1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_ddb.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/bitstring.h> 45 #include <sys/elf.h> 46 #include <sys/eventhandler.h> 47 #include <sys/exec.h> 48 #include <sys/jail.h> 49 #include <sys/kernel.h> 50 #include <sys/limits.h> 51 #include <sys/lock.h> 52 #include <sys/loginclass.h> 53 #include <sys/malloc.h> 54 #include <sys/mman.h> 55 #include <sys/mount.h> 56 #include <sys/mutex.h> 57 #include <sys/proc.h> 58 #include <sys/ptrace.h> 59 #include <sys/refcount.h> 60 #include <sys/resourcevar.h> 61 #include <sys/rwlock.h> 62 #include <sys/sbuf.h> 63 #include <sys/sysent.h> 64 #include <sys/sched.h> 65 #include <sys/smp.h> 66 #include <sys/stack.h> 67 #include <sys/stat.h> 68 #include <sys/sysctl.h> 69 #include <sys/filedesc.h> 70 #include <sys/tty.h> 71 #include <sys/signalvar.h> 72 #include <sys/sdt.h> 73 #include <sys/sx.h> 74 #include <sys/user.h> 75 #include <sys/vnode.h> 76 #include <sys/wait.h> 77 78 #ifdef DDB 79 #include <ddb/ddb.h> 80 #endif 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/vm_extern.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/uma.h> 90 91 #ifdef COMPAT_FREEBSD32 92 #include <compat/freebsd32/freebsd32.h> 93 #include <compat/freebsd32/freebsd32_util.h> 94 #endif 95 96 SDT_PROVIDER_DEFINE(proc); 97 98 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 99 MALLOC_DEFINE(M_SESSION, "session", "session header"); 100 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 101 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 102 103 static void doenterpgrp(struct proc *, struct pgrp *); 104 static void orphanpg(struct pgrp *pg); 105 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 106 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 107 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 108 int preferthread); 109 static void pgadjustjobc(struct pgrp *pgrp, int entering); 110 static void pgdelete(struct pgrp *); 111 static int proc_ctor(void *mem, int size, void *arg, int flags); 112 static void proc_dtor(void *mem, int size, void *arg); 113 static int proc_init(void *mem, int size, int flags); 114 static void proc_fini(void *mem, int size); 115 static void pargs_free(struct pargs *pa); 116 117 /* 118 * Other process lists 119 */ 120 struct pidhashhead *pidhashtbl; 121 struct sx *pidhashtbl_lock; 122 u_long pidhash; 123 u_long pidhashlock; 124 struct pgrphashhead *pgrphashtbl; 125 u_long pgrphash; 126 struct proclist allproc; 127 struct sx __exclusive_cache_line allproc_lock; 128 struct sx __exclusive_cache_line proctree_lock; 129 struct mtx __exclusive_cache_line ppeers_lock; 130 struct mtx __exclusive_cache_line procid_lock; 131 uma_zone_t proc_zone; 132 133 /* 134 * The offset of various fields in struct proc and struct thread. 135 * These are used by kernel debuggers to enumerate kernel threads and 136 * processes. 137 */ 138 const int proc_off_p_pid = offsetof(struct proc, p_pid); 139 const int proc_off_p_comm = offsetof(struct proc, p_comm); 140 const int proc_off_p_list = offsetof(struct proc, p_list); 141 const int proc_off_p_threads = offsetof(struct proc, p_threads); 142 const int thread_off_td_tid = offsetof(struct thread, td_tid); 143 const int thread_off_td_name = offsetof(struct thread, td_name); 144 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 145 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 146 const int thread_off_td_plist = offsetof(struct thread, td_plist); 147 148 EVENTHANDLER_LIST_DEFINE(process_ctor); 149 EVENTHANDLER_LIST_DEFINE(process_dtor); 150 EVENTHANDLER_LIST_DEFINE(process_init); 151 EVENTHANDLER_LIST_DEFINE(process_fini); 152 EVENTHANDLER_LIST_DEFINE(process_exit); 153 EVENTHANDLER_LIST_DEFINE(process_fork); 154 EVENTHANDLER_LIST_DEFINE(process_exec); 155 156 int kstack_pages = KSTACK_PAGES; 157 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 158 "Kernel stack size in pages"); 159 static int vmmap_skip_res_cnt = 0; 160 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 161 &vmmap_skip_res_cnt, 0, 162 "Skip calculation of the pages resident count in kern.proc.vmmap"); 163 164 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 165 #ifdef COMPAT_FREEBSD32 166 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 167 #endif 168 169 /* 170 * Initialize global process hashing structures. 171 */ 172 void 173 procinit(void) 174 { 175 u_long i; 176 177 sx_init(&allproc_lock, "allproc"); 178 sx_init(&proctree_lock, "proctree"); 179 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 180 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 181 LIST_INIT(&allproc); 182 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 183 pidhashlock = (pidhash + 1) / 64; 184 if (pidhashlock > 0) 185 pidhashlock--; 186 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 187 M_PROC, M_WAITOK | M_ZERO); 188 for (i = 0; i < pidhashlock + 1; i++) 189 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 190 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 191 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 192 proc_ctor, proc_dtor, proc_init, proc_fini, 193 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uihashinit(); 195 } 196 197 /* 198 * Prepare a proc for use. 199 */ 200 static int 201 proc_ctor(void *mem, int size, void *arg, int flags) 202 { 203 struct proc *p; 204 struct thread *td; 205 206 p = (struct proc *)mem; 207 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 208 td = FIRST_THREAD_IN_PROC(p); 209 if (td != NULL) { 210 /* Make sure all thread constructors are executed */ 211 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 212 } 213 return (0); 214 } 215 216 /* 217 * Reclaim a proc after use. 218 */ 219 static void 220 proc_dtor(void *mem, int size, void *arg) 221 { 222 struct proc *p; 223 struct thread *td; 224 225 /* INVARIANTS checks go here */ 226 p = (struct proc *)mem; 227 td = FIRST_THREAD_IN_PROC(p); 228 if (td != NULL) { 229 #ifdef INVARIANTS 230 KASSERT((p->p_numthreads == 1), 231 ("bad number of threads in exiting process")); 232 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 233 #endif 234 /* Free all OSD associated to this thread. */ 235 osd_thread_exit(td); 236 td_softdep_cleanup(td); 237 MPASS(td->td_su == NULL); 238 239 /* Make sure all thread destructors are executed */ 240 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 241 } 242 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 243 if (p->p_ksi != NULL) 244 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 245 } 246 247 /* 248 * Initialize type-stable parts of a proc (when newly created). 249 */ 250 static int 251 proc_init(void *mem, int size, int flags) 252 { 253 struct proc *p; 254 255 p = (struct proc *)mem; 256 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 257 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 258 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 259 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 260 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 261 cv_init(&p->p_pwait, "ppwait"); 262 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 263 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 264 p->p_stats = pstats_alloc(); 265 p->p_pgrp = NULL; 266 return (0); 267 } 268 269 /* 270 * UMA should ensure that this function is never called. 271 * Freeing a proc structure would violate type stability. 272 */ 273 static void 274 proc_fini(void *mem, int size) 275 { 276 #ifdef notnow 277 struct proc *p; 278 279 p = (struct proc *)mem; 280 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 281 pstats_free(p->p_stats); 282 thread_free(FIRST_THREAD_IN_PROC(p)); 283 mtx_destroy(&p->p_mtx); 284 if (p->p_ksi != NULL) 285 ksiginfo_free(p->p_ksi); 286 #else 287 panic("proc reclaimed"); 288 #endif 289 } 290 291 /* 292 * PID space management. 293 * 294 * These bitmaps are used by fork_findpid. 295 */ 296 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 297 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 298 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 299 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 300 301 static bitstr_t *proc_id_array[] = { 302 proc_id_pidmap, 303 proc_id_grpidmap, 304 proc_id_sessidmap, 305 proc_id_reapmap, 306 }; 307 308 void 309 proc_id_set(int type, pid_t id) 310 { 311 312 KASSERT(type >= 0 && type < nitems(proc_id_array), 313 ("invalid type %d\n", type)); 314 mtx_lock(&procid_lock); 315 KASSERT(bit_test(proc_id_array[type], id) == 0, 316 ("bit %d already set in %d\n", id, type)); 317 bit_set(proc_id_array[type], id); 318 mtx_unlock(&procid_lock); 319 } 320 321 void 322 proc_id_set_cond(int type, pid_t id) 323 { 324 325 KASSERT(type >= 0 && type < nitems(proc_id_array), 326 ("invalid type %d\n", type)); 327 if (bit_test(proc_id_array[type], id)) 328 return; 329 mtx_lock(&procid_lock); 330 bit_set(proc_id_array[type], id); 331 mtx_unlock(&procid_lock); 332 } 333 334 void 335 proc_id_clear(int type, pid_t id) 336 { 337 338 KASSERT(type >= 0 && type < nitems(proc_id_array), 339 ("invalid type %d\n", type)); 340 mtx_lock(&procid_lock); 341 KASSERT(bit_test(proc_id_array[type], id) != 0, 342 ("bit %d not set in %d\n", id, type)); 343 bit_clear(proc_id_array[type], id); 344 mtx_unlock(&procid_lock); 345 } 346 347 /* 348 * Is p an inferior of the current process? 349 */ 350 int 351 inferior(struct proc *p) 352 { 353 354 sx_assert(&proctree_lock, SX_LOCKED); 355 PROC_LOCK_ASSERT(p, MA_OWNED); 356 for (; p != curproc; p = proc_realparent(p)) { 357 if (p->p_pid == 0) 358 return (0); 359 } 360 return (1); 361 } 362 363 /* 364 * Shared lock all the pid hash lists. 365 */ 366 void 367 pidhash_slockall(void) 368 { 369 u_long i; 370 371 for (i = 0; i < pidhashlock + 1; i++) 372 sx_slock(&pidhashtbl_lock[i]); 373 } 374 375 /* 376 * Shared unlock all the pid hash lists. 377 */ 378 void 379 pidhash_sunlockall(void) 380 { 381 u_long i; 382 383 for (i = 0; i < pidhashlock + 1; i++) 384 sx_sunlock(&pidhashtbl_lock[i]); 385 } 386 387 /* 388 * Similar to pfind_any(), this function finds zombies. 389 */ 390 struct proc * 391 pfind_any_locked(pid_t pid) 392 { 393 struct proc *p; 394 395 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 396 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 397 if (p->p_pid == pid) { 398 PROC_LOCK(p); 399 if (p->p_state == PRS_NEW) { 400 PROC_UNLOCK(p); 401 p = NULL; 402 } 403 break; 404 } 405 } 406 return (p); 407 } 408 409 /* 410 * Locate a process by number. 411 * 412 * By not returning processes in the PRS_NEW state, we allow callers to avoid 413 * testing for that condition to avoid dereferencing p_ucred, et al. 414 */ 415 static __always_inline struct proc * 416 _pfind(pid_t pid, bool zombie) 417 { 418 struct proc *p; 419 420 p = curproc; 421 if (p->p_pid == pid) { 422 PROC_LOCK(p); 423 return (p); 424 } 425 sx_slock(PIDHASHLOCK(pid)); 426 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 427 if (p->p_pid == pid) { 428 PROC_LOCK(p); 429 if (p->p_state == PRS_NEW || 430 (!zombie && p->p_state == PRS_ZOMBIE)) { 431 PROC_UNLOCK(p); 432 p = NULL; 433 } 434 break; 435 } 436 } 437 sx_sunlock(PIDHASHLOCK(pid)); 438 return (p); 439 } 440 441 struct proc * 442 pfind(pid_t pid) 443 { 444 445 return (_pfind(pid, false)); 446 } 447 448 /* 449 * Same as pfind but allow zombies. 