_flag; 1158 kp->ki_flag2 = p->p_flag2; 1159 cred = p->p_ucred; 1160 if (cred) { 1161 kp->ki_uid = cred->cr_uid; 1162 kp->ki_ruid = cred->cr_ruid; 1163 kp->ki_svuid = cred->cr_svuid; 1164 kp->ki_cr_flags = 0; 1165 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1166 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1167 /* XXX bde doesn't like KI_NGROUPS */ 1168 if (cred->cr_ngroups > KI_NGROUPS) { 1169 kp->ki_ngroups = KI_NGROUPS; 1170 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1171 } else 1172 kp->ki_ngroups = cred->cr_ngroups; 1173 bcopy(cred->cr_groups, kp->ki_groups, 1174 kp->ki_ngroups * sizeof(gid_t)); 1175 kp->ki_rgid = cred->cr_rgid; 1176 kp->ki_svgid = cred->cr_svgid; 1177 /* If jailed(cred), emulate the old P_JAILED flag. */ 1178 if (jailed(cred)) { 1179 kp->ki_flag |= P_JAILED; 1180 /* If inside the jail, use 0 as a jail ID. */ 1181 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1182 kp->ki_jid = cred->cr_prison->pr_id; 1183 } 1184 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1185 sizeof(kp->ki_loginclass)); 1186 } 1187 ps = p->p_sigacts; 1188 if (ps) { 1189 mtx_lock(&ps->ps_mtx); 1190 kp->ki_sigignore = ps->ps_sigignore; 1191 kp->ki_sigcatch = ps->ps_sigcatch; 1192 mtx_unlock(&ps->ps_mtx); 1193 } 1194 if (p->p_state != PRS_NEW && 1195 p->p_state != PRS_ZOMBIE && 1196 p->p_vmspace != NULL) { 1197 struct vmspace *vm = p->p_vmspace; 1198 1199 kp->ki_size = vm->vm_map.size; 1200 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1201 FOREACH_THREAD_IN_PROC(p, td0) { 1202 if (!TD_IS_SWAPPED(td0)) 1203 kp->ki_rssize += td0->td_kstack_pages; 1204 } 1205 kp->ki_swrss = vm->vm_swrss; 1206 kp->ki_tsize = vm->vm_tsize; 1207 kp->ki_dsize = vm->vm_dsize; 1208 kp->ki_ssize = vm->vm_ssize; 1209 } else if (p->p_state == PRS_ZOMBIE) 1210 kp->ki_stat = SZOMB; 1211 if (kp->ki_flag & P_INMEM) 1212 kp->ki_sflag = PS_INMEM; 1213 else 1214 kp->ki_sflag = 0; 1215 /* Calculate legacy swtime as seconds since 'swtick'. */ 1216 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1217 kp->ki_pid = p->p_pid; 1218 kp->ki_nice = p->p_nice; 1219 kp->ki_fibnum = p->p_fibnum; 1220 kp->ki_start = p->p_stats->p_start; 1221 getboottime(&boottime); 1222 timevaladd(&kp->ki_start, &boottime); 1223 PROC_STATLOCK(p); 1224 rufetch(p, &kp->ki_rusage); 1225 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1226 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1227 PROC_STATUNLOCK(p); 1228 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1229 /* Some callers want child times in a single value. */ 1230 kp->ki_childtime = kp->ki_childstime; 1231 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1232 1233 FOREACH_THREAD_IN_PROC(p, td0) 1234 kp->ki_cow += td0->td_cow; 1235 1236 tp = NULL; 1237 if (p->p_pgrp) { 1238 kp->ki_pgid = p->p_pgrp->pg_id; 1239 kp->ki_jobc = p->p_pgrp->pg_jobc; 1240 sp = p->p_pgrp->pg_session; 1241 1242 if (sp != NULL) { 1243 kp->ki_sid = sp->s_sid; 1244 SESS_LOCK(sp); 1245 strlcpy(kp->ki_login, sp->s_login, 1246 sizeof(kp->ki_login)); 1247 if (sp->s_ttyvp) 1248 kp->ki_kiflag |= KI_CTTY; 1249 if (SESS_LEADER(p)) 1250 kp->ki_kiflag |= KI_SLEADER; 1251 /* XXX proctree_lock */ 1252 tp = sp->s_ttyp; 1253 SESS_UNLOCK(sp); 1254 } 1255 } 1256 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1257 kp->ki_tdev = tty_udev(tp); 1258 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1259 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1260 if (tp->t_session) 1261 kp->ki_tsid = tp->t_session->s_sid; 1262 } else { 1263 kp->ki_tdev = NODEV; 1264 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1265 } 1266 if (p->p_comm[0] != '\0') 1267 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1268 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1269 p->p_sysent->sv_name[0] != '\0') 1270 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1271 kp->ki_siglist = p->p_siglist; 1272 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1273 kp->ki_acflag = p->p_acflag; 1274 kp->ki_lock = p->p_lock; 1275 if (p->p_pptr) { 1276 kp->ki_ppid = p->p_oppid; 1277 if (p->p_flag & P_TRACED) 1278 kp->ki_tracer = p->p_pptr->p_pid; 1279 } 1280 } 1281 1282 /* 1283 * Fill in information that is thread specific. Must be called with 1284 * target process locked. If 'preferthread' is set, overwrite certain 1285 * process-related fields that are maintained for both threads and 1286 * processes. 1287 */ 1288 static void 1289 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1290 { 1291 struct proc *p; 1292 1293 p = td->td_proc; 1294 kp->ki_tdaddr = td; 1295 PROC_LOCK_ASSERT(p, MA_OWNED); 1296 1297 if (preferthread) 1298 PROC_STATLOCK(p); 1299 thread_lock(td); 1300 if (td->td_wmesg != NULL) 1301 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1302 else 1303 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1304 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1305 sizeof(kp->ki_tdname)) { 1306 strlcpy(kp->ki_moretdname, 1307 td->td_name + sizeof(kp->ki_tdname) - 1, 1308 sizeof(kp->ki_moretdname)); 1309 } else { 1310 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1311 } 1312 if (TD_ON_LOCK(td)) { 1313 kp->ki_kiflag |= KI_LOCKBLOCK; 1314 strlcpy(kp->ki_lockname, td->td_lockname, 1315 sizeof(kp->ki_lockname)); 1316 } else { 1317 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1318 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1319 } 1320 1321 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1322 if (TD_ON_RUNQ(td) || 1323 TD_CAN_RUN(td) || 1324 TD_IS_RUNNING(td)) { 1325 kp->ki_stat = SRUN; 1326 } else if (P_SHOULDSTOP(p)) { 1327 kp->ki_stat = SSTOP; 1328 } else if (TD_IS_SLEEPING(td)) { 1329 kp->ki_stat = SSLEEP; 1330 } else if (TD_ON_LOCK(td)) { 1331 kp->ki_stat = SLOCK; 1332 } else { 1333 kp->ki_stat = SWAIT; 1334 } 1335 } else if (p->p_state == PRS_ZOMBIE) { 1336 kp->ki_stat = SZOMB; 1337 } else { 1338 kp->ki_stat = SIDL; 1339 } 1340 1341 /* Things in the thread */ 1342 kp->ki_wchan = td->td_wchan; 1343 kp->ki_pri.pri_level = td->td_priority; 1344 kp->ki_pri.pri_native = td->td_base_pri; 1345 1346 /* 1347 * Note: legacy fields; clamp at the old NOCPU value and/or 1348 * the maximum u_char CPU value. 1349 */ 1350 if (td->td_lastcpu == NOCPU) 1351 kp->ki_lastcpu_old = NOCPU_OLD; 1352 else if (td->td_lastcpu > MAXCPU_OLD) 1353 kp->ki_lastcpu_old = MAXCPU_OLD; 1354 else 1355 kp->ki_lastcpu_old = td->td_lastcpu; 1356 1357 if (td->td_oncpu == NOCPU) 1358 kp->ki_oncpu_old = NOCPU_OLD; 1359 else if (td->td_oncpu > MAXCPU_OLD) 1360 kp->ki_oncpu_old = MAXCPU_OLD; 1361 else 1362 kp->ki_oncpu_old = td->td_oncpu; 1363 1364 kp->ki_lastcpu = td->td_lastcpu; 1365 kp->ki_oncpu = td->td_oncpu; 1366 kp->ki_tdflags = td->td_flags; 1367 kp->ki_tid = td->td_tid; 1368 kp->ki_numthreads = p->p_numthreads; 1369 kp->ki_pcb = td->td_pcb; 1370 kp->ki_kstack = (void *)td->td_kstack; 1371 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1372 kp->ki_pri.pri_class = td->td_pri_class; 1373 kp->ki_pri.pri_user = td->td_user_pri; 1374 1375 if (preferthread) { 1376 rufetchtd(td, &kp->ki_rusage); 1377 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1378 kp->ki_pctcpu = sched_pctcpu(td); 1379 kp->ki_estcpu = sched_estcpu(td); 1380 kp->ki_cow = td->td_cow; 1381 } 1382 1383 /* We can't get this anymore but ps etc never used it anyway. */ 1384 kp->ki_rqindex = 0; 1385 1386 if (preferthread) 1387 kp->ki_siglist = td->td_siglist; 1388 kp->ki_sigmask = td->td_sigmask; 1389 thread_unlock(td); 1390 if (preferthread) 1391 PROC_STATUNLOCK(p); 1392 } 1393 1394 /* 1395 * Fill in a kinfo_proc structure for the specified process. 1396 * Must be called with the target process locked. 