1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/proc.h> 47 #include <sys/sysproto.h> 48 #include <sys/kse.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/filedesc.h> 52 #include <sys/tty.h> 53 #include <sys/signalvar.h> 54 #include <sys/sx.h> 55 #include <sys/user.h> 56 #include <sys/jail.h> 57 #ifdef KTRACE 58 #include <sys/uio.h> 59 #include <sys/ktrace.h> 60 #endif 61 62 #include <vm/vm.h> 63 #include <vm/vm_extern.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/uma.h> 67 #include <machine/critical.h> 68 69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 70 MALLOC_DEFINE(M_SESSION, "session", "session header"); 71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 73 74 static struct proc *dopfind(register pid_t); 75 76 static void doenterpgrp(struct proc *, struct pgrp *); 77 78 static void pgdelete(struct pgrp *); 79 80 static void orphanpg(struct pgrp *pg); 81 82 static void proc_ctor(void *mem, int size, void *arg); 83 static void proc_dtor(void *mem, int size, void *arg); 84 static void proc_init(void *mem, int size); 85 static void proc_fini(void *mem, int size); 86 87 /* 88 * Other process lists 89 */ 90 struct pidhashhead *pidhashtbl; 91 u_long pidhash; 92 struct pgrphashhead *pgrphashtbl; 93 u_long pgrphash; 94 struct proclist allproc; 95 struct proclist zombproc; 96 struct sx allproc_lock; 97 struct sx proctree_lock; 98 struct mtx pargs_ref_lock; 99 struct mtx ppeers_lock; 100 uma_zone_t proc_zone; 101 uma_zone_t ithread_zone; 102 103 int kstack_pages = KSTACK_PAGES; 104 int uarea_pages = UAREA_PAGES; 105 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 106 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 107 108 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 109 110 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 111 112 /* 113 * Initialize global process hashing structures. 114 */ 115 void 116 procinit() 117 { 118 119 sx_init(&allproc_lock, "allproc"); 120 sx_init(&proctree_lock, "proctree"); 121 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 122 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 123 LIST_INIT(&allproc); 124 LIST_INIT(&zombproc); 125 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 126 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 127 proc_zone = uma_zcreate("PROC", sizeof (struct proc), 128 proc_ctor, proc_dtor, proc_init, proc_fini, 129 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 130 uihashinit(); 131 } 132 133 /* 134 * Prepare a proc for use. 135 */ 136 static void 137 proc_ctor(void *mem, int size, void *arg) 138 { 139 struct proc *p; 140 141 KASSERT((size == sizeof(struct proc)), 142 ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); 143 p = (struct proc *)mem; 144 } 145 146 /* 147 * Reclaim a proc after use. 148 */ 149 static void 150 proc_dtor(void *mem, int size, void *arg) 151 { 152 struct proc *p; 153 struct thread *td; 154 struct ksegrp *kg; 155 struct kse *ke; 156 157 /* INVARIANTS checks go here */ 158 KASSERT((size == sizeof(struct proc)), 159 ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); 160 p = (struct proc *)mem; 161 KASSERT((p->p_numthreads == 1), 162 ("bad number of threads in exiting process")); 163 td = FIRST_THREAD_IN_PROC(p); 164 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 165 kg = FIRST_KSEGRP_IN_PROC(p); 166 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 167 ke = FIRST_KSE_IN_KSEGRP(kg); 168 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 169 170 /* Dispose of an alternate kstack, if it exists. 171 * XXX What if there are more than one thread in the proc? 172 * The first thread in the proc is special and not 173 * freed, so you gotta do this here. 174 */ 175 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 176 pmap_dispose_altkstack(td); 177 178 /* 179 * We want to make sure we know the initial linkages. 180 * so for now tear them down and remake them. 181 * This is probably un-needed as we can probably rely 182 * on the state coming in here from wait4(). 183 */ 184 proc_linkup(p, kg, ke, td); 185 } 186 187 /* 188 * Initialize type-stable parts of a proc (when newly created). 