450 */ 451 struct proc * 452 pfind_any(pid_t pid) 453 { 454 455 return (_pfind(pid, true)); 456 } 457 458 static struct proc * 459 pfind_tid(pid_t tid) 460 { 461 struct proc *p; 462 struct thread *td; 463 464 sx_slock(&allproc_lock); 465 FOREACH_PROC_IN_SYSTEM(p) { 466 PROC_LOCK(p); 467 if (p->p_state == PRS_NEW) { 468 PROC_UNLOCK(p); 469 continue; 470 } 471 FOREACH_THREAD_IN_PROC(p, td) { 472 if (td->td_tid == tid) 473 goto found; 474 } 475 PROC_UNLOCK(p); 476 } 477 found: 478 sx_sunlock(&allproc_lock); 479 return (p); 480 } 481 482 /* 483 * Locate a process group by number. 484 * The caller must hold proctree_lock. 485 */ 486 struct pgrp * 487 pgfind(pid_t pgid) 488 { 489 struct pgrp *pgrp; 490 491 sx_assert(&proctree_lock, SX_LOCKED); 492 493 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 494 if (pgrp->pg_id == pgid) { 495 PGRP_LOCK(pgrp); 496 return (pgrp); 497 } 498 } 499 return (NULL); 500 } 501 502 /* 503 * Locate process and do additional manipulations, depending on flags. 504 */ 505 int 506 pget(pid_t pid, int flags, struct proc **pp) 507 { 508 struct proc *p; 509 int error; 510 511 p = curproc; 512 if (p->p_pid == pid) { 513 PROC_LOCK(p); 514 } else { 515 p = NULL; 516 if (pid <= PID_MAX) { 517 if ((flags & PGET_NOTWEXIT) == 0) 518 p = pfind_any(pid); 519 else 520 p = pfind(pid); 521 } else if ((flags & PGET_NOTID) == 0) { 522 p = pfind_tid(pid); 523 } 524 if (p == NULL) 525 return (ESRCH); 526 if ((flags & PGET_CANSEE) != 0) { 527 error = p_cansee(curthread, p); 528 if (error != 0) 529 goto errout; 530 } 531 } 532 if ((flags & PGET_CANDEBUG) != 0) { 533 error = p_candebug(curthread, p); 534 if (error != 0) 535 goto errout; 536 } 537 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 538 error = EPERM; 539 goto errout; 540 } 541 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 542 error = ESRCH; 543 goto errout; 544 } 545 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 546 /* 547 * XXXRW: Not clear ESRCH is the right error during proc 548 * execve(). 549 */ 550 error = ESRCH; 551 goto errout; 552 } 553 if ((flags & PGET_HOLD) != 0) { 554 _PHOLD(p); 555 PROC_UNLOCK(p); 556 } 557 *pp = p; 558 return (0); 559 errout: 560 PROC_UNLOCK(p); 561 return (error); 562 } 563 564 /* 565 * Create a new process group. 566 * pgid must be equal to the pid of p. 567 * Begin a new session if required. 568 */ 569 int 570 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 571 { 572 573 sx_assert(&proctree_lock, SX_XLOCKED); 574 575 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 576 KASSERT(p->p_pid == pgid, 577 ("enterpgrp: new pgrp and pid != pgid")); 578 KASSERT(pgfind(pgid) == NULL, 579 ("enterpgrp: pgrp with pgid exists")); 580 KASSERT(!SESS_LEADER(p), 581 ("enterpgrp: session leader attempted setpgrp")); 582 583 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 584 585 if (sess != NULL) { 586 /* 587 * new session 588 */ 589 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 590 PROC_LOCK(p); 591 p->p_flag &= ~P_CONTROLT; 592 PROC_UNLOCK(p); 593 PGRP_LOCK(pgrp); 594 sess->s_leader = p; 595 sess->s_sid = p->p_pid; 596 proc_id_set(PROC_ID_SESSION, p->p_pid); 597 refcount_init(&sess->s_count, 1); 598 sess->s_ttyvp = NULL; 599 sess->s_ttydp = NULL; 600 sess->s_ttyp = NULL; 601 bcopy(p->p_session->s_login, sess->s_login, 602 sizeof(sess->s_login)); 603 pgrp->pg_session = sess; 604 KASSERT(p == curproc, 605 ("enterpgrp: mksession and p != curproc")); 606 } else { 607 pgrp->pg_session = p->p_session; 608 sess_hold(pgrp->pg_session); 609 PGRP_LOCK(pgrp); 610 } 611 pgrp->pg_id = pgid; 612 proc_id_set(PROC_ID_GROUP, p->p_pid); 613 LIST_INIT(&pgrp->pg_members); 614 615 /* 616 * As we have an exclusive lock of proctree_lock, 617 * this should not deadlock. 618 */ 619 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 620 pgrp->pg_jobc = 0; 621 SLIST_INIT(&pgrp->pg_sigiolst); 622 PGRP_UNLOCK(pgrp); 623 624 doenterpgrp(p, pgrp); 625 626 return (0); 627 } 628 629 /* 630 * Move p to an existing process group 631 */ 632 int 633 enterthispgrp(struct proc *p, struct pgrp *pgrp) 634 { 635 636 sx_assert(&proctree_lock, SX_XLOCKED); 637 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 638 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 639 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 640 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 641 KASSERT(pgrp->pg_session == p->p_session, 642 ("%s: pgrp's session %p, p->p_session %p.\n", 643 __func__, 644 pgrp->pg_session, 645 p->p_session)); 646 KASSERT(pgrp != p->p_pgrp, 647 ("%s: p belongs to pgrp.", __func__)); 648 649 doenterpgrp(p, pgrp); 650 651 return (0); 652 } 653 654 /* 655 * Move p to a process group 656 */ 657 static void 658 doenterpgrp(struct proc *p, struct pgrp *pgrp) 659 { 660 struct pgrp *savepgrp; 661 662 sx_assert(&proctree_lock, SX_XLOCKED); 663 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 664 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 665 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 666 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 667 668 savepgrp = p->p_pgrp; 669 670 /* 671 * Adjust eligibility of affected pgrps to participate in job control. 672 * Increment eligibility counts before decrementing, otherwise we 673 * could reach 0 spuriously during the first call. 674 */ 675 fixjobc(p, pgrp, 1); 676 fixjobc(p, p->p_pgrp, 0); 677 678 PGRP_LOCK(pgrp); 679 PGRP_LOCK(savepgrp); 680 PROC_LOCK(p); 681 LIST_REMOVE(p, p_pglist); 682 p->p_pgrp = pgrp; 683 PROC_UNLOCK(p); 684 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 685 PGRP_UNLOCK(savepgrp); 686 PGRP_UNLOCK(pgrp); 687 if (LIST_EMPTY(&savepgrp->pg_members)) 688 pgdelete(savepgrp); 689 } 690 691 /* 692 * remove process from process group 693 */ 694 int 695 leavepgrp(struct proc *p) 696 { 697 struct pgrp *savepgrp; 698 699 sx_assert(&proctree_lock, SX_XLOCKED); 700 savepgrp = p->p_pgrp; 701 PGRP_LOCK(savepgrp); 702 PROC_LOCK(p); 703 LIST_REMOVE(p, p_pglist); 704 p->p_pgrp = NULL; 705 PROC_UNLOCK(p); 706 PGRP_UNLOCK(savepgrp); 707 if (LIST_EMPTY(&savepgrp->pg_members)) 708 pgdelete(savepgrp); 709 return (0); 710 } 711 712 /* 713 * delete a process group 714 */ 715 static void 716 pgdelete(struct pgrp *pgrp) 717 { 718 struct session *savesess; 719 struct tty *tp; 720 721 sx_assert(&proctree_lock, SX_XLOCKED); 722 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 723 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 724 725 /* 726 * Reset any sigio structures pointing to us as a result of 727 * F_SETOWN with our pgid. 728 */ 729 funsetownlst(&pgrp->pg_sigiolst); 730 731 PGRP_LOCK(pgrp); 732 tp = pgrp->pg_session->s_ttyp; 733 LIST_REMOVE(pgrp, pg_hash); 734 savesess = pgrp->pg_session; 735 PGRP_UNLOCK(pgrp); 736 737 /* Remove the reference to the pgrp before deallocating it. */ 738 if (tp != NULL) { 739 tty_lock(tp); 740 tty_rel_pgrp(tp, pgrp); 741 } 742 743 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 744 mtx_destroy(&pgrp->pg_mtx); 745 free(pgrp, M_PGRP); 746 sess_release(savesess); 747 } 748 749 static void 750 pgadjustjobc(struct pgrp *pgrp, int entering) 751 { 752 753 PGRP_LOCK(pgrp); 754 if (entering) { 755 MPASS(pgrp->pg_jobc >= 0); 756 pgrp->pg_jobc++; 757 } else { 758 MPASS(pgrp->pg_jobc > 0); 759 --pgrp->pg_jobc; 760 if (pgrp->pg_jobc == 0) 761 orphanpg(pgrp); 762 } 763 PGRP_UNLOCK(pgrp); 764 } 765 766 /* 767 * Adjust pgrp jobc counters when specified process changes process group. 768 * We count the number of processes in each process group that "qualify" 769 * the group for terminal job control (those with a parent in a different 770 * process group of the same session). If that count reaches zero, the 771 * process group becomes orphaned. Check both the specified process' 772 * process group and that of its children. 773 * entering == 0 => p is leaving specified group. 774 * entering == 1 => p is entering specified group. 775 */ 776 void 777 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 778 { 779 struct pgrp *hispgrp; 780 struct session *mysession; 781 struct proc *q; 782 783 sx_assert(&proctree_lock, SX_LOCKED); 784 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 785 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 786 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 787 788 /* 789 * Check p's parent to see whether p qualifies its own process 790 * group; if so, adjust count for p's process group. 791 */ 792 mysession = pgrp->pg_session; 793 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 794 hispgrp->pg_session == mysession) 795 pgadjustjobc(pgrp, entering); 796 797 /* 798 * Check this process' children to see whether they qualify 799 * their process groups; if so, adjust counts for children's 800 * process groups. 801 */ 802 LIST_FOREACH(q, &p->p_children, p_sibling) { 803 hispgrp = q->p_pgrp; 804 if (hispgrp == pgrp || 805 hispgrp->pg_session != mysession) 806 continue; 807 if (q->p_state == PRS_ZOMBIE) 808 continue; 809 pgadjustjobc(hispgrp, entering); 810 } 811 } 812 813 void 814 killjobc(void) 815 { 816 struct session *sp; 817 struct tty *tp; 818 struct proc *p; 819 struct vnode *ttyvp; 820 821 p = curproc; 822 MPASS(p->p_flag & P_WEXIT); 823 /* 824 * Do a quick check to see if there is anything to do with the 825 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 826 */ 827 PROC_LOCK(p); 828 if (!SESS_LEADER(p) && 829 (p->p_pgrp == p->p_pptr->p_pgrp) && 830 LIST_EMPTY(&p->p_children)) { 831 PROC_UNLOCK(p); 832 return; 833 } 834 PROC_UNLOCK(p); 835 836 sx_xlock(&proctree_lock); 837 if (SESS_LEADER(p)) { 838 sp = p->p_session; 839 840 /* 841 * s_ttyp is not zero'd; we use this to indicate that 842 * the session once had a controlling terminal. (for 843 * logging and informational purposes) 844 */ 845 SESS_LOCK(sp); 846 ttyvp = sp->s_ttyvp; 847 tp = sp->s_ttyp; 848 sp->s_ttyvp = NULL; 849 sp->s_ttydp = NULL; 850 sp->s_leader = NULL; 851 SESS_UNLOCK(sp); 852 853 /* 854 * Signal foreground pgrp and revoke access to 855 * controlling terminal if it has not been revoked 856 * already. 857 * 858 * Because the TTY may have been revoked in the mean 859 * time and could already have a new session associated 860 * with it, make sure we don't send a SIGHUP to a 861 * foreground process group that does not belong to this 862 * session. 863 */ 864 865 if (tp != NULL) { 866 tty_lock(tp); 867 if (tp->t_session == sp) 868 tty_signal_pgrp(tp, SIGHUP); 869 tty_unlock(tp); 870 } 871 872 if (ttyvp != NULL) { 873 sx_xunlock(&proctree_lock); 874 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 875 VOP_REVOKE(ttyvp, REVOKEALL); 876 VOP_UNLOCK(ttyvp); 877 } 878 vrele(ttyvp); 879 sx_xlock(&proctree_lock); 880 } 881 } 882 fixjobc(p, p->p_pgrp, 0); 883 sx_xunlock(&proctree_lock); 884 } 885 886 /* 887 * A process group has become orphaned; 888 * if there are any stopped processes in the group, 889 * hang-up all process in that group. 