1397 */ 1398 void 1399 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1400 { 1401 1402 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1403 1404 fill_kinfo_proc_only(p, kp); 1405 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1406 fill_kinfo_aggregate(p, kp); 1407 } 1408 1409 struct pstats * 1410 pstats_alloc(void) 1411 { 1412 1413 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1414 } 1415 1416 /* 1417 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1418 */ 1419 void 1420 pstats_fork(struct pstats *src, struct pstats *dst) 1421 { 1422 1423 bzero(&dst->pstat_startzero, 1424 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1425 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1426 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1427 } 1428 1429 void 1430 pstats_free(struct pstats *ps) 1431 { 1432 1433 free(ps, M_SUBPROC); 1434 } 1435 1436 #ifdef COMPAT_FREEBSD32 1437 1438 /* 1439 * This function is typically used to copy out the kernel address, so 1440 * it can be replaced by assignment of zero. 1441 */ 1442 static inline uint32_t 1443 ptr32_trim(const void *ptr) 1444 { 1445 uintptr_t uptr; 1446 1447 uptr = (uintptr_t)ptr; 1448 return ((uptr > UINT_MAX) ? 0 : uptr); 1449 } 1450 1451 #define PTRTRIM_CP(src,dst,fld) \ 1452 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1453 1454 static void 1455 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1456 { 1457 int i; 1458 1459 bzero(ki32, sizeof(struct kinfo_proc32)); 1460 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1461 CP(*ki, *ki32, ki_layout); 1462 PTRTRIM_CP(*ki, *ki32, ki_args); 1463 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1464 PTRTRIM_CP(*ki, *ki32, ki_addr); 1465 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1466 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1467 PTRTRIM_CP(*ki, *ki32, ki_fd); 1468 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1469 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1470 CP(*ki, *ki32, ki_pid); 1471 CP(*ki, *ki32, ki_ppid); 1472 CP(*ki, *ki32, ki_pgid); 1473 CP(*ki, *ki32, ki_tpgid); 1474 CP(*ki, *ki32, ki_sid); 1475 CP(*ki, *ki32, ki_tsid); 1476 CP(*ki, *ki32, ki_jobc); 1477 CP(*ki, *ki32, ki_tdev); 1478 CP(*ki, *ki32, ki_tdev_freebsd11); 1479 CP(*ki, *ki32, ki_siglist); 1480 CP(*ki, *ki32, ki_sigmask); 1481 CP(*ki, *ki32, ki_sigignore); 1482 CP(*ki, *ki32, ki_sigcatch); 1483 CP(*ki, *ki32, ki_uid); 1484 CP(*ki, *ki32, ki_ruid); 1485 CP(*ki, *ki32, ki_svuid); 1486 CP(*ki, *ki32, ki_rgid); 1487 CP(*ki, *ki32, ki_svgid); 1488 CP(*ki, *ki32, ki_ngroups); 1489 for (i = 0; i < KI_NGROUPS; i++) 1490 CP(*ki, *ki32, ki_groups[i]); 1491 CP(*ki, *ki32, ki_size); 1492 CP(*ki, *ki32, ki_rssize); 1493 CP(*ki, *ki32, ki_swrss); 1494 CP(*ki, *ki32, ki_tsize); 1495 CP(*ki, *ki32, ki_dsize); 1496 CP(*ki, *ki32, ki_ssize); 1497 CP(*ki, *ki32, ki_xstat); 1498 CP(*ki, *ki32, ki_acflag); 1499 CP(*ki, *ki32, ki_pctcpu); 1500 CP(*ki, *ki32, ki_estcpu); 1501 CP(*ki, *ki32, ki_slptime); 1502 CP(*ki, *ki32, ki_swtime); 1503 CP(*ki, *ki32, ki_cow); 1504 CP(*ki, *ki32, ki_runtime); 1505 TV_CP(*ki, *ki32, ki_start); 1506 TV_CP(*ki, *ki32, ki_childtime); 1507 CP(*ki, *ki32, ki_flag); 1508 CP(*ki, *ki32, ki_kiflag); 1509 CP(*ki, *ki32, ki_traceflag); 1510 CP(*ki, *ki32, ki_stat); 1511 CP(*ki, *ki32, ki_nice); 1512 CP(*ki, *ki32, ki_lock); 1513 CP(*ki, *ki32, ki_rqindex); 1514 CP(*ki, *ki32, ki_oncpu); 1515 CP(*ki, *ki32, ki_lastcpu); 1516 1517 /* XXX TODO: wrap cpu value as appropriate */ 1518 CP(*ki, *ki32, ki_oncpu_old); 1519 CP(*ki, *ki32, ki_lastcpu_old); 1520 1521 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1522 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1523 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1524 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1525 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1526 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1527 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1528 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1529 CP(*ki, *ki32, ki_tracer); 1530 CP(*ki, *ki32, ki_flag2); 1531 CP(*ki, *ki32, ki_fibnum); 1532 CP(*ki, *ki32, ki_cr_flags); 1533 CP(*ki, *ki32, ki_jid); 1534 CP(*ki, *ki32, ki_numthreads); 1535 CP(*ki, *ki32, ki_tid); 1536 CP(*ki, *ki32, ki_pri); 1537 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1538 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1539 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1540 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1541 PTRTRIM_CP(*ki, *ki32, ki_udata); 1542 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1543 CP(*ki, *ki32, ki_sflag); 1544 CP(*ki, *ki32, ki_tdflags); 1545 } 1546 #endif 1547 1548 static ssize_t 1549 kern_proc_out_size(struct proc *p, int flags) 1550 { 1551 ssize_t size = 0; 1552 1553 PROC_LOCK_ASSERT(p, MA_OWNED); 1554 1555 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1556 #ifdef COMPAT_FREEBSD32 1557 if ((flags & KERN_PROC_MASK32) != 0) { 1558 size += sizeof(struct kinfo_proc32); 1559 } else 1560 #endif 1561 size += sizeof(struct kinfo_proc); 1562 } else { 1563 #ifdef COMPAT_FREEBSD32 1564 if ((flags & KERN_PROC_MASK32) != 0) 1565 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1566 else 1567 #endif 1568 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1569 } 1570 PROC_UNLOCK(p); 1571 return (size); 1572 } 1573 1574 int 1575 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1576 { 1577 struct thread *td; 1578 struct kinfo_proc ki; 1579 #ifdef COMPAT_FREEBSD32 1580 struct kinfo_proc32 ki32; 1581 #endif 1582 int error; 1583 1584 PROC_LOCK_ASSERT(p, MA_OWNED); 1585 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1586 1587 error = 0; 1588 fill_kinfo_proc(p, &ki); 1589 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1590 #ifdef COMPAT_FREEBSD32 1591 if ((flags & KERN_PROC_MASK32) != 0) { 1592 freebsd32_kinfo_proc_out(&ki, &ki32); 1593 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1594 error = ENOMEM; 1595 } else 1596 #endif 1597 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1598 error = ENOMEM; 1599 } else { 1600 FOREACH_THREAD_IN_PROC(p, td) { 1601 fill_kinfo_thread(td, &ki, 1); 1602 #ifdef COMPAT_FREEBSD32 1603 if ((flags & KERN_PROC_MASK32) != 0) { 1604 freebsd32_kinfo_proc_out(&ki, &ki32); 1605 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1606 error = ENOMEM; 1607 } else 1608 #endif 1609 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1610 error = ENOMEM; 1611 if (error != 0) 1612 break; 1613 } 1614 } 1615 PROC_UNLOCK(p); 1616 return (error); 1617 } 1618 1619 static int 1620 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1621 { 1622 struct sbuf sb; 1623 struct kinfo_proc ki; 1624 int error, error2; 1625 1626 if (req->oldptr == NULL) 1627 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1628 1629 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1630 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1631 error = kern_proc_out(p, &sb, flags); 1632 error2 = sbuf_finish(&sb); 1633 sbuf_delete(&sb); 1634 if (error != 0) 1635 return (error); 1636 else if (error2 != 0) 1637 return (error2); 1638 return (0); 1639 } 1640 1641 int 1642 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1643 { 1644 struct proc *p; 1645 int error, i, j; 1646 1647 for (i = 0; i < pidhashlock + 1; i++) { 1648 sx_slock(&pidhashtbl_lock[i]); 1649 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1650 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1651 if (p->p_state == PRS_NEW) 1652 continue; 1653 error = cb(p, cbarg); 1654 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1655 if (error != 0) { 1656 sx_sunlock(&pidhashtbl_lock[i]); 1657 return (error); 1658 } 1659 } 1660 } 1661 sx_sunlock(&pidhashtbl_lock[i]); 1662 } 1663 return (0); 1664 } 1665 1666 struct kern_proc_out_args { 1667 struct sysctl_req *req; 1668 int flags; 1669 int oid_number; 1670 int *name; 1671 }; 1672 1673 static int 1674 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1675 { 1676 struct kern_proc_out_args *arg = origarg; 1677 int *name = arg->name; 1678 int oid_number = arg->oid_number; 1679 int flags = arg->flags; 1680 struct sysctl_req *req = arg->req; 1681 int error = 0; 1682 1683 PROC_LOCK(p); 1684 1685 KASSERT(p->p_ucred != NULL, 1686 ("process credential is NULL for non-NEW proc")); 1687 /* 1688 * Show a user only appropriate processes. 