189 */ 190 static void 191 proc_init(void *mem, int size) 192 { 193 struct proc *p; 194 struct thread *td; 195 struct ksegrp *kg; 196 struct kse *ke; 197 198 KASSERT((size == sizeof(struct proc)), 199 ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); 200 p = (struct proc *)mem; 201 vm_proc_new(p); 202 td = thread_alloc(); 203 ke = kse_alloc(); 204 kg = ksegrp_alloc(); 205 proc_linkup(p, kg, ke, td); 206 } 207 208 /* 209 * Tear down type-stable parts of a proc (just before being discarded) 210 */ 211 static void 212 proc_fini(void *mem, int size) 213 { 214 struct proc *p; 215 struct thread *td; 216 struct ksegrp *kg; 217 struct kse *ke; 218 219 KASSERT((size == sizeof(struct proc)), 220 ("size mismatch: %d != %d\n", size, (int)sizeof(struct proc))); 221 p = (struct proc *)mem; 222 KASSERT((p->p_numthreads == 1), 223 ("bad number of threads in freeing process")); 224 td = FIRST_THREAD_IN_PROC(p); 225 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 226 kg = FIRST_KSEGRP_IN_PROC(p); 227 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 228 ke = FIRST_KSE_IN_KSEGRP(kg); 229 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 230 vm_proc_dispose(p); 231 thread_free(td); 232 ksegrp_free(kg); 233 kse_free(ke); 234 } 235 236 /* 237 * KSE is linked onto the idle queue. 238 */ 239 void 240 kse_link(struct kse *ke, struct ksegrp *kg) 241 { 242 struct proc *p = kg->kg_proc; 243 244 TAILQ_INSERT_HEAD(&kg->kg_kseq, ke, ke_kglist); 245 kg->kg_kses++; 246 ke->ke_state = KES_UNQUEUED; 247 ke->ke_proc = p; 248 ke->ke_ksegrp = kg; 249 ke->ke_thread = NULL; 250 ke->ke_oncpu = NOCPU; 251 } 252 253 void 254 ksegrp_link(struct ksegrp *kg, struct proc *p) 255 { 256 257 TAILQ_INIT(&kg->kg_threads); 258 TAILQ_INIT(&kg->kg_runq); /* links with td_runq */ 259 TAILQ_INIT(&kg->kg_slpq); /* links with td_runq */ 260 TAILQ_INIT(&kg->kg_kseq); /* all kses in ksegrp */ 261 TAILQ_INIT(&kg->kg_iq); /* idle kses in ksegrp */ 262 TAILQ_INIT(&kg->kg_lq); /* loan kses in ksegrp */ 263 kg->kg_proc = p; 264 /* the following counters are in the -zero- section and may not need clearing */ 265 kg->kg_numthreads = 0; 266 kg->kg_runnable = 0; 267 kg->kg_kses = 0; 268 kg->kg_idle_kses = 0; 269 kg->kg_loan_kses = 0; 270 kg->kg_runq_kses = 0; /* XXXKSE change name */ 271 /* link it in now that it's consistent */ 272 p->p_numksegrps++; 273 TAILQ_INSERT_HEAD(&p->p_ksegrps, kg, kg_ksegrp); 274 } 275 276 /* 277 * for a newly created process, 278 * link up a the structure and its initial threads etc. 279 */ 280 void 281 proc_linkup(struct proc *p, struct ksegrp *kg, 282 struct kse *ke, struct thread *td) 283 { 284 285 TAILQ_INIT(&p->p_ksegrps); /* all ksegrps in proc */ 286 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 287 TAILQ_INIT(&p->p_suspended); /* Threads suspended */ 288 p->p_numksegrps = 0; 289 p->p_numthreads = 0; 290 291 ksegrp_link(kg, p); 292 kse_link(ke, kg); 293 thread_link(td, kg); 294 } 295 296 int 297 kse_thr_interrupt(struct thread *td, struct kse_thr_interrupt_args *uap) 298 { 299 300 return(ENOSYS); 301 } 302 303 int 304 kse_exit(struct thread *td, struct kse_exit_args *uap) 305 { 306 307 return(ENOSYS); 308 } 309 310 int 311 kse_release(struct thread *td, struct kse_release_args *uap) 312 { 313 struct proc *p; 314 315 p = td->td_proc; 316 /* KSE-enabled processes only, please. */ 317 if (p->p_flag & P_KSES) { 318 PROC_LOCK(p); 319 mtx_lock_spin(&sched_lock); 320 thread_exit(); 321 /* NOTREACHED */ 322 } 323 return (EINVAL); 324 } 325 326 /* struct kse_wakeup_args { 327 struct kse_mailbox *mbx; 328 }; */ 329 int 330 kse_wakeup(struct thread *td, struct kse_wakeup_args *uap) 331 { 332 struct proc *p; 333 struct kse *ke, *ke2; 334 struct ksegrp *kg; 335 336 p = td->td_proc; 337 /* KSE-enabled processes only, please. */ 338 if (!(p->p_flag & P_KSES)) 339 return EINVAL; 340 if (td->td_standin == NULL) 341 td->td_standin = thread_alloc(); 342 ke = NULL; 343 mtx_lock_spin(&sched_lock); 344 if (uap->mbx) { 345 FOREACH_KSEGRP_IN_PROC(p, kg) { 346 FOREACH_KSE_IN_GROUP(kg, ke2) { 347 if (ke2->ke_mailbox != uap->mbx) 348 continue; 349 if (ke2->ke_state == KES_IDLE) { 350 ke = ke2; 351 goto found; 352 } else { 353 mtx_unlock_spin(&sched_lock); 354 td->td_retval[0] = 0; 355 td->td_retval[1] = 0; 356 return 0; 357 } 358 } 359 } 360 } else { 361 kg = td->td_ksegrp; 362 ke = TAILQ_FIRST(&kg->kg_iq); 363 } 364 if (ke == NULL) { 365 mtx_unlock_spin(&sched_lock); 366 return ESRCH; 367 } 368 found: 369 thread_schedule_upcall(td, ke); 370 