890 */ 891 static void 892 orphanpg(struct pgrp *pg) 893 { 894 struct proc *p; 895 896 PGRP_LOCK_ASSERT(pg, MA_OWNED); 897 898 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 899 PROC_LOCK(p); 900 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 901 PROC_UNLOCK(p); 902 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 903 PROC_LOCK(p); 904 kern_psignal(p, SIGHUP); 905 kern_psignal(p, SIGCONT); 906 PROC_UNLOCK(p); 907 } 908 return; 909 } 910 PROC_UNLOCK(p); 911 } 912 } 913 914 void 915 sess_hold(struct session *s) 916 { 917 918 refcount_acquire(&s->s_count); 919 } 920 921 void 922 sess_release(struct session *s) 923 { 924 925 if (refcount_release(&s->s_count)) { 926 if (s->s_ttyp != NULL) { 927 tty_lock(s->s_ttyp); 928 tty_rel_sess(s->s_ttyp, s); 929 } 930 proc_id_clear(PROC_ID_SESSION, s->s_sid); 931 mtx_destroy(&s->s_mtx); 932 free(s, M_SESSION); 933 } 934 } 935 936 #ifdef DDB 937 938 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 939 { 940 struct pgrp *pgrp; 941 struct proc *p; 942 int i; 943 944 for (i = 0; i <= pgrphash; i++) { 945 if (!LIST_EMPTY(&pgrphashtbl[i])) { 946 printf("\tindx %d\n", i); 947 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 948 printf( 949 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 950 (void *)pgrp, (long)pgrp->pg_id, 951 (void *)pgrp->pg_session, 952 pgrp->pg_session->s_count, 953 (void *)LIST_FIRST(&pgrp->pg_members)); 954 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 955 printf("\t\tpid %ld addr %p pgrp %p\n", 956 (long)p->p_pid, (void *)p, 957 (void *)p->p_pgrp); 958 } 959 } 960 } 961 } 962 } 963 #endif /* DDB */ 964 965 /* 966 * Calculate the kinfo_proc members which contain process-wide 967 * informations. 968 * Must be called with the target process locked. 969 */ 970 static void 971 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 972 { 973 struct thread *td; 974 975 PROC_LOCK_ASSERT(p, MA_OWNED); 976 977 kp->ki_estcpu = 0; 978 kp->ki_pctcpu = 0; 979 FOREACH_THREAD_IN_PROC(p, td) { 980 thread_lock(td); 981 kp->ki_pctcpu += sched_pctcpu(td); 982 kp->ki_estcpu += sched_estcpu(td); 983 thread_unlock(td); 984 } 985 } 986 987 /* 988 * Clear kinfo_proc and fill in any information that is common 989 * to all threads in the process. 990 * Must be called with the target process locked. 991 */ 992 static void 993 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 994 { 995 struct thread *td0; 996 struct tty *tp; 997 struct session *sp; 998 struct ucred *cred; 999 struct sigacts *ps; 1000 struct timeval boottime; 1001 1002 PROC_LOCK_ASSERT(p, MA_OWNED); 1003 bzero(kp, sizeof(*kp)); 1004 1005 kp->ki_structsize = sizeof(*kp); 1006 kp->ki_paddr = p; 1007 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1008 kp->ki_args = p->p_args; 1009 kp->ki_textvp = p->p_textvp; 1010 #ifdef KTRACE 1011 kp->ki_tracep = p->p_tracevp; 1012 kp->ki_traceflag = p->p_traceflag; 1013 #endif 1014 kp->ki_fd = p->p_fd; 1015 kp->ki_vmspace = p->p_vmspace; 1016 kp->ki_flag = p->p_flag; 1017 kp->ki_flag2 = p->p_flag2; 1018 cred = p->p_ucred; 1019 if (cred) { 1020 kp->ki_uid = cred->cr_uid; 1021 kp->ki_ruid = cred->cr_ruid; 1022 kp->ki_svuid = cred->cr_svuid; 1023 kp->ki_cr_flags = 0; 1024 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1025 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1026 /* XXX bde doesn't like KI_NGROUPS */ 1027 if (cred->cr_ngroups > KI_NGROUPS) { 1028 kp->ki_ngroups = KI_NGROUPS; 1029 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1030 } else 1031 kp->ki_ngroups = cred->cr_ngroups; 1032 bcopy(cred->cr_groups, kp->ki_groups, 1033 kp->ki_ngroups * sizeof(gid_t)); 1034 kp->ki_rgid = cred->cr_rgid; 1035 kp->ki_svgid = cred->cr_svgid; 1036 /* If jailed(cred), emulate the old P_JAILED flag. */ 1037 if (jailed(cred)) { 1038 kp->ki_flag |= P_JAILED; 1039 /* If inside the jail, use 0 as a jail ID. */ 1040 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1041 kp->ki_jid = cred->cr_prison->pr_id; 1042 } 1043 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1044 sizeof(kp->ki_loginclass)); 1045 } 1046 ps = p->p_sigacts; 1047 if (ps) { 1048 mtx_lock(&ps->ps_mtx); 1049 kp->ki_sigignore = ps->ps_sigignore; 1050 kp->ki_sigcatch = ps->ps_sigcatch; 1051 mtx_unlock(&ps->ps_mtx); 1052 } 1053 if (p->p_state != PRS_NEW && 1054 p->p_state != PRS_ZOMBIE && 1055 p->p_vmspace != NULL) { 1056 struct vmspace *vm = p->p_vmspace; 1057 1058 kp->ki_size = vm->vm_map.size; 1059 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1060 FOREACH_THREAD_IN_PROC(p, td0) { 1061 if (!TD_IS_SWAPPED(td0)) 1062 kp->ki_rssize += td0->td_kstack_pages; 1063 } 1064 kp->ki_swrss = vm->vm_swrss; 1065 kp->ki_tsize = vm->vm_tsize; 1066 kp->ki_dsize = vm->vm_dsize; 1067 kp->ki_ssize = vm->vm_ssize; 1068 } else if (p->p_state == PRS_ZOMBIE) 1069 kp->ki_stat = SZOMB; 1070 if (kp->ki_flag & P_INMEM) 1071 kp->ki_sflag = PS_INMEM; 1072 else 1073 kp->ki_sflag = 0; 1074 /* Calculate legacy swtime as seconds since 'swtick'. */ 1075 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1076 kp->ki_pid = p->p_pid; 1077 kp->ki_nice = p->p_nice; 1078 kp->ki_fibnum = p->p_fibnum; 1079 kp->ki_start = p->p_stats->p_start; 1080 getboottime(&boottime); 1081 timevaladd(&kp->ki_start, &boottime); 1082 PROC_STATLOCK(p); 1083 rufetch(p, &kp->ki_rusage); 1084 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1085 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1086 PROC_STATUNLOCK(p); 1087 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1088 /* Some callers want child times in a single value. */ 1089 kp->ki_childtime = kp->ki_childstime; 1090 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1091 1092 FOREACH_THREAD_IN_PROC(p, td0) 1093 kp->ki_cow += td0->td_cow; 1094 1095 tp = NULL; 1096 if (p->p_pgrp) { 1097 kp->ki_pgid = p->p_pgrp->pg_id; 1098 kp->ki_jobc = p->p_pgrp->pg_jobc; 1099 sp = p->p_pgrp->pg_session; 1100 1101 if (sp != NULL) { 1102 kp->ki_sid = sp->s_sid; 1103 SESS_LOCK(sp); 1104 strlcpy(kp->ki_login, sp->s_login, 1105 sizeof(kp->ki_login)); 1106 if (sp->s_ttyvp) 1107 kp->ki_kiflag |= KI_CTTY; 1108 if (SESS_LEADER(p)) 1109 kp->ki_kiflag |= KI_SLEADER; 1110 /* XXX proctree_lock */ 1111 tp = sp->s_ttyp; 1112 SESS_UNLOCK(sp); 1113 } 1114 } 1115 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1116 kp->ki_tdev = tty_udev(tp); 1117 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1118 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1119 if (tp->t_session) 1120 kp->ki_tsid = tp->t_session->s_sid; 1121 } else { 1122 kp->ki_tdev = NODEV; 1123 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1124 } 1125 if (p->p_comm[0] != '\0') 1126 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1127 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1128 p->p_sysent->sv_name[0] != '\0') 1129 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1130 kp->ki_siglist = p->p_siglist; 1131 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1132 kp->ki_acflag = p->p_acflag; 1133 kp->ki_lock = p->p_lock; 1134 if (p->p_pptr) { 1135 kp->ki_ppid = p->p_oppid; 1136 if (p->p_flag & P_TRACED) 1137 kp->ki_tracer = p->p_pptr->p_pid; 1138 } 1139 } 1140 1141 /* 1142 * Fill in information that is thread specific. Must be called with 1143 * target process locked. If 'preferthread' is set, overwrite certain 1144 * process-related fields that are maintained for both threads and 1145 * processes. 1146 */ 1147 static void 1148 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1149 { 1150 struct proc *p; 1151 1152 p = td->td_proc; 1153 kp->ki_tdaddr = td; 1154 PROC_LOCK_ASSERT(p, MA_OWNED); 1155 1156 if (preferthread) 1157 PROC_STATLOCK(p); 1158 thread_lock(td); 1159 if (td->td_wmesg != NULL) 1160 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1161 else 1162 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1163 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1164 sizeof(kp->ki_tdname)) { 1165 strlcpy(kp->ki_moretdname, 1166 td->td_name + sizeof(kp->ki_tdname) - 1, 1167 sizeof(kp->ki_moretdname)); 1168 } else { 1169 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1170 } 1171 if (TD_ON_LOCK(td)) { 1172 kp->ki_kiflag |= KI_LOCKBLOCK; 1173 strlcpy(kp->ki_lockname, td->td_lockname, 1174 sizeof(kp->ki_lockname)); 1175 } else { 1176 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1177 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1178 } 1179 1180 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1181 if (TD_ON_RUNQ(td) || 1182 TD_CAN_RUN(td) || 1183 TD_IS_RUNNING(td)) { 1184 kp->ki_stat = SRUN; 1185 } else if (P_SHOULDSTOP(p)) { 1186 kp->ki_stat = SSTOP; 1187 } else if (TD_IS_SLEEPING(td)) { 1188 kp->ki_stat = SSLEEP; 1189 } else if (TD_ON_LOCK(td)) { 1190 kp->ki_stat = SLOCK; 1191 } else { 1192 kp->ki_stat = SWAIT; 1193 } 1194 } else if (p->p_state == PRS_ZOMBIE) { 1195 kp->ki_stat = SZOMB; 1196 } else { 1197 kp->ki_stat = SIDL; 1198 } 1199 1200 /* Things in the thread */ 1201 kp->ki_wchan = td->td_wchan; 1202 kp->ki_pri.pri_level = td->td_priority; 1203 kp->ki_pri.pri_native = td->td_base_pri; 1204 1205 /* 1206 * Note: legacy fields; clamp at the old NOCPU value and/or 1207 * the maximum u_char CPU value. 1208 */ 1209 if (td->td_lastcpu == NOCPU) 1210 kp->ki_lastcpu_old = NOCPU_OLD; 1211 else if (td->td_lastcpu > MAXCPU_OLD) 1212 kp->ki_lastcpu_old = MAXCPU_OLD; 1213 else 1214 kp->ki_lastcpu_old = td->td_lastcpu; 1215 1216 if (td->td_oncpu == NOCPU) 1217 kp->ki_oncpu_old = NOCPU_OLD; 1218 else if (td->td_oncpu > MAXCPU_OLD) 1219 kp->ki_oncpu_old = MAXCPU_OLD; 1220 else 1221 kp->ki_oncpu_old = td->td_oncpu; 1222 1223 kp->ki_lastcpu = td->td_lastcpu; 1224 kp->ki_oncpu = td->td_oncpu; 1225 kp->ki_tdflags = td->td_flags; 1226 kp->ki_tid = td->td_tid; 1227 kp->ki_numthreads = p->p_numthreads; 1228 kp->ki_pcb = td->td_pcb; 1229 kp->ki_kstack = (void *)td->td_kstack; 1230 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1231 kp->ki_pri.pri_class = td->td_pri_class; 1232 kp->ki_pri.pri_user = td->td_user_pri; 1233 1234 if (preferthread) { 1235 rufetchtd(td, &kp->ki_rusage); 1236 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1237 kp->ki_pctcpu = sched_pctcpu(td); 1238 kp->ki_estcpu = sched_estcpu(td); 1239 kp->ki_cow = td->td_cow; 1240 } 1241 1242 /* We can't get this anymore but ps etc never used it anyway. */ 1243 kp->ki_rqindex = 0; 1244 1245 if (preferthread) 1246 kp->ki_siglist = td->td_siglist; 1247 kp->ki_sigmask = td->td_sigmask; 1248 thread_unlock(td); 1249 if (preferthread) 1250 PROC_STATUNLOCK(p); 1251 } 1252 1253 /* 1254 * Fill in a kinfo_proc structure for the specified process. 1255 * Must be called with the target process locked. 