xref: /freebsd/sys/kern/kern_proc.c (revision 767173cec2b2041e1f847bc8896092f9c1481242)
1 /*-
2  * SPDX-License-Identifier: BSD-3-Clause
3  *
4  * Copyright (c) 1982, 1986, 1989, 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
32  */
33 
34 #include <sys/cdefs.h>
35 __FBSDID("$FreeBSD$");
36 
37 #include "opt_ddb.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/bitstring.h>
45 #include <sys/elf.h>
46 #include <sys/eventhandler.h>
47 #include <sys/exec.h>
48 #include <sys/jail.h>
49 #include <sys/kernel.h>
50 #include <sys/limits.h>
51 #include <sys/lock.h>
52 #include <sys/loginclass.h>
53 #include <sys/malloc.h>
54 #include <sys/mman.h>
55 #include <sys/mount.h>
56 #include <sys/mutex.h>
57 #include <sys/proc.h>
58 #include <sys/ptrace.h>
59 #include <sys/refcount.h>
60 #include <sys/resourcevar.h>
61 #include <sys/rwlock.h>
62 #include <sys/sbuf.h>
63 #include <sys/sysent.h>
64 #include <sys/sched.h>
65 #include <sys/smp.h>
66 #include <sys/stack.h>
67 #include <sys/stat.h>
68 #include <sys/sysctl.h>
69 #include <sys/filedesc.h>
70 #include <sys/tty.h>
71 #include <sys/signalvar.h>
72 #include <sys/sdt.h>
73 #include <sys/sx.h>
74 #include <sys/user.h>
75 #include <sys/vnode.h>
76 #include <sys/wait.h>
77 
78 #ifdef DDB
79 #include <ddb/ddb.h>
80 #endif
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/vm_extern.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_page.h>
89 #include <vm/uma.h>
90 
91 #ifdef COMPAT_FREEBSD32
92 #include <compat/freebsd32/freebsd32.h>
93 #include <compat/freebsd32/freebsd32_util.h>
94 #endif
95 
96 SDT_PROVIDER_DEFINE(proc);
97 
98 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
99 MALLOC_DEFINE(M_SESSION, "session", "session header");
100 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
101 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
102 
103 static void doenterpgrp(struct proc *, struct pgrp *);
104 static void orphanpg(struct pgrp *pg);
105 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
106 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
107 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
108     int preferthread);
109 static void pgadjustjobc(struct pgrp *pgrp, int entering);
110 static void pgdelete(struct pgrp *);
111 static int proc_ctor(void *mem, int size, void *arg, int flags);
112 static void proc_dtor(void *mem, int size, void *arg);
113 static int proc_init(void *mem, int size, int flags);
114 static void proc_fini(void *mem, int size);
115 static void pargs_free(struct pargs *pa);
116 
117 /*
118  * Other process lists
119  */
120 struct pidhashhead *pidhashtbl;
121 struct sx *pidhashtbl_lock;
122 u_long pidhash;
123 u_long pidhashlock;
124 struct pgrphashhead *pgrphashtbl;
125 u_long pgrphash;
126 struct proclist allproc;
127 struct sx __exclusive_cache_line allproc_lock;
128 struct sx __exclusive_cache_line proctree_lock;
129 struct mtx __exclusive_cache_line ppeers_lock;
130 struct mtx __exclusive_cache_line procid_lock;
131 uma_zone_t proc_zone;
132 
133 /*
134  * The offset of various fields in struct proc and struct thread.
135  * These are used by kernel debuggers to enumerate kernel threads and
136  * processes.
137  */
138 const int proc_off_p_pid = offsetof(struct proc, p_pid);
139 const int proc_off_p_comm = offsetof(struct proc, p_comm);
140 const int proc_off_p_list = offsetof(struct proc, p_list);
141 const int proc_off_p_threads = offsetof(struct proc, p_threads);
142 const int thread_off_td_tid = offsetof(struct thread, td_tid);
143 const int thread_off_td_name = offsetof(struct thread, td_name);
144 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu);
145 const int thread_off_td_pcb = offsetof(struct thread, td_pcb);
146 const int thread_off_td_plist = offsetof(struct thread, td_plist);
147 
148 EVENTHANDLER_LIST_DEFINE(process_ctor);
149 EVENTHANDLER_LIST_DEFINE(process_dtor);
150 EVENTHANDLER_LIST_DEFINE(process_init);
151 EVENTHANDLER_LIST_DEFINE(process_fini);
152 EVENTHANDLER_LIST_DEFINE(process_exit);
153 EVENTHANDLER_LIST_DEFINE(process_fork);
154 EVENTHANDLER_LIST_DEFINE(process_exec);
155 
156 int kstack_pages = KSTACK_PAGES;
157 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
158     "Kernel stack size in pages");
159 static int vmmap_skip_res_cnt = 0;
160 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW,
161     &vmmap_skip_res_cnt, 0,
162     "Skip calculation of the pages resident count in kern.proc.vmmap");
163 
164 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
165 #ifdef COMPAT_FREEBSD32
166 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
167 #endif
168 
169 /*
170  * Initialize global process hashing structures.
171  */
172 void
173 procinit(void)
174 {
175 	u_long i;
176 
177 	sx_init(&allproc_lock, "allproc");
178 	sx_init(&proctree_lock, "proctree");
179 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
180 	mtx_init(&procid_lock, "procid", NULL, MTX_DEF);
181 	LIST_INIT(&allproc);
182 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
183 	pidhashlock = (pidhash + 1) / 64;
184 	if (pidhashlock > 0)
185 		pidhashlock--;
186 	pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1),
187 	    M_PROC, M_WAITOK | M_ZERO);
188 	for (i = 0; i < pidhashlock + 1; i++)
189 		sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK);
190 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
191 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
192 	    proc_ctor, proc_dtor, proc_init, proc_fini,
193 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uihashinit();
195 }
196 
197 /*
198  * Prepare a proc for use.
199  */
200 static int
201 proc_ctor(void *mem, int size, void *arg, int flags)
202 {
203 	struct proc *p;
204 	struct thread *td;
205 
206 	p = (struct proc *)mem;
207 	EVENTHANDLER_DIRECT_INVOKE(process_ctor, p);
208 	td = FIRST_THREAD_IN_PROC(p);
209 	if (td != NULL) {
210 		/* Make sure all thread constructors are executed */
211 		EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td);
212 	}
213 	return (0);
214 }
215 
216 /*
217  * Reclaim a proc after use.
218  */
219 static void
220 proc_dtor(void *mem, int size, void *arg)
221 {
222 	struct proc *p;
223 	struct thread *td;
224 
225 	/* INVARIANTS checks go here */
226 	p = (struct proc *)mem;
227 	td = FIRST_THREAD_IN_PROC(p);
228 	if (td != NULL) {
229 #ifdef INVARIANTS
230 		KASSERT((p->p_numthreads == 1),
231 		    ("bad number of threads in exiting process"));
232 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
233 #endif
234 		/* Free all OSD associated to this thread. */
235 		osd_thread_exit(td);
236 		td_softdep_cleanup(td);
237 		MPASS(td->td_su == NULL);
238 
239 		/* Make sure all thread destructors are executed */
240 		EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td);
241 	}
242 	EVENTHANDLER_DIRECT_INVOKE(process_dtor, p);
243 	if (p->p_ksi != NULL)
244 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
245 }
246 
247 /*
248  * Initialize type-stable parts of a proc (when newly created).
249  */
250 static int
251 proc_init(void *mem, int size, int flags)
252 {
253 	struct proc *p;
254 
255 	p = (struct proc *)mem;
256 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW);
257 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW);
258 	mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW);
259 	mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW);
260 	mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW);
261 	cv_init(&p->p_pwait, "ppwait");
262 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
263 	EVENTHANDLER_DIRECT_INVOKE(process_init, p);
264 	p->p_stats = pstats_alloc();
265 	p->p_pgrp = NULL;
266 	return (0);
267 }
268 
269 /*
270  * UMA should ensure that this function is never called.
271  * Freeing a proc structure would violate type stability.
272  */
273 static void
274 proc_fini(void *mem, int size)
275 {
276 #ifdef notnow
277 	struct proc *p;
278 
279 	p = (struct proc *)mem;
280 	EVENTHANDLER_DIRECT_INVOKE(process_fini, p);
281 	pstats_free(p->p_stats);
282 	thread_free(FIRST_THREAD_IN_PROC(p));
283 	mtx_destroy(&p->p_mtx);
284 	if (p->p_ksi != NULL)
285 		ksiginfo_free(p->p_ksi);
286 #else
287 	panic("proc reclaimed");
288 #endif
289 }
290 
291 /*
292  * PID space management.
293  *
294  * These bitmaps are used by fork_findpid.
295  */
296 bitstr_t bit_decl(proc_id_pidmap, PID_MAX);
297 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX);
298 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX);
299 bitstr_t bit_decl(proc_id_reapmap, PID_MAX);
300 
301 static bitstr_t *proc_id_array[] = {
302 	proc_id_pidmap,
303 	proc_id_grpidmap,
304 	proc_id_sessidmap,
305 	proc_id_reapmap,
306 };
307 
308 void
309 proc_id_set(int type, pid_t id)
310 {
311 
312 	KASSERT(type >= 0 && type < nitems(proc_id_array),
313 	    ("invalid type %d\n", type));
314 	mtx_lock(&procid_lock);
315 	KASSERT(bit_test(proc_id_array[type], id) == 0,
316 	    ("bit %d already set in %d\n", id, type));
317 	bit_set(proc_id_array[type], id);
318 	mtx_unlock(&procid_lock);
319 }
320 
321 void
322 proc_id_set_cond(int type, pid_t id)
323 {
324 
325 	KASSERT(type >= 0 && type < nitems(proc_id_array),
326 	    ("invalid type %d\n", type));
327 	if (bit_test(proc_id_array[type], id))
328 		return;
329 	mtx_lock(&procid_lock);
330 	bit_set(proc_id_array[type], id);
331 	mtx_unlock(&procid_lock);
332 }
333 
334 void
335 proc_id_clear(int type, pid_t id)
336 {
337 
338 	KASSERT(type >= 0 && type < nitems(proc_id_array),
339 	    ("invalid type %d\n", type));
340 	mtx_lock(&procid_lock);
341 	KASSERT(bit_test(proc_id_array[type], id) != 0,
342 	    ("bit %d not set in %d\n", id, type));
343 	bit_clear(proc_id_array[type], id);
344 	mtx_unlock(&procid_lock);
345 }
346 
347 /*
348  * Is p an inferior of the current process?
349  */
350 int
351 inferior(struct proc *p)
352 {
353 
354 	sx_assert(&proctree_lock, SX_LOCKED);
355 	PROC_LOCK_ASSERT(p, MA_OWNED);
356 	for (; p != curproc; p = proc_realparent(p)) {
357 		if (p->p_pid == 0)
358 			return (0);
359 	}
360 	return (1);
361 }
362 
363 /*
364  * Shared lock all the pid hash lists.
365  */
366 void
367 pidhash_slockall(void)
368 {
369 	u_long i;
370 
371 	for (i = 0; i < pidhashlock + 1; i++)
372 		sx_slock(&pidhashtbl_lock[i]);
373 }
374 
375 /*
376  * Shared unlock all the pid hash lists.
377  */
378 void
379 pidhash_sunlockall(void)
380 {
381 	u_long i;
382 
383 	for (i = 0; i < pidhashlock + 1; i++)
384 		sx_sunlock(&pidhashtbl_lock[i]);
385 }
386 
387 /*
388  * Similar to pfind_any(), this function finds zombies.
389  */
390 struct proc *
391 pfind_any_locked(pid_t pid)
392 {
393 	struct proc *p;
394 
395 	sx_assert(PIDHASHLOCK(pid), SX_LOCKED);
396 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
397 		if (p->p_pid == pid) {
398 			PROC_LOCK(p);
399 			if (p->p_state == PRS_NEW) {
400 				PROC_UNLOCK(p);
401 				p = NULL;
402 			}
403 			break;
404 		}
405 	}
406 	return (p);
407 }
408 
409 /*
410  * Locate a process by number.
411  *
412  * By not returning processes in the PRS_NEW state, we allow callers to avoid
413  * testing for that condition to avoid dereferencing p_ucred, et al.
414  */
415 static __always_inline struct proc *
416 _pfind(pid_t pid, bool zombie)
417 {
418 	struct proc *p;
419 
420 	p = curproc;
421 	if (p->p_pid == pid) {
422 		PROC_LOCK(p);
423 		return (p);
424 	}
425 	sx_slock(PIDHASHLOCK(pid));
426 	LIST_FOREACH(p, PIDHASH(pid), p_hash) {
427 		if (p->p_pid == pid) {
428 			PROC_LOCK(p);
429 			if (p->p_state == PRS_NEW ||
430 			    (!zombie && p->p_state == PRS_ZOMBIE)) {
431 				PROC_UNLOCK(p);
432 				p = NULL;
433 			}
434 			break;
435 		}
436 	}
437 	sx_sunlock(PIDHASHLOCK(pid));
438 	return (p);
439 }
440 
441 struct proc *
442 pfind(pid_t pid)
443 {
444 
445 	return (_pfind(pid, false));
446 }
447 
448 /*
449  * Same as pfind but allow zombies.
