1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx allproc_lock; 135 struct sx proctree_lock; 136 struct mtx ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit(void) 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 197 EVENTHANDLER_INVOKE(process_ctor, p); 198 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 199 return (0); 200 } 201 202 /* 203 * Reclaim a proc after use. 204 */ 205 static void 206 proc_dtor(void *mem, int size, void *arg) 207 { 208 struct proc *p; 209 struct thread *td; 210 211 /* INVARIANTS checks go here */ 212 p = (struct proc *)mem; 213 td = FIRST_THREAD_IN_PROC(p); 214 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 215 if (td != NULL) { 216 #ifdef INVARIANTS 217 KASSERT((p->p_numthreads == 1), 218 ("bad number of threads in exiting process")); 219 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 220 #endif 221 /* Free all OSD associated to this thread. */ 222 osd_thread_exit(td); 223 } 224 EVENTHANDLER_INVOKE(process_dtor, p); 225 if (p->p_ksi != NULL) 226 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 227 SDT_PROBE3(proc, , dtor, return, p, size, arg); 228 } 229 230 /* 231 * Initialize type-stable parts of a proc (when newly created). 232 */ 233 static int 234 proc_init(void *mem, int size, int flags) 235 { 236 struct proc *p; 237 238 p = (struct proc *)mem; 239 SDT_PROBE3(proc, , init, entry, p, size, flags); 240 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 241 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 242 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 243 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 244 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 245 cv_init(&p->p_pwait, "ppwait"); 246 cv_init(&p->p_dbgwait, "dbgwait"); 247 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 248 EVENTHANDLER_INVOKE(process_init, p); 249 p->p_stats = pstats_alloc(); 250 p->p_pgrp = NULL; 251 SDT_PROBE3(proc, , init, return, p, size, flags); 252 return (0); 253 } 254 255 /* 256 * UMA should ensure that this function is never called. 257 * Freeing a proc structure would violate type stability. 258 */ 259 static void 260 proc_fini(void *mem, int size) 261 { 262 #ifdef notnow 263 struct proc *p; 264 265 p = (struct proc *)mem; 266 EVENTHANDLER_INVOKE(process_fini, p); 267 pstats_free(p->p_stats); 268 thread_free(FIRST_THREAD_IN_PROC(p)); 269 mtx_destroy(&p->p_mtx); 270 if (p->p_ksi != NULL) 271 ksiginfo_free(p->p_ksi); 272 #else 273 panic("proc reclaimed"); 274 #endif 275 } 276 277 /* 278 * Is p an inferior of the current process? 279 */ 280 int 281 inferior(struct proc *p) 282 { 283 284 sx_assert(&proctree_lock, SX_LOCKED); 285 PROC_LOCK_ASSERT(p, MA_OWNED); 286 for (; p != curproc; p = proc_realparent(p)) { 287 if (p->p_pid == 0) 288 return (0); 289 } 290 return (1); 291 } 292 293 struct proc * 294 pfind_locked(pid_t pid) 295 { 296 struct proc *p; 297 298 sx_assert(&allproc_lock, SX_LOCKED); 299 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 300 if (p->p_pid == pid) { 301 PROC_LOCK(p); 302 if (p->p_state == PRS_NEW) { 303 PROC_UNLOCK(p); 304 p = NULL; 305 } 306 break; 307 } 308 } 309 return (p); 310 } 311 312 /* 313 * Locate a process by number; return only "live" processes -- i.e., neither 314 * zombies nor newly born but incompletely initialized processes. By not 315 * returning processes in the PRS_NEW state, we allow callers to avoid 316 * testing for that condition to avoid dereferencing p_ucred, et al. 317 */ 318 struct proc * 319 pfind(pid_t pid) 320 { 321 struct proc *p; 322 323 sx_slock(&allproc_lock); 324 p = pfind_locked(pid); 325 sx_sunlock(&allproc_lock); 326 return (p); 327 } 328 329 static struct proc * 330 pfind_tid_locked(pid_t tid) 331 { 332 struct proc *p; 333 struct thread *td; 334 335 sx_assert(&allproc_lock, SX_LOCKED); 336 FOREACH_PROC_IN_SYSTEM(p) { 337 PROC_LOCK(p); 338 if (p->p_state == PRS_NEW) { 339 PROC_UNLOCK(p); 340 continue; 341 } 342 FOREACH_THREAD_IN_PROC(p, td) { 343 if (td->td_tid == tid) 344 goto found; 345 } 346 PROC_UNLOCK(p); 347 } 348 found: 349 return (p); 350 } 351 352 /* 353 * Locate a process group by number. 354 * The caller must hold proctree_lock. 355 */ 356 struct pgrp * 357 pgfind(pid_t pgid) 358 { 359 struct pgrp *pgrp; 360 361 sx_assert(&proctree_lock, SX_LOCKED); 362 363 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 364 if (pgrp->pg_id == pgid) { 365 PGRP_LOCK(pgrp); 366 return (pgrp); 367 } 368 } 369 return (NULL); 370 } 371 372 /* 373 * Locate process and do additional manipulations, depending on flags. 374 */ 375 int 376 pget(pid_t pid, int flags, struct proc **pp) 377 { 378 struct proc *p; 379 int error; 380 381 sx_slock(&allproc_lock); 382 if (pid <= PID_MAX) { 383 p = pfind_locked(pid); 384 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 385 p = zpfind_locked(pid); 386 } else if ((flags & PGET_NOTID) == 0) { 387 p = pfind_tid_locked(pid); 388 } else { 389 p = NULL; 390 } 391 sx_sunlock(&allproc_lock); 392 if (p == NULL) 393 return (ESRCH); 394 if ((flags & PGET_CANSEE) != 0) { 395 error = p_cansee(curthread, p); 396 if (error != 0) 397 goto errout; 398 } 399 if ((flags & PGET_CANDEBUG) != 0) { 400 error = p_candebug(curthread, p); 401 if (error != 0) 402 goto errout; 403 } 404 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 405 error = EPERM; 406 goto errout; 407 } 408 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 409 error = ESRCH; 410 goto errout; 411 } 412 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 413 /* 414 * XXXRW: Not clear ESRCH is the right error during proc 415 * execve(). 416 */ 417 error = ESRCH; 418 goto errout; 419 } 420 if ((flags & PGET_HOLD) != 0) { 421 _PHOLD(p); 422 PROC_UNLOCK(p); 423 } 424 *pp = p; 425 return (0); 426 errout: 427 PROC_UNLOCK(p); 428 return (error); 429 } 430 431 /* 432 * Create a new process group. 433 * pgid must be equal to the pid of p. 434 * Begin a new session if required. 435 */ 436 int 437 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 438 { 439 440 sx_assert(&proctree_lock, SX_XLOCKED); 441 442 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 443 KASSERT(p->p_pid == pgid, 444 ("enterpgrp: new pgrp and pid != pgid")); 445 KASSERT(pgfind(pgid) == NULL, 446 ("enterpgrp: pgrp with pgid exists")); 447 KASSERT(!SESS_LEADER(p), 448 ("enterpgrp: session leader attempted setpgrp")); 449 450 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 451 452 if (sess != NULL) { 453 /* 454 * new session 455 */ 456 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 457 PROC_LOCK(p); 458 p->p_flag &= ~P_CONTROLT; 459 PROC_UNLOCK(p); 460 PGRP_LOCK(pgrp); 461 sess->s_leader = p; 462 sess->s_sid = p->p_pid; 463 refcount_init(&sess->s_count, 1); 464 sess->s_ttyvp = NULL; 465 sess->s_ttydp = NULL; 466 sess->s_ttyp = NULL; 467 bcopy(p->p_session->s_login, sess->s_login, 468 sizeof(sess->s_login)); 469 pgrp->pg_session = sess; 470 KASSERT(p == curproc, 471 ("enterpgrp: mksession and p != curproc")); 472 } else { 473 pgrp->pg_session = p->p_session; 474 sess_hold(pgrp->pg_session); 475 PGRP_LOCK(pgrp); 476 } 477 pgrp->pg_id = pgid; 478 LIST_INIT(&pgrp->pg_members); 479 480 /* 481 * As we have an exclusive lock of proctree_lock, 482 * this should not deadlock. 483 */ 484 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 485 pgrp->pg_jobc = 0; 486 SLIST_INIT(&pgrp->pg_sigiolst); 487 PGRP_UNLOCK(pgrp); 488 489 doenterpgrp(p, pgrp); 490 491 return (0); 492 } 493 494 /* 495 * Move p to an existing process group 496 */ 497 int 498 enterthispgrp(struct proc *p, struct pgrp *pgrp) 499 { 500 501 sx_assert(&proctree_lock, SX_XLOCKED); 502 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 503 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 504 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 505 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 506 KASSERT(pgrp->pg_session == p->p_session, 507 ("%s: pgrp's session %p, p->p_session %p.\n", 508 __func__, 509 pgrp->pg_session, 510 p->p_session)); 511 KASSERT(pgrp != p->p_pgrp, 512 ("%s: p belongs to pgrp.", __func__)); 513 514 doenterpgrp(p, pgrp); 515 516 return (0); 517 } 518 519 /* 520 * Move p to a process group 521 */ 522 static void 523 doenterpgrp(struct proc *p, struct pgrp *pgrp) 524 { 525 struct pgrp *savepgrp; 526 527 sx_assert(&proctree_lock, SX_XLOCKED); 528 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 529 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 530 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 531 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 532 533 savepgrp = p->p_pgrp; 534 535 /* 536 * Adjust eligibility of affected pgrps to participate in job control. 