mtx_unlock_spin(&sched_lock); 371 td->td_retval[0] = 0; 372 td->td_retval[1] = 0; 373 return 0; 374 } 375 376 /* 377 * No new KSEG: first call: use current KSE, don't schedule an upcall 378 * All other situations, do allocate a new KSE and schedule an upcall on it. 379 */ 380 /* struct kse_create_args { 381 struct kse_mailbox *mbx; 382 int newgroup; 383 }; */ 384 int 385 kse_create(struct thread *td, struct kse_create_args *uap) 386 { 387 struct kse *newke; 388 struct kse *ke; 389 struct ksegrp *newkg; 390 struct ksegrp *kg; 391 struct proc *p; 392 struct kse_mailbox mbx; 393 int err; 394 395 p = td->td_proc; 396 if ((err = copyin(uap->mbx, &mbx, sizeof(mbx)))) 397 return (err); 398 399 p->p_flag |= P_KSES; /* easier to just set it than to test and set */ 400 kg = td->td_ksegrp; 401 if (uap->newgroup) { 402 /* 403 * If we want a new KSEGRP it doesn't matter whether 404 * we have already fired up KSE mode before or not. 405 * We put the process in KSE mode and create a new KSEGRP 406 * and KSE. If our KSE has not got a mailbox yet then 407 * that doesn't matter, just leave it that way. It will 408 * ensure that this thread stay BOUND. It's possible 409 * that the call came form a threaded library and the main 410 * program knows nothing of threads. 411 */ 412 newkg = ksegrp_alloc(); 413 bzero(&newkg->kg_startzero, RANGEOF(struct ksegrp, 414 kg_startzero, kg_endzero)); 415 bcopy(&kg->kg_startcopy, &newkg->kg_startcopy, 416 RANGEOF(struct ksegrp, kg_startcopy, kg_endcopy)); 417 newke = kse_alloc(); 418 } else { 419 /* 420 * Otherwise, if we have already set this KSE 421 * to have a mailbox, we want to make another KSE here, 422 * but only if there are not already the limit, which 423 * is 1 per CPU max. 424 * 425 * If the current KSE doesn't have a mailbox we just use it 426 * and give it one. 427 * 428 * Because we don't like to access 429 * the KSE outside of schedlock if we are UNBOUND, 430 * (because it can change if we are preempted by an interrupt) 431 * we can deduce it as having a mailbox if we are UNBOUND, 432 * and only need to actually look at it if we are BOUND, 433 * which is safe. 434 */ 435 if ((td->td_flags & TDF_UNBOUND) || td->td_kse->ke_mailbox) { 436 #if 0 /* while debugging */ 437 #ifdef SMP 438 if (kg->kg_kses > mp_ncpus) 439 #endif 440 return (EPROCLIM); 441 #endif 442 newke = kse_alloc(); 443 } else { 444 newke = NULL; 445 } 446 newkg = NULL; 447 } 448 if (newke) { 449 bzero(&newke->ke_startzero, RANGEOF(struct kse, 450 ke_startzero, ke_endzero)); 451 #if 0 452 bcopy(&ke->ke_startcopy, &newke->ke_startcopy, 453 RANGEOF(struct kse, ke_startcopy, ke_endcopy)); 454 #endif 455 PROC_LOCK(p); 456 if (SIGPENDING(p)) 457 newke->ke_flags |= KEF_ASTPENDING; 458 PROC_UNLOCK(p); 459 /* For the first call this may not have been set */ 460 if (td->td_standin == NULL) { 461 td->td_standin = thread_alloc(); 462 } 463 mtx_lock_spin(&sched_lock); 464 if (newkg) 465 ksegrp_link(newkg, p); 466 else 467 newkg = kg; 468 kse_link(newke, newkg); 469 newke->ke_mailbox = uap->mbx; 470 newke->ke_upcall = mbx.km_func; 471 bcopy(&mbx.km_stack, &newke->ke_stack, sizeof(stack_t)); 472 thread_schedule_upcall(td, newke); 473 mtx_unlock_spin(&sched_lock); 474 } else { 475 /* 476 * If we didn't allocate a new KSE then the we are using 477 * the exisiting (BOUND) kse. 478 */ 479 ke = td->td_kse; 480 ke->ke_mailbox = uap->mbx; 481 ke->ke_upcall = mbx.km_func; 482 bcopy(&mbx.km_stack, &ke->ke_stack, sizeof(stack_t)); 483 } 484 /* 485 * Fill out the KSE-mode specific fields of the new kse. 486 */ 487 488 td->td_retval[0] = 0; 489 td->td_retval[1] = 0; 490 return (0); 491 } 492 493 /* 494 * Is p an inferior of the current process? 495 */ 496 int 497 inferior(p) 498 register struct proc *p; 499 { 500 501 sx_assert(&proctree_lock, SX_LOCKED); 502 for (; p != curproc; p = p->p_pptr) 503 if (p->p_pid == 0) 504 return (0); 505 return (1); 506 } 507 508 /* 509 * Locate a process by number 510 */ 511 struct proc * 512 pfind(pid) 513 register pid_t pid; 514 { 515 register struct proc *p; 516 517 sx_slock(&allproc_lock); 518 p = dopfind(pid); 519 sx_sunlock(&allproc_lock); 520 return (p); 521 } 522 523 static struct proc * 524 dopfind(pid) 525 register pid_t pid; 526 { 527 register struct proc *p; 528 529 sx_assert(&allproc_lock, SX_LOCKED); 530 531 LIST_FOREACH(p, PIDHASH(pid), p_hash) 532 if (p->p_pid == pid) { 533 PROC_LOCK(p); 534 break; 535 } 536 return (p); 537 } 538 539 /* 540 * Locate a process group by number. 