450  */
451 struct proc *
452 pfind_any(pid_t pid)
453 {
454 
455 	return (_pfind(pid, true));
456 }
457 
458 static struct proc *
459 pfind_tid(pid_t tid)
460 {
461 	struct proc *p;
462 	struct thread *td;
463 
464 	sx_slock(&allproc_lock);
465 	FOREACH_PROC_IN_SYSTEM(p) {
466 		PROC_LOCK(p);
467 		if (p->p_state == PRS_NEW) {
468 			PROC_UNLOCK(p);
469 			continue;
470 		}
471 		FOREACH_THREAD_IN_PROC(p, td) {
472 			if (td->td_tid == tid)
473 				goto found;
474 		}
475 		PROC_UNLOCK(p);
476 	}
477 found:
478 	sx_sunlock(&allproc_lock);
479 	return (p);
480 }
481 
482 /*
483  * Locate a process group by number.
484  * The caller must hold proctree_lock.
485  */
486 struct pgrp *
487 pgfind(pid_t pgid)
488 {
489 	struct pgrp *pgrp;
490 
491 	sx_assert(&proctree_lock, SX_LOCKED);
492 
493 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
494 		if (pgrp->pg_id == pgid) {
495 			PGRP_LOCK(pgrp);
496 			return (pgrp);
497 		}
498 	}
499 	return (NULL);
500 }
501 
502 /*
503  * Locate process and do additional manipulations, depending on flags.
504  */
505 int
506 pget(pid_t pid, int flags, struct proc **pp)
507 {
508 	struct proc *p;
509 	int error;
510 
511 	p = curproc;
512 	if (p->p_pid == pid) {
513 		PROC_LOCK(p);
514 	} else {
515 		p = NULL;
516 		if (pid <= PID_MAX) {
517 			if ((flags & PGET_NOTWEXIT) == 0)
518 				p = pfind_any(pid);
519 			else
520 				p = pfind(pid);
521 		} else if ((flags & PGET_NOTID) == 0) {
522 			p = pfind_tid(pid);
523 		}
524 		if (p == NULL)
525 			return (ESRCH);
526 		if ((flags & PGET_CANSEE) != 0) {
527 			error = p_cansee(curthread, p);
528 			if (error != 0)
529 				goto errout;
530 		}
531 	}
532 	if ((flags & PGET_CANDEBUG) != 0) {
533 		error = p_candebug(curthread, p);
534 		if (error != 0)
535 			goto errout;
536 	}
537 	if ((flags & PGET_ISCURRENT) != 0 && curproc != p) {
538 		error = EPERM;
539 		goto errout;
540 	}
541 	if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) {
542 		error = ESRCH;
543 		goto errout;
544 	}
545 	if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) {
546 		/*
547 		 * XXXRW: Not clear ESRCH is the right error during proc
548 		 * execve().
549 		 */
550 		error = ESRCH;
551 		goto errout;
552 	}
553 	if ((flags & PGET_HOLD) != 0) {
554 		_PHOLD(p);
555 		PROC_UNLOCK(p);
556 	}
557 	*pp = p;
558 	return (0);
559 errout:
560 	PROC_UNLOCK(p);
561 	return (error);
562 }
563 
564 /*
565  * Create a new process group.
566  * pgid must be equal to the pid of p.
567  * Begin a new session if required.
568  */
569 int
570 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess)
571 {
572 
573 	sx_assert(&proctree_lock, SX_XLOCKED);
574 
575 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
576 	KASSERT(p->p_pid == pgid,
577 	    ("enterpgrp: new pgrp and pid != pgid"));
578 	KASSERT(pgfind(pgid) == NULL,
579 	    ("enterpgrp: pgrp with pgid exists"));
580 	KASSERT(!SESS_LEADER(p),
581 	    ("enterpgrp: session leader attempted setpgrp"));
582 
583 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
584 
585 	if (sess != NULL) {
586 		/*
587 		 * new session
588 		 */
589 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
590 		PROC_LOCK(p);
591 		p->p_flag &= ~P_CONTROLT;
592 		PROC_UNLOCK(p);
593 		PGRP_LOCK(pgrp);
594 		sess->s_leader = p;
595 		sess->s_sid = p->p_pid;
596 		proc_id_set(PROC_ID_SESSION, p->p_pid);
597 		refcount_init(&sess->s_count, 1);
598 		sess->s_ttyvp = NULL;
599 		sess->s_ttydp = NULL;
600 		sess->s_ttyp = NULL;
601 		bcopy(p->p_session->s_login, sess->s_login,
602 			    sizeof(sess->s_login));
603 		pgrp->pg_session = sess;
604 		KASSERT(p == curproc,
605 		    ("enterpgrp: mksession and p != curproc"));
606 	} else {
607 		pgrp->pg_session = p->p_session;
608 		sess_hold(pgrp->pg_session);
609 		PGRP_LOCK(pgrp);
610 	}
611 	pgrp->pg_id = pgid;
612 	proc_id_set(PROC_ID_GROUP, p->p_pid);
613 	LIST_INIT(&pgrp->pg_members);
614 
615 	/*
616 	 * As we have an exclusive lock of proctree_lock,
617 	 * this should not deadlock.
618 	 */
619 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
620 	pgrp->pg_jobc = 0;
621 	SLIST_INIT(&pgrp->pg_sigiolst);
622 	PGRP_UNLOCK(pgrp);
623 
624 	doenterpgrp(p, pgrp);
625 
626 	return (0);
627 }
628 
629 /*
630  * Move p to an existing process group
631  */
632 int
633 enterthispgrp(struct proc *p, struct pgrp *pgrp)
634 {
635 
636 	sx_assert(&proctree_lock, SX_XLOCKED);
637 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
638 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
639 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
640 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
641 	KASSERT(pgrp->pg_session == p->p_session,
642 		("%s: pgrp's session %p, p->p_session %p.\n",
643 		__func__,
644 		pgrp->pg_session,
645 		p->p_session));
646 	KASSERT(pgrp != p->p_pgrp,
647 		("%s: p belongs to pgrp.", __func__));
648 
649 	doenterpgrp(p, pgrp);
650 
651 	return (0);
652 }
653 
654 /*
655  * Move p to a process group
656  */
657 static void
658 doenterpgrp(struct proc *p, struct pgrp *pgrp)
659 {
660 	struct pgrp *savepgrp;
661 
662 	sx_assert(&proctree_lock, SX_XLOCKED);
663 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
664 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
665 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
666 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
667 
668 	savepgrp = p->p_pgrp;
669 
670 	/*
671 	 * Adjust eligibility of affected pgrps to participate in job control.
672 	 * Increment eligibility counts before decrementing, otherwise we
673 	 * could reach 0 spuriously during the first call.
674 	 */
675 	fixjobc(p, pgrp, 1);
676 	fixjobc(p, p->p_pgrp, 0);
677 
678 	PGRP_LOCK(pgrp);
679 	PGRP_LOCK(savepgrp);
680 	PROC_LOCK(p);
681 	LIST_REMOVE(p, p_pglist);
682 	p->p_pgrp = pgrp;
683 	PROC_UNLOCK(p);
684 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
685 	PGRP_UNLOCK(savepgrp);
686 	PGRP_UNLOCK(pgrp);
687 	if (LIST_EMPTY(&savepgrp->pg_members))
688 		pgdelete(savepgrp);
689 }
690 
691 /*
692  * remove process from process group
693  */
694 int
695 leavepgrp(struct proc *p)
696 {
697 	struct pgrp *savepgrp;
698 
699 	sx_assert(&proctree_lock, SX_XLOCKED);
700 	savepgrp = p->p_pgrp;
701 	PGRP_LOCK(savepgrp);
702 	PROC_LOCK(p);
703 	LIST_REMOVE(p, p_pglist);
704 	p->p_pgrp = NULL;
705 	PROC_UNLOCK(p);
706 	PGRP_UNLOCK(savepgrp);
707 	if (LIST_EMPTY(&savepgrp->pg_members))
708 		pgdelete(savepgrp);
709 	return (0);
710 }
711 
712 /*
713  * delete a process group
714  */
715 static void
716 pgdelete(struct pgrp *pgrp)
717 {
718 	struct session *savesess;
719 	struct tty *tp;
720 
721 	sx_assert(&proctree_lock, SX_XLOCKED);
722 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
723 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
724 
725 	/*
726 	 * Reset any sigio structures pointing to us as a result of
727 	 * F_SETOWN with our pgid.
728 	 */
729 	funsetownlst(&pgrp->pg_sigiolst);
730 
731 	PGRP_LOCK(pgrp);
732 	tp = pgrp->pg_session->s_ttyp;
733 	LIST_REMOVE(pgrp, pg_hash);
734 	savesess = pgrp->pg_session;
735 	PGRP_UNLOCK(pgrp);
736 
737 	/* Remove the reference to the pgrp before deallocating it. */
738 	if (tp != NULL) {
739 		tty_lock(tp);
740 		tty_rel_pgrp(tp, pgrp);
741 	}
742 
743 	proc_id_clear(PROC_ID_GROUP, pgrp->pg_id);
744 	mtx_destroy(&pgrp->pg_mtx);
745 	free(pgrp, M_PGRP);
746 	sess_release(savesess);
747 }
748 
749 static void
750 pgadjustjobc(struct pgrp *pgrp, int entering)
751 {
752 
753 	PGRP_LOCK(pgrp);
754 	if (entering) {
755 		MPASS(pgrp->pg_jobc >= 0);
756 		pgrp->pg_jobc++;
757 	} else {
758 		MPASS(pgrp->pg_jobc > 0);
759 		--pgrp->pg_jobc;
760 		if (pgrp->pg_jobc == 0)
761 			orphanpg(pgrp);
762 	}
763 	PGRP_UNLOCK(pgrp);
764 }
765 
766 /*
767  * Adjust pgrp jobc counters when specified process changes process group.
768  * We count the number of processes in each process group that "qualify"
769  * the group for terminal job control (those with a parent in a different
770  * process group of the same session).  If that count reaches zero, the
771  * process group becomes orphaned.  Check both the specified process'
772  * process group and that of its children.
773  * entering == 0 => p is leaving specified group.
774  * entering == 1 => p is entering specified group.
775  */
776 void
777 fixjobc(struct proc *p, struct pgrp *pgrp, int entering)
778 {
779 	struct pgrp *hispgrp;
780 	struct session *mysession;
781 	struct proc *q;
782 
783 	sx_assert(&proctree_lock, SX_LOCKED);
784 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
785 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
786 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
787 
788 	/*
789 	 * Check p's parent to see whether p qualifies its own process
790 	 * group; if so, adjust count for p's process group.
791 	 */
792 	mysession = pgrp->pg_session;
793 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
794 	    hispgrp->pg_session == mysession)
795 		pgadjustjobc(pgrp, entering);
796 
797 	/*
798 	 * Check this process' children to see whether they qualify
799 	 * their process groups; if so, adjust counts for children's
800 	 * process groups.
801 	 */
802 	LIST_FOREACH(q, &p->p_children, p_sibling) {
803 		hispgrp = q->p_pgrp;
804 		if (hispgrp == pgrp ||
805 		    hispgrp->pg_session != mysession)
806 			continue;
807 		if (q->p_state == PRS_ZOMBIE)
808 			continue;
809 		pgadjustjobc(hispgrp, entering);
810 	}
811 }
812 
813 void
814 killjobc(void)
815 {
816 	struct session *sp;
817 	struct tty *tp;
818 	struct proc *p;
819 	struct vnode *ttyvp;
820 
821 	p = curproc;
822 	MPASS(p->p_flag & P_WEXIT);
823 	/*
824 	 * Do a quick check to see if there is anything to do with the
825 	 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc().
826 	 */
827 	PROC_LOCK(p);
828 	if (!SESS_LEADER(p) &&
829 	    (p->p_pgrp == p->p_pptr->p_pgrp) &&
830 	    LIST_EMPTY(&p->p_children)) {
831 		PROC_UNLOCK(p);
832 		return;
833 	}
834 	PROC_UNLOCK(p);
835 
836 	sx_xlock(&proctree_lock);
837 	if (SESS_LEADER(p)) {
838 		sp = p->p_session;
839 
840 		/*
841 		 * s_ttyp is not zero'd; we use this to indicate that
842 		 * the session once had a controlling terminal. (for
843 		 * logging and informational purposes)
844 		 */
845 		SESS_LOCK(sp);
846 		ttyvp = sp->s_ttyvp;
847 		tp = sp->s_ttyp;
848 		sp->s_ttyvp = NULL;
849 		sp->s_ttydp = NULL;
850 		sp->s_leader = NULL;
851 		SESS_UNLOCK(sp);
852 
853 		/*
854 		 * Signal foreground pgrp and revoke access to
855 		 * controlling terminal if it has not been revoked
856 		 * already.
857 		 *
858 		 * Because the TTY may have been revoked in the mean
859 		 * time and could already have a new session associated
860 		 * with it, make sure we don't send a SIGHUP to a
861 		 * foreground process group that does not belong to this
862 		 * session.
863 		 */
864 
865 		if (tp != NULL) {
866 			tty_lock(tp);
867 			if (tp->t_session == sp)
868 				tty_signal_pgrp(tp, SIGHUP);
869 			tty_unlock(tp);
870 		}
871 
872 		if (ttyvp != NULL) {
873 			sx_xunlock(&proctree_lock);
874 			if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) {
875 				VOP_REVOKE(ttyvp, REVOKEALL);
876 				VOP_UNLOCK(ttyvp);
877 			}
878 			vrele(ttyvp);
879 			sx_xlock(&proctree_lock);
880 		}
881 	}
882 	fixjobc(p, p->p_pgrp, 0);
883 	sx_xunlock(&proctree_lock);
884 }
885 
886 /*
887  * A process group has become orphaned;
888  * if there are any stopped processes in the group,
889  * hang-up all process in that group.