537 * Increment eligibility counts before decrementing, otherwise we 538 * could reach 0 spuriously during the first call. 539 */ 540 fixjobc(p, pgrp, 1); 541 fixjobc(p, p->p_pgrp, 0); 542 543 PGRP_LOCK(pgrp); 544 PGRP_LOCK(savepgrp); 545 PROC_LOCK(p); 546 LIST_REMOVE(p, p_pglist); 547 p->p_pgrp = pgrp; 548 PROC_UNLOCK(p); 549 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 550 PGRP_UNLOCK(savepgrp); 551 PGRP_UNLOCK(pgrp); 552 if (LIST_EMPTY(&savepgrp->pg_members)) 553 pgdelete(savepgrp); 554 } 555 556 /* 557 * remove process from process group 558 */ 559 int 560 leavepgrp(struct proc *p) 561 { 562 struct pgrp *savepgrp; 563 564 sx_assert(&proctree_lock, SX_XLOCKED); 565 savepgrp = p->p_pgrp; 566 PGRP_LOCK(savepgrp); 567 PROC_LOCK(p); 568 LIST_REMOVE(p, p_pglist); 569 p->p_pgrp = NULL; 570 PROC_UNLOCK(p); 571 PGRP_UNLOCK(savepgrp); 572 if (LIST_EMPTY(&savepgrp->pg_members)) 573 pgdelete(savepgrp); 574 return (0); 575 } 576 577 /* 578 * delete a process group 579 */ 580 static void 581 pgdelete(struct pgrp *pgrp) 582 { 583 struct session *savesess; 584 struct tty *tp; 585 586 sx_assert(&proctree_lock, SX_XLOCKED); 587 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 588 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 589 590 /* 591 * Reset any sigio structures pointing to us as a result of 592 * F_SETOWN with our pgid. 593 */ 594 funsetownlst(&pgrp->pg_sigiolst); 595 596 PGRP_LOCK(pgrp); 597 tp = pgrp->pg_session->s_ttyp; 598 LIST_REMOVE(pgrp, pg_hash); 599 savesess = pgrp->pg_session; 600 PGRP_UNLOCK(pgrp); 601 602 /* Remove the reference to the pgrp before deallocating it. */ 603 if (tp != NULL) { 604 tty_lock(tp); 605 tty_rel_pgrp(tp, pgrp); 606 } 607 608 mtx_destroy(&pgrp->pg_mtx); 609 free(pgrp, M_PGRP); 610 sess_release(savesess); 611 } 612 613 static void 614 pgadjustjobc(struct pgrp *pgrp, int entering) 615 { 616 617 PGRP_LOCK(pgrp); 618 if (entering) 619 pgrp->pg_jobc++; 620 else { 621 --pgrp->pg_jobc; 622 if (pgrp->pg_jobc == 0) 623 orphanpg(pgrp); 624 } 625 PGRP_UNLOCK(pgrp); 626 } 627 628 /* 629 * Adjust pgrp jobc counters when specified process changes process group. 630 * We count the number of processes in each process group that "qualify" 631 * the group for terminal job control (those with a parent in a different 632 * process group of the same session). If that count reaches zero, the 633 * process group becomes orphaned. Check both the specified process' 634 * process group and that of its children. 635 * entering == 0 => p is leaving specified group. 636 * entering == 1 => p is entering specified group. 637 */ 638 void 639 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 640 { 641 struct pgrp *hispgrp; 642 struct session *mysession; 643 struct proc *q; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(q, &p->p_children, p_sibling) { 665 hispgrp = q->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 if (q->p_state == PRS_ZOMBIE) 670 continue; 671 pgadjustjobc(hispgrp, entering); 672 } 673 } 674 675 void 676 killjobc(void) 677 { 678 struct session *sp; 679 struct tty *tp; 680 struct proc *p; 681 struct vnode *ttyvp; 682 683 p = curproc; 684 MPASS(p->p_flag & P_WEXIT); 685 /* 686 * Do a quick check to see if there is anything to do with the 687 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 688 */ 689 PROC_LOCK(p); 690 if (!SESS_LEADER(p) && 691 (p->p_pgrp == p->p_pptr->p_pgrp) && 692 LIST_EMPTY(&p->p_children)) { 693 PROC_UNLOCK(p); 694 return; 695 } 696 PROC_UNLOCK(p); 697 698 sx_xlock(&proctree_lock); 699 if (SESS_LEADER(p)) { 700 sp = p->p_session; 701 702 /* 703 * s_ttyp is not zero'd; we use this to indicate that 704 * the session once had a controlling terminal. (for 705 * logging and informational purposes) 706 */ 707 SESS_LOCK(sp); 708 ttyvp = sp->s_ttyvp; 709 tp = sp->s_ttyp; 710 sp->s_ttyvp = NULL; 711 sp->s_ttydp = NULL; 712 sp->s_leader = NULL; 713 SESS_UNLOCK(sp); 714 715 /* 716 * Signal foreground pgrp and revoke access to 717 * controlling terminal if it has not been revoked 718 * already. 719 * 720 * Because the TTY may have been revoked in the mean 721 * time and could already have a new session associated 722 * with it, make sure we don't send a SIGHUP to a 723 * foreground process group that does not belong to this 724 * session. 725 */ 726 727 if (tp != NULL) { 728 tty_lock(tp); 729 if (tp->t_session == sp) 730 tty_signal_pgrp(tp, SIGHUP); 731 tty_unlock(tp); 732 } 733 734 if (ttyvp != NULL) { 735 sx_xunlock(&proctree_lock); 736 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 737 VOP_REVOKE(ttyvp, REVOKEALL); 738 VOP_UNLOCK(ttyvp, 0); 739 } 740 vrele(ttyvp); 741 sx_xlock(&proctree_lock); 742 } 743 } 744 fixjobc(p, p->p_pgrp, 0); 745 sx_xunlock(&proctree_lock); 746 } 747 748 /* 749 * A process group has become orphaned; 750 * if there are any stopped processes in the group, 751 * hang-up all process in that group. 752 */ 753 static void 754 orphanpg(struct pgrp *pg) 755 { 756 struct proc *p; 757 758 PGRP_LOCK_ASSERT(pg, MA_OWNED); 759 760 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 761 PROC_LOCK(p); 762 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 763 PROC_UNLOCK(p); 764 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 765 PROC_LOCK(p); 766 kern_psignal(p, SIGHUP); 767 kern_psignal(p, SIGCONT); 768 PROC_UNLOCK(p); 769 } 770 return; 771 } 772 PROC_UNLOCK(p); 773 } 774 } 775 776 void 777 sess_hold(struct session *s) 778 { 779 780 refcount_acquire(&s->s_count); 781 } 782 783 void 784 sess_release(struct session *s) 785 { 786 787 if (refcount_release(&s->s_count)) { 788 if (s->s_ttyp != NULL) { 789 tty_lock(s->s_ttyp); 790 tty_rel_sess(s->s_ttyp, s); 791 } 792 mtx_destroy(&s->s_mtx); 793 free(s, M_SESSION); 794 } 795 } 796 797 #ifdef DDB 798 799 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 800 { 801 struct pgrp *pgrp; 802 struct proc *p; 803 int i; 804 805 for (i = 0; i <= pgrphash; i++) { 806 if (!LIST_EMPTY(&pgrphashtbl[i])) { 807 printf("\tindx %d\n", i); 808 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 809 printf( 810 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 811 (void *)pgrp, (long)pgrp->pg_id, 812 (void *)pgrp->pg_session, 813 pgrp->pg_session->s_count, 814 (void *)LIST_FIRST(&pgrp->pg_members)); 815 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 816 printf("\t\tpid %ld addr %p pgrp %p\n", 817 (long)p->p_pid, (void *)p, 818 (void *)p->p_pgrp); 819 } 820 } 821 } 822 } 823 } 824 #endif /* DDB */ 825 826 /* 827 * Calculate the kinfo_proc members which contain process-wide 828 * informations. 829 * Must be called with the target process locked. 830 */ 831 static void 832 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 833 { 834 struct thread *td; 835 836 PROC_LOCK_ASSERT(p, MA_OWNED); 837 838 kp->ki_estcpu = 0; 839 kp->ki_pctcpu = 0; 840 FOREACH_THREAD_IN_PROC(p, td) { 841 thread_lock(td); 842 kp->ki_pctcpu += sched_pctcpu(td); 843 kp->ki_estcpu += sched_estcpu(td); 844 thread_unlock(td); 845 } 846 } 847 848 /* 849 * Clear kinfo_proc and fill in any information that is common 850 * to all threads in the process. 851 * Must be called with the target process locked. 852 */ 853 static void 854 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 855 { 856 struct thread *td0; 857 struct tty *tp; 858 struct session *sp; 859 struct ucred *cred; 860 struct sigacts *ps; 861 struct timeval boottime; 862 863 /* For proc_realparent. */ 864 sx_assert(&proctree_lock, SX_LOCKED); 865 PROC_LOCK_ASSERT(p, MA_OWNED); 866 bzero(kp, sizeof(*kp)); 867 868 kp->ki_structsize = sizeof(*kp); 869 kp->ki_paddr = p; 870 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 871 kp->ki_args = p->p_args; 872 kp->ki_textvp = p->p_textvp; 873 #ifdef KTRACE 874 kp->ki_tracep = p->p_tracevp; 875 kp->ki_traceflag = p->p_traceflag; 876 #endif 877 kp->ki_fd = p->p_fd; 878 kp->ki_vmspace = p->p_vmspace; 879 kp->ki_flag = p->p_flag; 880 kp->ki_flag2 = p->p_flag2; 881 cred = p->p_ucred; 882 if (cred) { 883 kp->ki_uid = cred->cr_uid; 884 kp->ki_ruid = cred->cr_ruid; 885 kp->ki_svuid = cred->cr_svuid; 886 kp->ki_cr_flags = 0; 887 if (cred->cr_flags & CRED_FLAG_CAPMODE) 888 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 889 /* XXX bde doesn't like KI_NGROUPS */ 890 if (cred->cr_ngroups > KI_NGROUPS) { 891 kp->ki_ngroups = KI_NGROUPS; 892 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 893 } else 894 kp->ki_ngroups = cred->cr_ngroups; 895 bcopy(cred->cr_groups, kp->ki_groups, 896 kp->ki_ngroups * sizeof(gid_t)); 897 kp->ki_rgid = cred->cr_rgid; 898 kp->ki_svgid = cred->cr_svgid; 899 /* If jailed(cred), emulate the old P_JAILED flag. */ 900 if (jailed(cred)) { 901 kp->ki_flag |= P_JAILED; 902 /* If inside the jail, use 0 as a jail ID. */ 903 if (cred->cr_prison != curthread->td_ucred->cr_prison) 904 kp->ki_jid = cred->cr_prison->pr_id; 905 } 906 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 907 sizeof(kp->ki_loginclass)); 908 } 909 ps = p->p_sigacts; 910 if (ps) { 911 mtx_lock(&ps->ps_mtx); 912 kp->ki_sigignore = ps->ps_sigignore; 913 kp->ki_sigcatch = ps->ps_sigcatch; 914 mtx_unlock(&ps->ps_mtx); 915 } 916 if (p->p_state != PRS_NEW && 917 p->p_state != PRS_ZOMBIE && 918 p->p_vmspace != NULL) { 919 struct vmspace *vm = p->p_vmspace; 920 921 kp->ki_size = vm->vm_map.size; 922 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 923 FOREACH_THREAD_IN_PROC(p, td0) { 924 if (!TD_IS_SWAPPED(td0)) 925 kp->ki_rssize += td0->td_kstack_pages; 926 } 927 kp->ki_swrss = vm->vm_swrss; 928 kp->ki_tsize = vm->vm_tsize; 929 kp->ki_dsize = vm->vm_dsize; 930 kp->ki_ssize = vm->vm_ssize; 931 } else if (p->p_state == PRS_ZOMBIE) 932 kp->ki_stat = SZOMB; 933 if (kp->ki_flag & P_INMEM) 934 kp->ki_sflag = PS_INMEM; 935 else 936 kp->ki_sflag = 0; 937 /* Calculate legacy swtime as seconds since 'swtick'. */ 938 kp->ki_swtime = (ticks - p->p_swtick) / hz; 939 kp->ki_pid = p->p_pid; 940 kp->ki_nice = p->p_nice; 941 kp->ki_fibnum = p->p_fibnum; 942 kp->ki_start = p->p_stats->p_start; 943 getboottime(&boottime); 944 timevaladd(&kp->ki_start, &boottime); 945 PROC_STATLOCK(p); 946 rufetch(p, &kp->ki_rusage); 947 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 948 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 949 PROC_STATUNLOCK(p); 950 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 951 /* Some callers want child times in a single value. */ 952 kp->ki_childtime = kp->ki_childstime; 953 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 954 955 FOREACH_THREAD_IN_PROC(p, td0) 956 kp->ki_cow += td0->td_cow; 957 958 tp = NULL; 959 if (p->p_pgrp) { 960 kp->ki_pgid = p->p_pgrp->pg_id; 961 kp->ki_jobc = p->p_pgrp->pg_jobc; 962 sp = p->p_pgrp->pg_session; 963 964 if (sp != NULL) { 965 kp->ki_sid = sp->s_sid; 966 SESS_LOCK(sp); 967 strlcpy(kp->ki_login, sp->s_login, 968 sizeof(kp->ki_login)); 969 if (sp->s_ttyvp) 970 kp->ki_kiflag |= KI_CTTY; 971 if (SESS_LEADER(p)) 972 kp->ki_kiflag |= KI_SLEADER; 973 /* XXX proctree_lock */ 974 tp = sp->s_ttyp; 975 SESS_UNLOCK(sp); 976 } 977 } 978 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 979 kp->ki_tdev = tty_udev(tp); 980 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 981 if (tp->t_session) 982 kp->ki_tsid = tp->t_session->s_sid; 983 } else 984 kp->ki_tdev = NODEV; 985 if (p->p_comm[0] != '\0') 986 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 987 if (p->p_sysent && p->p_sysent->sv_name != NULL && 988 p->p_sysent->sv_name[0] != '\0') 989 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 990 kp->ki_siglist = p->p_siglist; 991 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 992 kp->ki_acflag = p->p_acflag; 993 kp->ki_lock = p->p_lock; 994 if (p->p_pptr) { 995 kp->ki_ppid = proc_realparent(p)->p_pid; 996 if (p->p_flag & P_TRACED) 997 kp->ki_tracer = p->p_pptr->p_pid; 998 } 999 } 1000 1001 /* 1002 * Fill in information that is thread specific. Must be called with 1003 * target process locked. If 'preferthread' is set, overwrite certain 1004 * process-related fields that are maintained for both threads and 1005 * processes. 