541 * The caller must hold proctree_lock. 542 */ 543 struct pgrp * 544 pgfind(pgid) 545 register pid_t pgid; 546 { 547 register struct pgrp *pgrp; 548 549 sx_assert(&proctree_lock, SX_LOCKED); 550 551 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 552 if (pgrp->pg_id == pgid) { 553 PGRP_LOCK(pgrp); 554 return (pgrp); 555 } 556 } 557 return (NULL); 558 } 559 560 /* 561 * Create a new process group. 562 * pgid must be equal to the pid of p. 563 * Begin a new session if required. 564 */ 565 int 566 enterpgrp(p, pgid, pgrp, sess) 567 register struct proc *p; 568 pid_t pgid; 569 struct pgrp *pgrp; 570 struct session *sess; 571 { 572 struct pgrp *pgrp2; 573 574 sx_assert(&proctree_lock, SX_XLOCKED); 575 576 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 577 KASSERT(p->p_pid == pgid, 578 ("enterpgrp: new pgrp and pid != pgid")); 579 580 pgrp2 = pgfind(pgid); 581 582 KASSERT(pgrp2 == NULL, 583 ("enterpgrp: pgrp with pgid exists")); 584 KASSERT(!SESS_LEADER(p), 585 ("enterpgrp: session leader attempted setpgrp")); 586 587 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 588 589 if (sess != NULL) { 590 /* 591 * new session 592 */ 593 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 594 PROC_LOCK(p); 595 p->p_flag &= ~P_CONTROLT; 596 PROC_UNLOCK(p); 597 PGRP_LOCK(pgrp); 598 sess->s_leader = p; 599 sess->s_sid = p->p_pid; 600 sess->s_count = 1; 601 sess->s_ttyvp = NULL; 602 sess->s_ttyp = NULL; 603 bcopy(p->p_session->s_login, sess->s_login, 604 sizeof(sess->s_login)); 605 pgrp->pg_session = sess; 606 KASSERT(p == curproc, 607 ("enterpgrp: mksession and p != curproc")); 608 } else { 609 pgrp->pg_session = p->p_session; 610 SESS_LOCK(pgrp->pg_session); 611 pgrp->pg_session->s_count++; 612 SESS_UNLOCK(pgrp->pg_session); 613 PGRP_LOCK(pgrp); 614 } 615 pgrp->pg_id = pgid; 616 LIST_INIT(&pgrp->pg_members); 617 618 /* 619 * As we have an exclusive lock of proctree_lock, 620 * this should not deadlock. 621 */ 622 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 623 pgrp->pg_jobc = 0; 624 SLIST_INIT(&pgrp->pg_sigiolst); 625 PGRP_UNLOCK(pgrp); 626 627 doenterpgrp(p, pgrp); 628 629 return (0); 630 } 631 632 /* 633 * Move p to an existing process group 634 */ 635 int 636 enterthispgrp(p, pgrp) 637 register struct proc *p; 638 struct pgrp *pgrp; 639 { 640 641 sx_assert(&proctree_lock, SX_XLOCKED); 642 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 643 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 644 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 645 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 646 KASSERT(pgrp->pg_session == p->p_session, 647 ("%s: pgrp's session %p, p->p_session %p.\n", 648 __func__, 649 pgrp->pg_session, 650 p->p_session)); 651 KASSERT(pgrp != p->p_pgrp, 652 ("%s: p belongs to pgrp.", __func__)); 653 654 doenterpgrp(p, pgrp); 655 656 return (0); 657 } 658 659 /* 660 * Move p to a process group 661 */ 662 static void 663 doenterpgrp(p, pgrp) 664 struct proc *p; 665 struct pgrp *pgrp; 666 { 667 struct pgrp *savepgrp; 668 669 sx_assert(&proctree_lock, SX_XLOCKED); 670 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 671 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 672 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 673 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 674 675 savepgrp = p->p_pgrp; 676 677 /* 678 * Adjust eligibility of affected pgrps to participate in job control. 679 * Increment eligibility counts before decrementing, otherwise we 680 * could reach 0 spuriously during the first call. 681 */ 682 fixjobc(p, pgrp, 1); 683 fixjobc(p, p->p_pgrp, 0); 684 685 PGRP_LOCK(pgrp); 686 PGRP_LOCK(savepgrp); 687 PROC_LOCK(p); 688 LIST_REMOVE(p, p_pglist); 689 p->p_pgrp = pgrp; 690 PROC_UNLOCK(p); 691 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 692 PGRP_UNLOCK(savepgrp); 693 PGRP_UNLOCK(pgrp); 694 if (LIST_EMPTY(&savepgrp->pg_members)) 695 pgdelete(savepgrp); 696 } 697 698 /* 699 * remove process from process group 700 */ 701 int 702 leavepgrp(p) 703 register struct proc *p; 704 { 705 struct pgrp *savepgrp; 706 707 sx_assert(&proctree_lock, SX_XLOCKED); 708 savepgrp = p->p_pgrp; 709 PGRP_LOCK(savepgrp); 