890  */
891 static void
892 orphanpg(struct pgrp *pg)
893 {
894 	struct proc *p;
895 
896 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
897 
898 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
899 		PROC_LOCK(p);
900 		if (P_SHOULDSTOP(p) == P_STOPPED_SIG) {
901 			PROC_UNLOCK(p);
902 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
903 				PROC_LOCK(p);
904 				kern_psignal(p, SIGHUP);
905 				kern_psignal(p, SIGCONT);
906 				PROC_UNLOCK(p);
907 			}
908 			return;
909 		}
910 		PROC_UNLOCK(p);
911 	}
912 }
913 
914 void
915 sess_hold(struct session *s)
916 {
917 
918 	refcount_acquire(&s->s_count);
919 }
920 
921 void
922 sess_release(struct session *s)
923 {
924 
925 	if (refcount_release(&s->s_count)) {
926 		if (s->s_ttyp != NULL) {
927 			tty_lock(s->s_ttyp);
928 			tty_rel_sess(s->s_ttyp, s);
929 		}
930 		proc_id_clear(PROC_ID_SESSION, s->s_sid);
931 		mtx_destroy(&s->s_mtx);
932 		free(s, M_SESSION);
933 	}
934 }
935 
936 #ifdef DDB
937 
938 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
939 {
940 	struct pgrp *pgrp;
941 	struct proc *p;
942 	int i;
943 
944 	for (i = 0; i <= pgrphash; i++) {
945 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
946 			printf("\tindx %d\n", i);
947 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
948 				printf(
949 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
950 				    (void *)pgrp, (long)pgrp->pg_id,
951 				    (void *)pgrp->pg_session,
952 				    pgrp->pg_session->s_count,
953 				    (void *)LIST_FIRST(&pgrp->pg_members));
954 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
955 					printf("\t\tpid %ld addr %p pgrp %p\n",
956 					    (long)p->p_pid, (void *)p,
957 					    (void *)p->p_pgrp);
958 				}
959 			}
960 		}
961 	}
962 }
963 #endif /* DDB */
964 
965 /*
966  * Calculate the kinfo_proc members which contain process-wide
967  * informations.
968  * Must be called with the target process locked.
969  */
970 static void
971 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
972 {
973 	struct thread *td;
974 
975 	PROC_LOCK_ASSERT(p, MA_OWNED);
976 
977 	kp->ki_estcpu = 0;
978 	kp->ki_pctcpu = 0;
979 	FOREACH_THREAD_IN_PROC(p, td) {
980 		thread_lock(td);
981 		kp->ki_pctcpu += sched_pctcpu(td);
982 		kp->ki_estcpu += sched_estcpu(td);
983 		thread_unlock(td);
984 	}
985 }
986 
987 /*
988  * Clear kinfo_proc and fill in any information that is common
989  * to all threads in the process.
990  * Must be called with the target process locked.
991  */
992 static void
993 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
994 {
995 	struct thread *td0;
996 	struct tty *tp;
997 	struct session *sp;
998 	struct ucred *cred;
999 	struct sigacts *ps;
1000 	struct timeval boottime;
1001 
1002 	PROC_LOCK_ASSERT(p, MA_OWNED);
1003 	bzero(kp, sizeof(*kp));
1004 
1005 	kp->ki_structsize = sizeof(*kp);
1006 	kp->ki_paddr = p;
1007 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
1008 	kp->ki_args = p->p_args;
1009 	kp->ki_textvp = p->p_textvp;
1010 #ifdef KTRACE
1011 	kp->ki_tracep = p->p_tracevp;
1012 	kp->ki_traceflag = p->p_traceflag;
1013 #endif
1014 	kp->ki_fd = p->p_fd;
1015 	kp->ki_vmspace = p->p_vmspace;
1016 	kp->ki_flag = p->p_flag;
1017 	kp->ki_flag2 = p->p_flag2;
1018 	cred = p->p_ucred;
1019 	if (cred) {
1020 		kp->ki_uid = cred->cr_uid;
1021 		kp->ki_ruid = cred->cr_ruid;
1022 		kp->ki_svuid = cred->cr_svuid;
1023 		kp->ki_cr_flags = 0;
1024 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
1025 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
1026 		/* XXX bde doesn't like KI_NGROUPS */
1027 		if (cred->cr_ngroups > KI_NGROUPS) {
1028 			kp->ki_ngroups = KI_NGROUPS;
1029 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
1030 		} else
1031 			kp->ki_ngroups = cred->cr_ngroups;
1032 		bcopy(cred->cr_groups, kp->ki_groups,
1033 		    kp->ki_ngroups * sizeof(gid_t));
1034 		kp->ki_rgid = cred->cr_rgid;
1035 		kp->ki_svgid = cred->cr_svgid;
1036 		/* If jailed(cred), emulate the old P_JAILED flag. */
1037 		if (jailed(cred)) {
1038 			kp->ki_flag |= P_JAILED;
1039 			/* If inside the jail, use 0 as a jail ID. */
1040 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
1041 				kp->ki_jid = cred->cr_prison->pr_id;
1042 		}
1043 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
1044 		    sizeof(kp->ki_loginclass));
1045 	}
1046 	ps = p->p_sigacts;
1047 	if (ps) {
1048 		mtx_lock(&ps->ps_mtx);
1049 		kp->ki_sigignore = ps->ps_sigignore;
1050 		kp->ki_sigcatch = ps->ps_sigcatch;
1051 		mtx_unlock(&ps->ps_mtx);
1052 	}
1053 	if (p->p_state != PRS_NEW &&
1054 	    p->p_state != PRS_ZOMBIE &&
1055 	    p->p_vmspace != NULL) {
1056 		struct vmspace *vm = p->p_vmspace;
1057 
1058 		kp->ki_size = vm->vm_map.size;
1059 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
1060 		FOREACH_THREAD_IN_PROC(p, td0) {
1061 			if (!TD_IS_SWAPPED(td0))
1062 				kp->ki_rssize += td0->td_kstack_pages;
1063 		}
1064 		kp->ki_swrss = vm->vm_swrss;
1065 		kp->ki_tsize = vm->vm_tsize;
1066 		kp->ki_dsize = vm->vm_dsize;
1067 		kp->ki_ssize = vm->vm_ssize;
1068 	} else if (p->p_state == PRS_ZOMBIE)
1069 		kp->ki_stat = SZOMB;
1070 	if (kp->ki_flag & P_INMEM)
1071 		kp->ki_sflag = PS_INMEM;
1072 	else
1073 		kp->ki_sflag = 0;
1074 	/* Calculate legacy swtime as seconds since 'swtick'. */
1075 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
1076 	kp->ki_pid = p->p_pid;
1077 	kp->ki_nice = p->p_nice;
1078 	kp->ki_fibnum = p->p_fibnum;
1079 	kp->ki_start = p->p_stats->p_start;
1080 	getboottime(&boottime);
1081 	timevaladd(&kp->ki_start, &boottime);
1082 	PROC_STATLOCK(p);
1083 	rufetch(p, &kp->ki_rusage);
1084 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
1085 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
1086 	PROC_STATUNLOCK(p);
1087 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
1088 	/* Some callers want child times in a single value. */
1089 	kp->ki_childtime = kp->ki_childstime;
1090 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
1091 
1092 	FOREACH_THREAD_IN_PROC(p, td0)
1093 		kp->ki_cow += td0->td_cow;
1094 
1095 	tp = NULL;
1096 	if (p->p_pgrp) {
1097 		kp->ki_pgid = p->p_pgrp->pg_id;
1098 		kp->ki_jobc = p->p_pgrp->pg_jobc;
1099 		sp = p->p_pgrp->pg_session;
1100 
1101 		if (sp != NULL) {
1102 			kp->ki_sid = sp->s_sid;
1103 			SESS_LOCK(sp);
1104 			strlcpy(kp->ki_login, sp->s_login,
1105 			    sizeof(kp->ki_login));
1106 			if (sp->s_ttyvp)
1107 				kp->ki_kiflag |= KI_CTTY;
1108 			if (SESS_LEADER(p))
1109 				kp->ki_kiflag |= KI_SLEADER;
1110 			/* XXX proctree_lock */
1111 			tp = sp->s_ttyp;
1112 			SESS_UNLOCK(sp);
1113 		}
1114 	}
1115 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
1116 		kp->ki_tdev = tty_udev(tp);
1117 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1118 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
1119 		if (tp->t_session)
1120 			kp->ki_tsid = tp->t_session->s_sid;
1121 	} else {
1122 		kp->ki_tdev = NODEV;
1123 		kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */
1124 	}
1125 	if (p->p_comm[0] != '\0')
1126 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
1127 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
1128 	    p->p_sysent->sv_name[0] != '\0')
1129 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
1130 	kp->ki_siglist = p->p_siglist;
1131 	kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig);
1132 	kp->ki_acflag = p->p_acflag;
1133 	kp->ki_lock = p->p_lock;
1134 	if (p->p_pptr) {
1135 		kp->ki_ppid = p->p_oppid;
1136 		if (p->p_flag & P_TRACED)
1137 			kp->ki_tracer = p->p_pptr->p_pid;
1138 	}
1139 }
1140 
1141 /*
1142  * Fill in information that is thread specific.  Must be called with
1143  * target process locked.  If 'preferthread' is set, overwrite certain
1144  * process-related fields that are maintained for both threads and
1145  * processes.
1146  */
1147 static void
1148 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
1149 {
1150 	struct proc *p;
1151 
1152 	p = td->td_proc;
1153 	kp->ki_tdaddr = td;
1154 	PROC_LOCK_ASSERT(p, MA_OWNED);
1155 
1156 	if (preferthread)
1157 		PROC_STATLOCK(p);
1158 	thread_lock(td);
1159 	if (td->td_wmesg != NULL)
1160 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
1161 	else
1162 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
1163 	if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >=
1164 	    sizeof(kp->ki_tdname)) {
1165 		strlcpy(kp->ki_moretdname,
1166 		    td->td_name + sizeof(kp->ki_tdname) - 1,
1167 		    sizeof(kp->ki_moretdname));
1168 	} else {
1169 		bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname));
1170 	}
1171 	if (TD_ON_LOCK(td)) {
1172 		kp->ki_kiflag |= KI_LOCKBLOCK;
1173 		strlcpy(kp->ki_lockname, td->td_lockname,
1174 		    sizeof(kp->ki_lockname));
1175 	} else {
1176 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
1177 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
1178 	}
1179 
1180 	if (p->p_state == PRS_NORMAL) { /* approximate. */
1181 		if (TD_ON_RUNQ(td) ||
1182 		    TD_CAN_RUN(td) ||
1183 		    TD_IS_RUNNING(td)) {
1184 			kp->ki_stat = SRUN;
1185 		} else if (P_SHOULDSTOP(p)) {
1186 			kp->ki_stat = SSTOP;
1187 		} else if (TD_IS_SLEEPING(td)) {
1188 			kp->ki_stat = SSLEEP;
1189 		} else if (TD_ON_LOCK(td)) {
1190 			kp->ki_stat = SLOCK;
1191 		} else {
1192 			kp->ki_stat = SWAIT;
1193 		}
1194 	} else if (p->p_state == PRS_ZOMBIE) {
1195 		kp->ki_stat = SZOMB;
1196 	} else {
1197 		kp->ki_stat = SIDL;
1198 	}
1199 
1200 	/* Things in the thread */
1201 	kp->ki_wchan = td->td_wchan;
1202 	kp->ki_pri.pri_level = td->td_priority;
1203 	kp->ki_pri.pri_native = td->td_base_pri;
1204 
1205 	/*
1206 	 * Note: legacy fields; clamp at the old NOCPU value and/or
1207 	 * the maximum u_char CPU value.
1208 	 */
1209 	if (td->td_lastcpu == NOCPU)
1210 		kp->ki_lastcpu_old = NOCPU_OLD;
1211 	else if (td->td_lastcpu > MAXCPU_OLD)
1212 		kp->ki_lastcpu_old = MAXCPU_OLD;
1213 	else
1214 		kp->ki_lastcpu_old = td->td_lastcpu;
1215 
1216 	if (td->td_oncpu == NOCPU)
1217 		kp->ki_oncpu_old = NOCPU_OLD;
1218 	else if (td->td_oncpu > MAXCPU_OLD)
1219 		kp->ki_oncpu_old = MAXCPU_OLD;
1220 	else
1221 		kp->ki_oncpu_old = td->td_oncpu;
1222 
1223 	kp->ki_lastcpu = td->td_lastcpu;
1224 	kp->ki_oncpu = td->td_oncpu;
1225 	kp->ki_tdflags = td->td_flags;
1226 	kp->ki_tid = td->td_tid;
1227 	kp->ki_numthreads = p->p_numthreads;
1228 	kp->ki_pcb = td->td_pcb;
1229 	kp->ki_kstack = (void *)td->td_kstack;
1230 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
1231 	kp->ki_pri.pri_class = td->td_pri_class;
1232 	kp->ki_pri.pri_user = td->td_user_pri;
1233 
1234 	if (preferthread) {
1235 		rufetchtd(td, &kp->ki_rusage);
1236 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
1237 		kp->ki_pctcpu = sched_pctcpu(td);
1238 		kp->ki_estcpu = sched_estcpu(td);
1239 		kp->ki_cow = td->td_cow;
1240 	}
1241 
1242 	/* We can't get this anymore but ps etc never used it anyway. */
1243 	kp->ki_rqindex = 0;
1244 
1245 	if (preferthread)
1246 		kp->ki_siglist = td->td_siglist;
1247 	kp->ki_sigmask = td->td_sigmask;
1248 	thread_unlock(td);
1249 	if (preferthread)
1250 		PROC_STATUNLOCK(p);
1251 }
1252 
1253 /*
1254  * Fill in a kinfo_proc structure for the specified process.
