1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Berkeley and its contributors. 17 * 4. Neither the name of the University nor the names of its contributors 18 * may be used to endorse or promote products derived from this software 19 * without specific prior written permission. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 31 * SUCH DAMAGE. 32 * 33 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 34 * $FreeBSD$ 35 */ 36 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/lock.h> 44 #include <sys/malloc.h> 45 #include <sys/mutex.h> 46 #include <sys/proc.h> 47 #include <sys/kse.h> 48 #include <sys/sched.h> 49 #include <sys/smp.h> 50 #include <sys/sysctl.h> 51 #include <sys/filedesc.h> 52 #include <sys/tty.h> 53 #include <sys/signalvar.h> 54 #include <sys/sx.h> 55 #include <sys/user.h> 56 #include <sys/jail.h> 57 #ifdef KTRACE 58 #include <sys/uio.h> 59 #include <sys/ktrace.h> 60 #endif 61 62 #include <vm/vm.h> 63 #include <vm/vm_extern.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/uma.h> 67 #include <machine/critical.h> 68 69 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 70 MALLOC_DEFINE(M_SESSION, "session", "session header"); 71 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 72 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 73 74 static void doenterpgrp(struct proc *, struct pgrp *); 75 76 static void pgdelete(struct pgrp *); 77 78 static void orphanpg(struct pgrp *pg); 79 80 static void proc_ctor(void *mem, int size, void *arg); 81 static void proc_dtor(void *mem, int size, void *arg); 82 static void proc_init(void *mem, int size); 83 static void proc_fini(void *mem, int size); 84 85 /* 86 * Other process lists 87 */ 88 struct pidhashhead *pidhashtbl; 89 u_long pidhash; 90 struct pgrphashhead *pgrphashtbl; 91 u_long pgrphash; 92 struct proclist allproc; 93 struct proclist zombproc; 94 struct sx allproc_lock; 95 struct sx proctree_lock; 96 struct mtx pargs_ref_lock; 97 struct mtx ppeers_lock; 98 uma_zone_t proc_zone; 99 uma_zone_t ithread_zone; 100 101 int kstack_pages = KSTACK_PAGES; 102 int uarea_pages = UAREA_PAGES; 103 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 104 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 105 106 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 107 108 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 109 110 /* 111 * Initialize global process hashing structures. 112 */ 113 void 114 procinit() 115 { 116 117 sx_init(&allproc_lock, "allproc"); 118 sx_init(&proctree_lock, "proctree"); 119 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 120 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 121 LIST_INIT(&allproc); 122 LIST_INIT(&zombproc); 123 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 124 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 125 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 126 proc_ctor, proc_dtor, proc_init, proc_fini, 127 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 128 uihashinit(); 129 } 130 131 /* 132 * Prepare a proc for use. 133 */ 134 static void 135 proc_ctor(void *mem, int size, void *arg) 136 { 137 struct proc *p; 138 139 p = (struct proc *)mem; 140 } 141 142 /* 143 * Reclaim a proc after use. 144 */ 145 static void 146 proc_dtor(void *mem, int size, void *arg) 147 { 148 struct proc *p; 149 struct thread *td; 150 struct ksegrp *kg; 151 struct kse *ke; 152 153 /* INVARIANTS checks go here */ 154 p = (struct proc *)mem; 155 KASSERT((p->p_numthreads == 1), 156 ("bad number of threads in exiting process")); 157 td = FIRST_THREAD_IN_PROC(p); 158 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 159 kg = FIRST_KSEGRP_IN_PROC(p); 160 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 161 ke = FIRST_KSE_IN_KSEGRP(kg); 162 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 163 164 /* Dispose of an alternate kstack, if it exists. 165 * XXX What if there are more than one thread in the proc? 166 * The first thread in the proc is special and not 167 * freed, so you gotta do this here. 168 */ 169 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 170 pmap_dispose_altkstack(td); 171 172 /* 173 * We want to make sure we know the initial linkages. 174 * so for now tear them down and remake them. 175 * This is probably un-needed as we can probably rely 176 * on the state coming in here from wait4(). 177 */ 178 proc_linkup(p, kg, ke, td); 179 } 180 181 /* 182 * Initialize type-stable parts of a proc (when newly created). 