710 PROC_LOCK(p); 711 LIST_REMOVE(p, p_pglist); 712 p->p_pgrp = NULL; 713 PROC_UNLOCK(p); 714 PGRP_UNLOCK(savepgrp); 715 if (LIST_EMPTY(&savepgrp->pg_members)) 716 pgdelete(savepgrp); 717 return (0); 718 } 719 720 /* 721 * delete a process group 722 */ 723 static void 724 pgdelete(pgrp) 725 register struct pgrp *pgrp; 726 { 727 struct session *savesess; 728 729 sx_assert(&proctree_lock, SX_XLOCKED); 730 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 731 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 732 733 /* 734 * Reset any sigio structures pointing to us as a result of 735 * F_SETOWN with our pgid. 736 */ 737 funsetownlst(&pgrp->pg_sigiolst); 738 739 PGRP_LOCK(pgrp); 740 if (pgrp->pg_session->s_ttyp != NULL && 741 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 742 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 743 LIST_REMOVE(pgrp, pg_hash); 744 savesess = pgrp->pg_session; 745 SESS_LOCK(savesess); 746 savesess->s_count--; 747 SESS_UNLOCK(savesess); 748 PGRP_UNLOCK(pgrp); 749 if (savesess->s_count == 0) { 750 mtx_destroy(&savesess->s_mtx); 751 FREE(pgrp->pg_session, M_SESSION); 752 } 753 mtx_destroy(&pgrp->pg_mtx); 754 FREE(pgrp, M_PGRP); 755 } 756 757 /* 758 * Adjust pgrp jobc counters when specified process changes process group. 759 * We count the number of processes in each process group that "qualify" 760 * the group for terminal job control (those with a parent in a different 761 * process group of the same session). If that count reaches zero, the 762 * process group becomes orphaned. Check both the specified process' 763 * process group and that of its children. 764 * entering == 0 => p is leaving specified group. 765 * entering == 1 => p is entering specified group. 766 */ 767 void 768 fixjobc(p, pgrp, entering) 769 register struct proc *p; 770 register struct pgrp *pgrp; 771 int entering; 772 { 773 register struct pgrp *hispgrp; 774 register struct session *mysession; 775 776 sx_assert(&proctree_lock, SX_LOCKED); 777 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 778 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 779 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 780 781 /* 782 * Check p's parent to see whether p qualifies its own process 783 * group; if so, adjust count for p's process group. 784 */ 785 mysession = pgrp->pg_session; 786 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 787 hispgrp->pg_session == mysession) { 788 PGRP_LOCK(pgrp); 789 if (entering) 790 pgrp->pg_jobc++; 791 else { 792 --pgrp->pg_jobc; 793 if (pgrp->pg_jobc == 0) 794 orphanpg(pgrp); 795 } 796 PGRP_UNLOCK(pgrp); 797 } 798 799 /* 800 * Check this process' children to see whether they qualify 801 * their process groups; if so, adjust counts for children's 802 * process groups. 803 */ 804 LIST_FOREACH(p, &p->p_children, p_sibling) { 805 if ((hispgrp = p->p_pgrp) != pgrp && 806 hispgrp->pg_session == mysession && 807 p->p_state != PRS_ZOMBIE) { 808 PGRP_LOCK(hispgrp); 809 if (entering) 810 hispgrp->pg_jobc++; 811 else { 812 --hispgrp->pg_jobc; 813 if (hispgrp->pg_jobc == 0) 814 orphanpg(hispgrp); 815 } 816 PGRP_UNLOCK(hispgrp); 817 } 818 } 819 } 820 821 /* 822 * A process group has become orphaned; 823 * if there are any stopped processes in the group, 824 * hang-up all process in that group. 825 */ 826 static void 827 orphanpg(pg) 828 struct pgrp *pg; 829 { 830 register struct proc *p; 831 832 PGRP_LOCK_ASSERT(pg, MA_OWNED); 833 834 mtx_lock_spin(&sched_lock); 835 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 836 if (P_SHOULDSTOP(p)) { 837 mtx_unlock_spin(&sched_lock); 838 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 839 PROC_LOCK(p); 840 psignal(p, SIGHUP); 841 psignal(p, SIGCONT); 842 PROC_UNLOCK(p); 843 } 844 return; 845 } 846 } 847 mtx_unlock_spin(&sched_lock); 848 } 849 850 #include "opt_ddb.h" 851 #ifdef DDB 852 #include <ddb/ddb.h> 853 854 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 855 { 856 register struct pgrp *pgrp; 857 register struct proc *p; 858 register int i; 859 860 for (i = 0; i <= pgrphash; i++) { 861 if (!LIST_EMPTY(&pgrphashtbl[i])) { 862 printf("\tindx %d\n", i); 863 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 864 printf( 865 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 866 (void *)pgrp, (long)pgrp->pg_id, 867 (void *)pgrp->pg_session, 868 pgrp->pg_session->s_count, 869 (void *)LIST_FIRST(&pgrp->pg_members)); 870 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 871 printf("\t\tpid %ld addr %p pgrp %p\n", 872 (long)p->p_pid, (void *)p, 873 (void *)p->p_pgrp); 874 } 875 } 876 } 877 } 878 } 879 #endif /* DDB */ 880 881 /* 882 * Fill in an kinfo_proc structure for the specified process. 