1255  * Must be called with the target process locked.
1256  */
1257 void
1258 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
1259 {
1260 
1261 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1262 
1263 	fill_kinfo_proc_only(p, kp);
1264 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
1265 	fill_kinfo_aggregate(p, kp);
1266 }
1267 
1268 struct pstats *
1269 pstats_alloc(void)
1270 {
1271 
1272 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
1273 }
1274 
1275 /*
1276  * Copy parts of p_stats; zero the rest of p_stats (statistics).
1277  */
1278 void
1279 pstats_fork(struct pstats *src, struct pstats *dst)
1280 {
1281 
1282 	bzero(&dst->pstat_startzero,
1283 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
1284 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
1285 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
1286 }
1287 
1288 void
1289 pstats_free(struct pstats *ps)
1290 {
1291 
1292 	free(ps, M_SUBPROC);
1293 }
1294 
1295 #ifdef COMPAT_FREEBSD32
1296 
1297 /*
1298  * This function is typically used to copy out the kernel address, so
1299  * it can be replaced by assignment of zero.
1300  */
1301 static inline uint32_t
1302 ptr32_trim(const void *ptr)
1303 {
1304 	uintptr_t uptr;
1305 
1306 	uptr = (uintptr_t)ptr;
1307 	return ((uptr > UINT_MAX) ? 0 : uptr);
1308 }
1309 
1310 #define PTRTRIM_CP(src,dst,fld) \
1311 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
1312 
1313 static void
1314 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
1315 {
1316 	int i;
1317 
1318 	bzero(ki32, sizeof(struct kinfo_proc32));
1319 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1320 	CP(*ki, *ki32, ki_layout);
1321 	PTRTRIM_CP(*ki, *ki32, ki_args);
1322 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1323 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1324 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1325 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1326 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1327 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1328 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1329 	CP(*ki, *ki32, ki_pid);
1330 	CP(*ki, *ki32, ki_ppid);
1331 	CP(*ki, *ki32, ki_pgid);
1332 	CP(*ki, *ki32, ki_tpgid);
1333 	CP(*ki, *ki32, ki_sid);
1334 	CP(*ki, *ki32, ki_tsid);
1335 	CP(*ki, *ki32, ki_jobc);
1336 	CP(*ki, *ki32, ki_tdev);
1337 	CP(*ki, *ki32, ki_tdev_freebsd11);
1338 	CP(*ki, *ki32, ki_siglist);
1339 	CP(*ki, *ki32, ki_sigmask);
1340 	CP(*ki, *ki32, ki_sigignore);
1341 	CP(*ki, *ki32, ki_sigcatch);
1342 	CP(*ki, *ki32, ki_uid);
1343 	CP(*ki, *ki32, ki_ruid);
1344 	CP(*ki, *ki32, ki_svuid);
1345 	CP(*ki, *ki32, ki_rgid);
1346 	CP(*ki, *ki32, ki_svgid);
1347 	CP(*ki, *ki32, ki_ngroups);
1348 	for (i = 0; i < KI_NGROUPS; i++)
1349 		CP(*ki, *ki32, ki_groups[i]);
1350 	CP(*ki, *ki32, ki_size);
1351 	CP(*ki, *ki32, ki_rssize);
1352 	CP(*ki, *ki32, ki_swrss);
1353 	CP(*ki, *ki32, ki_tsize);
1354 	CP(*ki, *ki32, ki_dsize);
1355 	CP(*ki, *ki32, ki_ssize);
1356 	CP(*ki, *ki32, ki_xstat);
1357 	CP(*ki, *ki32, ki_acflag);
1358 	CP(*ki, *ki32, ki_pctcpu);
1359 	CP(*ki, *ki32, ki_estcpu);
1360 	CP(*ki, *ki32, ki_slptime);
1361 	CP(*ki, *ki32, ki_swtime);
1362 	CP(*ki, *ki32, ki_cow);
1363 	CP(*ki, *ki32, ki_runtime);
1364 	TV_CP(*ki, *ki32, ki_start);
1365 	TV_CP(*ki, *ki32, ki_childtime);
1366 	CP(*ki, *ki32, ki_flag);
1367 	CP(*ki, *ki32, ki_kiflag);
1368 	CP(*ki, *ki32, ki_traceflag);
1369 	CP(*ki, *ki32, ki_stat);
1370 	CP(*ki, *ki32, ki_nice);
1371 	CP(*ki, *ki32, ki_lock);
1372 	CP(*ki, *ki32, ki_rqindex);
1373 	CP(*ki, *ki32, ki_oncpu);
1374 	CP(*ki, *ki32, ki_lastcpu);
1375 
1376 	/* XXX TODO: wrap cpu value as appropriate */
1377 	CP(*ki, *ki32, ki_oncpu_old);
1378 	CP(*ki, *ki32, ki_lastcpu_old);
1379 
1380 	bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1);
1381 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1382 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1383 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1384 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1385 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1386 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1387 	bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1);
1388 	CP(*ki, *ki32, ki_tracer);
1389 	CP(*ki, *ki32, ki_flag2);
1390 	CP(*ki, *ki32, ki_fibnum);
1391 	CP(*ki, *ki32, ki_cr_flags);
1392 	CP(*ki, *ki32, ki_jid);
1393 	CP(*ki, *ki32, ki_numthreads);
1394 	CP(*ki, *ki32, ki_tid);
1395 	CP(*ki, *ki32, ki_pri);
1396 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1397 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1398 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1399 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1400 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1401 	PTRTRIM_CP(*ki, *ki32, ki_tdaddr);
1402 	CP(*ki, *ki32, ki_sflag);
1403 	CP(*ki, *ki32, ki_tdflags);
1404 }
1405 #endif
1406 
1407 static ssize_t
1408 kern_proc_out_size(struct proc *p, int flags)
1409 {
1410 	ssize_t size = 0;
1411 
1412 	PROC_LOCK_ASSERT(p, MA_OWNED);
1413 
1414 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1415 #ifdef COMPAT_FREEBSD32
1416 		if ((flags & KERN_PROC_MASK32) != 0) {
1417 			size += sizeof(struct kinfo_proc32);
1418 		} else
1419 #endif
1420 			size += sizeof(struct kinfo_proc);
1421 	} else {
1422 #ifdef COMPAT_FREEBSD32
1423 		if ((flags & KERN_PROC_MASK32) != 0)
1424 			size += sizeof(struct kinfo_proc32) * p->p_numthreads;
1425 		else
1426 #endif
1427 			size += sizeof(struct kinfo_proc) * p->p_numthreads;
1428 	}
1429 	PROC_UNLOCK(p);
1430 	return (size);
1431 }
1432 
1433 int
1434 kern_proc_out(struct proc *p, struct sbuf *sb, int flags)
1435 {
1436 	struct thread *td;
1437 	struct kinfo_proc ki;
1438 #ifdef COMPAT_FREEBSD32
1439 	struct kinfo_proc32 ki32;
1440 #endif
1441 	int error;
1442 
1443 	PROC_LOCK_ASSERT(p, MA_OWNED);
1444 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1445 
1446 	error = 0;
1447 	fill_kinfo_proc(p, &ki);
1448 	if ((flags & KERN_PROC_NOTHREADS) != 0) {
1449 #ifdef COMPAT_FREEBSD32
1450 		if ((flags & KERN_PROC_MASK32) != 0) {
1451 			freebsd32_kinfo_proc_out(&ki, &ki32);
1452 			if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1453 				error = ENOMEM;
1454 		} else
1455 #endif
1456 			if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1457 				error = ENOMEM;
1458 	} else {
1459 		FOREACH_THREAD_IN_PROC(p, td) {
1460 			fill_kinfo_thread(td, &ki, 1);
1461 #ifdef COMPAT_FREEBSD32
1462 			if ((flags & KERN_PROC_MASK32) != 0) {
1463 				freebsd32_kinfo_proc_out(&ki, &ki32);
1464 				if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0)
1465 					error = ENOMEM;
1466 			} else
1467 #endif
1468 				if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0)
1469 					error = ENOMEM;
1470 			if (error != 0)
1471 				break;
1472 		}
1473 	}
1474 	PROC_UNLOCK(p);
1475 	return (error);
1476 }
1477 
1478 static int
1479 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1480 {
1481 	struct sbuf sb;
1482 	struct kinfo_proc ki;
1483 	int error, error2;
1484 
1485 	if (req->oldptr == NULL)
1486 		return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags)));
1487 
1488 	sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req);
1489 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
1490 	error = kern_proc_out(p, &sb, flags);
1491 	error2 = sbuf_finish(&sb);
1492 	sbuf_delete(&sb);
1493 	if (error != 0)
1494 		return (error);
1495 	else if (error2 != 0)
1496 		return (error2);
1497 	return (0);
1498 }
1499 
1500 int
1501 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg)
1502 {
1503 	struct proc *p;
1504 	int error, i, j;
1505 
1506 	for (i = 0; i < pidhashlock + 1; i++) {
1507 		sx_slock(&pidhashtbl_lock[i]);
1508 		for (j = i; j <= pidhash; j += pidhashlock + 1) {
1509 			LIST_FOREACH(p, &pidhashtbl[j], p_hash) {
1510 				if (p->p_state == PRS_NEW)
1511 					continue;
1512 				error = cb(p, cbarg);
1513 				PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1514 				if (error != 0) {
1515 					sx_sunlock(&pidhashtbl_lock[i]);
1516 					return (error);
1517 				}
1518 			}
1519 		}
1520 		sx_sunlock(&pidhashtbl_lock[i]);
1521 	}
1522 	return (0);
1523 }
1524 
1525 struct kern_proc_out_args {
1526 	struct sysctl_req *req;
1527 	int flags;
1528 	int oid_number;
1529 	int *name;
1530 };
1531 
1532 static int
1533 sysctl_kern_proc_iterate(struct proc *p, void *origarg)
1534 {
1535 	struct kern_proc_out_args *arg = origarg;
1536 	int *name = arg->name;
1537 	int oid_number = arg->oid_number;
1538 	int flags = arg->flags;
1539 	struct sysctl_req *req = arg->req;
1540 	int error = 0;
1541 
1542 	PROC_LOCK(p);
1543 
1544 	KASSERT(p->p_ucred != NULL,
1545 	    ("process credential is NULL for non-NEW proc"));
1546 	/*
1547 	 * Show a user only appropriate processes.
1548 	 */
1549 	if (p_cansee(curthread, p))
1550 		goto skip;
1551 	/*
1552 	 * TODO - make more efficient (see notes below).
1553 	 * do by session.
1554 	 */
1555 	switch (oid_number) {
1556 
1557 	case KERN_PROC_GID:
1558 		if (p->p_ucred->cr_gid != (gid_t)name[0])
1559 			goto skip;
1560 		break;
1561 
1562 	case KERN_PROC_PGRP:
1563 		/* could do this by traversing pgrp */
1564 		if (p->p_pgrp == NULL ||
1565 		    p->p_pgrp->pg_id != (pid_t)name[0])
1566 			goto skip;
1567 		break;
1568 
1569 	case KERN_PROC_RGID:
1570 		if (p->p_ucred->cr_rgid != (gid_t)name[0])
1571 			goto skip;
1572 		break;
1573 
1574 	case KERN_PROC_SESSION:
1575 		if (p->p_session == NULL ||
1576 		    p->p_session->s_sid != (pid_t)name[0])
1577 			goto skip;
1578 		break;
1579 
1580 	case KERN_PROC_TTY:
1581 		if ((p->p_flag & P_CONTROLT) == 0 ||
1582 		    p->p_session == NULL)
1583 			goto skip;
1584 		/* XXX proctree_lock */
1585 		SESS_LOCK(p->p_session);
1586 		if (p->p_session->s_ttyp == NULL ||
1587 		    tty_udev(p->p_session->s_ttyp) !=
1588 		    (dev_t)name[0]) {
1589 			SESS_UNLOCK(p->p_session);
1590 			goto skip;
1591 		}
1592 		SESS_UNLOCK(p->p_session);
1593 		break;
1594 
1595 	case KERN_PROC_UID:
1596 		if (p->p_ucred->cr_uid != (uid_t)name[0])
1597 			goto skip;
1598 		break;
1599 
1600 	case KERN_PROC_RUID:
1601 		if (p->p_ucred->cr_ruid != (uid_t)name[0])
1602 			goto skip;
1603 		break;
1604 
1605 	case KERN_PROC_PROC:
1606 		break;
1607 
1608 	default:
1609 		break;
1610 
1611 	}
1612 	error = sysctl_out_proc(p, req, flags);
1613 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
1614 	return (error);
1615 skip:
1616 	PROC_UNLOCK(p);
1617 	return (0);
1618 }
1619 
1620 static int
1621 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1622 {
1623 	struct kern_proc_out_args iterarg;
1624 	int *name = (int *)arg1;
1625 	u_int namelen = arg2;
1626 	struct proc *p;
1627 	int flags, oid_number;
1628 	int error = 0;
1629 
1630 	oid_number = oidp->oid_number;
1631 	if (oid_number != KERN_PROC_ALL &&
1632 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1633 		flags = KERN_PROC_NOTHREADS;
1634 	else {
1635 		flags = 0;
1636 		oid_number &= ~KERN_PROC_INC_THREAD;
1637 	}
1638 #ifdef COMPAT_FREEBSD32
1639 	if (req->flags & SCTL_MASK32)
1640 		flags |= KERN_PROC_MASK32;
1641 #endif
1642 	if (oid_number == KERN_PROC_PID) {
1643 		if (namelen != 1)
1644 			return (EINVAL);
1645 		error = sysctl_wire_old_buffer(req, 0);
1646 		if (error)
1647 			return (error);
1648 		error = pget((pid_t)name[0], PGET_CANSEE, &p);
1649 		if (error == 0)
1650 			error = sysctl_out_proc(p, req, flags);
1651 		return (error);
1652 	}
1653 
1654 	switch (oid_number) {
1655 	case KERN_PROC_ALL:
1656 		if (namelen != 0)
1657 			return (EINVAL);
1658 		break;
1659 	case KERN_PROC_PROC:
1660 		if (namelen != 0 && namelen != 1)
1661 			return (EINVAL);
1662 		break;
1663 	default:
1664 		if (namelen != 1)
1665 			return (EINVAL);
1666 		break;
1667 	}
1668 
1669 	if (req->oldptr == NULL) {
1670 		/* overestimate by 5 procs */
1671 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1672 		if (error)
1673 			return (error);
1674 	} else {
1675 		error = sysctl_wire_old_buffer(req, 0);
1676 		if (error != 0)
1677 			return (error);
1678 	}
1679 	iterarg.flags = flags;
1680 	iterarg.oid_number = oid_number;
1681 	iterarg.req = req;
1682 	iterarg.name = name;
1683 	error = proc_iterate(sysctl_kern_proc_iterate, &iterarg);
1684 	return (error);
1685 }
1686 
1687 struct pargs *
1688 pargs_alloc(int len)
1689 {
1690 	struct pargs *pa;
1691 
1692 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1693 		M_WAITOK);
1694 	refcount_init(&pa->ar_ref, 1);
1695 	pa->ar_length = len;
1696 	return (pa);
1697 }
1698 
1699 static void
1700 pargs_free(struct pargs *pa)
1701 {
1702 
1703 	free(pa, M_PARGS);
1704 }
1705 
1706 void
1707 pargs_hold(struct pargs *pa)
1708 {
1709 
1710 	if (pa == NULL)
1711 		return;
1712 	refcount_acquire(&pa->ar_ref);
1713 }
1714 
1715 void
1716 pargs_drop(struct pargs *pa)
1717 {
1718 
1719 	if (pa == NULL)
1720 		return;
1721 	if (refcount_release(&pa->ar_ref))
1722 		pargs_free(pa);
1723 }
1724 
1725 static int
1726 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf,
1727     size_t len)
1728 {
1729 	ssize_t n;
1730 
1731 	/*
1732 	 * This may return a short read if the string is shorter than the chunk
1733 	 * and is aligned at the end of the page, and the following page is not
1734 	 * mapped.
