xref: /freebsd/sys/kern/kern_proc.c (revision 74bf4e164ba5851606a27d4feff27717452583e5)
1 /*
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  * $FreeBSD$
31  */
32 
33 #include <sys/cdefs.h>
34 __FBSDID("$FreeBSD$");
35 
36 #include "opt_ktrace.h"
37 #include "opt_kstack_pages.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/kernel.h>
42 #include <sys/lock.h>
43 #include <sys/malloc.h>
44 #include <sys/mutex.h>
45 #include <sys/proc.h>
46 #include <sys/sysent.h>
47 #include <sys/sched.h>
48 #include <sys/smp.h>
49 #include <sys/sysctl.h>
50 #include <sys/filedesc.h>
51 #include <sys/tty.h>
52 #include <sys/signalvar.h>
53 #include <sys/sx.h>
54 #include <sys/user.h>
55 #include <sys/jail.h>
56 #ifdef KTRACE
57 #include <sys/uio.h>
58 #include <sys/ktrace.h>
59 #endif
60 
61 #include <vm/vm.h>
62 #include <vm/vm_extern.h>
63 #include <vm/pmap.h>
64 #include <vm/vm_map.h>
65 #include <vm/uma.h>
66 #include <machine/critical.h>
67 
68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
69 MALLOC_DEFINE(M_SESSION, "session", "session header");
70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
72 
73 static void doenterpgrp(struct proc *, struct pgrp *);
74 static void orphanpg(struct pgrp *pg);
75 static void pgadjustjobc(struct pgrp *pgrp, int entering);
76 static void pgdelete(struct pgrp *);
77 static int proc_ctor(void *mem, int size, void *arg, int flags);
78 static void proc_dtor(void *mem, int size, void *arg);
79 static int proc_init(void *mem, int size, int flags);
80 static void proc_fini(void *mem, int size);
81 
82 /*
83  * Other process lists
84  */
85 struct pidhashhead *pidhashtbl;
86 u_long pidhash;
87 struct pgrphashhead *pgrphashtbl;
88 u_long pgrphash;
89 struct proclist allproc;
90 struct proclist zombproc;
91 struct sx allproc_lock;
92 struct sx proctree_lock;
93 struct mtx pargs_ref_lock;
94 struct mtx ppeers_lock;
95 uma_zone_t proc_zone;
96 uma_zone_t ithread_zone;
97 
98 int kstack_pages = KSTACK_PAGES;
99 int uarea_pages = UAREA_PAGES;
100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, "");
101 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, "");
102 
103 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start))
104 
105 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
106 
107 /*
108  * Initialize global process hashing structures.
109  */
110 void
111 procinit()
112 {
113 
114 	sx_init(&allproc_lock, "allproc");
115 	sx_init(&proctree_lock, "proctree");
116 	mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF);
117 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
118 	LIST_INIT(&allproc);
119 	LIST_INIT(&zombproc);
120 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
121 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
122 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
123 	    proc_ctor, proc_dtor, proc_init, proc_fini,
124 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
125 	uihashinit();
126 }
127 
128 /*
129  * Prepare a proc for use.
130  */
131 static int
132 proc_ctor(void *mem, int size, void *arg, int flags)
133 {
134 	struct proc *p;
135 
136 	p = (struct proc *)mem;
137 	return (0);
138 }
139 
140 /*
141  * Reclaim a proc after use.
142  */
143 static void
144 proc_dtor(void *mem, int size, void *arg)
145 {
146 	struct proc *p;
147 	struct thread *td;
148 	struct ksegrp *kg;
149 	struct kse *ke;
150 
151 	/* INVARIANTS checks go here */
152 	p = (struct proc *)mem;
153 	KASSERT((p->p_numthreads == 1),
154 	    ("bad number of threads in exiting process"));
155         td = FIRST_THREAD_IN_PROC(p);
156 	KASSERT((td != NULL), ("proc_dtor: bad thread pointer"));
157         kg = FIRST_KSEGRP_IN_PROC(p);
158 	KASSERT((kg != NULL), ("proc_dtor: bad kg pointer"));
159         ke = FIRST_KSE_IN_KSEGRP(kg);
160 	KASSERT((ke != NULL), ("proc_dtor: bad ke pointer"));
161 
162 	/* Dispose of an alternate kstack, if it exists.
163 	 * XXX What if there are more than one thread in the proc?
164 	 *     The first thread in the proc is special and not
165 	 *     freed, so you gotta do this here.
166 	 */
167 	if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0))
168 		vm_thread_dispose_altkstack(td);
169 
170 	/*
171 	 * We want to make sure we know the initial linkages.
172 	 * so for now tear them down and remake them.
173 	 * This is probably un-needed as we can probably rely
174 	 * on the state coming in here from wait4().
175 	 */
176 	proc_linkup(p, kg, ke, td);
177 }
178 
179 /*
180  * Initialize type-stable parts of a proc (when newly created).