1256 */ 1257 void 1258 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1259 { 1260 1261 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1262 1263 fill_kinfo_proc_only(p, kp); 1264 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1265 fill_kinfo_aggregate(p, kp); 1266 } 1267 1268 struct pstats * 1269 pstats_alloc(void) 1270 { 1271 1272 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1273 } 1274 1275 /* 1276 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1277 */ 1278 void 1279 pstats_fork(struct pstats *src, struct pstats *dst) 1280 { 1281 1282 bzero(&dst->pstat_startzero, 1283 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1284 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1285 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1286 } 1287 1288 void 1289 pstats_free(struct pstats *ps) 1290 { 1291 1292 free(ps, M_SUBPROC); 1293 } 1294 1295 #ifdef COMPAT_FREEBSD32 1296 1297 /* 1298 * This function is typically used to copy out the kernel address, so 1299 * it can be replaced by assignment of zero. 1300 */ 1301 static inline uint32_t 1302 ptr32_trim(const void *ptr) 1303 { 1304 uintptr_t uptr; 1305 1306 uptr = (uintptr_t)ptr; 1307 return ((uptr > UINT_MAX) ? 0 : uptr); 1308 } 1309 1310 #define PTRTRIM_CP(src,dst,fld) \ 1311 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1312 1313 static void 1314 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1315 { 1316 int i; 1317 1318 bzero(ki32, sizeof(struct kinfo_proc32)); 1319 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1320 CP(*ki, *ki32, ki_layout); 1321 PTRTRIM_CP(*ki, *ki32, ki_args); 1322 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1323 PTRTRIM_CP(*ki, *ki32, ki_addr); 1324 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1325 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1326 PTRTRIM_CP(*ki, *ki32, ki_fd); 1327 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1328 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1329 CP(*ki, *ki32, ki_pid); 1330 CP(*ki, *ki32, ki_ppid); 1331 CP(*ki, *ki32, ki_pgid); 1332 CP(*ki, *ki32, ki_tpgid); 1333 CP(*ki, *ki32, ki_sid); 1334 CP(*ki, *ki32, ki_tsid); 1335 CP(*ki, *ki32, ki_jobc); 1336 CP(*ki, *ki32, ki_tdev); 1337 CP(*ki, *ki32, ki_tdev_freebsd11); 1338 CP(*ki, *ki32, ki_siglist); 1339 CP(*ki, *ki32, ki_sigmask); 1340 CP(*ki, *ki32, ki_sigignore); 1341 CP(*ki, *ki32, ki_sigcatch); 1342 CP(*ki, *ki32, ki_uid); 1343 CP(*ki, *ki32, ki_ruid); 1344 CP(*ki, *ki32, ki_svuid); 1345 CP(*ki, *ki32, ki_rgid); 1346 CP(*ki, *ki32, ki_svgid); 1347 CP(*ki, *ki32, ki_ngroups); 1348 for (i = 0; i < KI_NGROUPS; i++) 1349 CP(*ki, *ki32, ki_groups[i]); 1350 CP(*ki, *ki32, ki_size); 1351 CP(*ki, *ki32, ki_rssize); 1352 CP(*ki, *ki32, ki_swrss); 1353 CP(*ki, *ki32, ki_tsize); 1354 CP(*ki, *ki32, ki_dsize); 1355 CP(*ki, *ki32, ki_ssize); 1356 CP(*ki, *ki32, ki_xstat); 1357 CP(*ki, *ki32, ki_acflag); 1358 CP(*ki, *ki32, ki_pctcpu); 1359 CP(*ki, *ki32, ki_estcpu); 1360 CP(*ki, *ki32, ki_slptime); 1361 CP(*ki, *ki32, ki_swtime); 1362 CP(*ki, *ki32, ki_cow); 1363 CP(*ki, *ki32, ki_runtime); 1364 TV_CP(*ki, *ki32, ki_start); 1365 TV_CP(*ki, *ki32, ki_childtime); 1366 CP(*ki, *ki32, ki_flag); 1367 CP(*ki, *ki32, ki_kiflag); 1368 CP(*ki, *ki32, ki_traceflag); 1369 CP(*ki, *ki32, ki_stat); 1370 CP(*ki, *ki32, ki_nice); 1371 CP(*ki, *ki32, ki_lock); 1372 CP(*ki, *ki32, ki_rqindex); 1373 CP(*ki, *ki32, ki_oncpu); 1374 CP(*ki, *ki32, ki_lastcpu); 1375 1376 /* XXX TODO: wrap cpu value as appropriate */ 1377 CP(*ki, *ki32, ki_oncpu_old); 1378 CP(*ki, *ki32, ki_lastcpu_old); 1379 1380 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1381 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1382 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1383 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1384 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1385 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1386 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1387 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1388 CP(*ki, *ki32, ki_tracer); 1389 CP(*ki, *ki32, ki_flag2); 1390 CP(*ki, *ki32, ki_fibnum); 1391 CP(*ki, *ki32, ki_cr_flags); 1392 CP(*ki, *ki32, ki_jid); 1393 CP(*ki, *ki32, ki_numthreads); 1394 CP(*ki, *ki32, ki_tid); 1395 CP(*ki, *ki32, ki_pri); 1396 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1397 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1398 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1399 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1400 PTRTRIM_CP(*ki, *ki32, ki_udata); 1401 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1402 CP(*ki, *ki32, ki_sflag); 1403 CP(*ki, *ki32, ki_tdflags); 1404 } 1405 #endif 1406 1407 static ssize_t 1408 kern_proc_out_size(struct proc *p, int flags) 1409 { 1410 ssize_t size = 0; 1411 1412 PROC_LOCK_ASSERT(p, MA_OWNED); 1413 1414 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1415 #ifdef COMPAT_FREEBSD32 1416 if ((flags & KERN_PROC_MASK32) != 0) { 1417 size += sizeof(struct kinfo_proc32); 1418 } else 1419 #endif 1420 size += sizeof(struct kinfo_proc); 1421 } else { 1422 #ifdef COMPAT_FREEBSD32 1423 if ((flags & KERN_PROC_MASK32) != 0) 1424 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1425 else 1426 #endif 1427 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1428 } 1429 PROC_UNLOCK(p); 1430 return (size); 1431 } 1432 1433 int 1434 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1435 { 1436 struct thread *td; 1437 struct kinfo_proc ki; 1438 #ifdef COMPAT_FREEBSD32 1439 struct kinfo_proc32 ki32; 1440 #endif 1441 int error; 1442 1443 PROC_LOCK_ASSERT(p, MA_OWNED); 1444 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1445 1446 error = 0; 1447 fill_kinfo_proc(p, &ki); 1448 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1449 #ifdef COMPAT_FREEBSD32 1450 if ((flags & KERN_PROC_MASK32) != 0) { 1451 freebsd32_kinfo_proc_out(&ki, &ki32); 1452 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1453 error = ENOMEM; 1454 } else 1455 #endif 1456 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1457 error = ENOMEM; 1458 } else { 1459 FOREACH_THREAD_IN_PROC(p, td) { 1460 fill_kinfo_thread(td, &ki, 1); 1461 #ifdef COMPAT_FREEBSD32 1462 if ((flags & KERN_PROC_MASK32) != 0) { 1463 freebsd32_kinfo_proc_out(&ki, &ki32); 1464 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1465 error = ENOMEM; 1466 } else 1467 #endif 1468 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1469 error = ENOMEM; 1470 if (error != 0) 1471 break; 1472 } 1473 } 1474 PROC_UNLOCK(p); 1475 return (error); 1476 } 1477 1478 static int 1479 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1480 { 1481 struct sbuf sb; 1482 struct kinfo_proc ki; 1483 int error, error2; 1484 1485 if (req->oldptr == NULL) 1486 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1487 1488 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1489 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1490 error = kern_proc_out(p, &sb, flags); 1491 error2 = sbuf_finish(&sb); 1492 sbuf_delete(&sb); 1493 if (error != 0) 1494 return (error); 1495 else if (error2 != 0) 1496 return (error2); 1497 return (0); 1498 } 1499 1500 int 1501 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1502 { 1503 struct proc *p; 1504 int error, i, j; 1505 1506 for (i = 0; i < pidhashlock + 1; i++) { 1507 sx_slock(&pidhashtbl_lock[i]); 1508 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1509 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1510 if (p->p_state == PRS_NEW) 1511 continue; 1512 error = cb(p, cbarg); 1513 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1514 if (error != 0) { 1515 sx_sunlock(&pidhashtbl_lock[i]); 1516 return (error); 1517 } 1518 } 1519 } 1520 sx_sunlock(&pidhashtbl_lock[i]); 1521 } 1522 return (0); 1523 } 1524 1525 struct kern_proc_out_args { 1526 struct sysctl_req *req; 1527 int flags; 1528 int oid_number; 1529 int *name; 1530 }; 1531 1532 static int 1533 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1534 { 1535 struct kern_proc_out_args *arg = origarg; 1536 int *name = arg->name; 1537 int oid_number = arg->oid_number; 1538 int flags = arg->flags; 1539 struct sysctl_req *req = arg->req; 1540 int error = 0; 1541 1542 PROC_LOCK(p); 1543 1544 KASSERT(p->p_ucred != NULL, 1545 ("process credential is NULL for non-NEW proc")); 1546 /* 1547 * Show a user only appropriate processes. 1548 */ 1549 if (p_cansee(curthread, p)) 1550 goto skip; 1551 /* 1552 * TODO - make more efficient (see notes below). 1553 * do by session. 1554 */ 1555 switch (oid_number) { 1556 1557 case KERN_PROC_GID: 1558 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1559 goto skip; 1560 break; 1561 1562 case KERN_PROC_PGRP: 1563 /* could do this by traversing pgrp */ 1564 if (p->p_pgrp == NULL || 1565 p->p_pgrp->pg_id != (pid_t)name[0]) 1566 goto skip; 1567 break; 1568 1569 case KERN_PROC_RGID: 1570 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1571 goto skip; 1572 break; 1573 1574 case KERN_PROC_SESSION: 1575 if (p->p_session == NULL || 1576 p->p_session->s_sid != (pid_t)name[0]) 1577 goto skip; 1578 break; 1579 1580 case KERN_PROC_TTY: 1581 if ((p->p_flag & P_CONTROLT) == 0 || 1582 p->p_session == NULL) 1583 goto skip; 1584 /* XXX proctree_lock */ 1585 SESS_LOCK(p->p_session); 1586 if (p->p_session->s_ttyp == NULL || 1587 tty_udev(p->p_session->s_ttyp) != 1588 (dev_t)name[0]) { 1589 SESS_UNLOCK(p->p_session); 1590 goto skip; 1591 } 1592 SESS_UNLOCK(p->p_session); 1593 break; 1594 1595 case KERN_PROC_UID: 1596 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1597 goto skip; 1598 break; 1599 1600 case KERN_PROC_RUID: 1601 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1602 goto skip; 1603 break; 1604 1605 case KERN_PROC_PROC: 1606 break; 1607 1608 default: 1609 break; 1610 1611 } 1612 error = sysctl_out_proc(p, req, flags); 1613 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1614 return (error); 1615 skip: 1616 PROC_UNLOCK(p); 1617 return (0); 1618 } 1619 1620 static int 1621 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1622 { 1623 struct kern_proc_out_args iterarg; 1624 int *name = (int *)arg1; 1625 u_int namelen = arg2; 1626 struct proc *p; 1627 int flags, oid_number; 1628 int error = 0; 1629 1630 oid_number = oidp->oid_number; 1631 if (oid_number != KERN_PROC_ALL && 1632 (oid_number & KERN_PROC_INC_THREAD) == 0) 1633 flags = KERN_PROC_NOTHREADS; 1634 else { 1635 flags = 0; 1636 oid_number &= ~KERN_PROC_INC_THREAD; 1637 } 1638 #ifdef COMPAT_FREEBSD32 1639 if (req->flags & SCTL_MASK32) 1640 flags |= KERN_PROC_MASK32; 1641 #endif 1642 if (oid_number == KERN_PROC_PID) { 1643 if (namelen != 1) 1644 return (EINVAL); 1645 error = sysctl_wire_old_buffer(req, 0); 1646 if (error) 1647 return (error); 1648 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1649 if (error == 0) 1650 error = sysctl_out_proc(p, req, flags); 1651 return (error); 1652 } 1653 1654 switch (oid_number) { 1655 case KERN_PROC_ALL: 1656 if (namelen != 0) 1657 return (EINVAL); 1658 break; 1659 case KERN_PROC_PROC: 1660 if (namelen != 0 && namelen != 1) 1661 return (EINVAL); 1662 break; 1663 default: 1664 if (namelen != 1) 1665 return (EINVAL); 1666 break; 1667 } 1668 1669 if (req->oldptr == NULL) { 1670 /* overestimate by 5 procs */ 1671 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1672 if (error) 1673 return (error); 1674 } else { 1675 error = sysctl_wire_old_buffer(req, 0); 1676 if (error != 0) 1677 return (error); 1678 } 1679 iterarg.flags = flags; 1680 iterarg.oid_number = oid_number; 1681 iterarg.req = req; 1682 iterarg.name = name; 1683 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1684 return (error); 1685 } 1686 1687 struct pargs * 1688 pargs_alloc(int len) 1689 { 1690 struct pargs *pa; 1691 1692 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1693 M_WAITOK); 1694 refcount_init(&pa->ar_ref, 1); 1695 pa->ar_length = len; 1696 return (pa); 1697 } 1698 1699 static void 1700 pargs_free(struct pargs *pa) 1701 { 1702 1703 free(pa, M_PARGS); 1704 } 1705 1706 void 1707 pargs_hold(struct pargs *pa) 1708 { 1709 1710 if (pa == NULL) 1711 return; 1712 refcount_acquire(&pa->ar_ref); 1713 } 1714 1715 void 1716 pargs_drop(struct pargs *pa) 1717 { 1718 1719 if (pa == NULL) 1720 return; 1721 if (refcount_release(&pa->ar_ref)) 1722 pargs_free(pa); 1723 } 1724 1725 static int 1726 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1727 size_t len) 1728 { 1729 ssize_t n; 1730 1731 /* 1732 * This may return a short read if the string is shorter than the chunk 1733 * and is aligned at the end of the page, and the following page is not 1734 * mapped. 