1735 	 */
1736 	n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len);
1737 	if (n <= 0)
1738 		return (ENOMEM);
1739 	return (0);
1740 }
1741 
1742 #define PROC_AUXV_MAX	256	/* Safety limit on auxv size. */
1743 
1744 enum proc_vector_type {
1745 	PROC_ARG,
1746 	PROC_ENV,
1747 	PROC_AUX,
1748 };
1749 
1750 #ifdef COMPAT_FREEBSD32
1751 static int
1752 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp,
1753     size_t *vsizep, enum proc_vector_type type)
1754 {
1755 	struct freebsd32_ps_strings pss;
1756 	Elf32_Auxinfo aux;
1757 	vm_offset_t vptr, ptr;
1758 	uint32_t *proc_vector32;
1759 	char **proc_vector;
1760 	size_t vsize, size;
1761 	int i, error;
1762 
1763 	error = 0;
1764 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1765 	    sizeof(pss)) != sizeof(pss))
1766 		return (ENOMEM);
1767 	switch (type) {
1768 	case PROC_ARG:
1769 		vptr = (vm_offset_t)PTRIN(pss.ps_argvstr);
1770 		vsize = pss.ps_nargvstr;
1771 		if (vsize > ARG_MAX)
1772 			return (ENOEXEC);
1773 		size = vsize * sizeof(int32_t);
1774 		break;
1775 	case PROC_ENV:
1776 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr);
1777 		vsize = pss.ps_nenvstr;
1778 		if (vsize > ARG_MAX)
1779 			return (ENOEXEC);
1780 		size = vsize * sizeof(int32_t);
1781 		break;
1782 	case PROC_AUX:
1783 		vptr = (vm_offset_t)PTRIN(pss.ps_envstr) +
1784 		    (pss.ps_nenvstr + 1) * sizeof(int32_t);
1785 		if (vptr % 4 != 0)
1786 			return (ENOEXEC);
1787 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1788 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1789 			    sizeof(aux))
1790 				return (ENOMEM);
1791 			if (aux.a_type == AT_NULL)
1792 				break;
1793 			ptr += sizeof(aux);
1794 		}
1795 		if (aux.a_type != AT_NULL)
1796 			return (ENOEXEC);
1797 		vsize = i + 1;
1798 		size = vsize * sizeof(aux);
1799 		break;
1800 	default:
1801 		KASSERT(0, ("Wrong proc vector type: %d", type));
1802 		return (EINVAL);
1803 	}
1804 	proc_vector32 = malloc(size, M_TEMP, M_WAITOK);
1805 	if (proc_readmem(td, p, vptr, proc_vector32, size) != size) {
1806 		error = ENOMEM;
1807 		goto done;
1808 	}
1809 	if (type == PROC_AUX) {
1810 		*proc_vectorp = (char **)proc_vector32;
1811 		*vsizep = vsize;
1812 		return (0);
1813 	}
1814 	proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK);
1815 	for (i = 0; i < (int)vsize; i++)
1816 		proc_vector[i] = PTRIN(proc_vector32[i]);
1817 	*proc_vectorp = proc_vector;
1818 	*vsizep = vsize;
1819 done:
1820 	free(proc_vector32, M_TEMP);
1821 	return (error);
1822 }
1823 #endif
1824 
1825 static int
1826 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp,
1827     size_t *vsizep, enum proc_vector_type type)
1828 {
1829 	struct ps_strings pss;
1830 	Elf_Auxinfo aux;
1831 	vm_offset_t vptr, ptr;
1832 	char **proc_vector;
1833 	size_t vsize, size;
1834 	int i;
1835 
1836 #ifdef COMPAT_FREEBSD32
1837 	if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1838 		return (get_proc_vector32(td, p, proc_vectorp, vsizep, type));
1839 #endif
1840 	if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss,
1841 	    sizeof(pss)) != sizeof(pss))
1842 		return (ENOMEM);
1843 	switch (type) {
1844 	case PROC_ARG:
1845 		vptr = (vm_offset_t)pss.ps_argvstr;
1846 		vsize = pss.ps_nargvstr;
1847 		if (vsize > ARG_MAX)
1848 			return (ENOEXEC);
1849 		size = vsize * sizeof(char *);
1850 		break;
1851 	case PROC_ENV:
1852 		vptr = (vm_offset_t)pss.ps_envstr;
1853 		vsize = pss.ps_nenvstr;
1854 		if (vsize > ARG_MAX)
1855 			return (ENOEXEC);
1856 		size = vsize * sizeof(char *);
1857 		break;
1858 	case PROC_AUX:
1859 		/*
1860 		 * The aux array is just above env array on the stack. Check
1861 		 * that the address is naturally aligned.
1862 		 */
1863 		vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1)
1864 		    * sizeof(char *);
1865 #if __ELF_WORD_SIZE == 64
1866 		if (vptr % sizeof(uint64_t) != 0)
1867 #else
1868 		if (vptr % sizeof(uint32_t) != 0)
1869 #endif
1870 			return (ENOEXEC);
1871 		/*
1872 		 * We count the array size reading the aux vectors from the
1873 		 * stack until AT_NULL vector is returned.  So (to keep the code
1874 		 * simple) we read the process stack twice: the first time here
1875 		 * to find the size and the second time when copying the vectors
1876 		 * to the allocated proc_vector.
1877 		 */
1878 		for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) {
1879 			if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) !=
1880 			    sizeof(aux))
1881 				return (ENOMEM);
1882 			if (aux.a_type == AT_NULL)
1883 				break;
1884 			ptr += sizeof(aux);
1885 		}
1886 		/*
1887 		 * If the PROC_AUXV_MAX entries are iterated over, and we have
1888 		 * not reached AT_NULL, it is most likely we are reading wrong
1889 		 * data: either the process doesn't have auxv array or data has
1890 		 * been modified. Return the error in this case.
1891 		 */
1892 		if (aux.a_type != AT_NULL)
1893 			return (ENOEXEC);
1894 		vsize = i + 1;
1895 		size = vsize * sizeof(aux);
1896 		break;
1897 	default:
1898 		KASSERT(0, ("Wrong proc vector type: %d", type));
1899 		return (EINVAL); /* In case we are built without INVARIANTS. */
1900 	}
1901 	proc_vector = malloc(size, M_TEMP, M_WAITOK);
1902 	if (proc_readmem(td, p, vptr, proc_vector, size) != size) {
1903 		free(proc_vector, M_TEMP);
1904 		return (ENOMEM);
1905 	}
1906 	*proc_vectorp = proc_vector;
1907 	*vsizep = vsize;
1908 
1909 	return (0);
1910 }
1911 
1912 #define GET_PS_STRINGS_CHUNK_SZ	256	/* Chunk size (bytes) for ps_strings operations. */
1913 
1914 static int
1915 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb,
1916     enum proc_vector_type type)
1917 {
1918 	size_t done, len, nchr, vsize;
1919 	int error, i;
1920 	char **proc_vector, *sptr;
1921 	char pss_string[GET_PS_STRINGS_CHUNK_SZ];
1922 
1923 	PROC_ASSERT_HELD(p);
1924 
1925 	/*
1926 	 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes.
1927 	 */
1928 	nchr = 2 * (PATH_MAX + ARG_MAX);
1929 
1930 	error = get_proc_vector(td, p, &proc_vector, &vsize, type);
1931 	if (error != 0)
1932 		return (error);
1933 	for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) {
1934 		/*
1935 		 * The program may have scribbled into its argv array, e.g. to
1936 		 * remove some arguments.  If that has happened, break out
1937 		 * before trying to read from NULL.
1938 		 */
1939 		if (proc_vector[i] == NULL)
1940 			break;
1941 		for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) {
1942 			error = proc_read_string(td, p, sptr, pss_string,
1943 			    sizeof(pss_string));
1944 			if (error != 0)
1945 				goto done;
1946 			len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ);
1947 			if (done + len >= nchr)
1948 				len = nchr - done - 1;
1949 			sbuf_bcat(sb, pss_string, len);
1950 			if (len != GET_PS_STRINGS_CHUNK_SZ)
1951 				break;
1952 			done += GET_PS_STRINGS_CHUNK_SZ;
1953 		}
1954 		sbuf_bcat(sb, "", 1);
1955 		done += len + 1;
1956 	}
1957 done:
1958 	free(proc_vector, M_TEMP);
1959 	return (error);
1960 }
1961 
1962 int
1963 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb)
1964 {
1965 
1966 	return (get_ps_strings(curthread, p, sb, PROC_ARG));
1967 }
1968 
1969 int
1970 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb)
1971 {
1972 
1973 	return (get_ps_strings(curthread, p, sb, PROC_ENV));
1974 }
1975 
1976 int
1977 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb)
1978 {
1979 	size_t vsize, size;
1980 	char **auxv;
1981 	int error;
1982 
1983 	error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX);
1984 	if (error == 0) {
1985 #ifdef COMPAT_FREEBSD32
1986 		if (SV_PROC_FLAG(p, SV_ILP32) != 0)
1987 			size = vsize * sizeof(Elf32_Auxinfo);
1988 		else
1989 #endif
1990 			size = vsize * sizeof(Elf_Auxinfo);
1991 		if (sbuf_bcat(sb, auxv, size) != 0)
1992 			error = ENOMEM;
1993 		free(auxv, M_TEMP);
1994 	}
1995 	return (error);
1996 }
1997 
1998 /*
1999  * This sysctl allows a process to retrieve the argument list or process
2000  * title for another process without groping around in the address space
2001  * of the other process.  It also allow a process to set its own "process
2002  * title to a string of its own choice.
2003  */
2004 static int
2005 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
2006 {
2007 	int *name = (int *)arg1;
2008 	u_int namelen = arg2;
2009 	struct pargs *newpa, *pa;
2010 	struct proc *p;
2011 	struct sbuf sb;
2012 	int flags, error = 0, error2;
2013 	pid_t pid;
2014 
2015 	if (namelen != 1)
2016 		return (EINVAL);
2017 
2018 	pid = (pid_t)name[0];
2019 	/*
2020 	 * If the query is for this process and it is single-threaded, there
2021 	 * is nobody to modify pargs, thus we can just read.
2022 	 */
2023 	p = curproc;
2024 	if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL &&
2025 	    (pa = p->p_args) != NULL)
2026 		return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length));
2027 
2028 	flags = PGET_CANSEE;
2029 	if (req->newptr != NULL)
2030 		flags |= PGET_ISCURRENT;
2031 	error = pget(pid, flags, &p);
2032 	if (error)
2033 		return (error);
2034 
2035 	pa = p->p_args;
2036 	if (pa != NULL) {
2037 		pargs_hold(pa);
2038 		PROC_UNLOCK(p);
2039 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
2040 		pargs_drop(pa);
2041 	} else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) {
2042 		_PHOLD(p);
2043 		PROC_UNLOCK(p);
2044 		sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2045 		sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2046 		error = proc_getargv(curthread, p, &sb);
2047 		error2 = sbuf_finish(&sb);
2048 		PRELE(p);
2049 		sbuf_delete(&sb);
2050 		if (error == 0 && error2 != 0)
2051 			error = error2;
2052 	} else {
2053 		PROC_UNLOCK(p);
2054 	}
2055 	if (error != 0 || req->newptr == NULL)
2056 		return (error);
2057 
2058 	if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs))
2059 		return (ENOMEM);
2060 
2061 	if (req->newlen == 0) {
2062 		/*
2063 		 * Clear the argument pointer, so that we'll fetch arguments
2064 		 * with proc_getargv() until further notice.