883 * Must be called with the target process locked. 884 */ 885 void 886 fill_kinfo_proc(p, kp) 887 struct proc *p; 888 struct kinfo_proc *kp; 889 { 890 struct thread *td; 891 struct kse *ke; 892 struct ksegrp *kg; 893 struct tty *tp; 894 struct session *sp; 895 struct timeval tv; 896 897 bzero(kp, sizeof(*kp)); 898 899 kp->ki_structsize = sizeof(*kp); 900 kp->ki_paddr = p; 901 PROC_LOCK_ASSERT(p, MA_OWNED); 902 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 903 kp->ki_args = p->p_args; 904 kp->ki_textvp = p->p_textvp; 905 #ifdef KTRACE 906 kp->ki_tracep = p->p_tracep; 907 mtx_lock(&ktrace_mtx); 908 kp->ki_traceflag = p->p_traceflag; 909 mtx_unlock(&ktrace_mtx); 910 #endif 911 kp->ki_fd = p->p_fd; 912 kp->ki_vmspace = p->p_vmspace; 913 if (p->p_ucred) { 914 kp->ki_uid = p->p_ucred->cr_uid; 915 kp->ki_ruid = p->p_ucred->cr_ruid; 916 kp->ki_svuid = p->p_ucred->cr_svuid; 917 /* XXX bde doesn't like KI_NGROUPS */ 918 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 919 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 920 kp->ki_ngroups * sizeof(gid_t)); 921 kp->ki_rgid = p->p_ucred->cr_rgid; 922 kp->ki_svgid = p->p_ucred->cr_svgid; 923 } 924 if (p->p_procsig) { 925 kp->ki_sigignore = p->p_procsig->ps_sigignore; 926 kp->ki_sigcatch = p->p_procsig->ps_sigcatch; 927 } 928 mtx_lock_spin(&sched_lock); 929 if (p->p_state != PRS_NEW && 930 p->p_state != PRS_ZOMBIE && 931 p->p_vmspace != NULL) { 932 struct vmspace *vm = p->p_vmspace; 933 934 kp->ki_size = vm->vm_map.size; 935 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 936 if (p->p_sflag & PS_INMEM) 937 kp->ki_rssize += UAREA_PAGES; 938 FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */ 939 kp->ki_rssize += KSTACK_PAGES; 940 kp->ki_swrss = vm->vm_swrss; 941 kp->ki_tsize = vm->vm_tsize; 942 kp->ki_dsize = vm->vm_dsize; 943 kp->ki_ssize = vm->vm_ssize; 944 } 945 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 946 kp->ki_start = p->p_stats->p_start; 947 kp->ki_rusage = p->p_stats->p_ru; 948 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 949 p->p_stats->p_cru.ru_stime.tv_sec; 950 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 951 p->p_stats->p_cru.ru_stime.tv_usec; 952 } 953 if (p->p_state != PRS_ZOMBIE) { 954 td = FIRST_THREAD_IN_PROC(p); 955 if (td == NULL) { 956 /* XXXKSE: This should never happen. */ 957 printf("fill_kinfo_proc(): pid %d has no threads!\n", 958 p->p_pid); 959 mtx_unlock_spin(&sched_lock); 960 return; 961 } 962 if (!(p->p_flag & P_KSES)) { 963 if (td->td_wmesg != NULL) { 964 strlcpy(kp->ki_wmesg, td->td_wmesg, 965 sizeof(kp->ki_wmesg)); 966 } 967 if (TD_ON_LOCK(td)) { 968 kp->ki_kiflag |= KI_LOCKBLOCK; 969 strlcpy(kp->ki_lockname, td->td_lockname, 970 sizeof(kp->ki_lockname)); 971 } 972 } 973 974 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 975 if (TD_ON_RUNQ(td) || 976 TD_CAN_RUN(td) || 977 TD_IS_RUNNING(td)) { 978 kp->ki_stat = SRUN; 979 } else if (P_SHOULDSTOP(p)) { 980 kp->ki_stat = SSTOP; 981 } else if (TD_IS_SLEEPING(td)) { 982 kp->ki_stat = SSLEEP; 983 } else if (TD_ON_LOCK(td)) { 984 kp->ki_stat = SLOCK; 985 } else { 986 kp->ki_stat = SWAIT; 987 } 988 } else { 989 kp->ki_stat = SIDL; 990 } 991 992 kp->ki_sflag = p->p_sflag; 993 kp->ki_swtime = p->p_swtime; 994 kp->ki_pid = p->p_pid; 995 /* vvv XXXKSE */ 996 if (!