1006 */ 1007 static void 1008 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1009 { 1010 struct proc *p; 1011 1012 p = td->td_proc; 1013 kp->ki_tdaddr = td; 1014 PROC_LOCK_ASSERT(p, MA_OWNED); 1015 1016 if (preferthread) 1017 PROC_STATLOCK(p); 1018 thread_lock(td); 1019 if (td->td_wmesg != NULL) 1020 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1021 else 1022 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1023 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1024 sizeof(kp->ki_tdname)) { 1025 strlcpy(kp->ki_moretdname, 1026 td->td_name + sizeof(kp->ki_tdname) - 1, 1027 sizeof(kp->ki_moretdname)); 1028 } else { 1029 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1030 } 1031 if (TD_ON_LOCK(td)) { 1032 kp->ki_kiflag |= KI_LOCKBLOCK; 1033 strlcpy(kp->ki_lockname, td->td_lockname, 1034 sizeof(kp->ki_lockname)); 1035 } else { 1036 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1037 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1038 } 1039 1040 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1041 if (TD_ON_RUNQ(td) || 1042 TD_CAN_RUN(td) || 1043 TD_IS_RUNNING(td)) { 1044 kp->ki_stat = SRUN; 1045 } else if (P_SHOULDSTOP(p)) { 1046 kp->ki_stat = SSTOP; 1047 } else if (TD_IS_SLEEPING(td)) { 1048 kp->ki_stat = SSLEEP; 1049 } else if (TD_ON_LOCK(td)) { 1050 kp->ki_stat = SLOCK; 1051 } else { 1052 kp->ki_stat = SWAIT; 1053 } 1054 } else if (p->p_state == PRS_ZOMBIE) { 1055 kp->ki_stat = SZOMB; 1056 } else { 1057 kp->ki_stat = SIDL; 1058 } 1059 1060 /* Things in the thread */ 1061 kp->ki_wchan = td->td_wchan; 1062 kp->ki_pri.pri_level = td->td_priority; 1063 kp->ki_pri.pri_native = td->td_base_pri; 1064 1065 /* 1066 * Note: legacy fields; clamp at the old NOCPU value and/or 1067 * the maximum u_char CPU value. 1068 */ 1069 if (td->td_lastcpu == NOCPU) 1070 kp->ki_lastcpu_old = NOCPU_OLD; 1071 else if (td->td_lastcpu > MAXCPU_OLD) 1072 kp->ki_lastcpu_old = MAXCPU_OLD; 1073 else 1074 kp->ki_lastcpu_old = td->td_lastcpu; 1075 1076 if (td->td_oncpu == NOCPU) 1077 kp->ki_oncpu_old = NOCPU_OLD; 1078 else if (td->td_oncpu > MAXCPU_OLD) 1079 kp->ki_oncpu_old = MAXCPU_OLD; 1080 else 1081 kp->ki_oncpu_old = td->td_oncpu; 1082 1083 kp->ki_lastcpu = td->td_lastcpu; 1084 kp->ki_oncpu = td->td_oncpu; 1085 kp->ki_tdflags = td->td_flags; 1086 kp->ki_tid = td->td_tid; 1087 kp->ki_numthreads = p->p_numthreads; 1088 kp->ki_pcb = td->td_pcb; 1089 kp->ki_kstack = (void *)td->td_kstack; 1090 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1091 kp->ki_pri.pri_class = td->td_pri_class; 1092 kp->ki_pri.pri_user = td->td_user_pri; 1093 1094 if (preferthread) { 1095 rufetchtd(td, &kp->ki_rusage); 1096 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1097 kp->ki_pctcpu = sched_pctcpu(td); 1098 kp->ki_estcpu = sched_estcpu(td); 1099 kp->ki_cow = td->td_cow; 1100 } 1101 1102 /* We can't get this anymore but ps etc never used it anyway. */ 1103 kp->ki_rqindex = 0; 1104 1105 if (preferthread) 1106 kp->ki_siglist = td->td_siglist; 1107 kp->ki_sigmask = td->td_sigmask; 1108 thread_unlock(td); 1109 if (preferthread) 1110 PROC_STATUNLOCK(p); 1111 } 1112 1113 /* 1114 * Fill in a kinfo_proc structure for the specified process. 1115 * Must be called with the target process locked. 1116 */ 1117 void 1118 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1119 { 1120 1121 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1122 1123 fill_kinfo_proc_only(p, kp); 1124 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1125 fill_kinfo_aggregate(p, kp); 1126 } 1127 1128 struct pstats * 1129 pstats_alloc(void) 1130 { 1131 1132 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1133 } 1134 1135 /* 1136 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1137 */ 1138 void 1139 pstats_fork(struct pstats *src, struct pstats *dst) 1140 { 1141 1142 bzero(&dst->pstat_startzero, 1143 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1144 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1145 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1146 } 1147 1148 void 1149 pstats_free(struct pstats *ps) 1150 { 1151 1152 free(ps, M_SUBPROC); 1153 } 1154 1155 static struct proc * 1156 zpfind_locked(pid_t pid) 1157 { 1158 struct proc *p; 1159 1160 sx_assert(&allproc_lock, SX_LOCKED); 1161 LIST_FOREACH(p, &zombproc, p_list) { 1162 if (p->p_pid == pid) { 1163 PROC_LOCK(p); 1164 break; 1165 } 1166 } 1167 return (p); 1168 } 1169 1170 /* 1171 * Locate a zombie process by number 1172 */ 1173 struct proc * 1174 zpfind(pid_t pid) 1175 { 1176 struct proc *p; 1177 1178 sx_slock(&allproc_lock); 1179 p = zpfind_locked(pid); 1180 sx_sunlock(&allproc_lock); 1181 return (p); 1182 } 1183 1184 #ifdef COMPAT_FREEBSD32 1185 1186 /* 1187 * This function is typically used to copy out the kernel address, so 1188 * it can be replaced by assignment of zero. 1189 */ 1190 static inline uint32_t 1191 ptr32_trim(void *ptr) 1192 { 1193 uintptr_t uptr; 1194 1195 uptr = (uintptr_t)ptr; 1196 return ((uptr > UINT_MAX) ? 0 : uptr); 1197 } 1198 1199 #define PTRTRIM_CP(src,dst,fld) \ 1200 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1201 1202 static void 1203 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1204 { 1205 int i; 1206 1207 bzero(ki32, sizeof(struct kinfo_proc32)); 1208 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1209 CP(*ki, *ki32, ki_layout); 1210 PTRTRIM_CP(*ki, *ki32, ki_args); 1211 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1212 PTRTRIM_CP(*ki, *ki32, ki_addr); 1213 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1214 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1215 PTRTRIM_CP(*ki, *ki32, ki_fd); 1216 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1217 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1218 CP(*ki, *ki32, ki_pid); 1219 CP(*ki, *ki32, ki_ppid); 1220 CP(*ki, *ki32, ki_pgid); 1221 CP(*ki, *ki32, ki_tpgid); 1222 CP(*ki, *ki32, ki_sid); 1223 CP(*ki, *ki32, ki_tsid); 1224 CP(*ki, *ki32, ki_jobc); 1225 CP(*ki, *ki32, ki_tdev); 1226 CP(*ki, *ki32, ki_siglist); 1227 CP(*ki, *ki32, ki_sigmask); 1228 CP(*ki, *ki32, ki_sigignore); 1229 CP(*ki, *ki32, ki_sigcatch); 1230 CP(*ki, *ki32, ki_uid); 1231 CP(*ki, *ki32, ki_ruid); 1232 CP(*ki, *ki32, ki_svuid); 1233 CP(*ki, *ki32, ki_rgid); 1234 CP(*ki, *ki32, ki_svgid); 1235 CP(*ki, *ki32, ki_ngroups); 1236 for (i = 0; i < KI_NGROUPS; i++) 1237 CP(*ki, *ki32, ki_groups[i]); 1238 CP(*ki, *ki32, ki_size); 1239 CP(*ki, *ki32, ki_rssize); 1240 CP(*ki, *ki32, ki_swrss); 1241 CP(*ki, *ki32, ki_tsize); 1242 CP(*ki, *ki32, ki_dsize); 1243 CP(*ki, *ki32, ki_ssize); 1244 CP(*ki, *ki32, ki_xstat); 1245 CP(*ki, *ki32, ki_acflag); 1246 CP(*ki, *ki32, ki_pctcpu); 1247 CP(*ki, *ki32, ki_estcpu); 1248 CP(*ki, *ki32, ki_slptime); 1249 CP(*ki, *ki32, ki_swtime); 1250 CP(*ki, *ki32, ki_cow); 1251 CP(*ki, *ki32, ki_runtime); 1252 TV_CP(*ki, *ki32, ki_start); 1253 TV_CP(*ki, *ki32, ki_childtime); 1254 CP(*ki, *ki32, ki_flag); 1255 CP(*ki, *ki32, ki_kiflag); 1256 CP(*ki, *ki32, ki_traceflag); 1257 CP(*ki, *ki32, ki_stat); 1258 CP(*ki, *ki32, ki_nice); 1259 CP(*ki, *ki32, ki_lock); 1260 CP(*ki, *ki32, ki_rqindex); 1261 CP(*ki, *ki32, ki_oncpu); 1262 CP(*ki, *ki32, ki_lastcpu); 1263 1264 /* XXX TODO: wrap cpu value as appropriate */ 1265 CP(*ki, *ki32, ki_oncpu_old); 1266 CP(*ki, *ki32, ki_lastcpu_old); 1267 1268 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1269 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1270 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1271 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1272 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1273 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1274 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1275 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1276 CP(*ki, *ki32, ki_tracer); 1277 CP(*ki, *ki32, ki_flag2); 1278 CP(*ki, *ki32, ki_fibnum); 1279 CP(*ki, *ki32, ki_cr_flags); 1280 CP(*ki, *ki32, ki_jid); 1281 CP(*ki, *ki32, ki_numthreads); 1282 CP(*ki, *ki32, ki_tid); 1283 CP(*ki, *ki32, ki_pri); 1284 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1285 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1286 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1287 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1288 PTRTRIM_CP(*ki, *ki32, ki_udata); 1289 CP(*ki, *ki32, ki_sflag); 1290 CP(*ki, *ki32, ki_tdflags); 1291 } 1292 #endif 1293 1294 int 1295 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1296 { 1297 struct thread *td; 1298 