2065 		 */
2066 		newpa = NULL;
2067 	} else {
2068 		newpa = pargs_alloc(req->newlen);
2069 		error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
2070 		if (error != 0) {
2071 			pargs_free(newpa);
2072 			return (error);
2073 		}
2074 	}
2075 	PROC_LOCK(p);
2076 	pa = p->p_args;
2077 	p->p_args = newpa;
2078 	PROC_UNLOCK(p);
2079 	pargs_drop(pa);
2080 	return (0);
2081 }
2082 
2083 /*
2084  * This sysctl allows a process to retrieve environment of another process.
2085  */
2086 static int
2087 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS)
2088 {
2089 	int *name = (int *)arg1;
2090 	u_int namelen = arg2;
2091 	struct proc *p;
2092 	struct sbuf sb;
2093 	int error, error2;
2094 
2095 	if (namelen != 1)
2096 		return (EINVAL);
2097 
2098 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2099 	if (error != 0)
2100 		return (error);
2101 	if ((p->p_flag & P_SYSTEM) != 0) {
2102 		PRELE(p);
2103 		return (0);
2104 	}
2105 
2106 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2107 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2108 	error = proc_getenvv(curthread, p, &sb);
2109 	error2 = sbuf_finish(&sb);
2110 	PRELE(p);
2111 	sbuf_delete(&sb);
2112 	return (error != 0 ? error : error2);
2113 }
2114 
2115 /*
2116  * This sysctl allows a process to retrieve ELF auxiliary vector of
2117  * another process.
2118  */
2119 static int
2120 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS)
2121 {
2122 	int *name = (int *)arg1;
2123 	u_int namelen = arg2;
2124 	struct proc *p;
2125 	struct sbuf sb;
2126 	int error, error2;
2127 
2128 	if (namelen != 1)
2129 		return (EINVAL);
2130 
2131 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2132 	if (error != 0)
2133 		return (error);
2134 	if ((p->p_flag & P_SYSTEM) != 0) {
2135 		PRELE(p);
2136 		return (0);
2137 	}
2138 	sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req);
2139 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2140 	error = proc_getauxv(curthread, p, &sb);
2141 	error2 = sbuf_finish(&sb);
2142 	PRELE(p);
2143 	sbuf_delete(&sb);
2144 	return (error != 0 ? error : error2);
2145 }
2146 
2147 /*
2148  * This sysctl allows a process to retrieve the path of the executable for
2149  * itself or another process.
2150  */
2151 static int
2152 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
2153 {
2154 	pid_t *pidp = (pid_t *)arg1;
2155 	unsigned int arglen = arg2;
2156 	struct proc *p;
2157 	struct vnode *vp;
2158 	char *retbuf, *freebuf;
2159 	int error;
2160 
2161 	if (arglen != 1)
2162 		return (EINVAL);
2163 	if (*pidp == -1) {	/* -1 means this process */
2164 		p = req->td->td_proc;
2165 	} else {
2166 		error = pget(*pidp, PGET_CANSEE, &p);
2167 		if (error != 0)
2168 			return (error);
2169 	}
2170 
2171 	vp = p->p_textvp;
2172 	if (vp == NULL) {
2173 		if (*pidp != -1)
2174 			PROC_UNLOCK(p);
2175 		return (0);
2176 	}
2177 	vref(vp);
2178 	if (*pidp != -1)
2179 		PROC_UNLOCK(p);
2180 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
2181 	vrele(vp);
2182 	if (error)
2183 		return (error);
2184 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
2185 	free(freebuf, M_TEMP);
2186 	return (error);
2187 }
2188 
2189 static int
2190 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
2191 {
2192 	struct proc *p;
2193 	char *sv_name;
2194 	int *name;
2195 	int namelen;
2196 	int error;
2197 
2198 	namelen = arg2;
2199 	if (namelen != 1)
2200 		return (EINVAL);
2201 
2202 	name = (int *)arg1;
2203 	error = pget((pid_t)name[0], PGET_CANSEE, &p);
2204 	if (error != 0)
2205 		return (error);
2206 	sv_name = p->p_sysent->sv_name;
2207 	PROC_UNLOCK(p);
2208 	return (sysctl_handle_string(oidp, sv_name, 0, req));
2209 }
2210 
2211 #ifdef KINFO_OVMENTRY_SIZE
2212 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
2213 #endif
2214 
2215 #ifdef COMPAT_FREEBSD7
2216 static int
2217 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
2218 {
2219 	vm_map_entry_t entry, tmp_entry;
2220 	unsigned int last_timestamp;
2221 	char *fullpath, *freepath;
2222 	struct kinfo_ovmentry *kve;
2223 	struct vattr va;
2224 	struct ucred *cred;
2225 	int error, *name;
2226 	struct vnode *vp;
2227 	struct proc *p;
2228 	vm_map_t map;
2229 	struct vmspace *vm;
2230 
2231 	name = (int *)arg1;
2232 	error = pget((pid_t)name[0], PGET_WANTREAD, &p);
2233 	if (error != 0)
2234 		return (error);
2235 	vm = vmspace_acquire_ref(p);
2236 	if (vm == NULL) {
2237 		PRELE(p);
2238 		return (ESRCH);
2239 	}
2240 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
2241 
2242 	map = &vm->vm_map;
2243 	vm_map_lock_read(map);
2244 	VM_MAP_ENTRY_FOREACH(entry, map) {
2245 		vm_object_t obj, tobj, lobj;
2246 		vm_offset_t addr;
2247 
2248 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2249 			continue;
2250 
2251 		bzero(kve, sizeof(*kve));
2252 		kve->kve_structsize = sizeof(*kve);
2253 
2254 		kve->kve_private_resident = 0;
2255 		obj = entry->object.vm_object;
2256 		if (obj != NULL) {
2257 			VM_OBJECT_RLOCK(obj);
2258 			if (obj->shadow_count == 1)
2259 				kve->kve_private_resident =
2260 				    obj->resident_page_count;
2261 		}
2262 		kve->kve_resident = 0;
2263 		addr = entry->start;
2264 		while (addr < entry->end) {
2265 			if (pmap_extract(map->pmap, addr))
2266 				kve->kve_resident++;
2267 			addr += PAGE_SIZE;
2268 		}
2269 
2270 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
2271 			if (tobj != obj) {
2272 				VM_OBJECT_RLOCK(tobj);
2273 				kve->kve_offset += tobj->backing_object_offset;
2274 			}
2275 			if (lobj != obj)
2276 				VM_OBJECT_RUNLOCK(lobj);
2277 			lobj = tobj;
2278 		}
2279 
2280 		kve->kve_start = (void*)entry->start;
2281 		kve->kve_end = (void*)entry->end;
2282 		kve->kve_offset += (off_t)entry->offset;
2283 
2284 		if (entry->protection & VM_PROT_READ)
2285 			kve->kve_protection |= KVME_PROT_READ;
2286 		if (entry->protection & VM_PROT_WRITE)
2287 			kve->kve_protection |= KVME_PROT_WRITE;
2288 		if (entry->protection & VM_PROT_EXECUTE)
2289 			kve->kve_protection |= KVME_PROT_EXEC;
2290 
2291 		if (entry->eflags & MAP_ENTRY_COW)
2292 			kve->kve_flags |= KVME_FLAG_COW;
2293 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2294 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2295 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2296 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2297 
2298 		last_timestamp = map->timestamp;
2299 		vm_map_unlock_read(map);
2300 
2301 		kve->kve_fileid = 0;
2302 		kve->kve_fsid = 0;
2303 		freepath = NULL;
2304 		fullpath = "";
2305 		if (lobj) {
2306 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2307 			if (kve->kve_type == KVME_TYPE_MGTDEVICE)
2308 				kve->kve_type = KVME_TYPE_UNKNOWN;
2309 			if (vp != NULL)
2310 				vref(vp);
2311 			if (lobj != obj)
2312 				VM_OBJECT_RUNLOCK(lobj);
2313 
2314 			kve->kve_ref_count = obj->ref_count;
2315 			kve->kve_shadow_count = obj->shadow_count;
2316 			VM_OBJECT_RUNLOCK(obj);
2317 			if (vp != NULL) {
2318 				vn_fullpath(curthread, vp, &fullpath,
2319 				    &freepath);
2320 				cred = curthread->td_ucred;
2321 				vn_lock(vp, LK_SHARED | LK_RETRY);
2322 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2323 					kve->kve_fileid = va.va_fileid;
2324 					/* truncate */
2325 					kve->kve_fsid = va.va_fsid;
2326 				}
2327 				vput(vp);
2328 			}
2329 		} else {
2330 			kve->kve_type = KVME_TYPE_NONE;
2331 			kve->kve_ref_count = 0;
2332 			kve->kve_shadow_count = 0;
2333 		}
2334 
2335 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2336 		if (freepath != NULL)
2337 			free(freepath, M_TEMP);
2338 
2339 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
2340 		vm_map_lock_read(map);
2341 		if (error)
2342 			break;
2343 		if (last_timestamp != map->timestamp) {
2344 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2345 			entry = tmp_entry;
2346 		}
2347 	}
2348 	vm_map_unlock_read(map);
2349 	vmspace_free(vm);
2350 	PRELE(p);
2351 	free(kve, M_TEMP);
2352 	return (error);
2353 }
2354 #endif	/* COMPAT_FREEBSD7 */
2355 
2356 #ifdef KINFO_VMENTRY_SIZE
2357 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
2358 #endif
2359 
2360 void
2361 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry,
2362     int *resident_count, bool *super)
2363 {
2364 	vm_object_t obj, tobj;
2365 	vm_page_t m, m_adv;
2366 	vm_offset_t addr;
2367 	vm_paddr_t pa;
2368 	vm_pindex_t pi, pi_adv, pindex;
2369 
2370 	*super = false;
2371 	*resident_count = 0;
2372 	if (vmmap_skip_res_cnt)
2373 		return;
2374 
2375 	pa = 0;
2376 	obj = entry->object.vm_object;
2377 	addr = entry->start;
2378 	m_adv = NULL;
2379 	pi = OFF_TO_IDX(entry->offset);
2380 	for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) {
2381 		if (m_adv != NULL) {
2382 			m = m_adv;
2383 		} else {
2384 			pi_adv = atop(entry->end - addr);
2385 			pindex = pi;
2386 			for (tobj = obj;; tobj = tobj->backing_object) {
2387 				m = vm_page_find_least(tobj, pindex);
2388 				if (m != NULL) {
2389 					if (m->pindex == pindex)
2390 						break;
2391 					if (pi_adv > m->pindex - pindex) {
2392 						pi_adv = m->pindex - pindex;
2393 						m_adv = m;
2394 					}
2395 				}
2396 				if (tobj->backing_object == NULL)
2397 					goto next;
2398 				pindex += OFF_TO_IDX(tobj->
2399 				    backing_object_offset);
2400 			}
2401 		}
2402 		m_adv = NULL;
2403 		if (m->psind != 0 && addr + pagesizes[1] <= entry->end &&
2404 		    (addr & (pagesizes[1] - 1)) == 0 &&
2405 		    (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) {
2406 			*super = true;
2407 			pi_adv = atop(pagesizes[1]);
2408 		} else {
2409 			/*
2410 			 * We do not test the found page on validity.
2411 			 * Either the page is busy and being paged in,
2412 			 * or it was invalidated.  The first case
2413 			 * should be counted as resident, the second
2414 			 * is not so clear; we do account both.
2415 			 */
2416 			pi_adv = 1;
2417 		}
2418 		*resident_count += pi_adv;
2419 next:;
2420 	}
2421 }
2422 
2423 /*
2424  * Must be called with the process locked and will return unlocked.