181  */
182 static int
183 proc_init(void *mem, int size, int flags)
184 {
185 	struct proc *p;
186 	struct thread *td;
187 	struct ksegrp *kg;
188 	struct kse *ke;
189 
190 	p = (struct proc *)mem;
191 	p->p_sched = (struct p_sched *)&p[1];
192 	vm_proc_new(p);
193 	td = thread_alloc();
194 	ke = kse_alloc();
195 	kg = ksegrp_alloc();
196 	proc_linkup(p, kg, ke, td);
197 	bzero(&p->p_mtx, sizeof(struct mtx));
198 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
199 	return (0);
200 }
201 
202 /*
203  * Tear down type-stable parts of a proc (just before being discarded)
204  */
205 static void
206 proc_fini(void *mem, int size)
207 {
208 	struct proc *p;
209 	struct thread *td;
210 	struct ksegrp *kg;
211 	struct kse *ke;
212 
213 	p = (struct proc *)mem;
214 	KASSERT((p->p_numthreads == 1),
215 	    ("bad number of threads in freeing process"));
216         td = FIRST_THREAD_IN_PROC(p);
217 	KASSERT((td != NULL), ("proc_fini: bad thread pointer"));
218         kg = FIRST_KSEGRP_IN_PROC(p);
219 	KASSERT((kg != NULL), ("proc_fini: bad kg pointer"));
220         ke = FIRST_KSE_IN_KSEGRP(kg);
221 	KASSERT((ke != NULL), ("proc_fini: bad ke pointer"));
222 	vm_proc_dispose(p);
223 	thread_free(td);
224 	ksegrp_free(kg);
225 	kse_free(ke);
226 	mtx_destroy(&p->p_mtx);
227 }
228 
229 /*
230  * Is p an inferior of the current process?
231  */
232 int
233 inferior(p)
234 	register struct proc *p;
235 {
236 
237 	sx_assert(&proctree_lock, SX_LOCKED);
238 	for (; p != curproc; p = p->p_pptr)
239 		if (p->p_pid == 0)
240 			return (0);
241 	return (1);
242 }
243 
244 /*
245  * Locate a process by number; return only "live" processes -- i.e., neither
246  * zombies nor newly born but incompletely initialized processes.  By not
247  * returning processes in the PRS_NEW state, we allow callers to avoid
248  * testing for that condition to avoid dereferencing p_ucred, et al.
249  */
250 struct proc *
251 pfind(pid)
252 	register pid_t pid;
253 {
254 	register struct proc *p;
255 
256 	sx_slock(&allproc_lock);
257 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
258 		if (p->p_pid == pid) {
259 			if (p->p_state == PRS_NEW) {
260 				p = NULL;
261 				break;
262 			}
263 			PROC_LOCK(p);
264 			break;
265 		}
266 	sx_sunlock(&allproc_lock);
267 	return (p);
268 }
269 
270 /*
271  * Locate a process group by number.
272  * The caller must hold proctree_lock.
273  */
274 struct pgrp *
275 pgfind(pgid)
276 	register pid_t pgid;
277 {
278 	register struct pgrp *pgrp;
279 
280 	sx_assert(&proctree_lock, SX_LOCKED);
281 
282 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
283 		if (pgrp->pg_id == pgid) {
284 			PGRP_LOCK(pgrp);
285 			return (pgrp);
286 		}
287 	}
288 	return (NULL);
289 }
290 
291 /*
292  * Create a new process group.
293  * pgid must be equal to the pid of p.
294  * Begin a new session if required.
295  */
296 int
297 enterpgrp(p, pgid, pgrp, sess)
298 	register struct proc *p;
299 	pid_t pgid;
300 	struct pgrp *pgrp;
301 	struct session *sess;
302 {
303 	struct pgrp *pgrp2;
304 
305 	sx_assert(&proctree_lock, SX_XLOCKED);
306 
307 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
308 	KASSERT(p->p_pid == pgid,
309 	    ("enterpgrp: new pgrp and pid != pgid"));
310 
311 	pgrp2 = pgfind(pgid);
312 
313 	KASSERT(pgrp2 == NULL,
314 	    ("enterpgrp: pgrp with pgid exists"));
315 	KASSERT(!SESS_LEADER(p),
316 	    ("enterpgrp: session leader attempted setpgrp"));
317 
318 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
319 
320 	if (sess != NULL) {
321 		/*
322 		 * new session
323 		 */
324 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
325 		PROC_LOCK(p);
326 		p->p_flag &= ~P_CONTROLT;
327 		PROC_UNLOCK(p);
328 		PGRP_LOCK(pgrp);
329 		sess->s_leader = p;
330 		sess->s_sid = p->p_pid;
331 		sess->s_count = 1;
332 		sess->s_ttyvp = NULL;
333 		sess->s_ttyp = NULL;
334 		bcopy(p->p_session->s_login, sess->s_login,
335 			    sizeof(sess->s_login));
336 		pgrp->pg_session = sess;
337 		KASSERT(p == curproc,
338 		    ("enterpgrp: mksession and p != curproc"));
339 	} else {
340 		pgrp->pg_session = p->p_session;
341 		SESS_LOCK(pgrp->pg_session);
342 		pgrp->pg_session->s_count++;
343 		SESS_UNLOCK(pgrp->pg_session);
344 		PGRP_LOCK(pgrp);
345 	}
346 	pgrp->pg_id = pgid;
347 	LIST_INIT(&pgrp->pg_members);
348 
349 	/*
350 	 * As we have an exclusive lock of proctree_lock,
351 	 * this should not deadlock.