(p->p_flag & P_KSES)) { 997 kg = td->td_ksegrp; 998 ke = td->td_kse; 999 KASSERT((ke != NULL), ("fill_kinfo_proc: Null KSE")); 1000 bintime2timeval(&p->p_runtime, &tv); 1001 kp->ki_runtime = 1002 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 1003 1004 /* things in the KSE GROUP */ 1005 kp->ki_estcpu = kg->kg_estcpu; 1006 kp->ki_slptime = kg->kg_slptime; 1007 kp->ki_pri.pri_user = kg->kg_user_pri; 1008 kp->ki_pri.pri_class = kg->kg_pri_class; 1009 kp->ki_nice = kg->kg_nice; 1010 1011 /* Things in the thread */ 1012 kp->ki_wchan = td->td_wchan; 1013 kp->ki_pri.pri_level = td->td_priority; 1014 kp->ki_pri.pri_native = td->td_base_pri; 1015 kp->ki_lastcpu = td->td_lastcpu; 1016 kp->ki_tdflags = td->td_flags; 1017 kp->ki_pcb = td->td_pcb; 1018 kp->ki_kstack = (void *)td->td_kstack; 1019 1020 /* Things in the kse */ 1021 kp->ki_rqindex = ke->ke_rqindex; 1022 kp->ki_oncpu = ke->ke_oncpu; 1023 kp->ki_pctcpu = ke->ke_pctcpu; 1024 } else { 1025 kp->ki_oncpu = -1; 1026 kp->ki_lastcpu = -1; 1027 kp->ki_tdflags = -1; 1028 /* All the rest are 0 for now */ 1029 } 1030 /* ^^^ XXXKSE */ 1031 } else { 1032 kp->ki_stat = SZOMB; 1033 } 1034 mtx_unlock_spin(&sched_lock); 1035 sp = NULL; 1036 tp = NULL; 1037 if (p->p_pgrp) { 1038 kp->ki_pgid = p->p_pgrp->pg_id; 1039 kp->ki_jobc = p->p_pgrp->pg_jobc; 1040 sp = p->p_pgrp->pg_session; 1041 1042 if (sp != NULL) { 1043 kp->ki_sid = sp->s_sid; 1044 SESS_LOCK(sp); 1045 strlcpy(kp->ki_login, sp->s_login, 1046 sizeof(kp->ki_login)); 1047 if (sp->s_ttyvp) 1048 kp->ki_kiflag |= KI_CTTY; 1049 if (SESS_LEADER(p)) 1050 kp->ki_kiflag |= KI_SLEADER; 1051 tp = sp->s_ttyp; 1052 SESS_UNLOCK(sp); 1053 } 1054 } 1055 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1056 kp->ki_tdev = dev2udev(tp->t_dev); 1057 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1058 if (tp->t_session) 1059 kp->ki_tsid = tp->t_session->s_sid; 1060 } else 1061 kp->ki_tdev = NOUDEV; 1062 if (p->p_comm[0] != '\0') { 1063 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1064 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 1065 } 1066 kp->ki_siglist = p->p_siglist; 1067 kp->ki_sigmask = p->p_sigmask; 1068 kp->ki_xstat = p->p_xstat; 1069 kp->ki_acflag = p->p_acflag; 1070 kp->ki_flag = p->p_flag; 1071 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 1072 if (jailed(p->p_ucred)) 1073 kp->ki_flag |= P_JAILED; 1074 kp->ki_lock = p->p_lock; 1075 if (p->p_pptr) 1076 kp->ki_ppid = p->p_pptr->p_pid; 1077 } 1078 1079 /* 1080 * Locate a zombie process by number 1081 */ 1082 struct proc * 1083 zpfind(pid_t pid) 1084 { 1085 struct proc *p; 1086 1087 sx_slock(&allproc_lock); 1088 LIST_FOREACH(p, &zombproc, p_list) 1089 if (p->p_pid == pid) { 1090 PROC_LOCK(p); 1091 break; 1092 } 1093 sx_sunlock(&allproc_lock); 1094 return (p); 1095 } 1096 1097 1098 /* 1099 * Must be called with the process locked and will return with it unlocked. 1100 */ 1101 static int 1102 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) 1103 { 1104 struct kinfo_proc kinfo_proc; 1105 int error; 1106 struct proc *np; 1107 pid_t pid = p->p_pid; 1108 1109 PROC_LOCK_ASSERT(p, MA_OWNED); 1110 fill_kinfo_proc(p, &kinfo_proc); 1111 PROC_UNLOCK(p); 1112 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); 1113 if (error) 1114 return (error); 1115 if (doingzomb) 1116 np = zpfind(pid); 1117 else { 1118 if (pid == 0) 1119 return (0); 1120 np = pfind(pid); 1121 } 1122 if (np == NULL) 1123 return EAGAIN; 1124 if (np != p) { 1125 PROC_UNLOCK(np); 1126 return EAGAIN; 1127 } 1128 PROC_UNLOCK(np); 1129 return (0); 1130 } 1131 1132 static int 1133 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1134 { 1135 int *name = (int*) arg1; 1136 u_int namelen = arg2; 1137 struct proc *p; 1138 int doingzomb; 1139 int error = 0; 1140 1141 if (oidp->oid_number == KERN_PROC_PID) { 1142 if (namelen != 1) 1143 return (EINVAL); 1144 p = pfind((pid_t)name[0]); 1145 if (!p) 1146 return (0); 1147 if (p_cansee(curthread, p)) { 1148 PROC_UNLOCK(p); 1149 return (0); 1150 } 1151 error = sysctl_out_proc(p, req, 0); 1152 return (error); 1153 } 1154 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 1155 ; 1156 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 1157 ; 1158 else 1159 return (EINVAL); 1160 1161 if (!req->oldptr) { 1162 /* overestimate by 5 procs */ 1163 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1164 if (error) 1165 return (error); 1166 } 1167 sysctl_wire_old_buffer(req, 0); 1168 sx_slock(&allproc_lock); 1169 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1170 if (!doingzomb) 1171 p = LIST_FIRST(&allproc); 1172 else 1173 p = LIST_FIRST(&zombproc); 1174 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1175 PROC_LOCK(p); 1176 /* 1177 * Show a user only appropriate processes. 1178 */ 1179 if (p_cansee(curthread, p)) { 1180 PROC_UNLOCK(p); 1181 continue; 1182 } 1183 /* 1184 * Skip embryonic processes. 1185 */ 1186 if (p->p_state == PRS_NEW) { 1187 PROC_UNLOCK(p); 1188 continue; 1189 } 1190 /* 1191 * TODO - make more efficient (see notes below). 