1735 */ 1736 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1737 if (n <= 0) 1738 return (ENOMEM); 1739 return (0); 1740 } 1741 1742 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1743 1744 enum proc_vector_type { 1745 PROC_ARG, 1746 PROC_ENV, 1747 PROC_AUX, 1748 }; 1749 1750 #ifdef COMPAT_FREEBSD32 1751 static int 1752 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1753 size_t *vsizep, enum proc_vector_type type) 1754 { 1755 struct freebsd32_ps_strings pss; 1756 Elf32_Auxinfo aux; 1757 vm_offset_t vptr, ptr; 1758 uint32_t *proc_vector32; 1759 char **proc_vector; 1760 size_t vsize, size; 1761 int i, error; 1762 1763 error = 0; 1764 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1765 sizeof(pss)) != sizeof(pss)) 1766 return (ENOMEM); 1767 switch (type) { 1768 case PROC_ARG: 1769 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1770 vsize = pss.ps_nargvstr; 1771 if (vsize > ARG_MAX) 1772 return (ENOEXEC); 1773 size = vsize * sizeof(int32_t); 1774 break; 1775 case PROC_ENV: 1776 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1777 vsize = pss.ps_nenvstr; 1778 if (vsize > ARG_MAX) 1779 return (ENOEXEC); 1780 size = vsize * sizeof(int32_t); 1781 break; 1782 case PROC_AUX: 1783 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1784 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1785 if (vptr % 4 != 0) 1786 return (ENOEXEC); 1787 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1788 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1789 sizeof(aux)) 1790 return (ENOMEM); 1791 if (aux.a_type == AT_NULL) 1792 break; 1793 ptr += sizeof(aux); 1794 } 1795 if (aux.a_type != AT_NULL) 1796 return (ENOEXEC); 1797 vsize = i + 1; 1798 size = vsize * sizeof(aux); 1799 break; 1800 default: 1801 KASSERT(0, ("Wrong proc vector type: %d", type)); 1802 return (EINVAL); 1803 } 1804 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1805 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1806 error = ENOMEM; 1807 goto done; 1808 } 1809 if (type == PROC_AUX) { 1810 *proc_vectorp = (char **)proc_vector32; 1811 *vsizep = vsize; 1812 return (0); 1813 } 1814 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1815 for (i = 0; i < (int)vsize; i++) 1816 proc_vector[i] = PTRIN(proc_vector32[i]); 1817 *proc_vectorp = proc_vector; 1818 *vsizep = vsize; 1819 done: 1820 free(proc_vector32, M_TEMP); 1821 return (error); 1822 } 1823 #endif 1824 1825 static int 1826 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1827 size_t *vsizep, enum proc_vector_type type) 1828 { 1829 struct ps_strings pss; 1830 Elf_Auxinfo aux; 1831 vm_offset_t vptr, ptr; 1832 char **proc_vector; 1833 size_t vsize, size; 1834 int i; 1835 1836 #ifdef COMPAT_FREEBSD32 1837 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1838 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1839 #endif 1840 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1841 sizeof(pss)) != sizeof(pss)) 1842 return (ENOMEM); 1843 switch (type) { 1844 case PROC_ARG: 1845 vptr = (vm_offset_t)pss.ps_argvstr; 1846 vsize = pss.ps_nargvstr; 1847 if (vsize > ARG_MAX) 1848 return (ENOEXEC); 1849 size = vsize * sizeof(char *); 1850 break; 1851 case PROC_ENV: 1852 vptr = (vm_offset_t)pss.ps_envstr; 1853 vsize = pss.ps_nenvstr; 1854 if (vsize > ARG_MAX) 1855 return (ENOEXEC); 1856 size = vsize * sizeof(char *); 1857 break; 1858 case PROC_AUX: 1859 /* 1860 * The aux array is just above env array on the stack. Check 1861 * that the address is naturally aligned. 1862 */ 1863 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1864 * sizeof(char *); 1865 #if __ELF_WORD_SIZE == 64 1866 if (vptr % sizeof(uint64_t) != 0) 1867 #else 1868 if (vptr % sizeof(uint32_t) != 0) 1869 #endif 1870 return (ENOEXEC); 1871 /* 1872 * We count the array size reading the aux vectors from the 1873 * stack until AT_NULL vector is returned. So (to keep the code 1874 * simple) we read the process stack twice: the first time here 1875 * to find the size and the second time when copying the vectors 1876 * to the allocated proc_vector. 1877 */ 1878 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1879 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1880 sizeof(aux)) 1881 return (ENOMEM); 1882 if (aux.a_type == AT_NULL) 1883 break; 1884 ptr += sizeof(aux); 1885 } 1886 /* 1887 * If the PROC_AUXV_MAX entries are iterated over, and we have 1888 * not reached AT_NULL, it is most likely we are reading wrong 1889 * data: either the process doesn't have auxv array or data has 1890 * been modified. Return the error in this case. 1891 */ 1892 if (aux.a_type != AT_NULL) 1893 return (ENOEXEC); 1894 vsize = i + 1; 1895 size = vsize * sizeof(aux); 1896 break; 1897 default: 1898 KASSERT(0, ("Wrong proc vector type: %d", type)); 1899 return (EINVAL); /* In case we are built without INVARIANTS. */ 1900 } 1901 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1902 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1903 free(proc_vector, M_TEMP); 1904 return (ENOMEM); 1905 } 1906 *proc_vectorp = proc_vector; 1907 *vsizep = vsize; 1908 1909 return (0); 1910 } 1911 1912 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1913 1914 static int 1915 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1916 enum proc_vector_type type) 1917 { 1918 size_t done, len, nchr, vsize; 1919 int error, i; 1920 char **proc_vector, *sptr; 1921 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1922 1923 PROC_ASSERT_HELD(p); 1924 1925 /* 1926 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1927 */ 1928 nchr = 2 * (PATH_MAX + ARG_MAX); 1929 1930 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1931 if (error != 0) 1932 return (error); 1933 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1934 /* 1935 * The program may have scribbled into its argv array, e.g. to 1936 * remove some arguments. If that has happened, break out 1937 * before trying to read from NULL. 1938 */ 1939 if (proc_vector[i] == NULL) 1940 break; 1941 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1942 error = proc_read_string(td, p, sptr, pss_string, 1943 sizeof(pss_string)); 1944 if (error != 0) 1945 goto done; 1946 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1947 if (done + len >= nchr) 1948 len = nchr - done - 1; 1949 sbuf_bcat(sb, pss_string, len); 1950 if (len != GET_PS_STRINGS_CHUNK_SZ) 1951 break; 1952 done += GET_PS_STRINGS_CHUNK_SZ; 1953 } 1954 sbuf_bcat(sb, "", 1); 1955 done += len + 1; 1956 } 1957 done: 1958 free(proc_vector, M_TEMP); 1959 return (error); 1960 } 1961 1962 int 1963 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1964 { 1965 1966 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1967 } 1968 1969 int 1970 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1971 { 1972 1973 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1974 } 1975 1976 int 1977 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1978 { 1979 size_t vsize, size; 1980 char **auxv; 1981 int error; 1982 1983 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1984 if (error == 0) { 1985 #ifdef COMPAT_FREEBSD32 1986 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1987 size = vsize * sizeof(Elf32_Auxinfo); 1988 else 1989 #endif 1990 size = vsize * sizeof(Elf_Auxinfo); 1991 if (sbuf_bcat(sb, auxv, size) != 0) 1992 error = ENOMEM; 1993 free(auxv, M_TEMP); 1994 } 1995 return (error); 1996 } 1997 1998 /* 1999 * This sysctl allows a process to retrieve the argument list or process 2000 * title for another process without groping around in the address space 2001 * of the other process. It also allow a process to set its own "process 2002 * title to a string of its own choice. 2003 */ 2004 static int 2005 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2006 { 2007 int *name = (int *)arg1; 2008 u_int namelen = arg2; 2009 struct pargs *newpa, *pa; 2010 struct proc *p; 2011 struct sbuf sb; 2012 int flags, error = 0, error2; 2013 pid_t pid; 2014 2015 if (namelen != 1) 2016 return (EINVAL); 2017 2018 pid = (pid_t)name[0]; 2019 /* 2020 * If the query is for this process and it is single-threaded, there 2021 * is nobody to modify pargs, thus we can just read. 2022 */ 2023 p = curproc; 2024 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2025 (pa = p->p_args) != NULL) 2026 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2027 2028 flags = PGET_CANSEE; 2029 if (req->newptr != NULL) 2030 flags |= PGET_ISCURRENT; 2031 error = pget(pid, flags, &p); 2032 if (error) 2033 return (error); 2034 2035 pa = p->p_args; 2036 if (pa != NULL) { 2037 pargs_hold(pa); 2038 PROC_UNLOCK(p); 2039 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2040 pargs_drop(pa); 2041 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2042 _PHOLD(p); 2043 PROC_UNLOCK(p); 2044 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2045 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2046 error = proc_getargv(curthread, p, &sb); 2047 error2 = sbuf_finish(&sb); 2048 PRELE(p); 2049 sbuf_delete(&sb); 2050 if (error == 0 && error2 != 0) 2051 error = error2; 2052 } else { 2053 PROC_UNLOCK(p); 2054 } 2055 if (error != 0 || req->newptr == NULL) 2056 return (error); 2057 2058 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2059 return (ENOMEM); 2060 2061 if (req->newlen == 0) { 2062 /* 2063 * Clear the argument pointer, so that we'll fetch arguments 2064 * with proc_getargv() until further notice. 2065 */ 2066 newpa = NULL; 2067 } else { 2068 newpa = pargs_alloc(req->newlen); 2069 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2070 if (error != 0) { 2071 pargs_free(newpa); 2072 return (error); 2073 } 2074 } 2075 PROC_LOCK(p); 2076 pa = p->p_args; 2077 p->p_args = newpa; 2078 PROC_UNLOCK(p); 2079 pargs_drop(pa); 2080 return (0); 2081 } 2082 2083 /* 2084 * This sysctl allows a process to retrieve environment of another process. 