352 	 */
353 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
354 	pgrp->pg_jobc = 0;
355 	SLIST_INIT(&pgrp->pg_sigiolst);
356 	PGRP_UNLOCK(pgrp);
357 
358 	doenterpgrp(p, pgrp);
359 
360 	return (0);
361 }
362 
363 /*
364  * Move p to an existing process group
365  */
366 int
367 enterthispgrp(p, pgrp)
368 	register struct proc *p;
369 	struct pgrp *pgrp;
370 {
371 
372 	sx_assert(&proctree_lock, SX_XLOCKED);
373 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
374 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
375 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
376 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
377 	KASSERT(pgrp->pg_session == p->p_session,
378 		("%s: pgrp's session %p, p->p_session %p.\n",
379 		__func__,
380 		pgrp->pg_session,
381 		p->p_session));
382 	KASSERT(pgrp != p->p_pgrp,
383 		("%s: p belongs to pgrp.", __func__));
384 
385 	doenterpgrp(p, pgrp);
386 
387 	return (0);
388 }
389 
390 /*
391  * Move p to a process group
392  */
393 static void
394 doenterpgrp(p, pgrp)
395 	struct proc *p;
396 	struct pgrp *pgrp;
397 {
398 	struct pgrp *savepgrp;
399 
400 	sx_assert(&proctree_lock, SX_XLOCKED);
401 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
402 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
403 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
404 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
405 
406 	savepgrp = p->p_pgrp;
407 
408 	/*
409 	 * Adjust eligibility of affected pgrps to participate in job control.
410 	 * Increment eligibility counts before decrementing, otherwise we
411 	 * could reach 0 spuriously during the first call.
412 	 */
413 	fixjobc(p, pgrp, 1);
414 	fixjobc(p, p->p_pgrp, 0);
415 
416 	PGRP_LOCK(pgrp);
417 	PGRP_LOCK(savepgrp);
418 	PROC_LOCK(p);
419 	LIST_REMOVE(p, p_pglist);
420 	p->p_pgrp = pgrp;
421 	PROC_UNLOCK(p);
422 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
423 	PGRP_UNLOCK(savepgrp);
424 	PGRP_UNLOCK(pgrp);
425 	if (LIST_EMPTY(&savepgrp->pg_members))
426 		pgdelete(savepgrp);
427 }
428 
429 /*
430  * remove process from process group
431  */
432 int
433 leavepgrp(p)
434 	register struct proc *p;
435 {
436 	struct pgrp *savepgrp;
437 
438 	sx_assert(&proctree_lock, SX_XLOCKED);
439 	savepgrp = p->p_pgrp;
440 	PGRP_LOCK(savepgrp);
441 	PROC_LOCK(p);
442 	LIST_REMOVE(p, p_pglist);
443 	p->p_pgrp = NULL;
444 	PROC_UNLOCK(p);
445 	PGRP_UNLOCK(savepgrp);
446 	if (LIST_EMPTY(&savepgrp->pg_members))
447 		pgdelete(savepgrp);
448 	return (0);
449 }
450 
451 /*
452  * delete a process group
453  */
454 static void
455 pgdelete(pgrp)
456 	register struct pgrp *pgrp;
457 {
458 	struct session *savesess;
459 	int i;
460 
461 	sx_assert(&proctree_lock, SX_XLOCKED);
462 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
463 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
464 
465 	/*
466 	 * Reset any sigio structures pointing to us as a result of
467 	 * F_SETOWN with our pgid.
468 	 */
469 	funsetownlst(&pgrp->pg_sigiolst);
470 
471 	PGRP_LOCK(pgrp);
472 	if (pgrp->pg_session->s_ttyp != NULL &&
473 	    pgrp->pg_session->s_ttyp->t_pgrp == pgrp)
474 		pgrp->pg_session->s_ttyp->t_pgrp = NULL;
475 	LIST_REMOVE(pgrp, pg_hash);
476 	savesess = pgrp->pg_session;
477 	SESS_LOCK(savesess);
478 	i = --savesess->s_count;
479 	SESS_UNLOCK(savesess);
480 	PGRP_UNLOCK(pgrp);
481 	if (i == 0) {
482 		if (savesess->s_ttyp != NULL)
483 			ttyrel(savesess->s_ttyp);
484 		mtx_destroy(&savesess->s_mtx);
485 		FREE(savesess, M_SESSION);
486 	}
487 	mtx_destroy(&pgrp->pg_mtx);
488 	FREE(pgrp, M_PGRP);
489 }
490 
491 static void
492 pgadjustjobc(pgrp, entering)
493 	struct pgrp *pgrp;
494 	int entering;
495 {
496 
497 	PGRP_LOCK(pgrp);
498 	if (entering)
499 		pgrp->pg_jobc++;
500 	else {
501 		--pgrp->pg_jobc;
502 		if (pgrp->pg_jobc == 0)
503 			orphanpg(pgrp);
504 	}
505 	PGRP_UNLOCK(pgrp);
506 }
507 
508 /*
509  * Adjust pgrp jobc counters when specified process changes process group.