1689 */ 1690 if (p_cansee(curthread, p)) 1691 goto skip; 1692 /* 1693 * TODO - make more efficient (see notes below). 1694 * do by session. 1695 */ 1696 switch (oid_number) { 1697 case KERN_PROC_GID: 1698 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1699 goto skip; 1700 break; 1701 1702 case KERN_PROC_PGRP: 1703 /* could do this by traversing pgrp */ 1704 if (p->p_pgrp == NULL || 1705 p->p_pgrp->pg_id != (pid_t)name[0]) 1706 goto skip; 1707 break; 1708 1709 case KERN_PROC_RGID: 1710 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1711 goto skip; 1712 break; 1713 1714 case KERN_PROC_SESSION: 1715 if (p->p_session == NULL || 1716 p->p_session->s_sid != (pid_t)name[0]) 1717 goto skip; 1718 break; 1719 1720 case KERN_PROC_TTY: 1721 if ((p->p_flag & P_CONTROLT) == 0 || 1722 p->p_session == NULL) 1723 goto skip; 1724 /* XXX proctree_lock */ 1725 SESS_LOCK(p->p_session); 1726 if (p->p_session->s_ttyp == NULL || 1727 tty_udev(p->p_session->s_ttyp) != 1728 (dev_t)name[0]) { 1729 SESS_UNLOCK(p->p_session); 1730 goto skip; 1731 } 1732 SESS_UNLOCK(p->p_session); 1733 break; 1734 1735 case KERN_PROC_UID: 1736 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1737 goto skip; 1738 break; 1739 1740 case KERN_PROC_RUID: 1741 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1742 goto skip; 1743 break; 1744 1745 case KERN_PROC_PROC: 1746 break; 1747 1748 default: 1749 break; 1750 } 1751 error = sysctl_out_proc(p, req, flags); 1752 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1753 return (error); 1754 skip: 1755 PROC_UNLOCK(p); 1756 return (0); 1757 } 1758 1759 static int 1760 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1761 { 1762 struct kern_proc_out_args iterarg; 1763 int *name = (int *)arg1; 1764 u_int namelen = arg2; 1765 struct proc *p; 1766 int flags, oid_number; 1767 int error = 0; 1768 1769 oid_number = oidp->oid_number; 1770 if (oid_number != KERN_PROC_ALL && 1771 (oid_number & KERN_PROC_INC_THREAD) == 0) 1772 flags = KERN_PROC_NOTHREADS; 1773 else { 1774 flags = 0; 1775 oid_number &= ~KERN_PROC_INC_THREAD; 1776 } 1777 #ifdef COMPAT_FREEBSD32 1778 if (req->flags & SCTL_MASK32) 1779 flags |= KERN_PROC_MASK32; 1780 #endif 1781 if (oid_number == KERN_PROC_PID) { 1782 if (namelen != 1) 1783 return (EINVAL); 1784 error = sysctl_wire_old_buffer(req, 0); 1785 if (error) 1786 return (error); 1787 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1788 if (error == 0) 1789 error = sysctl_out_proc(p, req, flags); 1790 return (error); 1791 } 1792 1793 switch (oid_number) { 1794 case KERN_PROC_ALL: 1795 if (namelen != 0) 1796 return (EINVAL); 1797 break; 1798 case KERN_PROC_PROC: 1799 if (namelen != 0 && namelen != 1) 1800 return (EINVAL); 1801 break; 1802 default: 1803 if (namelen != 1) 1804 return (EINVAL); 1805 break; 1806 } 1807 1808 if (req->oldptr == NULL) { 1809 /* overestimate by 5 procs */ 1810 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1811 if (error) 1812 return (error); 1813 } else { 1814 error = sysctl_wire_old_buffer(req, 0); 1815 if (error != 0) 1816 return (error); 1817 } 1818 iterarg.flags = flags; 1819 iterarg.oid_number = oid_number; 1820 iterarg.req = req; 1821 iterarg.name = name; 1822 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1823 return (error); 1824 } 1825 1826 struct pargs * 1827 pargs_alloc(int len) 1828 { 1829 struct pargs *pa; 1830 1831 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1832 M_WAITOK); 1833 refcount_init(&pa->ar_ref, 1); 1834 pa->ar_length = len; 1835 return (pa); 1836 } 1837 1838 static void 1839 pargs_free(struct pargs *pa) 1840 { 1841 1842 free(pa, M_PARGS); 1843 } 1844 1845 void 1846 pargs_hold(struct pargs *pa) 1847 { 1848 1849 if (pa == NULL) 1850 return; 1851 refcount_acquire(&pa->ar_ref); 1852 } 1853 1854 void 1855 pargs_drop(struct pargs *pa) 1856 { 1857 1858 if (pa == NULL) 1859 return; 1860 if (refcount_release(&pa->ar_ref)) 1861 pargs_free(pa); 1862 } 1863 1864 static int 1865 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1866 size_t len) 1867 { 1868 ssize_t n; 1869 1870 /* 1871 * This may return a short read if the string is shorter than the chunk 1872 * and is aligned at the end of the page, and the following page is not 1873 * mapped. 1874 */ 1875 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1876 if (n <= 0) 1877 return (ENOMEM); 1878 return (0); 1879 } 1880 1881 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1882 1883 enum proc_vector_type { 1884 PROC_ARG, 1885 PROC_ENV, 1886 PROC_AUX, 1887 }; 1888 1889 #ifdef COMPAT_FREEBSD32 1890 static int 1891 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1892 size_t *vsizep, enum proc_vector_type type) 1893 { 1894 struct freebsd32_ps_strings pss; 1895 Elf32_Auxinfo aux; 1896 vm_offset_t vptr, ptr; 1897 uint32_t *proc_vector32; 1898 char **proc_vector; 1899 size_t vsize, size; 1900 int i, error; 1901 1902 error = 0; 1903 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1904 sizeof(pss)) != sizeof(pss)) 1905 return (ENOMEM); 1906 switch (type) { 1907 case PROC_ARG: 1908 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1909 vsize = pss.ps_nargvstr; 1910 if (vsize > ARG_MAX) 1911 return (ENOEXEC); 1912 size = vsize * sizeof(int32_t); 1913 break; 1914 case PROC_ENV: 1915 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1916 vsize = pss.ps_nenvstr; 1917 if (vsize > ARG_MAX) 1918 return (ENOEXEC); 1919 size = vsize * sizeof(int32_t); 1920 break; 1921 case PROC_AUX: 1922 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1923 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1924 if (vptr % 4 != 0) 1925 return (ENOEXEC); 1926 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1927 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1928 sizeof(aux)) 1929 return (ENOMEM); 1930 if (aux.a_type == AT_NULL) 1931 break; 1932 ptr += sizeof(aux); 1933 } 1934 if (aux.a_type != AT_NULL) 1935 return (ENOEXEC); 1936 vsize = i + 1; 1937 size = vsize * sizeof(aux); 1938 break; 1939 default: 1940 KASSERT(0, ("Wrong proc vector type: %d", type)); 1941 return (EINVAL); 1942 } 1943 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1944 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1945 error = ENOMEM; 1946 goto done; 1947 } 1948 if (type == PROC_AUX) { 1949 *proc_vectorp = (char **)proc_vector32; 1950 *vsizep = vsize; 1951 return (0); 1952 } 1953 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1954 for (i = 0; i < (int)vsize; i++) 1955 proc_vector[i] = PTRIN(proc_vector32[i]); 1956 *proc_vectorp = proc_vector; 1957 *vsizep = vsize; 1958 done: 1959 free(proc_vector32, M_TEMP); 1960 return (error); 1961 } 1962 #endif 1963 1964 static int 1965 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1966 size_t *vsizep, enum proc_vector_type type) 1967 { 1968 struct ps_strings pss; 1969 Elf_Auxinfo aux; 1970 vm_offset_t vptr, ptr; 1971 char **proc_vector; 1972 size_t vsize, size; 1973 int i; 1974 1975 #ifdef COMPAT_FREEBSD32 1976 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1977 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1978 #endif 1979 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1980 sizeof(pss)) != sizeof(pss)) 1981 return (ENOMEM); 1982 switch (type) { 1983 case PROC_ARG: 1984 vptr = (vm_offset_t)pss.ps_argvstr; 1985 vsize = pss.ps_nargvstr; 1986 if (vsize > ARG_MAX) 1987 return (ENOEXEC); 1988 size = vsize * sizeof(char *); 1989 break; 1990 case PROC_ENV: 1991 vptr = (vm_offset_t)pss.ps_envstr; 1992 vsize = pss.ps_nenvstr; 1993 if (vsize > ARG_MAX) 1994 return (ENOEXEC); 1995 size = vsize * sizeof(char *); 1996 break; 1997 case PROC_AUX: 1998 /* 1999 * The aux array is just above env array on the stack. Check 2000 * that the address is naturally aligned. 