2085 */ 2086 static int 2087 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2088 { 2089 int *name = (int *)arg1; 2090 u_int namelen = arg2; 2091 struct proc *p; 2092 struct sbuf sb; 2093 int error, error2; 2094 2095 if (namelen != 1) 2096 return (EINVAL); 2097 2098 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2099 if (error != 0) 2100 return (error); 2101 if ((p->p_flag & P_SYSTEM) != 0) { 2102 PRELE(p); 2103 return (0); 2104 } 2105 2106 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2107 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2108 error = proc_getenvv(curthread, p, &sb); 2109 error2 = sbuf_finish(&sb); 2110 PRELE(p); 2111 sbuf_delete(&sb); 2112 return (error != 0 ? error : error2); 2113 } 2114 2115 /* 2116 * This sysctl allows a process to retrieve ELF auxiliary vector of 2117 * another process. 2118 */ 2119 static int 2120 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2121 { 2122 int *name = (int *)arg1; 2123 u_int namelen = arg2; 2124 struct proc *p; 2125 struct sbuf sb; 2126 int error, error2; 2127 2128 if (namelen != 1) 2129 return (EINVAL); 2130 2131 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2132 if (error != 0) 2133 return (error); 2134 if ((p->p_flag & P_SYSTEM) != 0) { 2135 PRELE(p); 2136 return (0); 2137 } 2138 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2139 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2140 error = proc_getauxv(curthread, p, &sb); 2141 error2 = sbuf_finish(&sb); 2142 PRELE(p); 2143 sbuf_delete(&sb); 2144 return (error != 0 ? error : error2); 2145 } 2146 2147 /* 2148 * This sysctl allows a process to retrieve the path of the executable for 2149 * itself or another process. 2150 */ 2151 static int 2152 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2153 { 2154 pid_t *pidp = (pid_t *)arg1; 2155 unsigned int arglen = arg2; 2156 struct proc *p; 2157 struct vnode *vp; 2158 char *retbuf, *freebuf; 2159 int error; 2160 2161 if (arglen != 1) 2162 return (EINVAL); 2163 if (*pidp == -1) { /* -1 means this process */ 2164 p = req->td->td_proc; 2165 } else { 2166 error = pget(*pidp, PGET_CANSEE, &p); 2167 if (error != 0) 2168 return (error); 2169 } 2170 2171 vp = p->p_textvp; 2172 if (vp == NULL) { 2173 if (*pidp != -1) 2174 PROC_UNLOCK(p); 2175 return (0); 2176 } 2177 vref(vp); 2178 if (*pidp != -1) 2179 PROC_UNLOCK(p); 2180 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2181 vrele(vp); 2182 if (error) 2183 return (error); 2184 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2185 free(freebuf, M_TEMP); 2186 return (error); 2187 } 2188 2189 static int 2190 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2191 { 2192 struct proc *p; 2193 char *sv_name; 2194 int *name; 2195 int namelen; 2196 int error; 2197 2198 namelen = arg2; 2199 if (namelen != 1) 2200 return (EINVAL); 2201 2202 name = (int *)arg1; 2203 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2204 if (error != 0) 2205 return (error); 2206 sv_name = p->p_sysent->sv_name; 2207 PROC_UNLOCK(p); 2208 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2209 } 2210 2211 #ifdef KINFO_OVMENTRY_SIZE 2212 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2213 #endif 2214 2215 #ifdef COMPAT_FREEBSD7 2216 static int 2217 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2218 { 2219 vm_map_entry_t entry, tmp_entry; 2220 unsigned int last_timestamp; 2221 char *fullpath, *freepath; 2222 struct kinfo_ovmentry *kve; 2223 struct vattr va; 2224 struct ucred *cred; 2225 int error, *name; 2226 struct vnode *vp; 2227 struct proc *p; 2228 vm_map_t map; 2229 struct vmspace *vm; 2230 2231 name = (int *)arg1; 2232 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2233 if (error != 0) 2234 return (error); 2235 vm = vmspace_acquire_ref(p); 2236 if (vm == NULL) { 2237 PRELE(p); 2238 return (ESRCH); 2239 } 2240 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2241 2242 map = &vm->vm_map; 2243 vm_map_lock_read(map); 2244 VM_MAP_ENTRY_FOREACH(entry, map) { 2245 vm_object_t obj, tobj, lobj; 2246 vm_offset_t addr; 2247 2248 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2249 continue; 2250 2251 bzero(kve, sizeof(*kve)); 2252 kve->kve_structsize = sizeof(*kve); 2253 2254 kve->kve_private_resident = 0; 2255 obj = entry->object.vm_object; 2256 if (obj != NULL) { 2257 VM_OBJECT_RLOCK(obj); 2258 if (obj->shadow_count == 1) 2259 kve->kve_private_resident = 2260 obj->resident_page_count; 2261 } 2262 kve->kve_resident = 0; 2263 addr = entry->start; 2264 while (addr < entry->end) { 2265 if (pmap_extract(map->pmap, addr)) 2266 kve->kve_resident++; 2267 addr += PAGE_SIZE; 2268 } 2269 2270 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2271 if (tobj != obj) { 2272 VM_OBJECT_RLOCK(tobj); 2273 kve->kve_offset += tobj->backing_object_offset; 2274 } 2275 if (lobj != obj) 2276 VM_OBJECT_RUNLOCK(lobj); 2277 lobj = tobj; 2278 } 2279 2280 kve->kve_start = (void*)entry->start; 2281 kve->kve_end = (void*)entry->end; 2282 kve->kve_offset += (off_t)entry->offset; 2283 2284 if (entry->protection & VM_PROT_READ) 2285 kve->kve_protection |= KVME_PROT_READ; 2286 if (entry->protection & VM_PROT_WRITE) 2287 kve->kve_protection |= KVME_PROT_WRITE; 2288 if (entry->protection & VM_PROT_EXECUTE) 2289 kve->kve_protection |= KVME_PROT_EXEC; 2290 2291 if (entry->eflags & MAP_ENTRY_COW) 2292 kve->kve_flags |= KVME_FLAG_COW; 2293 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2294 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2295 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2296 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2297 2298 last_timestamp = map->timestamp; 2299 vm_map_unlock_read(map); 2300 2301 kve->kve_fileid = 0; 2302 kve->kve_fsid = 0; 2303 freepath = NULL; 2304 fullpath = ""; 2305 if (lobj) { 2306 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2307 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2308 kve->kve_type = KVME_TYPE_UNKNOWN; 2309 if (vp != NULL) 2310 vref(vp); 2311 if (lobj != obj) 2312 VM_OBJECT_RUNLOCK(lobj); 2313 2314 kve->kve_ref_count = obj->ref_count; 2315 kve->kve_shadow_count = obj->shadow_count; 2316 VM_OBJECT_RUNLOCK(obj); 2317 if (vp != NULL) { 2318 vn_fullpath(curthread, vp, &fullpath, 2319 &freepath); 2320 cred = curthread->td_ucred; 2321 vn_lock(vp, LK_SHARED | LK_RETRY); 2322 if (VOP_GETATTR(vp, &va, cred) == 0) { 2323 kve->kve_fileid = va.va_fileid; 2324 /* truncate */ 2325 kve->kve_fsid = va.va_fsid; 2326 } 2327 vput(vp); 2328 } 2329 } else { 2330 kve->kve_type = KVME_TYPE_NONE; 2331 kve->kve_ref_count = 0; 2332 kve->kve_shadow_count = 0; 2333 } 2334 2335 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2336 if (freepath != NULL) 2337 free(freepath, M_TEMP); 2338 2339 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2340 vm_map_lock_read(map); 2341 if (error) 2342 break; 2343 if (last_timestamp != map->timestamp) { 2344 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2345 entry = tmp_entry; 2346 } 2347 } 2348 vm_map_unlock_read(map); 2349 vmspace_free(vm); 2350 PRELE(p); 2351 free(kve, M_TEMP); 2352 return (error); 2353 } 2354 #endif /* COMPAT_FREEBSD7 */ 2355 2356 #ifdef KINFO_VMENTRY_SIZE 2357 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2358 #endif 2359 2360 void 2361 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2362 int *resident_count, bool *super) 2363 { 2364 vm_object_t obj, tobj; 2365 vm_page_t m, m_adv; 2366 vm_offset_t addr; 2367 vm_paddr_t pa; 2368 vm_pindex_t pi, pi_adv, pindex; 2369 2370 *super = false; 2371 *resident_count = 0; 2372 if (vmmap_skip_res_cnt) 2373 return; 2374 2375 pa = 0; 2376 obj = entry->object.vm_object; 2377 addr = entry->start; 2378 m_adv = NULL; 2379 pi = OFF_TO_IDX(entry->offset); 2380 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2381 if (m_adv != NULL) { 2382 m = m_adv; 2383 } else { 2384 pi_adv = atop(entry->end - addr); 2385 pindex = pi; 2386 for (tobj = obj;; tobj = tobj->backing_object) { 2387 m = vm_page_find_least(tobj, pindex); 2388 if (m != NULL) { 2389 if (m->pindex == pindex) 2390 break; 2391 if (pi_adv > m->pindex - pindex) { 2392 pi_adv = m->pindex - pindex; 2393 m_adv = m; 2394 } 2395 } 2396 if (tobj->backing_object == NULL) 2397 goto next; 2398 pindex += OFF_TO_IDX(tobj-> 2399 backing_object_offset); 2400 } 2401 } 2402 m_adv = NULL; 2403 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2404 (addr & (pagesizes[1] - 1)) == 0 && 2405 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2406 *super = true; 2407 pi_adv = atop(pagesizes[1]); 2408 } else { 2409 /* 2410 * We do not test the found page on validity. 2411 * Either the page is busy and being paged in, 2412 * or it was invalidated. The first case 2413 * should be counted as resident, the second 2414 * is not so clear; we do account both. 2415 */ 2416 pi_adv = 1; 2417 } 2418 *resident_count += pi_adv; 2419 next:; 2420 } 2421 } 2422 2423 /* 2424 * Must be called with the process locked and will return unlocked. 2425 */ 2426 int 2427 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2428 { 2429 vm_map_entry_t entry, tmp_entry; 2430 struct vattr va; 2431 vm_map_t map; 2432 vm_object_t obj, tobj, lobj; 2433 char *fullpath, *freepath; 2434 struct kinfo_vmentry *kve; 2435 struct ucred *cred; 2436 struct vnode *vp; 2437 struct vmspace *vm; 2438 vm_offset_t addr; 2439 unsigned int last_timestamp; 2440 int error; 2441 bool super; 2442 2443 PROC_LOCK_ASSERT(p, MA_OWNED); 2444 2445 _PHOLD(p); 2446 PROC_UNLOCK(p); 2447 vm = vmspace_acquire_ref(p); 2448 if (vm == NULL) { 2449 PRELE(p); 2450 return (ESRCH); 2451 } 2452 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2453 2454 error = 0; 2455 map = &vm->vm_map; 2456 vm_map_lock_read(map); 2457 VM_MAP_ENTRY_FOREACH(entry, map) { 2458 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2459 continue; 2460 2461 addr = entry->end; 2462 bzero(kve, sizeof(*kve)); 2463 obj = entry->object.vm_object; 2464 if (obj != NULL) { 2465 for (tobj = obj; tobj != NULL; 2466 tobj = tobj->backing_object) { 2467 VM_OBJECT_RLOCK(tobj); 2468 kve->kve_offset += tobj->backing_object_offset; 2469 lobj = tobj; 2470 } 2471 if (obj->backing_object == NULL) 2472 kve->kve_private_resident = 2473 obj->resident_page_count; 2474 kern_proc_vmmap_resident(map, entry, 2475 &kve->kve_resident, &super); 2476 if (super) 2477 kve->kve_flags |= KVME_FLAG_SUPER; 2478 for (tobj = obj; tobj != NULL; 2479 tobj = tobj->backing_object) { 2480 if (tobj != obj && tobj != lobj) 2481 VM_OBJECT_RUNLOCK(tobj); 2482 } 2483 } else { 2484 lobj = NULL; 2485 } 2486 2487 kve->kve_start = entry->start; 2488 kve->kve_end = entry->end; 2489 kve->kve_offset += entry->offset; 2490 2491 if (entry->protection & VM_PROT_READ) 2492 kve->kve_protection |= KVME_PROT_READ; 2493 if (entry->protection & VM_PROT_WRITE) 2494 kve->kve_protection |= KVME_PROT_WRITE; 2495 if (entry->protection & VM_PROT_EXECUTE) 2496 kve->kve_protection |= KVME_PROT_EXEC; 2497 2498 if (entry->eflags & MAP_ENTRY_COW) 2499 kve->kve_flags |= KVME_FLAG_COW; 2500 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2501 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2502 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2503 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2504 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2505 