510  * We count the number of processes in each process group that "qualify"
511  * the group for terminal job control (those with a parent in a different
512  * process group of the same session).  If that count reaches zero, the
513  * process group becomes orphaned.  Check both the specified process'
514  * process group and that of its children.
515  * entering == 0 => p is leaving specified group.
516  * entering == 1 => p is entering specified group.
517  */
518 void
519 fixjobc(p, pgrp, entering)
520 	register struct proc *p;
521 	register struct pgrp *pgrp;
522 	int entering;
523 {
524 	register struct pgrp *hispgrp;
525 	register struct session *mysession;
526 
527 	sx_assert(&proctree_lock, SX_LOCKED);
528 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
529 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
530 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
531 
532 	/*
533 	 * Check p's parent to see whether p qualifies its own process
534 	 * group; if so, adjust count for p's process group.
535 	 */
536 	mysession = pgrp->pg_session;
537 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
538 	    hispgrp->pg_session == mysession)
539 		pgadjustjobc(pgrp, entering);
540 
541 	/*
542 	 * Check this process' children to see whether they qualify
543 	 * their process groups; if so, adjust counts for children's
544 	 * process groups.
545 	 */
546 	LIST_FOREACH(p, &p->p_children, p_sibling) {
547 		hispgrp = p->p_pgrp;
548 		if (hispgrp == pgrp ||
549 		    hispgrp->pg_session != mysession)
550 			continue;
551 		PROC_LOCK(p);
552 		if (p->p_state == PRS_ZOMBIE) {
553 			PROC_UNLOCK(p);
554 			continue;
555 		}
556 		PROC_UNLOCK(p);
557 		pgadjustjobc(hispgrp, entering);
558 	}
559 }
560 
561 /*
562  * A process group has become orphaned;
563  * if there are any stopped processes in the group,
564  * hang-up all process in that group.
565  */
566 static void
567 orphanpg(pg)
568 	struct pgrp *pg;
569 {
570 	register struct proc *p;
571 
572 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
573 
574 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
575 		PROC_LOCK(p);
576 		if (P_SHOULDSTOP(p)) {
577 			PROC_UNLOCK(p);
578 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
579 				PROC_LOCK(p);
580 				psignal(p, SIGHUP);
581 				psignal(p, SIGCONT);
582 				PROC_UNLOCK(p);
583 			}
584 			return;
585 		}
586 		PROC_UNLOCK(p);
587 	}
588 }
589 
590 #include "opt_ddb.h"
591 #ifdef DDB
592 #include <ddb/ddb.h>
593 
594 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
595 {
596 	register struct pgrp *pgrp;
597 	register struct proc *p;
598 	register int i;
599 
600 	for (i = 0; i <= pgrphash; i++) {
601 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
602 			printf("\tindx %d\n", i);
603 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
604 				printf(
605 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
606 				    (void *)pgrp, (long)pgrp->pg_id,
607 				    (void *)pgrp->pg_session,
608 				    pgrp->pg_session->s_count,
609 				    (void *)LIST_FIRST(&pgrp->pg_members));
610 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
611 					printf("\t\tpid %ld addr %p pgrp %p\n",
612 					    (long)p->p_pid, (void *)p,
613 					    (void *)p->p_pgrp);
614 				}
615 			}
616 		}
617 	}
618 }
619 #endif /* DDB */
620 void
621 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp);
622 
623 /*
624  * Fill in a kinfo_proc structure for the specified process.
625  * Must be called with the target process locked.