struct kinfo_proc ki; 1299 #ifdef COMPAT_FREEBSD32 1300 struct kinfo_proc32 ki32; 1301 #endif 1302 int error; 1303 1304 PROC_LOCK_ASSERT(p, MA_OWNED); 1305 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1306 1307 error = 0; 1308 fill_kinfo_proc(p, &ki); 1309 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1310 #ifdef COMPAT_FREEBSD32 1311 if ((flags & KERN_PROC_MASK32) != 0) { 1312 freebsd32_kinfo_proc_out(&ki, &ki32); 1313 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1314 error = ENOMEM; 1315 } else 1316 #endif 1317 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1318 error = ENOMEM; 1319 } else { 1320 FOREACH_THREAD_IN_PROC(p, td) { 1321 fill_kinfo_thread(td, &ki, 1); 1322 #ifdef COMPAT_FREEBSD32 1323 if ((flags & KERN_PROC_MASK32) != 0) { 1324 freebsd32_kinfo_proc_out(&ki, &ki32); 1325 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1326 error = ENOMEM; 1327 } else 1328 #endif 1329 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1330 error = ENOMEM; 1331 if (error != 0) 1332 break; 1333 } 1334 } 1335 PROC_UNLOCK(p); 1336 return (error); 1337 } 1338 1339 static int 1340 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1341 int doingzomb) 1342 { 1343 struct sbuf sb; 1344 struct kinfo_proc ki; 1345 struct proc *np; 1346 int error, error2; 1347 pid_t pid; 1348 1349 pid = p->p_pid; 1350 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1351 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1352 error = kern_proc_out(p, &sb, flags); 1353 error2 = sbuf_finish(&sb); 1354 sbuf_delete(&sb); 1355 if (error != 0) 1356 return (error); 1357 else if (error2 != 0) 1358 return (error2); 1359 if (doingzomb) 1360 np = zpfind(pid); 1361 else { 1362 if (pid == 0) 1363 return (0); 1364 np = pfind(pid); 1365 } 1366 if (np == NULL) 1367 return (ESRCH); 1368 if (np != p) { 1369 PROC_UNLOCK(np); 1370 return (ESRCH); 1371 } 1372 PROC_UNLOCK(np); 1373 return (0); 1374 } 1375 1376 static int 1377 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1378 { 1379 int *name = (int *)arg1; 1380 u_int namelen = arg2; 1381 struct proc *p; 1382 int flags, doingzomb, oid_number; 1383 int error = 0; 1384 1385 oid_number = oidp->oid_number; 1386 if (oid_number != KERN_PROC_ALL && 1387 (oid_number & KERN_PROC_INC_THREAD) == 0) 1388 flags = KERN_PROC_NOTHREADS; 1389 else { 1390 flags = 0; 1391 oid_number &= ~KERN_PROC_INC_THREAD; 1392 } 1393 #ifdef COMPAT_FREEBSD32 1394 if (req->flags & SCTL_MASK32) 1395 flags |= KERN_PROC_MASK32; 1396 #endif 1397 if (oid_number == KERN_PROC_PID) { 1398 if (namelen != 1) 1399 return (EINVAL); 1400 error = sysctl_wire_old_buffer(req, 0); 1401 if (error) 1402 return (error); 1403 sx_slock(&proctree_lock); 1404 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1405 if (error == 0) 1406 error = sysctl_out_proc(p, req, flags, 0); 1407 sx_sunlock(&proctree_lock); 1408 return (error); 1409 } 1410 1411 switch (oid_number) { 1412 case KERN_PROC_ALL: 1413 if (namelen != 0) 1414 return (EINVAL); 1415 break; 1416 case KERN_PROC_PROC: 1417 if (namelen != 0 && namelen != 1) 1418 return (EINVAL); 1419 break; 1420 default: 1421 if (namelen != 1) 1422 return (EINVAL); 1423 break; 1424 } 1425 1426 if (!req->oldptr) { 1427 /* overestimate by 5 procs */ 1428 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1429 if (error) 1430 return (error); 1431 } 1432 error = sysctl_wire_old_buffer(req, 0); 1433 if (error != 0) 1434 return (error); 1435 sx_slock(&proctree_lock); 1436 sx_slock(&allproc_lock); 1437 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1438 if (!doingzomb) 1439 p = LIST_FIRST(&allproc); 1440 else 1441 p = LIST_FIRST(&zombproc); 1442 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1443 /* 1444 * Skip embryonic processes. 1445 */ 1446 PROC_LOCK(p); 1447 if (p->p_state == PRS_NEW) { 1448 PROC_UNLOCK(p); 1449 continue; 1450 } 1451 KASSERT(p->p_ucred != NULL, 1452 ("process credential is NULL for non-NEW proc")); 1453 /* 1454 * Show a user only appropriate processes. 1455 */ 1456 if (p_cansee(curthread, p)) { 1457 PROC_UNLOCK(p); 1458 continue; 1459 } 1460 /* 1461 * TODO - make more efficient (see notes below). 1462 * do by session. 1463 */ 1464 switch (oid_number) { 1465 1466 case KERN_PROC_GID: 1467 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1468 PROC_UNLOCK(p); 1469 continue; 1470 } 1471 break; 1472 1473 case KERN_PROC_PGRP: 1474 /* could do this by traversing pgrp */ 1475 if (p->p_pgrp == NULL || 1476 p->p_pgrp->pg_id != (pid_t)name[0]) { 1477 PROC_UNLOCK(p); 1478 continue; 1479 } 1480 break; 1481 1482 case KERN_PROC_RGID: 1483 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1484 PROC_UNLOCK(p); 1485 continue; 1486 } 1487 break; 1488 1489 case KERN_PROC_SESSION: 1490 if (p->p_session == NULL || 1491 p->p_session->s_sid != (pid_t)name[0]) { 1492 PROC_UNLOCK(p); 1493 continue; 1494 } 1495 break; 1496 1497 case KERN_PROC_TTY: 1498 if ((p->p_flag & P_CONTROLT) == 0 || 1499 p->p_session == NULL) { 1500 PROC_UNLOCK(p); 1501 continue; 1502 } 1503 /* XXX proctree_lock */ 1504 SESS_LOCK(p->p_session); 1505 if (p->p_session->s_ttyp == NULL || 1506 tty_udev(p->p_session->s_ttyp) != 1507 (dev_t)name[0]) { 1508 SESS_UNLOCK(p->p_session); 1509 PROC_UNLOCK(p); 1510 continue; 1511 } 1512 SESS_UNLOCK(p->p_session); 1513 break; 1514 1515 case KERN_PROC_UID: 1516 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1517 PROC_UNLOCK(p); 1518 continue; 1519 } 1520 break; 1521 1522 case KERN_PROC_RUID: 1523 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1524 PROC_UNLOCK(p); 1525 continue; 1526 } 1527 break; 1528 1529 case KERN_PROC_PROC: 1530 break; 1531 1532 default: 1533 break; 1534 1535 } 1536 1537 error = sysctl_out_proc(p, req, flags, doingzomb); 1538 if (error) { 1539 sx_sunlock(&allproc_lock); 1540 sx_sunlock(&proctree_lock); 1541 return (error); 1542 } 1543 } 1544 } 1545 sx_sunlock(&allproc_lock); 1546 sx_sunlock(&proctree_lock); 1547 return (0); 1548 } 1549 1550 struct pargs * 1551 pargs_alloc(int len) 1552 { 1553 struct pargs *pa; 1554 1555 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1556 M_WAITOK); 1557 refcount_init(&pa->ar_ref, 1); 1558 pa->ar_length = len; 1559 return (pa); 1560 } 1561 1562 static void 1563 pargs_free(struct pargs *pa) 1564 { 1565 1566 free(pa, M_PARGS); 1567 } 1568 1569 void 1570 pargs_hold(struct pargs *pa) 1571 { 1572 1573 if (pa == NULL) 1574 return; 1575 refcount_acquire(&pa->ar_ref); 1576 } 1577 1578 void 1579 pargs_drop(struct pargs *pa) 1580 { 1581 1582 if (pa == NULL) 1583 return; 1584 if (refcount_release(&pa->ar_ref)) 1585 pargs_free(pa); 1586 } 1587 1588 static int 1589 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1590 size_t len) 1591 { 1592 ssize_t n; 1593 1594 /* 1595 * This may return a short read if the string is shorter than the chunk 1596 * and is aligned at the end of the page, and the following page is not 1597 * mapped. 1598 */ 1599 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1600 if (n <= 0) 1601 return (ENOMEM); 1602 return (0); 1603 } 1604 1605 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1606 1607 enum proc_vector_type { 1608 PROC_ARG, 1609 PROC_ENV, 1610 PROC_AUX, 1611 }; 1612 1613 #ifdef COMPAT_FREEBSD32 1614 static int 1615 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1616 size_t *vsizep, enum proc_vector_type type) 1617 { 1618 struct freebsd32_ps_strings pss; 1619 Elf32_Auxinfo aux; 1620 vm_offset_t vptr, ptr; 1621 uint32_t *proc_vector32; 1622 char **proc_vector; 1623 size_t vsize, size; 1624 int i, error; 1625 1626 error = 0; 1627 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1628 sizeof(pss)) != sizeof(pss)) 1629 return (ENOMEM); 1630 switch (type) { 1631 case PROC_ARG: 1632 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1633 vsize = pss.ps_nargvstr; 1634 if (vsize > ARG_MAX) 1635 return (ENOEXEC); 1636 size = vsize * sizeof(int32_t); 1637 break; 1638 case PROC_ENV: 1639 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1640 vsize = pss.ps_nenvstr; 1641 if (vsize > ARG_MAX) 1642 return (ENOEXEC); 1643 size = vsize * sizeof(int32_t); 1644 break; 1645 case PROC_AUX: 1646 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1647 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1648 if (vptr % 4 != 0) 1649 return (ENOEXEC); 1650 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1651 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1652 sizeof(aux)) 1653 return (ENOMEM); 1654 if (aux.a_type == AT_NULL) 1655 break; 1656 ptr += sizeof(aux); 1657 } 1658 if (aux.a_type != AT_NULL) 1659 return (ENOEXEC); 1660 vsize = i + 1; 1661 size = vsize * sizeof(aux); 1662 break; 1663 default: 1664 KASSERT(0, ("Wrong proc vector type: %d", type)); 1665 return (EINVAL); 1666 } 1667 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1668 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1669 error = ENOMEM; 1670 goto done; 1671 } 1672 if (type == PROC_AUX) { 1673 *proc_vectorp = (char **)proc_vector32; 1674 *vsizep = vsize; 1675 return (0); 1676 } 1677 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1678 for (i = 0; i < (int)vsize; i++) 1679 proc_vector[i] = PTRIN(proc_vector32[i]); 1680 *proc_vectorp = proc_vector; 1681 *vsizep = vsize; 1682 done: 1683 free(proc_vector32, M_TEMP); 1684 return (error); 1685 } 1686 #endif 1687 1688 static int 1689 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1690 size_t *vsizep, enum proc_vector_type type) 1691 { 1692 struct ps_strings pss; 1693 Elf_Auxinfo aux; 1694 vm_offset_t vptr, ptr; 1695 char **proc_vector; 1696 size_t vsize, size; 1697 int i; 1698 1699 #ifdef COMPAT_FREEBSD32 1700 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1701 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1702 #endif 1703 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1704 sizeof(pss)) != sizeof(pss)) 1705 return (ENOMEM); 1706 switch (type) { 1707 case PROC_ARG: 1708 vptr = (vm_offset_t)pss.ps_argvstr; 1709 vsize = pss.ps_nargvstr; 1710 if (vsize > ARG_MAX) 1711 return (ENOEXEC); 1712 size = vsize * sizeof(char *); 1713 break; 1714 case PROC_ENV: 1715 vptr = (vm_offset_t)pss.ps_envstr; 1716 vsize = pss.ps_nenvstr; 1717 if (vsize > ARG_MAX) 1718 return (ENOEXEC); 1719 size = vsize * sizeof(char *); 1720 break; 1721 case PROC_AUX: 1722 /* 1723 * The aux array is just above env array on the stack. Check 1724 * that the address is naturally aligned. 