2425  */
2426 int
2427 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags)
2428 {
2429 	vm_map_entry_t entry, tmp_entry;
2430 	struct vattr va;
2431 	vm_map_t map;
2432 	vm_object_t obj, tobj, lobj;
2433 	char *fullpath, *freepath;
2434 	struct kinfo_vmentry *kve;
2435 	struct ucred *cred;
2436 	struct vnode *vp;
2437 	struct vmspace *vm;
2438 	vm_offset_t addr;
2439 	unsigned int last_timestamp;
2440 	int error;
2441 	bool super;
2442 
2443 	PROC_LOCK_ASSERT(p, MA_OWNED);
2444 
2445 	_PHOLD(p);
2446 	PROC_UNLOCK(p);
2447 	vm = vmspace_acquire_ref(p);
2448 	if (vm == NULL) {
2449 		PRELE(p);
2450 		return (ESRCH);
2451 	}
2452 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO);
2453 
2454 	error = 0;
2455 	map = &vm->vm_map;
2456 	vm_map_lock_read(map);
2457 	VM_MAP_ENTRY_FOREACH(entry, map) {
2458 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2459 			continue;
2460 
2461 		addr = entry->end;
2462 		bzero(kve, sizeof(*kve));
2463 		obj = entry->object.vm_object;
2464 		if (obj != NULL) {
2465 			for (tobj = obj; tobj != NULL;
2466 			    tobj = tobj->backing_object) {
2467 				VM_OBJECT_RLOCK(tobj);
2468 				kve->kve_offset += tobj->backing_object_offset;
2469 				lobj = tobj;
2470 			}
2471 			if (obj->backing_object == NULL)
2472 				kve->kve_private_resident =
2473 				    obj->resident_page_count;
2474 			kern_proc_vmmap_resident(map, entry,
2475 			    &kve->kve_resident, &super);
2476 			if (super)
2477 				kve->kve_flags |= KVME_FLAG_SUPER;
2478 			for (tobj = obj; tobj != NULL;
2479 			    tobj = tobj->backing_object) {
2480 				if (tobj != obj && tobj != lobj)
2481 					VM_OBJECT_RUNLOCK(tobj);
2482 			}
2483 		} else {
2484 			lobj = NULL;
2485 		}
2486 
2487 		kve->kve_start = entry->start;
2488 		kve->kve_end = entry->end;
2489 		kve->kve_offset += entry->offset;
2490 
2491 		if (entry->protection & VM_PROT_READ)
2492 			kve->kve_protection |= KVME_PROT_READ;
2493 		if (entry->protection & VM_PROT_WRITE)
2494 			kve->kve_protection |= KVME_PROT_WRITE;
2495 		if (entry->protection & VM_PROT_EXECUTE)
2496 			kve->kve_protection |= KVME_PROT_EXEC;
2497 
2498 		if (entry->eflags & MAP_ENTRY_COW)
2499 			kve->kve_flags |= KVME_FLAG_COW;
2500 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
2501 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
2502 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
2503 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
2504 		if (entry->eflags & MAP_ENTRY_GROWS_UP)
2505 			kve->kve_flags |= KVME_FLAG_GROWS_UP;
2506 		if (entry->eflags & MAP_ENTRY_GROWS_DOWN)
2507 			kve->kve_flags |= KVME_FLAG_GROWS_DOWN;
2508 		if (entry->eflags & MAP_ENTRY_USER_WIRED)
2509 			kve->kve_flags |= KVME_FLAG_USER_WIRED;
2510 
2511 		last_timestamp = map->timestamp;
2512 		vm_map_unlock_read(map);
2513 
2514 		freepath = NULL;
2515 		fullpath = "";
2516 		if (lobj != NULL) {
2517 			kve->kve_type = vm_object_kvme_type(lobj, &vp);
2518 			if (vp != NULL)
2519 				vref(vp);
2520 			if (lobj != obj)
2521 				VM_OBJECT_RUNLOCK(lobj);
2522 
2523 			kve->kve_ref_count = obj->ref_count;
2524 			kve->kve_shadow_count = obj->shadow_count;
2525 			VM_OBJECT_RUNLOCK(obj);
2526 			if (vp != NULL) {
2527 				vn_fullpath(curthread, vp, &fullpath,
2528 				    &freepath);
2529 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
2530 				cred = curthread->td_ucred;
2531 				vn_lock(vp, LK_SHARED | LK_RETRY);
2532 				if (VOP_GETATTR(vp, &va, cred) == 0) {
2533 					kve->kve_vn_fileid = va.va_fileid;
2534 					kve->kve_vn_fsid = va.va_fsid;
2535 					kve->kve_vn_fsid_freebsd11 =
2536 					    kve->kve_vn_fsid; /* truncate */
2537 					kve->kve_vn_mode =
2538 					    MAKEIMODE(va.va_type, va.va_mode);
2539 					kve->kve_vn_size = va.va_size;
2540 					kve->kve_vn_rdev = va.va_rdev;
2541 					kve->kve_vn_rdev_freebsd11 =
2542 					    kve->kve_vn_rdev; /* truncate */
2543 					kve->kve_status = KF_ATTR_VALID;
2544 				}
2545 				vput(vp);
2546 			}
2547 		} else {
2548 			kve->kve_type = KVME_TYPE_NONE;
2549 			kve->kve_ref_count = 0;
2550 			kve->kve_shadow_count = 0;
2551 		}
2552 
2553 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
2554 		if (freepath != NULL)
2555 			free(freepath, M_TEMP);
2556 
2557 		/* Pack record size down */
2558 		if ((flags & KERN_VMMAP_PACK_KINFO) != 0)
2559 			kve->kve_structsize =
2560 			    offsetof(struct kinfo_vmentry, kve_path) +
2561 			    strlen(kve->kve_path) + 1;
2562 		else
2563 			kve->kve_structsize = sizeof(*kve);
2564 		kve->kve_structsize = roundup(kve->kve_structsize,
2565 		    sizeof(uint64_t));
2566 
2567 		/* Halt filling and truncate rather than exceeding maxlen */
2568 		if (maxlen != -1 && maxlen < kve->kve_structsize) {
2569 			error = 0;
2570 			vm_map_lock_read(map);
2571 			break;
2572 		} else if (maxlen != -1)
2573 			maxlen -= kve->kve_structsize;
2574 
2575 		if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0)
2576 			error = ENOMEM;
2577 		vm_map_lock_read(map);
2578 		if (error != 0)
2579 			break;
2580 		if (last_timestamp != map->timestamp) {
2581 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
2582 			entry = tmp_entry;
2583 		}
2584 	}
2585 	vm_map_unlock_read(map);
2586 	vmspace_free(vm);
2587 	PRELE(p);
2588 	free(kve, M_TEMP);
2589 	return (error);
2590 }
2591 
2592 static int
2593 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
2594 {
2595 	struct proc *p;
2596 	struct sbuf sb;
2597 	int error, error2, *name;
2598 
2599 	name = (int *)arg1;
2600 	sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req);
2601 	sbuf_clear_flags(&sb, SBUF_INCLUDENUL);
2602 	error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p);
2603 	if (error != 0) {
2604 		sbuf_delete(&sb);
2605 		return (error);
2606 	}
2607 	error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO);
2608 	error2 = sbuf_finish(&sb);
2609 	sbuf_delete(&sb);
2610 	return (error != 0 ? error : error2);
2611 }
2612 
2613 #if defined(STACK) || defined(DDB)
2614 static int
2615 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
2616 {
2617 	struct kinfo_kstack *kkstp;
2618 	int error, i, *name, numthreads;
2619 	lwpid_t *lwpidarray;
2620 	struct thread *td;
2621 	struct stack *st;
2622 	struct sbuf sb;
2623 	struct proc *p;
2624 
2625 	name = (int *)arg1;
2626 	error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p);
2627 	if (error != 0)
2628 		return (error);
2629 
2630 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
2631 	st = stack_create(M_WAITOK);
2632 
2633 	lwpidarray = NULL;
2634 	PROC_LOCK(p);
2635 	do {
2636 		if (lwpidarray != NULL) {
2637 			free(lwpidarray, M_TEMP);
2638 			lwpidarray = NULL;
2639 		}
2640 		numthreads = p->p_numthreads;
2641 		PROC_UNLOCK(p);
2642 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
2643 		    M_WAITOK | M_ZERO);
2644 		PROC_LOCK(p);
2645 	} while (numthreads < p->p_numthreads);
2646 
2647 	/*
2648 	 * XXXRW: During the below loop, execve(2) and countless other sorts
2649 	 * of changes could have taken place.  Should we check to see if the
2650 	 * vmspace has been replaced, or the like, in order to prevent
2651 	 * giving a snapshot that spans, say, execve(2), with some threads
2652 	 * before and some after?  Among other things, the credentials could
2653 	 * have changed, in which case the right to extract debug info might
2654 	 * no longer be assured.
2655 	 */
2656 	i = 0;
2657 	FOREACH_THREAD_IN_PROC(p, td) {
2658 		KASSERT(i < numthreads,
2659 		    ("sysctl_kern_proc_kstack: numthreads"));
2660 		lwpidarray[i] = td->td_tid;
2661 		i++;
2662 	}
2663 	numthreads = i;
2664 	for (i = 0; i < numthreads; i++) {
2665 		td = thread_find(p, lwpidarray[i]);
2666 		if (td == NULL) {
2667 			continue;
2668 		}
2669 		bzero(kkstp, sizeof(*kkstp));
2670 		(void)sbuf_new(&sb, kkstp->kkst_trace,
2671 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
2672 		thread_lock(td);
2673 		kkstp->kkst_tid = td->td_tid;
2674 		if (TD_IS_SWAPPED(td))
2675 			kkstp->kkst_state = KKST_STATE_SWAPPED;
2676 		else if (stack_save_td(st, td) == 0)
2677 			kkstp->kkst_state = KKST_STATE_STACKOK;
2678 		else
2679 			kkstp->kkst_state = KKST_STATE_RUNNING;
2680 		thread_unlock(td);
2681 		PROC_UNLOCK(p);
2682 		stack_sbuf_print(&sb, st);
2683 		sbuf_finish(&sb);
2684 		sbuf_delete(&sb);
2685 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
2686 		PROC_LOCK(p);
2687 		if (error)
2688 			break;
2689 	}
2690 	_PRELE(p);
2691 	PROC_UNLOCK(p);
2692 	if (lwpidarray != NULL)
2693 		free(lwpidarray, M_TEMP);
2694 	stack_destroy(st);
2695 	free(kkstp, M_TEMP);
2696 	return (error);
2697 }
2698 #endif
2699 
2700 /*
2701  * This sysctl allows a process to retrieve the full list of groups from
2702  * itself or another process.
2703  */
2704 static int
2705 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
2706 {
2707 	pid_t *pidp = (pid_t *)arg1;
2708 	unsigned int arglen = arg2;
2709 	struct proc *p;
2710 	struct ucred *cred;
2711 	int error;
2712 
2713 	if (arglen != 1)
2714 		return (EINVAL);
2715 	if (*pidp == -1) {	/* -1 means this process */
2716 		p = req->td->td_proc;
2717 		PROC_LOCK(p);
2718 	} else {
2719 		error = pget(*pidp, PGET_CANSEE, &p);
2720 		if (error != 0)
2721 			return (error);
2722 	}
2723 
2724 	cred = crhold(p->p_ucred);
2725 	PROC_UNLOCK(p);
2726 
2727 	error = SYSCTL_OUT(req, cred->cr_groups,
2728 	    cred->cr_ngroups * sizeof(gid_t));
2729 	crfree(cred);
2730 	return (error);
2731 }
2732 
2733 /*
2734  * This sysctl allows a process to retrieve or/and set the resource limit for
2735  * another process.
2736  */
2737 static int
2738 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS)
2739 {
2740 	int *name = (int *)arg1;
2741 	u_int namelen = arg2;
2742 	struct rlimit rlim;
2743 	struct proc *p;
2744 	u_int which;
2745 	int flags, error;
2746 
2747 	if (namelen != 2)
2748 		return (EINVAL);
2749 
2750 	which = (u_int)name[1];
2751 	if (which >= RLIM_NLIMITS)
2752 		return (EINVAL);
2753 
2754 	if (req->newptr != NULL && req->newlen != sizeof(rlim))
2755 		return (EINVAL);
2756 
2757 	flags = PGET_HOLD | PGET_NOTWEXIT;
2758 	if (req->newptr != NULL)
2759 		flags |= PGET_CANDEBUG;
2760 	else
2761 		flags |= PGET_CANSEE;
2762 	error = pget((pid_t)name[0], flags, &p);
2763 	if (error != 0)
2764 		return (error);
2765 
2766 	/*
2767 	 * Retrieve limit.
2768 	 */
2769 	if (req->oldptr != NULL) {
2770 		PROC_LOCK(p);
2771 		lim_rlimit_proc(p, which, &rlim);
2772 		PROC_UNLOCK(p);
2773 	}
2774 	error = SYSCTL_OUT(req, &rlim, sizeof(rlim));
2775 	if (error != 0)
2776 		goto errout;
2777 
2778 	/*
2779 	 * Set limit.
2780 	 */
2781 	if (req->newptr != NULL) {
2782 		error = SYSCTL_IN(req, &rlim, sizeof(rlim));
2783 		if (error == 0)
2784 			error = kern_proc_setrlimit(curthread, p, which, &rlim);
2785 	}
2786 
2787 errout:
2788 	PRELE(p);
2789 	return (error);
2790 }
2791 
2792 /*
2793  * This sysctl allows a process to retrieve ps_strings structure location of
2794  * another process.
2795  */
2796 static int
2797 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS)
2798 {
2799 	int *name = (int *)arg1;
2800 	u_int namelen = arg2;
2801 	struct proc *p;
2802 	vm_offset_t ps_strings;
2803 	int error;
2804 #ifdef COMPAT_FREEBSD32
2805 	uint32_t ps_strings32;
2806 #endif
2807 
2808 	if (namelen != 1)
2809 		return (EINVAL);
2810 
2811 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2812 	if (error != 0)
2813 		return (error);
2814 #ifdef COMPAT_FREEBSD32
2815 	if ((req->flags & SCTL_MASK32) != 0) {
2816 		/*
2817 		 * We return 0 if the 32 bit emulation request is for a 64 bit
2818 		 * process.
2819 		 */
2820 		ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ?
2821 		    PTROUT(p->p_sysent->sv_psstrings) : 0;
2822 		PROC_UNLOCK(p);
2823 		error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32));
2824 		return (error);
2825 	}
2826 #endif
2827 	ps_strings = p->p_sysent->sv_psstrings;
2828 	PROC_UNLOCK(p);
2829 	error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings));
2830 	return (error);
2831 }
2832 
2833 /*
2834  * This sysctl allows a process to retrieve umask of another process.