626  */
627 void
628 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
629 {
630 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp);
631 }
632 
633 void
634 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp)
635 {
636 	struct proc *p;
637 	struct thread *td0;
638 	struct kse *ke;
639 	struct ksegrp *kg;
640 	struct tty *tp;
641 	struct session *sp;
642 	struct timeval tv;
643 	struct sigacts *ps;
644 
645 	p = td->td_proc;
646 
647 	bzero(kp, sizeof(*kp));
648 
649 	kp->ki_structsize = sizeof(*kp);
650 	kp->ki_paddr = p;
651 	PROC_LOCK_ASSERT(p, MA_OWNED);
652 	kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */
653 	kp->ki_args = p->p_args;
654 	kp->ki_textvp = p->p_textvp;
655 #ifdef KTRACE
656 	kp->ki_tracep = p->p_tracevp;
657 	mtx_lock(&ktrace_mtx);
658 	kp->ki_traceflag = p->p_traceflag;
659 	mtx_unlock(&ktrace_mtx);
660 #endif
661 	kp->ki_fd = p->p_fd;
662 	kp->ki_vmspace = p->p_vmspace;
663 	if (p->p_ucred) {
664 		kp->ki_uid = p->p_ucred->cr_uid;
665 		kp->ki_ruid = p->p_ucred->cr_ruid;
666 		kp->ki_svuid = p->p_ucred->cr_svuid;
667 		/* XXX bde doesn't like KI_NGROUPS */
668 		kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS);
669 		bcopy(p->p_ucred->cr_groups, kp->ki_groups,
670 		    kp->ki_ngroups * sizeof(gid_t));
671 		kp->ki_rgid = p->p_ucred->cr_rgid;
672 		kp->ki_svgid = p->p_ucred->cr_svgid;
673 	}
674 	if (p->p_sigacts) {
675 		ps = p->p_sigacts;
676 		mtx_lock(&ps->ps_mtx);
677 		kp->ki_sigignore = ps->ps_sigignore;
678 		kp->ki_sigcatch = ps->ps_sigcatch;
679 		mtx_unlock(&ps->ps_mtx);
680 	}
681 	mtx_lock_spin(&sched_lock);
682 	if (p->p_state != PRS_NEW &&
683 	    p->p_state != PRS_ZOMBIE &&
684 	    p->p_vmspace != NULL) {
685 		struct vmspace *vm = p->p_vmspace;
686 
687 		kp->ki_size = vm->vm_map.size;
688 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
689 		if (p->p_sflag & PS_INMEM)
690 			kp->ki_rssize += UAREA_PAGES;
691 		FOREACH_THREAD_IN_PROC(p, td0) {
692 			if (!TD_IS_SWAPPED(td0))
693 				kp->ki_rssize += td0->td_kstack_pages;
694 			if (td0->td_altkstack_obj != NULL)
695 				kp->ki_rssize += td0->td_altkstack_pages;
696 		}
697 		kp->ki_swrss = vm->vm_swrss;
698 		kp->ki_tsize = vm->vm_tsize;
699 		kp->ki_dsize = vm->vm_dsize;
700 		kp->ki_ssize = vm->vm_ssize;
701 	}
702 	if ((p->p_sflag & PS_INMEM) && p->p_stats) {
703 		kp->ki_start = p->p_stats->p_start;
704 		timevaladd(&kp->ki_start, &boottime);
705 		kp->ki_rusage = p->p_stats->p_ru;
706 		calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime,
707 		    NULL);
708 		kp->ki_childstime = p->p_stats->p_cru.ru_stime;
709 		kp->ki_childutime = p->p_stats->p_cru.ru_utime;
710 		/* Some callers want child-times in a single value */
711 		kp->ki_childtime = kp->ki_childstime;
712 		timevaladd(&kp->ki_childtime, &kp->ki_childutime);
713 	}
714 	kp->ki_sflag = p->p_sflag;
715 	kp->ki_swtime = p->p_swtime;
716 	kp->ki_pid = p->p_pid;
717 	kp->ki_nice = p->p_nice;
718 	bintime2timeval(&p->p_runtime, &tv);
719 	kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec;
720 	if (p->p_state != PRS_ZOMBIE) {
721 #if 0
722 		if (td == NULL) {
723 			/* XXXKSE: This should never happen. */
724 			printf("fill_kinfo_proc(): pid %d has no threads!\n",
725 			    p->p_pid);
726 			mtx_unlock_spin(&sched_lock);
727 			return;
728 		}
729 #endif
730 		if (td->td_wmesg != NULL) {
731 			strlcpy(kp->ki_wmesg, td->td_wmesg,
732 			    sizeof(kp->ki_wmesg));
733 		}
734 		if (TD_ON_LOCK(td)) {
735 			kp->ki_kiflag |= KI_LOCKBLOCK;
736 			strlcpy(kp->ki_lockname, td->td_lockname,
737 			    sizeof(kp->ki_lockname));
738 		}
739 
740 		if (p->p_state == PRS_NORMAL) { /*  XXXKSE very approximate */
741 			if (TD_ON_RUNQ(td) ||
742 			    TD_CAN_RUN(td) ||
743 			    TD_IS_RUNNING(td)) {
744 				kp->ki_stat = SRUN;
745 			} else if (P_SHOULDSTOP(p)) {
746 				kp->ki_stat = SSTOP;
747 			} else if (TD_IS_SLEEPING(td)) {
748 				kp->ki_stat = SSLEEP;
749 			} else if (TD_ON_LOCK(td)) {
750 				kp->ki_stat = SLOCK;
751 			} else {
752 				kp->ki_stat = SWAIT;
753 			}
754 		} else {
755 			kp->ki_stat = SIDL;
756 		}
757 
758 		kg = td->td_ksegrp;
759 		ke = td->td_kse;
760 
761 		/* things in the KSE GROUP */
762 		kp->ki_estcpu = kg->kg_estcpu;
763 		kp->ki_slptime = kg->kg_slptime;
764 		kp->ki_pri.pri_user = kg->kg_user_pri;
765 		kp->ki_pri.pri_class = kg->kg_pri_class;
766 
767 		/* Things in the thread */
768 		kp->ki_wchan = td->td_wchan;
769 		kp->ki_pri.pri_level = td->td_priority;
770 		kp->ki_pri.pri_native = td->td_base_pri;