1725 */ 1726 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1727 * sizeof(char *); 1728 #if __ELF_WORD_SIZE == 64 1729 if (vptr % sizeof(uint64_t) != 0) 1730 #else 1731 if (vptr % sizeof(uint32_t) != 0) 1732 #endif 1733 return (ENOEXEC); 1734 /* 1735 * We count the array size reading the aux vectors from the 1736 * stack until AT_NULL vector is returned. So (to keep the code 1737 * simple) we read the process stack twice: the first time here 1738 * to find the size and the second time when copying the vectors 1739 * to the allocated proc_vector. 1740 */ 1741 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1742 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1743 sizeof(aux)) 1744 return (ENOMEM); 1745 if (aux.a_type == AT_NULL) 1746 break; 1747 ptr += sizeof(aux); 1748 } 1749 /* 1750 * If the PROC_AUXV_MAX entries are iterated over, and we have 1751 * not reached AT_NULL, it is most likely we are reading wrong 1752 * data: either the process doesn't have auxv array or data has 1753 * been modified. Return the error in this case. 1754 */ 1755 if (aux.a_type != AT_NULL) 1756 return (ENOEXEC); 1757 vsize = i + 1; 1758 size = vsize * sizeof(aux); 1759 break; 1760 default: 1761 KASSERT(0, ("Wrong proc vector type: %d", type)); 1762 return (EINVAL); /* In case we are built without INVARIANTS. */ 1763 } 1764 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1765 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1766 free(proc_vector, M_TEMP); 1767 return (ENOMEM); 1768 } 1769 *proc_vectorp = proc_vector; 1770 *vsizep = vsize; 1771 1772 return (0); 1773 } 1774 1775 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1776 1777 static int 1778 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1779 enum proc_vector_type type) 1780 { 1781 size_t done, len, nchr, vsize; 1782 int error, i; 1783 char **proc_vector, *sptr; 1784 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1785 1786 PROC_ASSERT_HELD(p); 1787 1788 /* 1789 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1790 */ 1791 nchr = 2 * (PATH_MAX + ARG_MAX); 1792 1793 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1794 if (error != 0) 1795 return (error); 1796 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1797 /* 1798 * The program may have scribbled into its argv array, e.g. to 1799 * remove some arguments. If that has happened, break out 1800 * before trying to read from NULL. 1801 */ 1802 if (proc_vector[i] == NULL) 1803 break; 1804 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1805 error = proc_read_string(td, p, sptr, pss_string, 1806 sizeof(pss_string)); 1807 if (error != 0) 1808 goto done; 1809 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1810 if (done + len >= nchr) 1811 len = nchr - done - 1; 1812 sbuf_bcat(sb, pss_string, len); 1813 if (len != GET_PS_STRINGS_CHUNK_SZ) 1814 break; 1815 done += GET_PS_STRINGS_CHUNK_SZ; 1816 } 1817 sbuf_bcat(sb, "", 1); 1818 done += len + 1; 1819 } 1820 done: 1821 free(proc_vector, M_TEMP); 1822 return (error); 1823 } 1824 1825 int 1826 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1827 { 1828 1829 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1830 } 1831 1832 int 1833 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1834 { 1835 1836 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1837 } 1838 1839 int 1840 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1841 { 1842 size_t vsize, size; 1843 char **auxv; 1844 int error; 1845 1846 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1847 if (error == 0) { 1848 #ifdef COMPAT_FREEBSD32 1849 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1850 size = vsize * sizeof(Elf32_Auxinfo); 1851 else 1852 #endif 1853 size = vsize * sizeof(Elf_Auxinfo); 1854 if (sbuf_bcat(sb, auxv, size) != 0) 1855 error = ENOMEM; 1856 free(auxv, M_TEMP); 1857 } 1858 return (error); 1859 } 1860 1861 /* 1862 * This sysctl allows a process to retrieve the argument list or process 1863 * title for another process without groping around in the address space 1864 * of the other process. It also allow a process to set its own "process 1865 * title to a string of its own choice. 1866 */ 1867 static int 1868 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1869 { 1870 int *name = (int *)arg1; 1871 u_int namelen = arg2; 1872 struct pargs *newpa, *pa; 1873 struct proc *p; 1874 struct sbuf sb; 1875 int flags, error = 0, error2; 1876 1877 if (namelen != 1) 1878 return (EINVAL); 1879 1880 flags = PGET_CANSEE; 1881 if (req->newptr != NULL) 1882 flags |= PGET_ISCURRENT; 1883 error = pget((pid_t)name[0], flags, &p); 1884 if (error) 1885 return (error); 1886 1887 pa = p->p_args; 1888 if (pa != NULL) { 1889 pargs_hold(pa); 1890 PROC_UNLOCK(p); 1891 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1892 pargs_drop(pa); 1893 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1894 _PHOLD(p); 1895 PROC_UNLOCK(p); 1896 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1897 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1898 error = proc_getargv(curthread, p, &sb); 1899 error2 = sbuf_finish(&sb); 1900 PRELE(p); 1901 sbuf_delete(&sb); 1902 if (error == 0 && error2 != 0) 1903 error = error2; 1904 } else { 1905 PROC_UNLOCK(p); 1906 } 1907 if (error != 0 || req->newptr == NULL) 1908 return (error); 1909 1910 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1911 return (ENOMEM); 1912 newpa = pargs_alloc(req->newlen); 1913 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1914 if (error != 0) { 1915 pargs_free(newpa); 1916 return (error); 1917 } 1918 PROC_LOCK(p); 1919 pa = p->p_args; 1920 p->p_args = newpa; 1921 PROC_UNLOCK(p); 1922 pargs_drop(pa); 1923 return (0); 1924 } 1925 1926 /* 1927 * This sysctl allows a process to retrieve environment of another process. 1928 */ 1929 static int 1930 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1931 { 1932 int *name = (int *)arg1; 1933 u_int namelen = arg2; 1934 struct proc *p; 1935 struct sbuf sb; 1936 int error, error2; 1937 1938 if (namelen != 1) 1939 return (EINVAL); 1940 1941 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1942 if (error != 0) 1943 return (error); 1944 if ((p->p_flag & P_SYSTEM) != 0) { 1945 PRELE(p); 1946 return (0); 1947 } 1948 1949 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1950 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1951 error = proc_getenvv(curthread, p, &sb); 1952 error2 = sbuf_finish(&sb); 1953 PRELE(p); 1954 sbuf_delete(&sb); 1955 return (error != 0 ? error : error2); 1956 } 1957 1958 /* 1959 * This sysctl allows a process to retrieve ELF auxiliary vector of 1960 * another process. 1961 */ 1962 static int 1963 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1964 { 1965 int *name = (int *)arg1; 1966 u_int namelen = arg2; 1967 struct proc *p; 1968 struct sbuf sb; 1969 int error, error2; 1970 1971 if (namelen != 1) 1972 return (EINVAL); 1973 1974 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1975 if (error != 0) 1976 return (error); 1977 if ((p->p_flag & P_SYSTEM) != 0) { 1978 PRELE(p); 1979 return (0); 1980 } 1981 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1982 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1983 error = proc_getauxv(curthread, p, &sb); 1984 error2 = sbuf_finish(&sb); 1985 PRELE(p); 1986 sbuf_delete(&sb); 1987 return (error != 0 ? error : error2); 1988 } 1989 1990 /* 1991 * This sysctl allows a process to retrieve the path of the executable for 1992 * itself or another process. 1993 */ 1994 static int 1995 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1996 { 1997 pid_t *pidp = (pid_t *)arg1; 1998 unsigned int arglen = arg2; 1999 struct proc *p; 2000 struct vnode *vp; 2001 char *retbuf, *freebuf; 2002 int error; 2003 2004 if (arglen != 1) 2005 return (EINVAL); 2006 if (*pidp == -1) { /* -1 means this process */ 2007 p = req->td->td_proc; 2008 } else { 2009 error = pget(*pidp, PGET_CANSEE, &p); 2010 if (error != 0) 2011 return (error); 2012 } 2013 2014 vp = p->p_textvp; 2015 if (vp == NULL) { 2016 if (*pidp != -1) 2017 PROC_UNLOCK(p); 2018 return (0); 2019 } 2020 vref(vp); 2021 if (*pidp != -1) 2022 PROC_UNLOCK(p); 2023 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2024 vrele(vp); 2025 if (error) 2026 return (error); 2027 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2028 free(freebuf, M_TEMP); 2029 return (error); 2030 } 2031 2032 static int 2033 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2034 { 2035 struct proc *p; 2036 char *sv_name; 2037 int *name; 2038 int namelen; 2039 int error; 2040 2041 namelen = arg2; 2042 if (namelen != 1) 2043 return (EINVAL); 2044 2045 name = (int *)arg1; 2046 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2047 if (error != 0) 2048 return (error); 2049 sv_name = p->p_sysent->sv_name; 2050 PROC_UNLOCK(p); 2051 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2052 } 2053 2054 #ifdef KINFO_OVMENTRY_SIZE 2055 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2056 #endif 2057 2058 #ifdef COMPAT_FREEBSD7 2059 static int 2060 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2061 { 2062 vm_map_entry_t entry, tmp_entry; 