2001 */ 2002 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 2003 * sizeof(char *); 2004 #if __ELF_WORD_SIZE == 64 2005 if (vptr % sizeof(uint64_t) != 0) 2006 #else 2007 if (vptr % sizeof(uint32_t) != 0) 2008 #endif 2009 return (ENOEXEC); 2010 /* 2011 * We count the array size reading the aux vectors from the 2012 * stack until AT_NULL vector is returned. So (to keep the code 2013 * simple) we read the process stack twice: the first time here 2014 * to find the size and the second time when copying the vectors 2015 * to the allocated proc_vector. 2016 */ 2017 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 2018 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 2019 sizeof(aux)) 2020 return (ENOMEM); 2021 if (aux.a_type == AT_NULL) 2022 break; 2023 ptr += sizeof(aux); 2024 } 2025 /* 2026 * If the PROC_AUXV_MAX entries are iterated over, and we have 2027 * not reached AT_NULL, it is most likely we are reading wrong 2028 * data: either the process doesn't have auxv array or data has 2029 * been modified. Return the error in this case. 2030 */ 2031 if (aux.a_type != AT_NULL) 2032 return (ENOEXEC); 2033 vsize = i + 1; 2034 size = vsize * sizeof(aux); 2035 break; 2036 default: 2037 KASSERT(0, ("Wrong proc vector type: %d", type)); 2038 return (EINVAL); /* In case we are built without INVARIANTS. */ 2039 } 2040 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2041 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2042 free(proc_vector, M_TEMP); 2043 return (ENOMEM); 2044 } 2045 *proc_vectorp = proc_vector; 2046 *vsizep = vsize; 2047 2048 return (0); 2049 } 2050 2051 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2052 2053 static int 2054 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2055 enum proc_vector_type type) 2056 { 2057 size_t done, len, nchr, vsize; 2058 int error, i; 2059 char **proc_vector, *sptr; 2060 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2061 2062 PROC_ASSERT_HELD(p); 2063 2064 /* 2065 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2066 */ 2067 nchr = 2 * (PATH_MAX + ARG_MAX); 2068 2069 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2070 if (error != 0) 2071 return (error); 2072 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2073 /* 2074 * The program may have scribbled into its argv array, e.g. to 2075 * remove some arguments. If that has happened, break out 2076 * before trying to read from NULL. 2077 */ 2078 if (proc_vector[i] == NULL) 2079 break; 2080 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2081 error = proc_read_string(td, p, sptr, pss_string, 2082 sizeof(pss_string)); 2083 if (error != 0) 2084 goto done; 2085 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2086 if (done + len >= nchr) 2087 len = nchr - done - 1; 2088 sbuf_bcat(sb, pss_string, len); 2089 if (len != GET_PS_STRINGS_CHUNK_SZ) 2090 break; 2091 done += GET_PS_STRINGS_CHUNK_SZ; 2092 } 2093 sbuf_bcat(sb, "", 1); 2094 done += len + 1; 2095 } 2096 done: 2097 free(proc_vector, M_TEMP); 2098 return (error); 2099 } 2100 2101 int 2102 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2103 { 2104 2105 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2106 } 2107 2108 int 2109 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2110 { 2111 2112 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2113 } 2114 2115 int 2116 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2117 { 2118 size_t vsize, size; 2119 char **auxv; 2120 int error; 2121 2122 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2123 if (error == 0) { 2124 #ifdef COMPAT_FREEBSD32 2125 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2126 size = vsize * sizeof(Elf32_Auxinfo); 2127 else 2128 #endif 2129 size = vsize * sizeof(Elf_Auxinfo); 2130 if (sbuf_bcat(sb, auxv, size) != 0) 2131 error = ENOMEM; 2132 free(auxv, M_TEMP); 2133 } 2134 return (error); 2135 } 2136 2137 /* 2138 * This sysctl allows a process to retrieve the argument list or process 2139 * title for another process without groping around in the address space 2140 * of the other process. It also allow a process to set its own "process 2141 * title to a string of its own choice. 2142 */ 2143 static int 2144 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2145 { 2146 int *name = (int *)arg1; 2147 u_int namelen = arg2; 2148 struct pargs *newpa, *pa; 2149 struct proc *p; 2150 struct sbuf sb; 2151 int flags, error = 0, error2; 2152 pid_t pid; 2153 2154 if (namelen != 1) 2155 return (EINVAL); 2156 2157 pid = (pid_t)name[0]; 2158 /* 2159 * If the query is for this process and it is single-threaded, there 2160 * is nobody to modify pargs, thus we can just read. 2161 */ 2162 p = curproc; 2163 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2164 (pa = p->p_args) != NULL) 2165 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2166 2167 flags = PGET_CANSEE; 2168 if (req->newptr != NULL) 2169 flags |= PGET_ISCURRENT; 2170 error = pget(pid, flags, &p); 2171 if (error) 2172 return (error); 2173 2174 pa = p->p_args; 2175 if (pa != NULL) { 2176 pargs_hold(pa); 2177 PROC_UNLOCK(p); 2178 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2179 pargs_drop(pa); 2180 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2181 _PHOLD(p); 2182 PROC_UNLOCK(p); 2183 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2184 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2185 error = proc_getargv(curthread, p, &sb); 2186 error2 = sbuf_finish(&sb); 2187 PRELE(p); 2188 sbuf_delete(&sb); 2189 if (error == 0 && error2 != 0) 2190 error = error2; 2191 } else { 2192 PROC_UNLOCK(p); 2193 } 2194 if (error != 0 || req->newptr == NULL) 2195 return (error); 2196 2197 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2198 return (ENOMEM); 2199 2200 if (req->newlen == 0) { 2201 /* 2202 * Clear the argument pointer, so that we'll fetch arguments 2203 * with proc_getargv() until further notice. 2204 */ 2205 newpa = NULL; 2206 } else { 2207 newpa = pargs_alloc(req->newlen); 2208 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2209 if (error != 0) { 2210 pargs_free(newpa); 2211 return (error); 2212 } 2213 } 2214 PROC_LOCK(p); 2215 pa = p->p_args; 2216 p->p_args = newpa; 2217 PROC_UNLOCK(p); 2218 pargs_drop(pa); 2219 return (0); 2220 } 2221 2222 /* 2223 * This sysctl allows a process to retrieve environment of another process. 2224 */ 2225 static int 2226 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2227 { 2228 int *name = (int *)arg1; 2229 u_int namelen = arg2; 2230 struct proc *p; 2231 struct sbuf sb; 2232 int error, error2; 2233 2234 if (namelen != 1) 2235 return (EINVAL); 2236 2237 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2238 if (error != 0) 2239 return (error); 2240 if ((p->p_flag & P_SYSTEM) != 0) { 2241 PRELE(p); 2242 return (0); 2243 } 2244 2245 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2246 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2247 error = proc_getenvv(curthread, p, &sb); 2248 error2 = sbuf_finish(&sb); 2249 PRELE(p); 2250 sbuf_delete(&sb); 2251 return (error != 0 ? error : error2); 2252 } 2253 2254 /* 2255 * This sysctl allows a process to retrieve ELF auxiliary vector of 2256 * another process. 2257 */ 2258 static int 2259 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2260 { 2261 int *name = (int *)arg1; 2262 u_int namelen = arg2; 2263 struct proc *p; 2264 struct sbuf sb; 2265 int error, error2; 2266 2267 if (namelen != 1) 2268 return (EINVAL); 2269 2270 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2271 if (error != 0) 2272 return (error); 2273 if ((p->p_flag & P_SYSTEM) != 0) { 2274 PRELE(p); 2275 return (0); 2276 } 2277 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2278 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2279 error = proc_getauxv(curthread, p, &sb); 2280 error2 = sbuf_finish(&sb); 2281 PRELE(p); 2282 sbuf_delete(&sb); 2283 return (error != 0 ? error : error2); 2284 } 2285 2286 /* 2287 * This sysctl allows a process to retrieve the path of the executable for 2288 * itself or another process. 