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2506 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2507 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2508 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2509 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2510 2511 last_timestamp = map->timestamp; 2512 vm_map_unlock_read(map); 2513 2514 freepath = NULL; 2515 fullpath = ""; 2516 if (lobj != NULL) { 2517 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2518 if (vp != NULL) 2519 vref(vp); 2520 if (lobj != obj) 2521 VM_OBJECT_RUNLOCK(lobj); 2522 2523 kve->kve_ref_count = obj->ref_count; 2524 kve->kve_shadow_count = obj->shadow_count; 2525 VM_OBJECT_RUNLOCK(obj); 2526 if (vp != NULL) { 2527 vn_fullpath(curthread, vp, &fullpath, 2528 &freepath); 2529 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2530 cred = curthread->td_ucred; 2531 vn_lock(vp, LK_SHARED | LK_RETRY); 2532 if (VOP_GETATTR(vp, &va, cred) == 0) { 2533 kve->kve_vn_fileid = va.va_fileid; 2534 kve->kve_vn_fsid = va.va_fsid; 2535 kve->kve_vn_fsid_freebsd11 = 2536 kve->kve_vn_fsid; /* truncate */ 2537 kve->kve_vn_mode = 2538 MAKEIMODE(va.va_type, va.va_mode); 2539 kve->kve_vn_size = va.va_size; 2540 kve->kve_vn_rdev = va.va_rdev; 2541 kve->kve_vn_rdev_freebsd11 = 2542 kve->kve_vn_rdev; /* truncate */ 2543 kve->kve_status = KF_ATTR_VALID; 2544 } 2545 vput(vp); 2546 } 2547 } else { 2548 kve->kve_type = KVME_TYPE_NONE; 2549 kve->kve_ref_count = 0; 2550 kve->kve_shadow_count = 0; 2551 } 2552 2553 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2554 if (freepath != NULL) 2555 free(freepath, M_TEMP); 2556 2557 /* Pack record size down */ 2558 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2559 kve->kve_structsize = 2560 offsetof(struct kinfo_vmentry, kve_path) + 2561 strlen(kve->kve_path) + 1; 2562 else 2563 kve->kve_structsize = sizeof(*kve); 2564 kve->kve_structsize = roundup(kve->kve_structsize, 2565 sizeof(uint64_t)); 2566 2567 /* Halt filling and truncate rather than exceeding maxlen */ 2568 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2569 error = 0; 2570 vm_map_lock_read(map); 2571 break; 2572 } else if (maxlen != -1) 2573 maxlen -= kve->kve_structsize; 2574 2575 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2576 error = ENOMEM; 2577 vm_map_lock_read(map); 2578 if (error != 0) 2579 break; 2580 if (last_timestamp != map->timestamp) { 2581 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2582 entry = tmp_entry; 2583 } 2584 } 2585 vm_map_unlock_read(map); 2586 vmspace_free(vm); 2587 PRELE(p); 2588 free(kve, M_TEMP); 2589 return (error); 2590 } 2591 2592 static int 2593 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2594 { 2595 struct proc *p; 2596 struct sbuf sb; 2597 int error, error2, *name; 2598 2599 name = (int *)arg1; 2600 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2601 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2602 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2603 if (error != 0) { 2604 sbuf_delete(&sb); 2605 return (error); 2606 } 2607 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2608 error2 = sbuf_finish(&sb); 2609 sbuf_delete(&sb); 2610 return (error != 0 ? error : error2); 2611 } 2612 2613 #if defined(STACK) || defined(DDB) 2614 static int 2615 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2616 { 2617 struct kinfo_kstack *kkstp; 2618 int error, i, *name, numthreads; 2619 lwpid_t *lwpidarray; 2620 struct thread *td; 2621 struct stack *st; 2622 struct sbuf sb; 2623 struct proc *p; 2624 2625 name = (int *)arg1; 2626 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2627 if (error != 0) 2628 return (error); 2629 2630 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2631 st = stack_create(M_WAITOK); 2632 2633 lwpidarray = NULL; 2634 PROC_LOCK(p); 2635 do { 2636 if (lwpidarray != NULL) { 2637 free(lwpidarray, M_TEMP); 2638 lwpidarray = NULL; 2639 } 2640 numthreads = p->p_numthreads; 2641 PROC_UNLOCK(p); 2642 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2643 M_WAITOK | M_ZERO); 2644 PROC_LOCK(p); 2645 } while (numthreads < p->p_numthreads); 2646 2647 /* 2648 * XXXRW: During the below loop, execve(2) and countless other sorts 2649 * of changes could have taken place. Should we check to see if the 2650 * vmspace has been replaced, or the like, in order to prevent 2651 * giving a snapshot that spans, say, execve(2), with some threads 2652 * before and some after? Among other things, the credentials could 2653 * have changed, in which case the right to extract debug info might 2654 * no longer be assured. 2655 */ 2656 i = 0; 2657 FOREACH_THREAD_IN_PROC(p, td) { 2658 KASSERT(i < numthreads, 2659 ("sysctl_kern_proc_kstack: numthreads")); 2660 lwpidarray[i] = td->td_tid; 2661 i++; 2662 } 2663 numthreads = i; 2664 for (i = 0; i < numthreads; i++) { 2665 td = thread_find(p, lwpidarray[i]); 2666 if (td == NULL) { 2667 continue; 2668 } 2669 bzero(kkstp, sizeof(*kkstp)); 2670 (void)sbuf_new(&sb, kkstp->kkst_trace, 2671 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2672 thread_lock(td); 2673 kkstp->kkst_tid = td->td_tid; 2674 if (TD_IS_SWAPPED(td)) 2675 kkstp->kkst_state = KKST_STATE_SWAPPED; 2676 else if (stack_save_td(st, td) == 0) 2677 kkstp->kkst_state = KKST_STATE_STACKOK; 2678 else 2679 kkstp->kkst_state = KKST_STATE_RUNNING; 2680 thread_unlock(td); 2681 PROC_UNLOCK(p); 2682 stack_sbuf_print(&sb, st); 2683 sbuf_finish(&sb); 2684 sbuf_delete(&sb); 2685 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2686 PROC_LOCK(p); 2687 if (error) 2688 break; 2689 } 2690 _PRELE(p); 2691 PROC_UNLOCK(p); 2692 if (lwpidarray != NULL) 2693 free(lwpidarray, M_TEMP); 2694 stack_destroy(st); 2695 free(kkstp, M_TEMP); 2696 return (error); 2697 } 2698 #endif 2699 2700 /* 2701 * This sysctl allows a process to retrieve the full list of groups from 2702 * itself or another process. 2703 */ 2704 static int 2705 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2706 { 2707 pid_t *pidp = (pid_t *)arg1; 2708 unsigned int arglen = arg2; 2709 struct proc *p; 2710 struct ucred *cred; 2711 int error; 2712 2713 if (arglen != 1) 2714 return (EINVAL); 2715 if (*pidp == -1) { /* -1 means this process */ 2716 p = req->td->td_proc; 2717 PROC_LOCK(p); 2718 } else { 2719 error = pget(*pidp, PGET_CANSEE, &p); 2720 if (error != 0) 2721 return (error); 2722 } 2723 2724 cred = crhold(p->p_ucred); 2725 PROC_UNLOCK(p); 2726 2727 error = SYSCTL_OUT(req, cred->cr_groups, 2728 cred->cr_ngroups * sizeof(gid_t)); 2729 crfree(cred); 2730 return (error); 2731 } 2732 2733 /* 2734 * This sysctl allows a process to retrieve or/and set the resource limit for 2735 * another process. 2736 */ 2737 static int 2738 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2739 { 2740 int *name = (int *)arg1; 2741 u_int namelen = arg2; 2742 struct rlimit rlim; 2743 struct proc *p; 2744 u_int which; 2745 int flags, error; 2746 2747 if (namelen != 2) 2748 return (EINVAL); 2749 2750 which = (u_int)name[1]; 2751 if (which >= RLIM_NLIMITS) 2752 return (EINVAL); 2753 2754 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2755 return (EINVAL); 2756 2757 flags = PGET_HOLD | PGET_NOTWEXIT; 2758 if (req->newptr != NULL) 2759 flags |= PGET_CANDEBUG; 2760 else 2761 flags |= PGET_CANSEE; 2762 error = pget((pid_t)name[0], flags, &p); 2763 if (error != 0) 2764 return (error); 2765 2766 /* 2767 * Retrieve limit. 2768 */ 2769 if (req->oldptr != NULL) { 2770 PROC_LOCK(p); 2771 lim_rlimit_proc(p, which, &rlim); 2772 PROC_UNLOCK(p); 2773 } 2774 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2775 if (error != 0) 2776 goto errout; 2777 2778 /* 2779 * Set limit. 2780 */ 2781 if (req->newptr != NULL) { 2782 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2783 if (error == 0) 2784 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2785 } 2786 2787 errout: 2788 PRELE(p); 2789 return (error); 2790 } 2791 2792 /* 2793 * This sysctl allows a process to retrieve ps_strings structure location of 2794 * another process. 2795 */ 2796 static int 2797 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2798 { 2799 int *name = (int *)arg1; 2800 u_int namelen = arg2; 2801 struct proc *p; 2802 vm_offset_t ps_strings; 2803 int error; 2804 #ifdef COMPAT_FREEBSD32 2805 uint32_t ps_strings32; 2806 #endif 2807 2808 if (namelen != 1) 2809 return (EINVAL); 2810 2811 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2812 if (error != 0) 2813 return (error); 2814 #ifdef COMPAT_FREEBSD32 2815 if ((req->flags & SCTL_MASK32) != 0) { 2816 /* 2817 * We return 0 if the 32 bit emulation request is for a 64 bit 2818 * process. 2819 */ 2820 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2821 PTROUT(p->p_sysent->sv_psstrings) : 0; 2822 PROC_UNLOCK(p); 2823 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2824 return (error); 2825 } 2826 #endif 2827 ps_strings = p->p_sysent->sv_psstrings; 2828 PROC_UNLOCK(p); 2829 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2830 return (error); 2831 } 2832 2833 /* 2834 * This sysctl allows a process to retrieve umask of another process. 2835 */ 2836 static int 2837 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2838 { 2839 int *name = (int *)arg1; 2840 u_int namelen = arg2; 2841 struct proc *p; 2842 int error; 2843 u_short fd_cmask; 2844 pid_t pid; 2845 2846 if (namelen != 1) 2847 return (EINVAL); 2848 2849 pid = (pid_t)name[0]; 2850 p = curproc; 2851 if (pid == p->p_pid || pid == 0) { 2852 fd_cmask = p->p_fd->fd_cmask; 2853 goto out; 2854 } 2855 2856 error = pget(pid, PGET_WANTREAD, &p); 2857 if (error != 0) 2858 return (error); 2859 2860 fd_cmask = p->p_fd->fd_cmask; 2861 PRELE(p); 2862 out: 2863 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2864 return (error); 2865 } 2866 2867 /* 2868 * This sysctl allows a process to set and retrieve binary osreldate of 2869 * another process. 