2063 unsigned int last_timestamp; 2064 char *fullpath, *freepath; 2065 struct kinfo_ovmentry *kve; 2066 struct vattr va; 2067 struct ucred *cred; 2068 int error, *name; 2069 struct vnode *vp; 2070 struct proc *p; 2071 vm_map_t map; 2072 struct vmspace *vm; 2073 2074 name = (int *)arg1; 2075 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2076 if (error != 0) 2077 return (error); 2078 vm = vmspace_acquire_ref(p); 2079 if (vm == NULL) { 2080 PRELE(p); 2081 return (ESRCH); 2082 } 2083 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2084 2085 map = &vm->vm_map; 2086 vm_map_lock_read(map); 2087 for (entry = map->header.next; entry != &map->header; 2088 entry = entry->next) { 2089 vm_object_t obj, tobj, lobj; 2090 vm_offset_t addr; 2091 2092 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2093 continue; 2094 2095 bzero(kve, sizeof(*kve)); 2096 kve->kve_structsize = sizeof(*kve); 2097 2098 kve->kve_private_resident = 0; 2099 obj = entry->object.vm_object; 2100 if (obj != NULL) { 2101 VM_OBJECT_RLOCK(obj); 2102 if (obj->shadow_count == 1) 2103 kve->kve_private_resident = 2104 obj->resident_page_count; 2105 } 2106 kve->kve_resident = 0; 2107 addr = entry->start; 2108 while (addr < entry->end) { 2109 if (pmap_extract(map->pmap, addr)) 2110 kve->kve_resident++; 2111 addr += PAGE_SIZE; 2112 } 2113 2114 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2115 if (tobj != obj) 2116 VM_OBJECT_RLOCK(tobj); 2117 if (lobj != obj) 2118 VM_OBJECT_RUNLOCK(lobj); 2119 lobj = tobj; 2120 } 2121 2122 kve->kve_start = (void*)entry->start; 2123 kve->kve_end = (void*)entry->end; 2124 kve->kve_offset = (off_t)entry->offset; 2125 2126 if (entry->protection & VM_PROT_READ) 2127 kve->kve_protection |= KVME_PROT_READ; 2128 if (entry->protection & VM_PROT_WRITE) 2129 kve->kve_protection |= KVME_PROT_WRITE; 2130 if (entry->protection & VM_PROT_EXECUTE) 2131 kve->kve_protection |= KVME_PROT_EXEC; 2132 2133 if (entry->eflags & MAP_ENTRY_COW) 2134 kve->kve_flags |= KVME_FLAG_COW; 2135 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2136 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2137 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2138 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2139 2140 last_timestamp = map->timestamp; 2141 vm_map_unlock_read(map); 2142 2143 kve->kve_fileid = 0; 2144 kve->kve_fsid = 0; 2145 freepath = NULL; 2146 fullpath = ""; 2147 if (lobj) { 2148 vp = NULL; 2149 switch (lobj->type) { 2150 case OBJT_DEFAULT: 2151 kve->kve_type = KVME_TYPE_DEFAULT; 2152 break; 2153 case OBJT_VNODE: 2154 kve->kve_type = KVME_TYPE_VNODE; 2155 vp = lobj->handle; 2156 vref(vp); 2157 break; 2158 case OBJT_SWAP: 2159 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2160 kve->kve_type = KVME_TYPE_VNODE; 2161 if ((lobj->flags & OBJ_TMPFS) != 0) { 2162 vp = lobj->un_pager.swp.swp_tmpfs; 2163 vref(vp); 2164 } 2165 } else { 2166 kve->kve_type = KVME_TYPE_SWAP; 2167 } 2168 break; 2169 case OBJT_DEVICE: 2170 kve->kve_type = KVME_TYPE_DEVICE; 2171 break; 2172 case OBJT_PHYS: 2173 kve->kve_type = KVME_TYPE_PHYS; 2174 break; 2175 case OBJT_DEAD: 2176 kve->kve_type = KVME_TYPE_DEAD; 2177 break; 2178 case OBJT_SG: 2179 kve->kve_type = KVME_TYPE_SG; 2180 break; 2181 default: 2182 kve->kve_type = KVME_TYPE_UNKNOWN; 2183 break; 2184 } 2185 if (lobj != obj) 2186 VM_OBJECT_RUNLOCK(lobj); 2187 2188 kve->kve_ref_count = obj->ref_count; 2189 kve->kve_shadow_count = obj->shadow_count; 2190 VM_OBJECT_RUNLOCK(obj); 2191 if (vp != NULL) { 2192 vn_fullpath(curthread, vp, &fullpath, 2193 &freepath); 2194 cred = curthread->td_ucred; 2195 vn_lock(vp, LK_SHARED | LK_RETRY); 2196 if (VOP_GETATTR(vp, &va, cred) == 0) { 2197 kve->kve_fileid = va.va_fileid; 2198 kve->kve_fsid = va.va_fsid; 2199 } 2200 vput(vp); 2201 } 2202 } else { 2203 kve->kve_type = KVME_TYPE_NONE; 2204 kve->kve_ref_count = 0; 2205 kve->kve_shadow_count = 0; 2206 } 2207 2208 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2209 if (freepath != NULL) 2210 free(freepath, M_TEMP); 2211 2212 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2213 vm_map_lock_read(map); 2214 if (error) 2215 break; 2216 if (last_timestamp != map->timestamp) { 2217 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2218 entry = tmp_entry; 2219 } 2220 } 2221 vm_map_unlock_read(map); 2222 vmspace_free(vm); 2223 PRELE(p); 2224 free(kve, M_TEMP); 2225 return (error); 2226 } 2227 #endif /* COMPAT_FREEBSD7 */ 2228 2229 #ifdef KINFO_VMENTRY_SIZE 2230 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2231 #endif 2232 2233 static void 2234 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2235 struct kinfo_vmentry *kve) 2236 { 2237 vm_object_t obj, tobj; 2238 vm_page_t m, m_adv; 2239 vm_offset_t addr; 2240 vm_paddr_t locked_pa; 2241 vm_pindex_t pi, pi_adv, pindex; 2242 2243 locked_pa = 0; 2244 obj = entry->object.vm_object; 2245 addr = entry->start; 2246 m_adv = NULL; 2247 pi = OFF_TO_IDX(entry->offset); 2248 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2249 if (m_adv != NULL) { 2250 m = m_adv; 2251 } else { 2252 pi_adv = OFF_TO_IDX(entry->end - addr); 2253 pindex = pi; 2254 for (tobj = obj;; tobj = tobj->backing_object) { 2255 m = vm_page_find_least(tobj, pindex); 2256 if (m != NULL) { 2257 if (m->pindex == pindex) 2258 break; 2259 if (pi_adv > m->pindex - pindex) { 2260 pi_adv = m->pindex - pindex; 2261 m_adv = m; 2262 } 2263 } 2264 if (tobj->backing_object == NULL) 2265 goto next; 2266 pindex += OFF_TO_IDX(tobj-> 2267 backing_object_offset); 2268 } 2269 } 2270 m_adv = NULL; 2271 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2272 (addr & (pagesizes[1] - 1)) == 0 && 2273 (pmap_mincore(map->pmap, addr, &locked_pa) & 2274 MINCORE_SUPER) != 0) { 2275 kve->kve_flags |= KVME_FLAG_SUPER; 2276 pi_adv = OFF_TO_IDX(pagesizes[1]); 2277 } else { 2278 /* 2279 * We do not test the found page on validity. 2280 * Either the page is busy and being paged in, 2281 * or it was invalidated. The first case 2282 * should be counted as resident, the second 2283 * is not so clear; we do account both. 2284 */ 2285 pi_adv = 1; 2286 } 2287 kve->kve_resident += pi_adv; 2288 next:; 2289 } 2290 PA_UNLOCK_COND(locked_pa); 2291 } 2292 2293 /* 2294 * Must be called with the process locked and will return unlocked. 2295 */ 2296 int 2297 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2298 { 2299 vm_map_entry_t entry, tmp_entry; 2300 struct vattr va; 2301 vm_map_t map; 2302 vm_object_t obj, tobj, lobj; 2303 char *fullpath, *freepath; 2304 struct kinfo_vmentry *kve; 2305 struct ucred *cred; 2306 struct vnode *vp; 2307 struct vmspace *vm; 2308 vm_offset_t addr; 2309 unsigned int last_timestamp; 2310 int error; 2311 2312 PROC_LOCK_ASSERT(p, MA_OWNED); 2313 2314 _PHOLD(p); 2315 PROC_UNLOCK(p); 2316 vm = vmspace_acquire_ref(p); 2317 if (vm == NULL) { 2318 PRELE(p); 2319 return (ESRCH); 2320 } 2321 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2322 2323 error = 0; 2324 map = &vm->vm_map; 2325 vm_map_lock_read(map); 2326 for (entry = map->header.next; entry != &map->header; 2327 entry = entry->next) { 2328 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2329 continue; 2330 2331 addr = entry->end; 2332 bzero(kve, sizeof(*kve)); 2333 obj = entry->object.vm_object; 2334 if (obj != NULL) { 2335 for (tobj = obj; tobj != NULL; 2336 tobj = tobj->backing_object) { 2337 VM_OBJECT_RLOCK(tobj); 2338 lobj = tobj; 2339 } 2340 if (obj->backing_object == NULL) 2341 kve->kve_private_resident = 2342 obj->resident_page_count; 2343 if (!vmmap_skip_res_cnt) 2344 kern_proc_vmmap_resident(map, entry, kve); 2345 for (tobj = obj; tobj != NULL; 2346 tobj = tobj->backing_object) { 2347 if (tobj != obj && tobj != lobj) 2348 VM_OBJECT_RUNLOCK(tobj); 2349 } 2350 } else { 2351 lobj = NULL; 2352 } 2353 2354 kve->kve_start = entry->start; 2355 kve->kve_end = entry->end; 2356 kve->kve_offset = entry->offset; 2357 2358 if (entry->protection & VM_PROT_READ) 2359 kve->kve_protection |= KVME_PROT_READ; 2360 if (entry->protection & VM_PROT_WRITE) 2361 kve->kve_protection |= KVME_PROT_WRITE; 2362 if (entry->protection & VM_PROT_EXECUTE) 2363 kve->kve_protection |= KVME_PROT_EXEC; 2364 2365 if (entry->eflags & MAP_ENTRY_COW) 2366 kve->kve_flags |= KVME_FLAG_COW; 2367 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2368 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2369 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2370 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2371 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2372 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2373 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2374 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2375 2376 last_timestamp = map->timestamp; 2377 vm_map_unlock_read(map); 2378 2379 freepath = NULL; 2380 fullpath = ""; 2381 if (lobj != NULL) { 2382 vp = NULL; 2383 switch (lobj->type) { 2384 case OBJT_DEFAULT: 2385 kve->kve_type = KVME_TYPE_DEFAULT; 2386 break; 2387 case OBJT_VNODE: 2388 kve->kve_type = KVME_TYPE_VNODE; 2389 vp = lobj->handle; 2390 vref(vp); 2391 break; 2392 case OBJT_SWAP: 2393 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2394 kve->kve_type = KVME_TYPE_VNODE; 2395 if ((lobj->flags & OBJ_TMPFS) != 0) { 2396 vp = lobj->un_pager.swp.swp_tmpfs; 2397 vref(vp); 2398 } 2399 } else { 2400 kve->kve_type = KVME_TYPE_SWAP; 2401 } 2402 break; 2403 case OBJT_DEVICE: 2404 kve->kve_type = KVME_TYPE_DEVICE; 2405 break; 2406 case OBJT_PHYS: 2407 kve->kve_type = KVME_TYPE_PHYS; 2408 break; 2409 case OBJT_DEAD: 2410 kve->kve_type = KVME_TYPE_DEAD; 2411 break; 2412 case OBJT_SG: 2413 kve->kve_type = KVME_TYPE_SG; 2414 break; 2415 case OBJT_MGTDEVICE: 2416 kve->kve_type = KVME_TYPE_MGTDEVICE; 2417 break; 2418 default: 2419 kve->kve_type = KVME_TYPE_UNKNOWN; 2420 break; 2421 } 2422 if (lobj != obj) 2423 VM_OBJECT_RUNLOCK(lobj); 2424 2425 kve->kve_ref_count = obj->ref_count; 2426 kve->kve_shadow_count = obj->shadow_count; 2427 VM_OBJECT_RUNLOCK(obj); 2428 if (vp != NULL) { 2429 vn_fullpath(curthread, vp, &fullpath, 2430 &freepath); 2431 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2432 cred = curthread->td_ucred; 2433 vn_lock(vp, LK_SHARED | LK_RETRY); 2434 if (VOP_GETATTR(vp, &va, cred) == 0) { 2435 kve->kve_vn_fileid = va.va_fileid; 2436 kve->kve_vn_fsid = va.va_fsid; 2437 kve->kve_vn_mode = 2438 MAKEIMODE(va.va_type, va.va_mode); 2439 kve->kve_vn_size = va.va_size; 2440 kve->kve_vn_rdev = va.va_rdev; 2441 kve->kve_status = KF_ATTR_VALID; 2442 } 2443 vput(vp); 2444 } 2445 } else { 2446 kve->kve_type = KVME_TYPE_NONE; 2447 kve->kve_ref_count = 0; 2448 kve->kve_shadow_count = 0; 2449 } 2450 2451 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2452 if (freepath != NULL) 2453 free(freepath, M_TEMP); 2454 2455 /* Pack record size down */ 2456 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2457 kve->kve_structsize = 2458 offsetof(struct kinfo_vmentry, kve_path) + 2459 strlen(kve->kve_path) + 1; 2460 else 2461 kve->kve_structsize = sizeof(*kve); 2462 kve->kve_structsize = roundup(kve->kve_structsize, 2463 sizeof(uint64_t)); 2464 2465 /* Halt filling and truncate rather than exceeding maxlen */ 2466 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2467 error = 0; 2468 vm_map_lock_read(map); 2469 break; 2470 } else if (maxlen != -1) 2471 maxlen -= kve->kve_structsize; 2472 2473 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2474 error = ENOMEM; 2475 vm_map_lock_read(map); 2476 if (error != 0) 2477 break; 2478 if (last_timestamp != map->timestamp) { 2479 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2480 entry = tmp_entry; 2481 } 2482 } 2483 vm_map_unlock_read(map); 2484 vmspace_free(vm); 2485 PRELE(p); 2486 free(kve, M_TEMP); 2487 return (error); 2488 } 2489 2490 static int 2491 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2492 { 2493 struct proc *p; 2494 struct sbuf sb; 2495 int error, error2, *name; 2496 2497 name = (int *)arg1; 2498 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2499 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2500 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2501 if (error != 0) { 2502 sbuf_delete(&sb); 2503 return (error); 2504 } 2505 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2506 error2 = sbuf_finish(&sb); 2507 sbuf_delete(&sb); 2508 return (error != 0 ? error : error2); 2509 } 2510 2511 #if defined(STACK) || defined(DDB) 2512 static int 2513 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2514 { 2515 struct kinfo_kstack *kkstp; 2516 int error, i, *name, numthreads; 2517 lwpid_t *lwpidarray; 2518 struct thread *td; 2519 struct stack *st; 2520 struct sbuf sb; 2521 struct proc *p; 2522 2523 name = (int *)arg1; 2524 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2525 if (error != 0) 2526 return (error); 2527 2528 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2529 st = stack_create(); 2530 2531 lwpidarray = NULL; 2532 PROC_LOCK(p); 2533 do { 2534 if (lwpidarray != NULL) { 2535 free(lwpidarray, M_TEMP); 2536 lwpidarray = NULL; 2537 } 2538 numthreads = p->p_numthreads; 2539 PROC_UNLOCK(p); 2540 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2541 M_WAITOK | M_ZERO); 2542 PROC_LOCK(p); 2543 } while (numthreads < p->p_numthreads); 2544 2545 /* 2546 * XXXRW: During the below loop, execve(2) and countless other sorts 2547 * of changes could have taken place. Should we check to see if the 2548 * vmspace has been replaced, or the like, in order to prevent 2549 * giving a snapshot that spans, say, execve(2), with some threads 2550 * before and some after? Among other things, the credentials could 2551 * have changed, in which case the right to extract debug info might 2552 * no longer be assured. 2553 */ 2554 i = 0; 2555 FOREACH_THREAD_IN_PROC(p, td) { 2556 KASSERT(i < numthreads, 2557 ("sysctl_kern_proc_kstack: numthreads")); 2558 lwpidarray[i] = td->td_tid; 2559 i++; 2560 } 2561 numthreads = i; 2562 for (i = 0; i < numthreads; i++) { 2563 td = thread_find(p, lwpidarray[i]); 2564 if (td == NULL) { 2565 continue; 2566 } 2567 bzero(kkstp, sizeof(*kkstp)); 2568 (void)sbuf_new(&sb, kkstp->kkst_trace, 2569 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2570 thread_lock(td); 2571 kkstp->kkst_tid = td->td_tid; 2572 if (TD_IS_SWAPPED(td)) { 2573 kkstp->kkst_state = KKST_STATE_SWAPPED; 2574 } else if (TD_IS_RUNNING(td)) { 2575 if (stack_save_td_running(st, td) == 0) 2576 kkstp->kkst_state = KKST_STATE_STACKOK; 2577 else 2578 kkstp->kkst_state = KKST_STATE_RUNNING; 2579 } else { 2580 kkstp->kkst_state = KKST_STATE_STACKOK; 2581 stack_save_td(st, td); 2582 } 2583 thread_unlock(td); 2584 PROC_UNLOCK(p); 2585 stack_sbuf_print(&sb, st); 2586 sbuf_finish(&sb); 2587 sbuf_delete(&sb); 2588 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2589 PROC_LOCK(p); 2590 if (error) 2591 break; 2592 } 2593 _PRELE(p); 2594 PROC_UNLOCK(p); 2595 if (lwpidarray != NULL) 2596 free(lwpidarray, M_TEMP); 2597 stack_destroy(st); 2598 free(kkstp, M_TEMP); 2599 return (error); 2600 } 2601 #endif 2602 2603 /* 2604 * This sysctl allows a process to retrieve the full list of groups from 2605 * itself or another process. 2606 */ 2607 static int 2608 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2609 { 2610 pid_t *pidp = (pid_t *)arg1; 2611 unsigned int arglen = arg2; 2612 struct proc *p; 2613 struct ucred *cred; 2614 int error; 2615 2616 if (arglen != 1) 2617 return (EINVAL); 2618 if (*pidp == -1) { /* -1 means this process */ 2619 p = req->td->td_proc; 2620 PROC_LOCK(p); 2621 } else { 2622 error = pget(*pidp, PGET_CANSEE, &p); 2623 if (error != 0) 2624 return (error); 2625 } 2626 2627 cred = crhold(p->p_ucred); 2628 PROC_UNLOCK(p); 2629 2630 error = SYSCTL_OUT(req, cred->cr_groups, 2631 cred->cr_ngroups * sizeof(gid_t)); 2632 crfree(cred); 2633 return (error); 2634 } 2635 2636 /* 2637 * This sysctl allows a process to retrieve or/and set the resource limit for 2638 * another process. 2639 */ 2640 static int 2641 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2642 { 2643 int *name = (int *)arg1; 2644 u_int namelen = arg2; 2645 struct rlimit rlim; 2646 struct proc *p; 2647 u_int which; 2648 int flags, error; 2649 2650 if (namelen != 2) 2651 return (EINVAL); 2652 2653 which = (u_int)name[1]; 2654 if (which >= RLIM_NLIMITS) 2655 return (EINVAL); 2656 2657 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2658 return (EINVAL); 2659 2660 flags = PGET_HOLD | PGET_NOTWEXIT; 2661 if (req->newptr != NULL) 2662 flags |= PGET_CANDEBUG; 2663 else 2664 flags |= PGET_CANSEE; 2665 error = pget((pid_t)name[0], flags, &p); 2666 if (error != 0) 2667 return (error); 2668 2669 /* 2670 * Retrieve limit. 2671 */ 2672 if (req->oldptr != NULL) { 2673 PROC_LOCK(p); 2674 lim_rlimit_proc(p, which, &rlim); 2675 PROC_UNLOCK(p); 2676 } 2677 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2678 if (error != 0) 2679 goto errout; 2680 2681 /* 2682 * Set limit. 2683 */ 2684 if (req->newptr != NULL) { 2685 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2686 if (error == 0) 2687 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2688 } 2689 2690 errout: 2691 PRELE(p); 2692 return (error); 2693 } 2694 2695 /* 2696 * This sysctl allows a process to retrieve ps_strings structure location of 2697 * another process. 2698 */ 2699 static int 2700 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2701 { 2702 int *name = (int *)arg1; 2703 u_int namelen = arg2; 2704 struct proc *p; 2705 vm_offset_t ps_strings; 2706 int error; 2707 #ifdef COMPAT_FREEBSD32 2708 uint32_t ps_strings32; 2709 #endif 2710 2711 if (namelen != 1) 2712 return (EINVAL); 2713 2714 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2715 if (error != 0) 2716 return (error); 2717 #ifdef COMPAT_FREEBSD32 2718 if ((req->flags & SCTL_MASK32) != 0) { 2719 /* 2720 * We return 0 if the 32 bit emulation request is for a 64 bit 2721 * process. 2722 */ 2723 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2724 PTROUT(p->p_sysent->sv_psstrings) : 0; 2725 PROC_UNLOCK(p); 2726 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2727 return (error); 2728 } 2729 #endif 2730 ps_strings = p->p_sysent->sv_psstrings; 2731 PROC_UNLOCK(p); 2732 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2733 return (error); 2734 } 2735 2736 /* 2737 * This sysctl allows a process to retrieve umask of another process. 2738 */ 2739 static int 2740 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2741 { 2742 int *name = (int *)arg1; 2743 u_int namelen = arg2; 2744 struct proc *p; 2745 int error; 2746 u_short fd_cmask; 2747 2748 if (namelen != 1) 2749 return (EINVAL); 2750 2751 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2752 if (error != 0) 2753 return (error); 2754 2755 FILEDESC_SLOCK(p->p_fd); 2756 fd_cmask = p->p_fd->fd_cmask; 2757 FILEDESC_SUNLOCK(p->p_fd); 2758 PRELE(p); 2759 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2760 return (error); 2761 } 2762 2763 /* 2764 * This sysctl allows a process to set and retrieve binary osreldate of 2765 * another process. 