2289 */ 2290 static int 2291 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2292 { 2293 pid_t *pidp = (pid_t *)arg1; 2294 unsigned int arglen = arg2; 2295 struct proc *p; 2296 struct vnode *vp; 2297 char *retbuf, *freebuf; 2298 int error; 2299 2300 if (arglen != 1) 2301 return (EINVAL); 2302 if (*pidp == -1) { /* -1 means this process */ 2303 p = req->td->td_proc; 2304 } else { 2305 error = pget(*pidp, PGET_CANSEE, &p); 2306 if (error != 0) 2307 return (error); 2308 } 2309 2310 vp = p->p_textvp; 2311 if (vp == NULL) { 2312 if (*pidp != -1) 2313 PROC_UNLOCK(p); 2314 return (0); 2315 } 2316 vref(vp); 2317 if (*pidp != -1) 2318 PROC_UNLOCK(p); 2319 error = vn_fullpath(vp, &retbuf, &freebuf); 2320 vrele(vp); 2321 if (error) 2322 return (error); 2323 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2324 free(freebuf, M_TEMP); 2325 return (error); 2326 } 2327 2328 static int 2329 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2330 { 2331 struct proc *p; 2332 char *sv_name; 2333 int *name; 2334 int namelen; 2335 int error; 2336 2337 namelen = arg2; 2338 if (namelen != 1) 2339 return (EINVAL); 2340 2341 name = (int *)arg1; 2342 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2343 if (error != 0) 2344 return (error); 2345 sv_name = p->p_sysent->sv_name; 2346 PROC_UNLOCK(p); 2347 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2348 } 2349 2350 #ifdef KINFO_OVMENTRY_SIZE 2351 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2352 #endif 2353 2354 #ifdef COMPAT_FREEBSD7 2355 static int 2356 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2357 { 2358 vm_map_entry_t entry, tmp_entry; 2359 unsigned int last_timestamp; 2360 char *fullpath, *freepath; 2361 struct kinfo_ovmentry *kve; 2362 struct vattr va; 2363 struct ucred *cred; 2364 int error, *name; 2365 struct vnode *vp; 2366 struct proc *p; 2367 vm_map_t map; 2368 struct vmspace *vm; 2369 2370 name = (int *)arg1; 2371 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2372 if (error != 0) 2373 return (error); 2374 vm = vmspace_acquire_ref(p); 2375 if (vm == NULL) { 2376 PRELE(p); 2377 return (ESRCH); 2378 } 2379 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2380 2381 map = &vm->vm_map; 2382 vm_map_lock_read(map); 2383 VM_MAP_ENTRY_FOREACH(entry, map) { 2384 vm_object_t obj, tobj, lobj; 2385 vm_offset_t addr; 2386 2387 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2388 continue; 2389 2390 bzero(kve, sizeof(*kve)); 2391 kve->kve_structsize = sizeof(*kve); 2392 2393 kve->kve_private_resident = 0; 2394 obj = entry->object.vm_object; 2395 if (obj != NULL) { 2396 VM_OBJECT_RLOCK(obj); 2397 if (obj->shadow_count == 1) 2398 kve->kve_private_resident = 2399 obj->resident_page_count; 2400 } 2401 kve->kve_resident = 0; 2402 addr = entry->start; 2403 while (addr < entry->end) { 2404 if (pmap_extract(map->pmap, addr)) 2405 kve->kve_resident++; 2406 addr += PAGE_SIZE; 2407 } 2408 2409 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2410 if (tobj != obj) { 2411 VM_OBJECT_RLOCK(tobj); 2412 kve->kve_offset += tobj->backing_object_offset; 2413 } 2414 if (lobj != obj) 2415 VM_OBJECT_RUNLOCK(lobj); 2416 lobj = tobj; 2417 } 2418 2419 kve->kve_start = (void*)entry->start; 2420 kve->kve_end = (void*)entry->end; 2421 kve->kve_offset += (off_t)entry->offset; 2422 2423 if (entry->protection & VM_PROT_READ) 2424 kve->kve_protection |= KVME_PROT_READ; 2425 if (entry->protection & VM_PROT_WRITE) 2426 kve->kve_protection |= KVME_PROT_WRITE; 2427 if (entry->protection & VM_PROT_EXECUTE) 2428 kve->kve_protection |= KVME_PROT_EXEC; 2429 2430 if (entry->eflags & MAP_ENTRY_COW) 2431 kve->kve_flags |= KVME_FLAG_COW; 2432 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2433 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2434 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2435 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2436 2437 last_timestamp = map->timestamp; 2438 vm_map_unlock_read(map); 2439 2440 kve->kve_fileid = 0; 2441 kve->kve_fsid = 0; 2442 freepath = NULL; 2443 fullpath = ""; 2444 if (lobj) { 2445 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2446 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2447 kve->kve_type = KVME_TYPE_UNKNOWN; 2448 if (vp != NULL) 2449 vref(vp); 2450 if (lobj != obj) 2451 VM_OBJECT_RUNLOCK(lobj); 2452 2453 kve->kve_ref_count = obj->ref_count; 2454 kve->kve_shadow_count = obj->shadow_count; 2455 VM_OBJECT_RUNLOCK(obj); 2456 if (vp != NULL) { 2457 vn_fullpath(vp, &fullpath, &freepath); 2458 cred = curthread->td_ucred; 2459 vn_lock(vp, LK_SHARED | LK_RETRY); 2460 if (VOP_GETATTR(vp, &va, cred) == 0) { 2461 kve->kve_fileid = va.va_fileid; 2462 /* truncate */ 2463 kve->kve_fsid = va.va_fsid; 2464 } 2465 vput(vp); 2466 } 2467 } else { 2468 kve->kve_type = KVME_TYPE_NONE; 2469 kve->kve_ref_count = 0; 2470 kve->kve_shadow_count = 0; 2471 } 2472 2473 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2474 if (freepath != NULL) 2475 free(freepath, M_TEMP); 2476 2477 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2478 vm_map_lock_read(map); 2479 if (error) 2480 break; 2481 if (last_timestamp != map->timestamp) { 2482 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2483 entry = tmp_entry; 2484 } 2485 } 2486 vm_map_unlock_read(map); 2487 vmspace_free(vm); 2488 PRELE(p); 2489 free(kve, M_TEMP); 2490 return (error); 2491 } 2492 #endif /* COMPAT_FREEBSD7 */ 2493 2494 #ifdef KINFO_VMENTRY_SIZE 2495 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2496 #endif 2497 2498 void 2499 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2500 int *resident_count, bool *super) 2501 { 2502 vm_object_t obj, tobj; 2503 vm_page_t m, m_adv; 2504 vm_offset_t addr; 2505 vm_paddr_t pa; 2506 vm_pindex_t pi, pi_adv, pindex; 2507 2508 *super = false; 2509 *resident_count = 0; 2510 if (vmmap_skip_res_cnt) 2511 return; 2512 2513 pa = 0; 2514 obj = entry->object.vm_object; 2515 addr = entry->start; 2516 m_adv = NULL; 2517 pi = OFF_TO_IDX(entry->offset); 2518 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2519 if (m_adv != NULL) { 2520 m = m_adv; 2521 } else { 2522 pi_adv = atop(entry->end - addr); 2523 pindex = pi; 2524 for (tobj = obj;; tobj = tobj->backing_object) { 2525 m = vm_page_find_least(tobj, pindex); 2526 if (m != NULL) { 2527 if (m->pindex == pindex) 2528 break; 2529 if (pi_adv > m->pindex - pindex) { 2530 pi_adv = m->pindex - pindex; 2531 m_adv = m; 2532 } 2533 } 2534 if (tobj->backing_object == NULL) 2535 goto next; 2536 pindex += OFF_TO_IDX(tobj-> 2537 backing_object_offset); 2538 } 2539 } 2540 m_adv = NULL; 2541 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2542 (addr & (pagesizes[1] - 1)) == 0 && 2543 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2544 *super = true; 2545 pi_adv = atop(pagesizes[1]); 2546 } else { 2547 /* 2548 * We do not test the found page on validity. 2549 * Either the page is busy and being paged in, 2550 * or it was invalidated. The first case 2551 * should be counted as resident, the second 2552 * is not so clear; we do account both. 2553 */ 2554 pi_adv = 1; 2555 } 2556 *resident_count += pi_adv; 2557 next:; 2558 } 2559 } 2560 2561 /* 2562 * Must be called with the process locked and will return unlocked. 