1192 * do by session. 1193 */ 1194 switch (oidp->oid_number) { 1195 1196 case KERN_PROC_PGRP: 1197 /* could do this by traversing pgrp */ 1198 if (p->p_pgrp == NULL || 1199 p->p_pgrp->pg_id != (pid_t)name[0]) { 1200 PROC_UNLOCK(p); 1201 continue; 1202 } 1203 break; 1204 1205 case KERN_PROC_TTY: 1206 if ((p->p_flag & P_CONTROLT) == 0 || 1207 p->p_session == NULL) { 1208 PROC_UNLOCK(p); 1209 continue; 1210 } 1211 SESS_LOCK(p->p_session); 1212 if (p->p_session->s_ttyp == NULL || 1213 dev2udev(p->p_session->s_ttyp->t_dev) != 1214 (udev_t)name[0]) { 1215 SESS_UNLOCK(p->p_session); 1216 PROC_UNLOCK(p); 1217 continue; 1218 } 1219 SESS_UNLOCK(p->p_session); 1220 break; 1221 1222 case KERN_PROC_UID: 1223 if (p->p_ucred == NULL || 1224 p->p_ucred->cr_uid != (uid_t)name[0]) { 1225 PROC_UNLOCK(p); 1226 continue; 1227 } 1228 break; 1229 1230 case KERN_PROC_RUID: 1231 if (p->p_ucred == NULL || 1232 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1233 PROC_UNLOCK(p); 1234 continue; 1235 } 1236 break; 1237 } 1238 1239 error = sysctl_out_proc(p, req, doingzomb); 1240 if (error) { 1241 sx_sunlock(&allproc_lock); 1242 return (error); 1243 } 1244 } 1245 } 1246 sx_sunlock(&allproc_lock); 1247 return (0); 1248 } 1249 1250 struct pargs * 1251 pargs_alloc(int len) 1252 { 1253 struct pargs *pa; 1254 1255 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1256 M_WAITOK); 1257 pa->ar_ref = 1; 1258 pa->ar_length = len; 1259 return (pa); 1260 } 1261 1262 void 1263 pargs_free(struct pargs *pa) 1264 { 1265 1266 FREE(pa, M_PARGS); 1267 } 1268 1269 void 1270 pargs_hold(struct pargs *pa) 1271 { 1272 1273 if (pa == NULL) 1274 return; 1275 PARGS_LOCK(pa); 1276 pa->ar_ref++; 1277 PARGS_UNLOCK(pa); 1278 } 1279 1280 void 1281 pargs_drop(struct pargs *pa) 1282 { 1283 1284 if (pa == NULL) 1285 return; 1286 PARGS_LOCK(pa); 1287 if (--pa->ar_ref == 0) { 1288 PARGS_UNLOCK(pa); 1289 pargs_free(pa); 1290 } else 1291 PARGS_UNLOCK(pa); 1292 } 1293 1294 /* 1295 * This sysctl allows a process to retrieve the argument list or process 1296 * title for another process without groping around in the address space 1297 * of the other process. It also allow a process to set its own "process 1298 * title to a string of its own choice. 1299 */ 1300 static int 1301 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1302 { 1303 int *name = (int*) arg1; 1304 u_int namelen = arg2; 1305 struct proc *p; 1306 struct pargs *pa; 1307 int error = 0; 1308 1309 if (namelen != 1) 1310 return (EINVAL); 1311 1312 p = pfind((pid_t)name[0]); 1313 if (!p) 1314 return (0); 1315 1316 if ((!ps_argsopen) && p_cansee(curthread, p)) { 1317 PROC_UNLOCK(p); 1318 return (0); 1319 } 1320 PROC_UNLOCK(p); 1321 1322 if (req->newptr && curproc != p) 1323 return (EPERM); 1324 1325 PROC_LOCK(p); 1326 pa = p->p_args; 1327 pargs_hold(pa); 1328 PROC_UNLOCK(p); 1329 if (req->oldptr && pa != NULL) { 1330 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1331 } 1332 pargs_drop(pa); 1333 if (req->newptr == NULL) 1334 return (error); 1335 1336 PROC_LOCK(p); 1337 pa = p->p_args; 1338 p->p_args = NULL; 1339 PROC_UNLOCK(p); 1340 pargs_drop(pa); 1341 1342 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1343 return (error); 1344 1345 pa = pargs_alloc(req->newlen); 1346 error = SYSCTL_IN(req, pa->ar_args, req->newlen); 1347 if (!error) { 1348 PROC_LOCK(p); 1349 p->p_args = pa; 1350 PROC_UNLOCK(p); 1351 } else 1352 pargs_free(pa); 1353 return (error); 1354 } 1355 1356 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1357 1358 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1359 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1360 1361 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1362 sysctl_kern_proc, "Process table"); 1363 1364 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1365 sysctl_kern_proc, "Process table"); 1366 1367 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1368 sysctl_kern_proc, "Process table"); 1369 1370 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1371 sysctl_kern_proc, "Process table"); 1372 1373 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1374 sysctl_kern_proc, "Process table"); 1375 1376 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1377 sysctl_kern_proc_args, "Process argument list"); 1378 1379