2766 */ 2767 static int 2768 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2769 { 2770 int *name = (int *)arg1; 2771 u_int namelen = arg2; 2772 struct proc *p; 2773 int flags, error, osrel; 2774 2775 if (namelen != 1) 2776 return (EINVAL); 2777 2778 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2779 return (EINVAL); 2780 2781 flags = PGET_HOLD | PGET_NOTWEXIT; 2782 if (req->newptr != NULL) 2783 flags |= PGET_CANDEBUG; 2784 else 2785 flags |= PGET_CANSEE; 2786 error = pget((pid_t)name[0], flags, &p); 2787 if (error != 0) 2788 return (error); 2789 2790 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2791 if (error != 0) 2792 goto errout; 2793 2794 if (req->newptr != NULL) { 2795 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2796 if (error != 0) 2797 goto errout; 2798 if (osrel < 0) { 2799 error = EINVAL; 2800 goto errout; 2801 } 2802 p->p_osrel = osrel; 2803 } 2804 errout: 2805 PRELE(p); 2806 return (error); 2807 } 2808 2809 static int 2810 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2811 { 2812 int *name = (int *)arg1; 2813 u_int namelen = arg2; 2814 struct proc *p; 2815 struct kinfo_sigtramp kst; 2816 const struct sysentvec *sv; 2817 int error; 2818 #ifdef COMPAT_FREEBSD32 2819 struct kinfo_sigtramp32 kst32; 2820 #endif 2821 2822 if (namelen != 1) 2823 return (EINVAL); 2824 2825 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2826 if (error != 0) 2827 return (error); 2828 sv = p->p_sysent; 2829 #ifdef COMPAT_FREEBSD32 2830 if ((req->flags & SCTL_MASK32) != 0) { 2831 bzero(&kst32, sizeof(kst32)); 2832 if (SV_PROC_FLAG(p, SV_ILP32)) { 2833 if (sv->sv_sigcode_base != 0) { 2834 kst32.ksigtramp_start = sv->sv_sigcode_base; 2835 kst32.ksigtramp_end = sv->sv_sigcode_base + 2836 *sv->sv_szsigcode; 2837 } else { 2838 kst32.ksigtramp_start = sv->sv_psstrings - 2839 *sv->sv_szsigcode; 2840 kst32.ksigtramp_end = sv->sv_psstrings; 2841 } 2842 } 2843 PROC_UNLOCK(p); 2844 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2845 return (error); 2846 } 2847 #endif 2848 bzero(&kst, sizeof(kst)); 2849 if (sv->sv_sigcode_base != 0) { 2850 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2851 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2852 *sv->sv_szsigcode; 2853 } else { 2854 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2855 *sv->sv_szsigcode; 2856 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2857 } 2858 PROC_UNLOCK(p); 2859 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2860 return (error); 2861 } 2862 2863 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2864 2865 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2866 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2867 "Return entire process table"); 2868 2869 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2870 sysctl_kern_proc, "Process table"); 2871 2872 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2873 sysctl_kern_proc, "Process table"); 2874 2875 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2876 sysctl_kern_proc, "Process table"); 2877 2878 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2879 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2880 2881 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2882 sysctl_kern_proc, "Process table"); 2883 2884 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2885 sysctl_kern_proc, "Process table"); 2886 2887 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2888 sysctl_kern_proc, "Process table"); 2889 2890 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2891 sysctl_kern_proc, "Process table"); 2892 2893 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2894 sysctl_kern_proc, "Return process table, no threads"); 2895 2896 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2897 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2898 sysctl_kern_proc_args, "Process argument list"); 2899 2900 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2901 sysctl_kern_proc_env, "Process environment"); 2902 2903 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2904 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2905 2906 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2907 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2908 2909 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2910 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2911 "Process syscall vector name (ABI type)"); 2912 2913 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2914 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2915 2916 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2917 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2918 2919 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2920 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2921 2922 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2923 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2924 2925 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2926 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2927 2928 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2929 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2930 2931 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2932 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2933 2934 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2935 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2936 2937 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2938 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2939 "Return process table, no threads"); 2940 2941 #ifdef COMPAT_FREEBSD7 2942 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2943 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2944 #endif 2945 2946 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2947 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2948 2949 #if defined(STACK) || defined(DDB) 2950 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2951 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2952 #endif 2953 2954 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2955 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2956 2957 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2958 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2959 "Process resource limits"); 2960 2961 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2962 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2963 "Process ps_strings location"); 2964 2965 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2966 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2967 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2969 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2970 "Process binary osreldate"); 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2973 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2974 "Process signal trampoline location"); 2975 2976 int allproc_gen; 2977 2978 /* 2979 * stop_all_proc() purpose is to stop all process which have usermode, 2980 * except current process for obvious reasons. This makes it somewhat 2981 * unreliable when invoked from multithreaded process. The service 2982 * must not be user-callable anyway. 2983 */ 2984 void 2985 stop_all_proc(void) 2986 { 2987 struct proc *cp, *p; 2988 int r, gen; 2989 bool restart, seen_stopped, seen_exiting, stopped_some; 2990 2991 cp = curproc; 2992 allproc_loop: 2993 sx_xlock(&allproc_lock); 2994 gen = allproc_gen; 2995 seen_exiting = seen_stopped = stopped_some = restart = false; 2996 LIST_REMOVE(cp, p_list); 2997 LIST_INSERT_HEAD(&allproc, cp, p_list); 2998 for (;;) { 2999 p = LIST_NEXT(cp, p_list); 3000 if (p == NULL) 3001 break; 3002 LIST_REMOVE(cp, p_list); 3003 LIST_INSERT_AFTER(p, cp, p_list); 3004 PROC_LOCK(p); 3005 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3006 PROC_UNLOCK(p); 3007 continue; 3008 } 3009 if ((p->p_flag & P_WEXIT) != 0) { 3010 seen_exiting = true; 3011 PROC_UNLOCK(p); 3012 continue; 3013 } 3014 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3015 /* 3016 * Stopped processes are tolerated when there 3017 * are no other processes which might continue 3018 * them. P_STOPPED_SINGLE but not 3019 * P_TOTAL_STOP process still has at least one 3020 * thread running. 3021 */ 3022 seen_stopped = true; 3023 PROC_UNLOCK(p); 3024 continue; 3025 } 3026 _PHOLD(p); 3027 sx_xunlock(&allproc_lock); 3028 r = thread_single(p, SINGLE_ALLPROC); 3029 if (r != 0) 3030 restart = true; 3031 else 3032 stopped_some = true; 3033 _PRELE(p); 3034 PROC_UNLOCK(p); 3035 sx_xlock(&allproc_lock); 3036 } 3037 /* Catch forked children we did not see in iteration. */ 3038 if (gen != allproc_gen) 3039 restart = true; 3040 sx_xunlock(&allproc_lock); 3041 if (restart || stopped_some || seen_exiting || seen_stopped) { 3042 kern_yield(PRI_USER); 3043 goto allproc_loop; 3044 } 3045 } 3046 3047 void 3048 resume_all_proc(void) 3049 { 3050 struct proc *cp, *p; 3051 3052 cp = curproc; 3053 sx_xlock(&allproc_lock); 3054 LIST_REMOVE(cp, p_list); 3055 LIST_INSERT_HEAD(&allproc, cp, p_list); 3056 for (;;) { 3057 p = LIST_NEXT(cp, p_list); 3058 if (p == NULL) 3059 break; 3060 LIST_REMOVE(cp, p_list); 3061 LIST_INSERT_AFTER(p, cp, p_list); 3062 PROC_LOCK(p); 3063 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3064 sx_xunlock(&allproc_lock); 3065 _PHOLD(p); 3066 thread_single_end(p, SINGLE_ALLPROC); 3067 _PRELE(p); 3068 PROC_UNLOCK(p); 3069 sx_xlock(&allproc_lock); 3070 } else { 3071 PROC_UNLOCK(p); 3072 } 3073 } 3074 sx_xunlock(&allproc_lock); 3075 } 3076 3077 /* #define TOTAL_STOP_DEBUG 1 */ 3078 #ifdef TOTAL_STOP_DEBUG 3079 volatile static int ap_resume; 3080 #include <sys/mount.h> 3081 3082 static int 3083 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3084 { 3085 int error, val; 3086 3087 val = 0; 3088 ap_resume = 0; 3089 error = sysctl_handle_int(oidp, &val, 0, req); 3090 if (error != 0 || req->newptr == NULL) 3091 return (error); 3092 if (val != 0) { 3093 stop_all_proc(); 3094 syncer_suspend(); 3095 while (ap_resume == 0) 3096 ; 3097 syncer_resume(); 3098 resume_all_proc(); 3099 } 3100 return (0); 3101 } 3102 3103 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3104 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3105 sysctl_debug_stop_all_proc, "I", 3106 ""); 3107 #endif 3108