2563 */ 2564 int 2565 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2566 { 2567 vm_map_entry_t entry, tmp_entry; 2568 struct vattr va; 2569 vm_map_t map; 2570 vm_object_t obj, tobj, lobj; 2571 char *fullpath, *freepath; 2572 struct kinfo_vmentry *kve; 2573 struct ucred *cred; 2574 struct vnode *vp; 2575 struct vmspace *vm; 2576 vm_offset_t addr; 2577 unsigned int last_timestamp; 2578 int error; 2579 bool super; 2580 2581 PROC_LOCK_ASSERT(p, MA_OWNED); 2582 2583 _PHOLD(p); 2584 PROC_UNLOCK(p); 2585 vm = vmspace_acquire_ref(p); 2586 if (vm == NULL) { 2587 PRELE(p); 2588 return (ESRCH); 2589 } 2590 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2591 2592 error = 0; 2593 map = &vm->vm_map; 2594 vm_map_lock_read(map); 2595 VM_MAP_ENTRY_FOREACH(entry, map) { 2596 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2597 continue; 2598 2599 addr = entry->end; 2600 bzero(kve, sizeof(*kve)); 2601 obj = entry->object.vm_object; 2602 if (obj != NULL) { 2603 for (tobj = obj; tobj != NULL; 2604 tobj = tobj->backing_object) { 2605 VM_OBJECT_RLOCK(tobj); 2606 kve->kve_offset += tobj->backing_object_offset; 2607 lobj = tobj; 2608 } 2609 if (obj->backing_object == NULL) 2610 kve->kve_private_resident = 2611 obj->resident_page_count; 2612 kern_proc_vmmap_resident(map, entry, 2613 &kve->kve_resident, &super); 2614 if (super) 2615 kve->kve_flags |= KVME_FLAG_SUPER; 2616 for (tobj = obj; tobj != NULL; 2617 tobj = tobj->backing_object) { 2618 if (tobj != obj && tobj != lobj) 2619 VM_OBJECT_RUNLOCK(tobj); 2620 } 2621 } else { 2622 lobj = NULL; 2623 } 2624 2625 kve->kve_start = entry->start; 2626 kve->kve_end = entry->end; 2627 kve->kve_offset += entry->offset; 2628 2629 if (entry->protection & VM_PROT_READ) 2630 kve->kve_protection |= KVME_PROT_READ; 2631 if (entry->protection & VM_PROT_WRITE) 2632 kve->kve_protection |= KVME_PROT_WRITE; 2633 if (entry->protection & VM_PROT_EXECUTE) 2634 kve->kve_protection |= KVME_PROT_EXEC; 2635 2636 if (entry->eflags & MAP_ENTRY_COW) 2637 kve->kve_flags |= KVME_FLAG_COW; 2638 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2639 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2640 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2641 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2642 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2643 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2644 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2645 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2646 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2647 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2648 2649 last_timestamp = map->timestamp; 2650 vm_map_unlock_read(map); 2651 2652 freepath = NULL; 2653 fullpath = ""; 2654 if (lobj != NULL) { 2655 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2656 if (vp != NULL) 2657 vref(vp); 2658 if (lobj != obj) 2659 VM_OBJECT_RUNLOCK(lobj); 2660 2661 kve->kve_ref_count = obj->ref_count; 2662 kve->kve_shadow_count = obj->shadow_count; 2663 VM_OBJECT_RUNLOCK(obj); 2664 if (vp != NULL) { 2665 vn_fullpath(vp, &fullpath, &freepath); 2666 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2667 cred = curthread->td_ucred; 2668 vn_lock(vp, LK_SHARED | LK_RETRY); 2669 if (VOP_GETATTR(vp, &va, cred) == 0) { 2670 kve->kve_vn_fileid = va.va_fileid; 2671 kve->kve_vn_fsid = va.va_fsid; 2672 kve->kve_vn_fsid_freebsd11 = 2673 kve->kve_vn_fsid; /* truncate */ 2674 kve->kve_vn_mode = 2675 MAKEIMODE(va.va_type, va.va_mode); 2676 kve->kve_vn_size = va.va_size; 2677 kve->kve_vn_rdev = va.va_rdev; 2678 kve->kve_vn_rdev_freebsd11 = 2679 kve->kve_vn_rdev; /* truncate */ 2680 kve->kve_status = KF_ATTR_VALID; 2681 } 2682 vput(vp); 2683 } 2684 } else { 2685 kve->kve_type = KVME_TYPE_NONE; 2686 kve->kve_ref_count = 0; 2687 kve->kve_shadow_count = 0; 2688 } 2689 2690 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2691 if (freepath != NULL) 2692 free(freepath, M_TEMP); 2693 2694 /* Pack record size down */ 2695 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2696 kve->kve_structsize = 2697 offsetof(struct kinfo_vmentry, kve_path) + 2698 strlen(kve->kve_path) + 1; 2699 else 2700 kve->kve_structsize = sizeof(*kve); 2701 kve->kve_structsize = roundup(kve->kve_structsize, 2702 sizeof(uint64_t)); 2703 2704 /* Halt filling and truncate rather than exceeding maxlen */ 2705 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2706 error = 0; 2707 vm_map_lock_read(map); 2708 break; 2709 } else if (maxlen != -1) 2710 maxlen -= kve->kve_structsize; 2711 2712 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2713 error = ENOMEM; 2714 vm_map_lock_read(map); 2715 if (error != 0) 2716 break; 2717 if (last_timestamp != map->timestamp) { 2718 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2719 entry = tmp_entry; 2720 } 2721 } 2722 vm_map_unlock_read(map); 2723 vmspace_free(vm); 2724 PRELE(p); 2725 free(kve, M_TEMP); 2726 return (error); 2727 } 2728 2729 static int 2730 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2731 { 2732 struct proc *p; 2733 struct sbuf sb; 2734 int error, error2, *name; 2735 2736 name = (int *)arg1; 2737 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2738 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2739 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2740 if (error != 0) { 2741 sbuf_delete(&sb); 2742 return (error); 2743 } 2744 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2745 error2 = sbuf_finish(&sb); 2746 sbuf_delete(&sb); 2747 return (error != 0 ? error : error2); 2748 } 2749 2750 #if defined(STACK) || defined(DDB) 2751 static int 2752 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2753 { 2754 struct kinfo_kstack *kkstp; 2755 int error, i, *name, numthreads; 2756 lwpid_t *lwpidarray; 2757 struct thread *td; 2758 struct stack *st; 2759 struct sbuf sb; 2760 struct proc *p; 2761 2762 name = (int *)arg1; 2763 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2764 if (error != 0) 2765 return (error); 2766 2767 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2768 st = stack_create(M_WAITOK); 2769 2770 lwpidarray = NULL; 2771 PROC_LOCK(p); 2772 do { 2773 if (lwpidarray != NULL) { 2774 free(lwpidarray, M_TEMP); 2775 lwpidarray = NULL; 2776 } 2777 numthreads = p->p_numthreads; 2778 PROC_UNLOCK(p); 2779 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2780 M_WAITOK | M_ZERO); 2781 PROC_LOCK(p); 2782 } while (numthreads < p->p_numthreads); 2783 2784 /* 2785 * XXXRW: During the below loop, execve(2) and countless other sorts 2786 * of changes could have taken place. Should we check to see if the 2787 * vmspace has been replaced, or the like, in order to prevent 2788 * giving a snapshot that spans, say, execve(2), with some threads 2789 * before and some after? Among other things, the credentials could 2790 * have changed, in which case the right to extract debug info might 2791 * no longer be assured. 2792 */ 2793 i = 0; 2794 FOREACH_THREAD_IN_PROC(p, td) { 2795 KASSERT(i < numthreads, 2796 ("sysctl_kern_proc_kstack: numthreads")); 2797 lwpidarray[i] = td->td_tid; 2798 i++; 2799 } 2800 PROC_UNLOCK(p); 2801 numthreads = i; 2802 for (i = 0; i < numthreads; i++) { 2803 td = tdfind(lwpidarray[i], p->p_pid); 2804 if (td == NULL) { 2805 continue; 2806 } 2807 bzero(kkstp, sizeof(*kkstp)); 2808 (void)sbuf_new(&sb, kkstp->kkst_trace, 2809 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2810 thread_lock(td); 2811 kkstp->kkst_tid = td->td_tid; 2812 if (TD_IS_SWAPPED(td)) 2813 kkstp->kkst_state = KKST_STATE_SWAPPED; 2814 else if (stack_save_td(st, td) == 0) 2815 kkstp->kkst_state = KKST_STATE_STACKOK; 2816 else 2817 kkstp->kkst_state = KKST_STATE_RUNNING; 2818 thread_unlock(td); 2819 PROC_UNLOCK(p); 2820 stack_sbuf_print(&sb, st); 2821 sbuf_finish(&sb); 2822 sbuf_delete(&sb); 2823 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2824 if (error) 2825 break; 2826 } 2827 PRELE(p); 2828 if (lwpidarray != NULL) 2829 free(lwpidarray, M_TEMP); 2830 stack_destroy(st); 2831 free(kkstp, M_TEMP); 2832 return (error); 2833 } 2834 #endif 2835 2836 /* 2837 * This sysctl allows a process to retrieve the full list of groups from 2838 * itself or another process. 2839 */ 2840 static int 2841 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2842 { 2843 pid_t *pidp = (pid_t *)arg1; 2844 unsigned int arglen = arg2; 2845 struct proc *p; 2846 struct ucred *cred; 2847 int error; 2848 2849 if (arglen != 1) 2850 return (EINVAL); 2851 if (*pidp == -1) { /* -1 means this process */ 2852 p = req->td->td_proc; 2853 PROC_LOCK(p); 2854 } else { 2855 error = pget(*pidp, PGET_CANSEE, &p); 2856 if (error != 0) 2857 return (error); 2858 } 2859 2860 cred = crhold(p->p_ucred); 2861 PROC_UNLOCK(p); 2862 2863 error = SYSCTL_OUT(req, cred->cr_groups, 2864 cred->cr_ngroups * sizeof(gid_t)); 2865 crfree(cred); 2866 return (error); 2867 } 2868 2869 /* 2870 * This sysctl allows a process to retrieve or/and set the resource limit for 2871 * another process. 