2870 */ 2871 static int 2872 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2873 { 2874 int *name = (int *)arg1; 2875 u_int namelen = arg2; 2876 struct proc *p; 2877 int flags, error, osrel; 2878 2879 if (namelen != 1) 2880 return (EINVAL); 2881 2882 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2883 return (EINVAL); 2884 2885 flags = PGET_HOLD | PGET_NOTWEXIT; 2886 if (req->newptr != NULL) 2887 flags |= PGET_CANDEBUG; 2888 else 2889 flags |= PGET_CANSEE; 2890 error = pget((pid_t)name[0], flags, &p); 2891 if (error != 0) 2892 return (error); 2893 2894 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2895 if (error != 0) 2896 goto errout; 2897 2898 if (req->newptr != NULL) { 2899 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2900 if (error != 0) 2901 goto errout; 2902 if (osrel < 0) { 2903 error = EINVAL; 2904 goto errout; 2905 } 2906 p->p_osrel = osrel; 2907 } 2908 errout: 2909 PRELE(p); 2910 return (error); 2911 } 2912 2913 static int 2914 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2915 { 2916 int *name = (int *)arg1; 2917 u_int namelen = arg2; 2918 struct proc *p; 2919 struct kinfo_sigtramp kst; 2920 const struct sysentvec *sv; 2921 int error; 2922 #ifdef COMPAT_FREEBSD32 2923 struct kinfo_sigtramp32 kst32; 2924 #endif 2925 2926 if (namelen != 1) 2927 return (EINVAL); 2928 2929 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2930 if (error != 0) 2931 return (error); 2932 sv = p->p_sysent; 2933 #ifdef COMPAT_FREEBSD32 2934 if ((req->flags & SCTL_MASK32) != 0) { 2935 bzero(&kst32, sizeof(kst32)); 2936 if (SV_PROC_FLAG(p, SV_ILP32)) { 2937 if (sv->sv_sigcode_base != 0) { 2938 kst32.ksigtramp_start = sv->sv_sigcode_base; 2939 kst32.ksigtramp_end = sv->sv_sigcode_base + 2940 *sv->sv_szsigcode; 2941 } else { 2942 kst32.ksigtramp_start = sv->sv_psstrings - 2943 *sv->sv_szsigcode; 2944 kst32.ksigtramp_end = sv->sv_psstrings; 2945 } 2946 } 2947 PROC_UNLOCK(p); 2948 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2949 return (error); 2950 } 2951 #endif 2952 bzero(&kst, sizeof(kst)); 2953 if (sv->sv_sigcode_base != 0) { 2954 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2955 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2956 *sv->sv_szsigcode; 2957 } else { 2958 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2959 *sv->sv_szsigcode; 2960 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2961 } 2962 PROC_UNLOCK(p); 2963 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2964 return (error); 2965 } 2966 2967 static int 2968 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 2969 { 2970 int *name = (int *)arg1; 2971 u_int namelen = arg2; 2972 pid_t pid; 2973 struct proc *p; 2974 struct thread *td1; 2975 uintptr_t addr; 2976 #ifdef COMPAT_FREEBSD32 2977 uint32_t addr32; 2978 #endif 2979 int error; 2980 2981 if (namelen != 1 || req->newptr != NULL) 2982 return (EINVAL); 2983 2984 pid = (pid_t)name[0]; 2985 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 2986 if (error != 0) 2987 return (error); 2988 2989 PROC_LOCK(p); 2990 #ifdef COMPAT_FREEBSD32 2991 if (SV_CURPROC_FLAG(SV_ILP32)) { 2992 if (!SV_PROC_FLAG(p, SV_ILP32)) { 2993 error = EINVAL; 2994 goto errlocked; 2995 } 2996 } 2997 #endif 2998 if (pid <= PID_MAX) { 2999 td1 = FIRST_THREAD_IN_PROC(p); 3000 } else { 3001 FOREACH_THREAD_IN_PROC(p, td1) { 3002 if (td1->td_tid == pid) 3003 break; 3004 } 3005 } 3006 if (td1 == NULL) { 3007 error = ESRCH; 3008 goto errlocked; 3009 } 3010 /* 3011 * The access to the private thread flags. It is fine as far 3012 * as no out-of-thin-air values are read from td_pflags, and 3013 * usermode read of the td_sigblock_ptr is racy inherently, 3014 * since target process might have already changed it 3015 * meantime. 3016 */ 3017 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3018 addr = (uintptr_t)td1->td_sigblock_ptr; 3019 else 3020 error = ENOTTY; 3021 3022 errlocked: 3023 _PRELE(p); 3024 PROC_UNLOCK(p); 3025 if (error != 0) 3026 return (error); 3027 3028 #ifdef COMPAT_FREEBSD32 3029 if (SV_CURPROC_FLAG(SV_ILP32)) { 3030 addr32 = addr; 3031 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3032 } else 3033 #endif 3034 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3035 return (error); 3036 } 3037 3038 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3039 "Process table"); 3040 3041 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3042 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3043 "Return entire process table"); 3044 3045 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3046 sysctl_kern_proc, "Process table"); 3047 3048 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3049 sysctl_kern_proc, "Process table"); 3050 3051 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3052 sysctl_kern_proc, "Process table"); 3053 3054 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3055 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3056 3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3058 sysctl_kern_proc, "Process table"); 3059 3060 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3061 sysctl_kern_proc, "Process table"); 3062 3063 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3064 sysctl_kern_proc, "Process table"); 3065 3066 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3067 sysctl_kern_proc, "Process table"); 3068 3069 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3070 sysctl_kern_proc, "Return process table, no threads"); 3071 3072 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3073 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3074 sysctl_kern_proc_args, "Process argument list"); 3075 3076 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3077 sysctl_kern_proc_env, "Process environment"); 3078 3079 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3080 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3081 3082 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3083 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3084 3085 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3086 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3087 "Process syscall vector name (ABI type)"); 3088 3089 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3090 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3091 3092 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3093 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3094 3095 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3096 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3097 3098 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3099 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3100 3101 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3102 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3103 3104 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3105 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3106 3107 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3108 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3109 3110 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3111 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3112 3113 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3114 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3115 "Return process table, no threads"); 3116 3117 #ifdef COMPAT_FREEBSD7 3118 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3119 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3120 #endif 3121 3122 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3123 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3124 3125 #if defined(STACK) || defined(DDB) 3126 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3127 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3128 #endif 3129 3130 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3131 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3132 3133 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3134 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3135 "Process resource limits"); 3136 3137 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3138 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3139 "Process ps_strings location"); 3140 3141 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3142 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3143 3144 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3145 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3146 "Process binary osreldate"); 3147 3148 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3149 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3150 "Process signal trampoline location"); 3151 3152 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3153 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3154 "Thread sigfastblock address"); 3155 3156 int allproc_gen; 3157 3158 /* 3159 * stop_all_proc() purpose is to stop all process which have usermode, 3160 * except current process for obvious reasons. This makes it somewhat 3161 * unreliable when invoked from multithreaded process. The service 3162 * must not be user-callable anyway. 3163 */ 3164 void 3165 stop_all_proc(void) 3166 { 3167 struct proc *cp, *p; 3168 int r, gen; 3169 bool restart, seen_stopped, seen_exiting, stopped_some; 3170 3171 cp = curproc; 3172 allproc_loop: 3173 sx_xlock(&allproc_lock); 3174 gen = allproc_gen; 3175 seen_exiting = seen_stopped = stopped_some = restart = false; 3176 LIST_REMOVE(cp, p_list); 3177 LIST_INSERT_HEAD(&allproc, cp, p_list); 3178 for (;;) { 3179 p = LIST_NEXT(cp, p_list); 3180 if (p == NULL) 3181 break; 3182 LIST_REMOVE(cp, p_list); 3183 LIST_INSERT_AFTER(p, cp, p_list); 3184 PROC_LOCK(p); 3185 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3186 PROC_UNLOCK(p); 3187 continue; 3188 } 3189 if ((p->p_flag & P_WEXIT) != 0) { 3190 seen_exiting = true; 3191 PROC_UNLOCK(p); 3192 continue; 3193 } 3194 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3195 /* 3196 * Stopped processes are tolerated when there 3197 * are no other processes which might continue 3198 * them. P_STOPPED_SINGLE but not 3199 * P_TOTAL_STOP process still has at least one 3200 * thread running. 3201 */ 3202 seen_stopped = true; 3203 PROC_UNLOCK(p); 3204 continue; 3205 } 3206 sx_xunlock(&allproc_lock); 3207 _PHOLD(p); 3208 r = thread_single(p, SINGLE_ALLPROC); 3209 if (r != 0) 3210 restart = true; 3211 else 3212 stopped_some = true; 3213 _PRELE(p); 3214 PROC_UNLOCK(p); 3215 sx_xlock(&allproc_lock); 3216 } 3217 /* Catch forked children we did not see in iteration. */ 3218 if (gen != allproc_gen) 3219 restart = true; 3220 sx_xunlock(&allproc_lock); 3221 if (restart || stopped_some || seen_exiting || seen_stopped) { 3222 kern_yield(PRI_USER); 3223 goto allproc_loop; 3224 } 3225 } 3226 3227 void 3228 resume_all_proc(void) 3229 { 3230 struct proc *cp, *p; 3231 3232 cp = curproc; 3233 sx_xlock(&allproc_lock); 3234 again: 3235 LIST_REMOVE(cp, p_list); 3236 LIST_INSERT_HEAD(&allproc, cp, p_list); 3237 for (;;) { 3238 p = LIST_NEXT(cp, p_list); 3239 if (p == NULL) 3240 break; 3241 LIST_REMOVE(cp, p_list); 3242 LIST_INSERT_AFTER(p, cp, p_list); 3243 PROC_LOCK(p); 3244 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3245 sx_xunlock(&allproc_lock); 3246 _PHOLD(p); 3247 thread_single_end(p, SINGLE_ALLPROC); 3248 _PRELE(p); 3249 PROC_UNLOCK(p); 3250 sx_xlock(&allproc_lock); 3251 } else { 3252 PROC_UNLOCK(p); 3253 } 3254 } 3255 /* Did the loop above missed any stopped process ? */ 3256 FOREACH_PROC_IN_SYSTEM(p) { 3257 /* No need for proc lock. */ 3258 if ((p->p_flag & P_TOTAL_STOP) != 0) 3259 goto again; 3260 } 3261 sx_xunlock(&allproc_lock); 3262 } 3263 3264 /* #define TOTAL_STOP_DEBUG 1 */ 3265 #ifdef TOTAL_STOP_DEBUG 3266 volatile static int ap_resume; 3267 #include <sys/mount.h> 3268 3269 static int 3270 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3271 { 3272 int error, val; 3273 3274 val = 0; 3275 ap_resume = 0; 3276 error = sysctl_handle_int(oidp, &val, 0, req); 3277 if (error != 0 || req->newptr == NULL) 3278 return (error); 3279 if (val != 0) { 3280 stop_all_proc(); 3281 syncer_suspend(); 3282 while (ap_resume == 0) 3283 ; 3284 syncer_resume(); 3285 resume_all_proc(); 3286 } 3287 return (0); 3288 } 3289 3290 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3291 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3292 sysctl_debug_stop_all_proc, "I", 3293 ""); 3294 #endif 3295