771 		kp->ki_lastcpu = td->td_lastcpu;
772 		kp->ki_oncpu = td->td_oncpu;
773 		kp->ki_tdflags = td->td_flags;
774 		kp->ki_tid = td->td_tid;
775 		kp->ki_numthreads = p->p_numthreads;
776 		kp->ki_pcb = td->td_pcb;
777 		kp->ki_kstack = (void *)td->td_kstack;
778 		kp->ki_pctcpu = sched_pctcpu(td);
779 
780 		/* Things in the kse */
781 		if (ke)
782 			kp->ki_rqindex = ke->ke_rqindex;
783 		else
784 			kp->ki_rqindex = 0;
785 
786 	} else {
787 		kp->ki_stat = SZOMB;
788 	}
789 	mtx_unlock_spin(&sched_lock);
790 	sp = NULL;
791 	tp = NULL;
792 	if (p->p_pgrp) {
793 		kp->ki_pgid = p->p_pgrp->pg_id;
794 		kp->ki_jobc = p->p_pgrp->pg_jobc;
795 		sp = p->p_pgrp->pg_session;
796 
797 		if (sp != NULL) {
798 			kp->ki_sid = sp->s_sid;
799 			SESS_LOCK(sp);
800 			strlcpy(kp->ki_login, sp->s_login,
801 			    sizeof(kp->ki_login));
802 			if (sp->s_ttyvp)
803 				kp->ki_kiflag |= KI_CTTY;
804 			if (SESS_LEADER(p))
805 				kp->ki_kiflag |= KI_SLEADER;
806 			tp = sp->s_ttyp;
807 			SESS_UNLOCK(sp);
808 		}
809 	}
810 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
811 		kp->ki_tdev = dev2udev(tp->t_dev);
812 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
813 		if (tp->t_session)
814 			kp->ki_tsid = tp->t_session->s_sid;
815 	} else
816 		kp->ki_tdev = NODEV;
817 	if (p->p_comm[0] != '\0') {
818 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
819 		strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm));
820 	}
821 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
822 	    p->p_sysent->sv_name[0] != '\0')
823 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
824 	kp->ki_siglist = p->p_siglist;
825         SIGSETOR(kp->ki_siglist, td->td_siglist);
826 	kp->ki_sigmask = td->td_sigmask;
827 	kp->ki_xstat = p->p_xstat;
828 	kp->ki_acflag = p->p_acflag;
829 	kp->ki_flag = p->p_flag;
830 	/* If jailed(p->p_ucred), emulate the old P_JAILED flag. */
831 	if (jailed(p->p_ucred))
832 		kp->ki_flag |= P_JAILED;
833 	kp->ki_lock = p->p_lock;
834 	if (p->p_pptr)
835 		kp->ki_ppid = p->p_pptr->p_pid;
836 }
837 
838 /*
839  * Locate a zombie process by number
840  */
841 struct proc *
842 zpfind(pid_t pid)
843 {
844 	struct proc *p;
845 
846 	sx_slock(&allproc_lock);
847 	LIST_FOREACH(p, &zombproc, p_list)
848 		if (p->p_pid == pid) {
849 			PROC_LOCK(p);
850 			break;
851 		}
852 	sx_sunlock(&allproc_lock);
853 	return (p);
854 }
855 
856 #define KERN_PROC_ZOMBMASK	0x3
857 #define KERN_PROC_NOTHREADS	0x4
858 
859 /*
860  * Must be called with the process locked and will return with it unlocked.
861  */
862 static int
863 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
864 {
865 	struct thread *td;
866 	struct kinfo_proc kinfo_proc;
867 	int error = 0;
868 	struct proc *np;
869 	pid_t pid = p->p_pid;
870 
871 	PROC_LOCK_ASSERT(p, MA_OWNED);
872 
873 	if (flags & KERN_PROC_NOTHREADS) {
874 		fill_kinfo_proc(p, &kinfo_proc);
875 		PROC_UNLOCK(p);
876 		error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
877 				   sizeof(kinfo_proc));
878 		PROC_LOCK(p);
879 	} else {
880 		_PHOLD(p);
881 		FOREACH_THREAD_IN_PROC(p, td) {
882 			fill_kinfo_thread(td, &kinfo_proc);
883 			PROC_UNLOCK(p);
884 			error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc,
885 					   sizeof(kinfo_proc));
886 			PROC_LOCK(p);
887 			if (error)
888 				break;
889 		}
890 		_PRELE(p);
891 	}
892 	PROC_UNLOCK(p);
893 	if (error)
894 		return (error);
895 	if (flags & KERN_PROC_ZOMBMASK)
896 		np = zpfind(pid);
897 	else {
898 		if (pid == 0)
899 			return (0);
900 		np = pfind(pid);
901 	}
902 	if (np == NULL)
903 		return EAGAIN;
904 	if (np != p) {
905 		PROC_UNLOCK(np);
906 		return EAGAIN;
907 	}
908 	PROC_UNLOCK(np);
909 	return (0);
910 }
911 
912 static int
913 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
914 {
915 	int *name = (int*) arg1;
916 	u_int namelen = arg2;
917 	struct proc *p;
918 	int flags, doingzomb, oid_number;
919 	int error = 0;
920 
921 	oid_number = oidp->oid_number;
922 	if (oid_number != KERN_PROC_ALL &&
923 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
924 		flags = KERN_PROC_NOTHREADS;
925 	else {
926 		flags = 0;
927 		oid_number &= ~KERN_PROC_INC_THREAD;
928 	}
929 	if (oid_number == KERN_PROC_PID) {
930 		if (namelen != 1)
931 			return (EINVAL);
932 		p = pfind((pid_t)name[0]);
933 		if (!p)
934 			return (ESRCH);
935 		if ((error = p_cansee(curthread, p))) {
936 			PROC_UNLOCK(p);
937 			return (error);
938 		}
939 		error = sysctl_out_proc(p, req, flags);