2835  */
2836 static int
2837 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS)
2838 {
2839 	int *name = (int *)arg1;
2840 	u_int namelen = arg2;
2841 	struct proc *p;
2842 	int error;
2843 	u_short fd_cmask;
2844 	pid_t pid;
2845 
2846 	if (namelen != 1)
2847 		return (EINVAL);
2848 
2849 	pid = (pid_t)name[0];
2850 	p = curproc;
2851 	if (pid == p->p_pid || pid == 0) {
2852 		fd_cmask = p->p_fd->fd_cmask;
2853 		goto out;
2854 	}
2855 
2856 	error = pget(pid, PGET_WANTREAD, &p);
2857 	if (error != 0)
2858 		return (error);
2859 
2860 	fd_cmask = p->p_fd->fd_cmask;
2861 	PRELE(p);
2862 out:
2863 	error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask));
2864 	return (error);
2865 }
2866 
2867 /*
2868  * This sysctl allows a process to set and retrieve binary osreldate of
2869  * another process.
2870  */
2871 static int
2872 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS)
2873 {
2874 	int *name = (int *)arg1;
2875 	u_int namelen = arg2;
2876 	struct proc *p;
2877 	int flags, error, osrel;
2878 
2879 	if (namelen != 1)
2880 		return (EINVAL);
2881 
2882 	if (req->newptr != NULL && req->newlen != sizeof(osrel))
2883 		return (EINVAL);
2884 
2885 	flags = PGET_HOLD | PGET_NOTWEXIT;
2886 	if (req->newptr != NULL)
2887 		flags |= PGET_CANDEBUG;
2888 	else
2889 		flags |= PGET_CANSEE;
2890 	error = pget((pid_t)name[0], flags, &p);
2891 	if (error != 0)
2892 		return (error);
2893 
2894 	error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel));
2895 	if (error != 0)
2896 		goto errout;
2897 
2898 	if (req->newptr != NULL) {
2899 		error = SYSCTL_IN(req, &osrel, sizeof(osrel));
2900 		if (error != 0)
2901 			goto errout;
2902 		if (osrel < 0) {
2903 			error = EINVAL;
2904 			goto errout;
2905 		}
2906 		p->p_osrel = osrel;
2907 	}
2908 errout:
2909 	PRELE(p);
2910 	return (error);
2911 }
2912 
2913 static int
2914 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS)
2915 {
2916 	int *name = (int *)arg1;
2917 	u_int namelen = arg2;
2918 	struct proc *p;
2919 	struct kinfo_sigtramp kst;
2920 	const struct sysentvec *sv;
2921 	int error;
2922 #ifdef COMPAT_FREEBSD32
2923 	struct kinfo_sigtramp32 kst32;
2924 #endif
2925 
2926 	if (namelen != 1)
2927 		return (EINVAL);
2928 
2929 	error = pget((pid_t)name[0], PGET_CANDEBUG, &p);
2930 	if (error != 0)
2931 		return (error);
2932 	sv = p->p_sysent;
2933 #ifdef COMPAT_FREEBSD32
2934 	if ((req->flags & SCTL_MASK32) != 0) {
2935 		bzero(&kst32, sizeof(kst32));
2936 		if (SV_PROC_FLAG(p, SV_ILP32)) {
2937 			if (sv->sv_sigcode_base != 0) {
2938 				kst32.ksigtramp_start = sv->sv_sigcode_base;
2939 				kst32.ksigtramp_end = sv->sv_sigcode_base +
2940 				    *sv->sv_szsigcode;
2941 			} else {
2942 				kst32.ksigtramp_start = sv->sv_psstrings -
2943 				    *sv->sv_szsigcode;
2944 				kst32.ksigtramp_end = sv->sv_psstrings;
2945 			}
2946 		}
2947 		PROC_UNLOCK(p);
2948 		error = SYSCTL_OUT(req, &kst32, sizeof(kst32));
2949 		return (error);
2950 	}
2951 #endif
2952 	bzero(&kst, sizeof(kst));
2953 	if (sv->sv_sigcode_base != 0) {
2954 		kst.ksigtramp_start = (char *)sv->sv_sigcode_base;
2955 		kst.ksigtramp_end = (char *)sv->sv_sigcode_base +
2956 		    *sv->sv_szsigcode;
2957 	} else {
2958 		kst.ksigtramp_start = (char *)sv->sv_psstrings -
2959 		    *sv->sv_szsigcode;
2960 		kst.ksigtramp_end = (char *)sv->sv_psstrings;
2961 	}
2962 	PROC_UNLOCK(p);
2963 	error = SYSCTL_OUT(req, &kst, sizeof(kst));
2964 	return (error);
2965 }
2966 
2967 static int
2968 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS)
2969 {
2970 	int *name = (int *)arg1;
2971 	u_int namelen = arg2;
2972 	pid_t pid;
2973 	struct proc *p;
2974 	struct thread *td1;
2975 	uintptr_t addr;
2976 #ifdef COMPAT_FREEBSD32
2977 	uint32_t addr32;
2978 #endif
2979 	int error;
2980 
2981 	if (namelen != 1 || req->newptr != NULL)
2982 		return (EINVAL);
2983 
2984 	pid = (pid_t)name[0];
2985 	error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p);
2986 	if (error != 0)
2987 		return (error);
2988 
2989 	PROC_LOCK(p);
2990 #ifdef COMPAT_FREEBSD32
2991 	if (SV_CURPROC_FLAG(SV_ILP32)) {
2992 		if (!SV_PROC_FLAG(p, SV_ILP32)) {
2993 			error = EINVAL;
2994 			goto errlocked;
2995 		}
2996 	}
2997 #endif
2998 	if (pid <= PID_MAX) {
2999 		td1 = FIRST_THREAD_IN_PROC(p);
3000 	} else {
3001 		FOREACH_THREAD_IN_PROC(p, td1) {
3002 			if (td1->td_tid == pid)
3003 				break;
3004 		}
3005 	}
3006 	if (td1 == NULL) {
3007 		error = ESRCH;
3008 		goto errlocked;
3009 	}
3010 	/*
3011 	 * The access to the private thread flags.  It is fine as far
3012 	 * as no out-of-thin-air values are read from td_pflags, and
3013 	 * usermode read of the td_sigblock_ptr is racy inherently,
3014 	 * since target process might have already changed it
3015 	 * meantime.
3016 	 */
3017 	if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0)
3018 		addr = (uintptr_t)td1->td_sigblock_ptr;
3019 	else
3020 		error = ENOTTY;
3021 
3022 errlocked:
3023 	_PRELE(p);
3024 	PROC_UNLOCK(p);
3025 	if (error != 0)
3026 		return (error);
3027 
3028 #ifdef COMPAT_FREEBSD32
3029 	if (SV_CURPROC_FLAG(SV_ILP32)) {
3030 		addr32 = addr;
3031 		error = SYSCTL_OUT(req, &addr32, sizeof(addr32));
3032 	} else
3033 #endif
3034 		error = SYSCTL_OUT(req, &addr, sizeof(addr));
3035 	return (error);
3036 }
3037 
3038 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,  0,
3039     "Process table");
3040 
3041 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
3042 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
3043 	"Return entire process table");
3044 
3045 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3046 	sysctl_kern_proc, "Process table");
3047 
3048 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
3049 	sysctl_kern_proc, "Process table");
3050 
3051 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3052 	sysctl_kern_proc, "Process table");
3053 
3054 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
3055 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3056 
3057 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
3058 	sysctl_kern_proc, "Process table");
3059 
3060 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3061 	sysctl_kern_proc, "Process table");
3062 
3063 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3064 	sysctl_kern_proc, "Process table");
3065 
3066 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
3067 	sysctl_kern_proc, "Process table");
3068 
3069 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
3070 	sysctl_kern_proc, "Return process table, no threads");
3071 
3072 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
3073 	CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
3074 	sysctl_kern_proc_args, "Process argument list");
3075 
3076 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE,
3077 	sysctl_kern_proc_env, "Process environment");
3078 
3079 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD |
3080 	CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector");
3081 
3082 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
3083 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
3084 
3085 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
3086 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
3087 	"Process syscall vector name (ABI type)");
3088 
3089 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
3090 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3091 
3092 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
3093 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3094 
3095 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
3096 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3097 
3098 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
3099 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3100 
3101 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
3102 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3103 
3104 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
3105 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3106 
3107 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
3108 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3109 
3110 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
3111 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
3112 
3113 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
3114 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
3115 	"Return process table, no threads");
3116 
3117 #ifdef COMPAT_FREEBSD7
3118 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
3119 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
3120 #endif
3121 
3122 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
3123 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
3124 
3125 #if defined(STACK) || defined(DDB)
3126 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
3127 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
3128 #endif
3129 
3130 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
3131 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
3132 
3133 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW |
3134 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit,
3135 	"Process resource limits");
3136 
3137 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD |
3138 	CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings,
3139 	"Process ps_strings location");
3140 
3141 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD |
3142 	CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask");
3143 
3144 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW |
3145 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel,
3146 	"Process binary osreldate");
3147 
3148 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD |
3149 	CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp,
3150 	"Process signal trampoline location");
3151 
3152 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD |
3153 	CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk,
3154 	"Thread sigfastblock address");
3155 
3156 int allproc_gen;
3157 
3158 /*
3159  * stop_all_proc() purpose is to stop all process which have usermode,
3160  * except current process for obvious reasons.  This makes it somewhat
3161  * unreliable when invoked from multithreaded process.  The service
3162  * must not be user-callable anyway.
3163  */
3164 void
3165 stop_all_proc(void)
3166 {
3167 	struct proc *cp, *p;
3168 	int r, gen;
3169 	bool restart, seen_stopped, seen_exiting, stopped_some;
3170 
3171 	cp = curproc;
3172 allproc_loop:
3173 	sx_xlock(&allproc_lock);
3174 	gen = allproc_gen;
3175 	seen_exiting = seen_stopped = stopped_some = restart = false;
3176 	LIST_REMOVE(cp, p_list);
3177 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3178 	for (;;) {
3179 		p = LIST_NEXT(cp, p_list);
3180 		if (p == NULL)
3181 			break;
3182 		LIST_REMOVE(cp, p_list);
3183 		LIST_INSERT_AFTER(p, cp, p_list);
3184 		PROC_LOCK(p);
3185 		if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) {
3186 			PROC_UNLOCK(p);
3187 			continue;
3188 		}
3189 		if ((p->p_flag & P_WEXIT) != 0) {
3190 			seen_exiting = true;
3191 			PROC_UNLOCK(p);
3192 			continue;
3193 		}
3194 		if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) {
3195 			/*
3196 			 * Stopped processes are tolerated when there
3197 			 * are no other processes which might continue
3198 			 * them.  P_STOPPED_SINGLE but not
3199 			 * P_TOTAL_STOP process still has at least one
3200 			 * thread running.
3201 			 */
3202 			seen_stopped = true;
3203 			PROC_UNLOCK(p);
3204 			continue;
3205 		}
3206 		sx_xunlock(&allproc_lock);
3207 		_PHOLD(p);
3208 		r = thread_single(p, SINGLE_ALLPROC);
3209 		if (r != 0)
3210 			restart = true;
3211 		else
3212 			stopped_some = true;
3213 		_PRELE(p);
3214 		PROC_UNLOCK(p);
3215 		sx_xlock(&allproc_lock);
3216 	}
3217 	/* Catch forked children we did not see in iteration. */
3218 	if (gen != allproc_gen)
3219 		restart = true;
3220 	sx_xunlock(&allproc_lock);
3221 	if (restart || stopped_some || seen_exiting || seen_stopped) {
3222 		kern_yield(PRI_USER);
3223 		goto allproc_loop;
3224 	}
3225 }
3226 
3227 void
3228 resume_all_proc(void)
3229 {
3230 	struct proc *cp, *p;
3231 
3232 	cp = curproc;
3233 	sx_xlock(&allproc_lock);
3234 again:
3235 	LIST_REMOVE(cp, p_list);
3236 	LIST_INSERT_HEAD(&allproc, cp, p_list);
3237 	for (;;) {
3238 		p = LIST_NEXT(cp, p_list);
3239 		if (p == NULL)
3240 			break;
3241 		LIST_REMOVE(cp, p_list);
3242 		LIST_INSERT_AFTER(p, cp, p_list);
3243 		PROC_LOCK(p);
3244 		if ((p->p_flag & P_TOTAL_STOP) != 0) {
3245 			sx_xunlock(&allproc_lock);
3246 			_PHOLD(p);
3247 			thread_single_end(p, SINGLE_ALLPROC);
3248 			_PRELE(p);
3249 			PROC_UNLOCK(p);
3250 			sx_xlock(&allproc_lock);
3251 		} else {
3252 			PROC_UNLOCK(p);
3253 		}
3254 	}
3255 	/*  Did the loop above missed any stopped process ? */
3256 	FOREACH_PROC_IN_SYSTEM(p) {
3257 		/* No need for proc lock. */
3258 		if ((p->p_flag & P_TOTAL_STOP) != 0)
3259 			goto again;
3260 	}
3261 	sx_xunlock(&allproc_lock);
3262 }
3263 
3264 /* #define	TOTAL_STOP_DEBUG	1 */
3265 #ifdef TOTAL_STOP_DEBUG
3266 volatile static int ap_resume;
3267 #include <sys/mount.h>
3268 
3269 static int
3270 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS)
3271 {
3272 	int error, val;
3273 
3274 	val = 0;
3275 	ap_resume = 0;
3276 	error = sysctl_handle_int(oidp, &val, 0, req);
3277 	if (error != 0 || req->newptr == NULL)
3278 		return (error);
3279 	if (val != 0) {
3280 		stop_all_proc();
3281 		syncer_suspend();
3282 		while (ap_resume == 0)
3283 			;
3284 		syncer_resume();
3285 		resume_all_proc();
3286 	}
3287 	return (0);
3288 }
3289 
3290 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW |
3291     CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0,
3292     sysctl_debug_stop_all_proc, "I",
3293     "");
3294 #endif
3295