2872 */ 2873 static int 2874 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2875 { 2876 int *name = (int *)arg1; 2877 u_int namelen = arg2; 2878 struct rlimit rlim; 2879 struct proc *p; 2880 u_int which; 2881 int flags, error; 2882 2883 if (namelen != 2) 2884 return (EINVAL); 2885 2886 which = (u_int)name[1]; 2887 if (which >= RLIM_NLIMITS) 2888 return (EINVAL); 2889 2890 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2891 return (EINVAL); 2892 2893 flags = PGET_HOLD | PGET_NOTWEXIT; 2894 if (req->newptr != NULL) 2895 flags |= PGET_CANDEBUG; 2896 else 2897 flags |= PGET_CANSEE; 2898 error = pget((pid_t)name[0], flags, &p); 2899 if (error != 0) 2900 return (error); 2901 2902 /* 2903 * Retrieve limit. 2904 */ 2905 if (req->oldptr != NULL) { 2906 PROC_LOCK(p); 2907 lim_rlimit_proc(p, which, &rlim); 2908 PROC_UNLOCK(p); 2909 } 2910 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2911 if (error != 0) 2912 goto errout; 2913 2914 /* 2915 * Set limit. 2916 */ 2917 if (req->newptr != NULL) { 2918 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2919 if (error == 0) 2920 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2921 } 2922 2923 errout: 2924 PRELE(p); 2925 return (error); 2926 } 2927 2928 /* 2929 * This sysctl allows a process to retrieve ps_strings structure location of 2930 * another process. 2931 */ 2932 static int 2933 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2934 { 2935 int *name = (int *)arg1; 2936 u_int namelen = arg2; 2937 struct proc *p; 2938 vm_offset_t ps_strings; 2939 int error; 2940 #ifdef COMPAT_FREEBSD32 2941 uint32_t ps_strings32; 2942 #endif 2943 2944 if (namelen != 1) 2945 return (EINVAL); 2946 2947 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2948 if (error != 0) 2949 return (error); 2950 #ifdef COMPAT_FREEBSD32 2951 if ((req->flags & SCTL_MASK32) != 0) { 2952 /* 2953 * We return 0 if the 32 bit emulation request is for a 64 bit 2954 * process. 2955 */ 2956 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2957 PTROUT(p->p_sysent->sv_psstrings) : 0; 2958 PROC_UNLOCK(p); 2959 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2960 return (error); 2961 } 2962 #endif 2963 ps_strings = p->p_sysent->sv_psstrings; 2964 PROC_UNLOCK(p); 2965 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2966 return (error); 2967 } 2968 2969 /* 2970 * This sysctl allows a process to retrieve umask of another process. 2971 */ 2972 static int 2973 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2974 { 2975 int *name = (int *)arg1; 2976 u_int namelen = arg2; 2977 struct proc *p; 2978 int error; 2979 u_short cmask; 2980 pid_t pid; 2981 2982 if (namelen != 1) 2983 return (EINVAL); 2984 2985 pid = (pid_t)name[0]; 2986 p = curproc; 2987 if (pid == p->p_pid || pid == 0) { 2988 cmask = p->p_pd->pd_cmask; 2989 goto out; 2990 } 2991 2992 error = pget(pid, PGET_WANTREAD, &p); 2993 if (error != 0) 2994 return (error); 2995 2996 cmask = p->p_pd->pd_cmask; 2997 PRELE(p); 2998 out: 2999 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3000 return (error); 3001 } 3002 3003 /* 3004 * This sysctl allows a process to set and retrieve binary osreldate of 3005 * another process. 3006 */ 3007 static int 3008 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3009 { 3010 int *name = (int *)arg1; 3011 u_int namelen = arg2; 3012 struct proc *p; 3013 int flags, error, osrel; 3014 3015 if (namelen != 1) 3016 return (EINVAL); 3017 3018 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3019 return (EINVAL); 3020 3021 flags = PGET_HOLD | PGET_NOTWEXIT; 3022 if (req->newptr != NULL) 3023 flags |= PGET_CANDEBUG; 3024 else 3025 flags |= PGET_CANSEE; 3026 error = pget((pid_t)name[0], flags, &p); 3027 if (error != 0) 3028 return (error); 3029 3030 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3031 if (error != 0) 3032 goto errout; 3033 3034 if (req->newptr != NULL) { 3035 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3036 if (error != 0) 3037 goto errout; 3038 if (osrel < 0) { 3039 error = EINVAL; 3040 goto errout; 3041 } 3042 p->p_osrel = osrel; 3043 } 3044 errout: 3045 PRELE(p); 3046 return (error); 3047 } 3048 3049 static int 3050 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3051 { 3052 int *name = (int *)arg1; 3053 u_int namelen = arg2; 3054 struct proc *p; 3055 struct kinfo_sigtramp kst; 3056 const struct sysentvec *sv; 3057 int error; 3058 #ifdef COMPAT_FREEBSD32 3059 struct kinfo_sigtramp32 kst32; 3060 #endif 3061 3062 if (namelen != 1) 3063 return (EINVAL); 3064 3065 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3066 if (error != 0) 3067 return (error); 3068 sv = p->p_sysent; 3069 #ifdef COMPAT_FREEBSD32 3070 if ((req->flags & SCTL_MASK32) != 0) { 3071 bzero(&kst32, sizeof(kst32)); 3072 if (SV_PROC_FLAG(p, SV_ILP32)) { 3073 if (sv->sv_sigcode_base != 0) { 3074 kst32.ksigtramp_start = sv->sv_sigcode_base; 3075 kst32.ksigtramp_end = sv->sv_sigcode_base + 3076 *sv->sv_szsigcode; 3077 } else { 3078 kst32.ksigtramp_start = sv->sv_psstrings - 3079 *sv->sv_szsigcode; 3080 kst32.ksigtramp_end = sv->sv_psstrings; 3081 } 3082 } 3083 PROC_UNLOCK(p); 3084 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3085 return (error); 3086 } 3087 #endif 3088 bzero(&kst, sizeof(kst)); 3089 if (sv->sv_sigcode_base != 0) { 3090 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 3091 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 3092 *sv->sv_szsigcode; 3093 } else { 3094 kst.ksigtramp_start = (char *)sv->sv_psstrings - 3095 *sv->sv_szsigcode; 3096 kst.ksigtramp_end = (char *)sv->sv_psstrings; 3097 } 3098 PROC_UNLOCK(p); 3099 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3100 return (error); 3101 } 3102 3103 static int 3104 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3105 { 3106 int *name = (int *)arg1; 3107 u_int namelen = arg2; 3108 pid_t pid; 3109 struct proc *p; 3110 struct thread *td1; 3111 uintptr_t addr; 3112 #ifdef COMPAT_FREEBSD32 3113 uint32_t addr32; 3114 #endif 3115 int error; 3116 3117 if (namelen != 1 || req->newptr != NULL) 3118 return (EINVAL); 3119 3120 pid = (pid_t)name[0]; 3121 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3122 if (error != 0) 3123 return (error); 3124 3125 PROC_LOCK(p); 3126 #ifdef COMPAT_FREEBSD32 3127 if (SV_CURPROC_FLAG(SV_ILP32)) { 3128 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3129 error = EINVAL; 3130 goto errlocked; 3131 } 3132 } 3133 #endif 3134 if (pid <= PID_MAX) { 3135 td1 = FIRST_THREAD_IN_PROC(p); 3136 } else { 3137 FOREACH_THREAD_IN_PROC(p, td1) { 3138 if (td1->td_tid == pid) 3139 break; 3140 } 3141 } 3142 if (td1 == NULL) { 3143 error = ESRCH; 3144 goto errlocked; 3145 } 3146 /* 3147 * The access to the private thread flags. It is fine as far 3148 * as no out-of-thin-air values are read from td_pflags, and 3149 * usermode read of the td_sigblock_ptr is racy inherently, 3150 * since target process might have already changed it 3151 * meantime. 