940 		return (error);
941 	}
942 
943 	switch (oid_number) {
944 	case KERN_PROC_ALL:
945 		if (namelen != 0)
946 			return (EINVAL);
947 		break;
948 	case KERN_PROC_PROC:
949 		if (namelen != 0 && namelen != 1)
950 			return (EINVAL);
951 		break;
952 	default:
953 		if (namelen != 1)
954 			return (EINVAL);
955 		break;
956 	}
957 
958 	if (!req->oldptr) {
959 		/* overestimate by 5 procs */
960 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
961 		if (error)
962 			return (error);
963 	}
964 	error = sysctl_wire_old_buffer(req, 0);
965 	if (error != 0)
966 		return (error);
967 	sx_slock(&allproc_lock);
968 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
969 		if (!doingzomb)
970 			p = LIST_FIRST(&allproc);
971 		else
972 			p = LIST_FIRST(&zombproc);
973 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
974 			/*
975 			 * Skip embryonic processes.
976 			 */
977 			mtx_lock_spin(&sched_lock);
978 			if (p->p_state == PRS_NEW) {
979 				mtx_unlock_spin(&sched_lock);
980 				continue;
981 			}
982 			mtx_unlock_spin(&sched_lock);
983 			PROC_LOCK(p);
984 			/*
985 			 * Show a user only appropriate processes.
986 			 */
987 			if (p_cansee(curthread, p)) {
988 				PROC_UNLOCK(p);
989 				continue;
990 			}
991 			/*
992 			 * TODO - make more efficient (see notes below).
993 			 * do by session.
994 			 */
995 			switch (oid_number) {
996 
997 			case KERN_PROC_GID:
998 				if (p->p_ucred == NULL ||
999 				    p->p_ucred->cr_gid != (gid_t)name[0]) {
1000 					PROC_UNLOCK(p);
1001 					continue;
1002 				}
1003 				break;
1004 
1005 			case KERN_PROC_PGRP:
1006 				/* could do this by traversing pgrp */
1007 				if (p->p_pgrp == NULL ||
1008 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1009 					PROC_UNLOCK(p);
1010 					continue;
1011 				}
1012 				break;
1013 
1014 			case KERN_PROC_RGID:
1015 				if (p->p_ucred == NULL ||
1016 				    p->p_ucred->cr_rgid != (gid_t)name[0]) {
1017 					PROC_UNLOCK(p);
1018 					continue;
1019 				}
1020 				break;
1021 
1022 			case KERN_PROC_SESSION:
1023 				if (p->p_session == NULL ||
1024 				    p->p_session->s_sid != (pid_t)name[0]) {
1025 					PROC_UNLOCK(p);
1026 					continue;
1027 				}
1028 				break;
1029 
1030 			case KERN_PROC_TTY:
1031 				if ((p->p_flag & P_CONTROLT) == 0 ||
1032 				    p->p_session == NULL) {
1033 					PROC_UNLOCK(p);
1034 					continue;
1035 				}
1036 				SESS_LOCK(p->p_session);
1037 				if (p->p_session->s_ttyp == NULL ||
1038 				    dev2udev(p->p_session->s_ttyp->t_dev) !=
1039 				    (dev_t)name[0]) {
1040 					SESS_UNLOCK(p->p_session);
1041 					PROC_UNLOCK(p);
1042 					continue;
1043 				}
1044 				SESS_UNLOCK(p->p_session);
1045 				break;
1046 
1047 			case KERN_PROC_UID:
1048 				if (p->p_ucred == NULL ||
1049 				    p->p_ucred->cr_uid != (uid_t)name[0]) {
1050 					PROC_UNLOCK(p);
1051 					continue;
1052 				}
1053 				break;
1054 
1055 			case KERN_PROC_RUID:
1056 				if (p->p_ucred == NULL ||
1057 				    p->p_ucred->cr_ruid != (uid_t)name[0]) {
1058 					PROC_UNLOCK(p);
1059 					continue;
1060 				}
1061 				break;
1062 
1063 			case KERN_PROC_PROC:
1064 				break;
1065 
1066 			default:
1067 				break;
1068 
1069 			}
1070 
1071 			error = sysctl_out_proc(p, req, flags | doingzomb);
1072 			if (error) {
1073 				sx_sunlock(&allproc_lock);
1074 				return (error);
1075 			}
1076 		}
1077 	}
1078 	sx_sunlock(&allproc_lock);
1079 	return (0);
1080 }
1081 
1082 struct pargs *
1083 pargs_alloc(int len)
1084 {
1085 	struct pargs *pa;
1086 
1087 	MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS,
1088 		M_WAITOK);
1089 	pa->ar_ref = 1;
1090 	pa->ar_length = len;
1091 	return (pa);
1092 }
1093 
1094 void
1095 pargs_free(struct pargs *pa)
1096 {
1097 
1098 	FREE(pa, M_PARGS);
1099 }
1100 
1101 void
1102 pargs_hold(struct pargs *pa)
1103 {
1104 
1105 	if (pa == NULL)
1106 		return;
1107 	PARGS_LOCK(pa);
1108 	pa->ar_ref++;
1109 	PARGS_UNLOCK(pa);
1110 }
1111 
1112 void
1113 pargs_drop(struct pargs *pa)
1114 {
1115 
1116 	if (pa == NULL)
1117 		return;
1118 	PARGS_LOCK(pa);
1119 	if (--pa->ar_ref == 0) {
1120 		PARGS_UNLOCK(pa);
1121 		pargs_free(pa);
1122 	} else
1123 		PARGS_UNLOCK(pa);
1124 }
1125 
1126 /*
1127  * This sysctl allows a process to retrieve the argument list or process
1128  * title for another process without groping around in the address space
1129  * of the other process.  It also allow a process to set its own "process
1130  * title to a string of its own choice.
1131  */
1132 static int
1133 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1134 {
1135 	int *name = (int*) arg1;
1136 	u_int namelen = arg2;
1137 	struct pargs *newpa, *pa;
1138 	struct proc *p;
1139 	int error = 0;
1140 
1141 	if (namelen != 1)
1142 		return (EINVAL);
1143 
1144 	p = pfind((pid_t)name[0]);
1145 	if (!p)
1146 		return (ESRCH);
1147 
1148 	if ((error = p_cansee(curthread, p)) != 0) {
1149 		PROC_UNLOCK(p);
1150 		return (error);
1151 	}
1152 
1153 	if (req->newptr && curproc != p) {
1154 		PROC_UNLOCK(p);
1155 		return (EPERM);
1156 	}
1157 
1158 	pa = p->p_args;
1159 	pargs_hold(pa);
1160 	PROC_UNLOCK(p);
1161 	if (req->oldptr != NULL && pa != NULL)
1162 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1163 	pargs_drop(pa);
1164 	if (error != 0 || req->newptr == NULL)
1165 		return (error);
1166 
1167 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1168 		return (ENOMEM);
1169 	newpa = pargs_alloc(req->newlen);
1170 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1171 	if (error != 0) {
1172 		pargs_free(newpa);
1173 		return (error);
1174 	}
1175 	PROC_LOCK(p);
1176 	pa = p->p_args;
1177 	p->p_args = newpa;
1178 	PROC_UNLOCK(p);
1179 	pargs_drop(pa);
1180 	return (0);
1181 }
1182 
1183 static int
1184 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1185 {
1186 	struct proc *p;
1187 	char *sv_name;
1188 	int *name;
1189 	int namelen;
1190 	int error;
1191 
1192 	namelen = arg2;
1193 	if (namelen != 1)
1194 		return (EINVAL);
1195 
1196 	name = (int *)arg1;
1197 	if ((p = pfind((pid_t)name[0])) == NULL)
1198 		return (ESRCH);
1199 	if ((error = p_cansee(curthread, p))) {
1200 		PROC_UNLOCK(p);
1201 		return (error);
1202 	}
1203 	sv_name = p->p_sysent->sv_name;
1204 	PROC_UNLOCK(p);
1205 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1206 }
1207 
1208 
1209 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1210 
1211 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT,
1212 	0, 0, sysctl_kern_proc, "S,proc", "Return entire process table");
1213 
1214 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD,
1215 	sysctl_kern_proc, "Process table");
1216 
1217 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD,
1218 	sysctl_kern_proc, "Process table");
1219 
1220 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD,
1221 	sysctl_kern_proc, "Process table");
1222 
1223 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD,
1224 	sysctl_kern_proc, "Process table");
1225 
1226 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD,
1227 	sysctl_kern_proc, "Process table");
1228 
1229 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD,
1230 	sysctl_kern_proc, "Process table");
1231 
1232 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD,
1233 	sysctl_kern_proc, "Process table");
1234 
1235 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD,
1236 	sysctl_kern_proc, "Process table");
1237 
1238 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD,
1239 	sysctl_kern_proc, "Return process table, no threads");
1240 
1241 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY,
1242 	sysctl_kern_proc_args, "Process argument list");
1243 
1244 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD,
1245 	sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)");
1246 
1247 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
1248 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1249 
1250 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
1251 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1252 
1253 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
1254 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1255 
1256 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td,
1257 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1258 
1259 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
1260 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1261 
1262 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
1263 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1264 
1265 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
1266 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1267 
1268 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
1269 	CTLFLAG_RD, sysctl_kern_proc, "Process table");
1270 
1271 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
1272 	CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads");
1273