3152 */ 3153 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3154 addr = (uintptr_t)td1->td_sigblock_ptr; 3155 else 3156 error = ENOTTY; 3157 3158 errlocked: 3159 _PRELE(p); 3160 PROC_UNLOCK(p); 3161 if (error != 0) 3162 return (error); 3163 3164 #ifdef COMPAT_FREEBSD32 3165 if (SV_CURPROC_FLAG(SV_ILP32)) { 3166 addr32 = addr; 3167 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3168 } else 3169 #endif 3170 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3171 return (error); 3172 } 3173 3174 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3175 "Process table"); 3176 3177 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3178 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3179 "Return entire process table"); 3180 3181 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3182 sysctl_kern_proc, "Process table"); 3183 3184 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3185 sysctl_kern_proc, "Process table"); 3186 3187 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3188 sysctl_kern_proc, "Process table"); 3189 3190 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3191 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3192 3193 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3194 sysctl_kern_proc, "Process table"); 3195 3196 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3197 sysctl_kern_proc, "Process table"); 3198 3199 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3200 sysctl_kern_proc, "Process table"); 3201 3202 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3203 sysctl_kern_proc, "Process table"); 3204 3205 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3206 sysctl_kern_proc, "Return process table, no threads"); 3207 3208 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3209 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3210 sysctl_kern_proc_args, "Process argument list"); 3211 3212 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3213 sysctl_kern_proc_env, "Process environment"); 3214 3215 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3216 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3217 3218 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3219 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3220 3221 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3222 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3223 "Process syscall vector name (ABI type)"); 3224 3225 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3226 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3227 3228 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3229 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3230 3231 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3232 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3233 3234 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3235 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3236 3237 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3238 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3239 3240 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3241 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3242 3243 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3244 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3245 3246 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3247 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3248 3249 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3250 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3251 "Return process table, no threads"); 3252 3253 #ifdef COMPAT_FREEBSD7 3254 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3255 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3256 #endif 3257 3258 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3259 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3260 3261 #if defined(STACK) || defined(DDB) 3262 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3263 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3264 #endif 3265 3266 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3267 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3268 3269 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3270 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3271 "Process resource limits"); 3272 3273 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3274 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3275 "Process ps_strings location"); 3276 3277 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3278 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3279 3280 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3281 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3282 "Process binary osreldate"); 3283 3284 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3285 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3286 "Process signal trampoline location"); 3287 3288 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3289 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3290 "Thread sigfastblock address"); 3291 3292 int allproc_gen; 3293 3294 /* 3295 * stop_all_proc() purpose is to stop all process which have usermode, 3296 * except current process for obvious reasons. This makes it somewhat 3297 * unreliable when invoked from multithreaded process. The service 3298 * must not be user-callable anyway. 3299 */ 3300 void 3301 stop_all_proc(void) 3302 { 3303 struct proc *cp, *p; 3304 int r, gen; 3305 bool restart, seen_stopped, seen_exiting, stopped_some; 3306 3307 cp = curproc; 3308 allproc_loop: 3309 sx_xlock(&allproc_lock); 3310 gen = allproc_gen; 3311 seen_exiting = seen_stopped = stopped_some = restart = false; 3312 LIST_REMOVE(cp, p_list); 3313 LIST_INSERT_HEAD(&allproc, cp, p_list); 3314 for (;;) { 3315 p = LIST_NEXT(cp, p_list); 3316 if (p == NULL) 3317 break; 3318 LIST_REMOVE(cp, p_list); 3319 LIST_INSERT_AFTER(p, cp, p_list); 3320 PROC_LOCK(p); 3321 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3322 PROC_UNLOCK(p); 3323 continue; 3324 } 3325 if ((p->p_flag & P_WEXIT) != 0) { 3326 seen_exiting = true; 3327 PROC_UNLOCK(p); 3328 continue; 3329 } 3330 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3331 /* 3332 * Stopped processes are tolerated when there 3333 * are no other processes which might continue 3334 * them. P_STOPPED_SINGLE but not 3335 * P_TOTAL_STOP process still has at least one 3336 * thread running. 3337 */ 3338 seen_stopped = true; 3339 PROC_UNLOCK(p); 3340 continue; 3341 } 3342 sx_xunlock(&allproc_lock); 3343 _PHOLD(p); 3344 r = thread_single(p, SINGLE_ALLPROC); 3345 if (r != 0) 3346 restart = true; 3347 else 3348 stopped_some = true; 3349 _PRELE(p); 3350 PROC_UNLOCK(p); 3351 sx_xlock(&allproc_lock); 3352 } 3353 /* Catch forked children we did not see in iteration. */ 3354 if (gen != allproc_gen) 3355 restart = true; 3356 sx_xunlock(&allproc_lock); 3357 if (restart || stopped_some || seen_exiting || seen_stopped) { 3358 kern_yield(PRI_USER); 3359 goto allproc_loop; 3360 } 3361 } 3362 3363 void 3364 resume_all_proc(void) 3365 { 3366 struct proc *cp, *p; 3367 3368 cp = curproc; 3369 sx_xlock(&allproc_lock); 3370 again: 3371 LIST_REMOVE(cp, p_list); 3372 LIST_INSERT_HEAD(&allproc, cp, p_list); 3373 for (;;) { 3374 p = LIST_NEXT(cp, p_list); 3375 if (p == NULL) 3376 break; 3377 LIST_REMOVE(cp, p_list); 3378 LIST_INSERT_AFTER(p, cp, p_list); 3379 PROC_LOCK(p); 3380 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3381 sx_xunlock(&allproc_lock); 3382 _PHOLD(p); 3383 thread_single_end(p, SINGLE_ALLPROC); 3384 _PRELE(p); 3385 PROC_UNLOCK(p); 3386 sx_xlock(&allproc_lock); 3387 } else { 3388 PROC_UNLOCK(p); 3389 } 3390 } 3391 /* Did the loop above missed any stopped process ? */ 3392 FOREACH_PROC_IN_SYSTEM(p) { 3393 /* No need for proc lock. */ 3394 if ((p->p_flag & P_TOTAL_STOP) != 0) 3395 goto again; 3396 } 3397 sx_xunlock(&allproc_lock); 3398 } 3399 3400 /* #define TOTAL_STOP_DEBUG 1 */ 3401 #ifdef TOTAL_STOP_DEBUG 3402 volatile static int ap_resume; 3403 #include <sys/mount.h> 3404 3405 static int 3406 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3407 { 3408 int error, val; 3409 3410 val = 0; 3411 ap_resume = 0; 3412 error = sysctl_handle_int(oidp, &val, 0, req); 3413 if (error != 0 || req->newptr == NULL) 3414 return (error); 3415 if (val != 0) { 3416 stop_all_proc(); 3417 syncer_suspend(); 3418 while (ap_resume == 0) 3419 ; 3420 syncer_resume(); 3421 resume_all_proc(); 3422 } 3423 return (0); 3424 } 3425 3426 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3427 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3428 sysctl_debug_stop_all_proc, "I", 3429 ""); 3430 #endif 3431