183 */ 184 static void 185 proc_init(void *mem, int size) 186 { 187 struct proc *p; 188 struct thread *td; 189 struct ksegrp *kg; 190 struct kse *ke; 191 192 p = (struct proc *)mem; 193 p->p_sched = (struct p_sched *)&p[1]; 194 vm_proc_new(p); 195 td = thread_alloc(); 196 ke = kse_alloc(); 197 kg = ksegrp_alloc(); 198 proc_linkup(p, kg, ke, td); 199 } 200 201 /* 202 * Tear down type-stable parts of a proc (just before being discarded) 203 */ 204 static void 205 proc_fini(void *mem, int size) 206 { 207 struct proc *p; 208 struct thread *td; 209 struct ksegrp *kg; 210 struct kse *ke; 211 212 p = (struct proc *)mem; 213 KASSERT((p->p_numthreads == 1), 214 ("bad number of threads in freeing process")); 215 td = FIRST_THREAD_IN_PROC(p); 216 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 217 kg = FIRST_KSEGRP_IN_PROC(p); 218 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 219 ke = FIRST_KSE_IN_KSEGRP(kg); 220 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 221 vm_proc_dispose(p); 222 thread_free(td); 223 ksegrp_free(kg); 224 kse_free(ke); 225 } 226 227 /* 228 * Is p an inferior of the current process? 229 */ 230 int 231 inferior(p) 232 register struct proc *p; 233 { 234 235 sx_assert(&proctree_lock, SX_LOCKED); 236 for (; p != curproc; p = p->p_pptr) 237 if (p->p_pid == 0) 238 return (0); 239 return (1); 240 } 241 242 /* 243 * Locate a process by number 244 */ 245 struct proc * 246 pfind(pid) 247 register pid_t pid; 248 { 249 register struct proc *p; 250 251 sx_slock(&allproc_lock); 252 LIST_FOREACH(p, PIDHASH(pid), p_hash) 253 if (p->p_pid == pid) { 254 PROC_LOCK(p); 255 break; 256 } 257 sx_sunlock(&allproc_lock); 258 return (p); 259 } 260 261 /* 262 * Locate a process group by number. 263 * The caller must hold proctree_lock. 264 */ 265 struct pgrp * 266 pgfind(pgid) 267 register pid_t pgid; 268 { 269 register struct pgrp *pgrp; 270 271 sx_assert(&proctree_lock, SX_LOCKED); 272 273 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 274 if (pgrp->pg_id == pgid) { 275 PGRP_LOCK(pgrp); 276 return (pgrp); 277 } 278 } 279 return (NULL); 280 } 281 282 /* 283 * Create a new process group. 284 * pgid must be equal to the pid of p. 285 * Begin a new session if required. 286 */ 287 int 288 enterpgrp(p, pgid, pgrp, sess) 289 register struct proc *p; 290 pid_t pgid; 291 struct pgrp *pgrp; 292 struct session *sess; 293 { 294 struct pgrp *pgrp2; 295 296 sx_assert(&proctree_lock, SX_XLOCKED); 297 298 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 299 KASSERT(p->p_pid == pgid, 300 ("enterpgrp: new pgrp and pid != pgid")); 301 302 pgrp2 = pgfind(pgid); 303 304 KASSERT(pgrp2 == NULL, 305 ("enterpgrp: pgrp with pgid exists")); 306 KASSERT(!SESS_LEADER(p), 307 ("enterpgrp: session leader attempted setpgrp")); 308 309 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 310 311 if (sess != NULL) { 312 /* 313 * new session 314 */ 315 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 316 PROC_LOCK(p); 317 p->p_flag &= ~P_CONTROLT; 318 PROC_UNLOCK(p); 319 PGRP_LOCK(pgrp); 320 sess->s_leader = p; 321 sess->s_sid = p->p_pid; 322 sess->s_count = 1; 323 sess->s_ttyvp = NULL; 324 sess->s_ttyp = NULL; 325 bcopy(p->p_session->s_login, sess->s_login, 326 sizeof(sess->s_login)); 327 pgrp->pg_session = sess; 328 KASSERT(p == curproc, 329 ("enterpgrp: mksession and p != curproc")); 330 } else { 331 pgrp->pg_session = p->p_session; 332 SESS_LOCK(pgrp->pg_session); 333 pgrp->pg_session->s_count++; 334 SESS_UNLOCK(pgrp->pg_session); 335 PGRP_LOCK(pgrp); 336 } 337 pgrp->pg_id = pgid; 338 LIST_INIT(&pgrp->pg_members); 339 340 /* 341 * As we have an exclusive lock of proctree_lock, 342 * this should not deadlock. 343 */ 344 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 345 pgrp->pg_jobc = 0; 346 SLIST_INIT(&pgrp->pg_sigiolst); 347 PGRP_UNLOCK(pgrp); 348 349 doenterpgrp(p, pgrp); 350 351 return (0); 352 } 353 354 /* 355 * Move p to an existing process group 356 */ 357 int 358 enterthispgrp(p, pgrp) 359 register struct proc *p; 360 struct pgrp *pgrp; 361 { 362 363 sx_assert(&proctree_lock, SX_XLOCKED); 364 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 365 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 366 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 367 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 368 KASSERT(pgrp->pg_session == p->p_session, 369 ("%s: pgrp's session %p, p->p_session %p.\n", 370 __func__, 371 pgrp->pg_session, 372 p->p_session)); 373 KASSERT(pgrp != p->p_pgrp, 374 ("%s: p belongs to pgrp.", __func__)); 375 376 doenterpgrp(p, pgrp); 377 378 return (0); 379 } 380 381 /* 382 * Move p to a process group 383 */ 384 static void 385 doenterpgrp(p, pgrp) 386 struct proc *p; 387 struct pgrp *pgrp; 388 { 389 struct pgrp *savepgrp; 390 391 sx_assert(&proctree_lock, SX_XLOCKED); 392 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 393 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 394 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 395 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 396 397 savepgrp = p->p_pgrp; 398 399 /* 400 * Adjust eligibility of affected pgrps to participate in job control. 401 * Increment eligibility counts before decrementing, otherwise we 402 * could reach 0 spuriously during the first call. 403 */ 404 fixjobc(p, pgrp, 1); 405 fixjobc(p, p->p_pgrp, 0); 406 407 PGRP_LOCK(pgrp); 408 PGRP_LOCK(savepgrp); 409 PROC_LOCK(p); 410 LIST_REMOVE(p, p_pglist); 411 p->p_pgrp = pgrp; 412 PROC_UNLOCK(p); 413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 414 PGRP_UNLOCK(savepgrp); 415 PGRP_UNLOCK(pgrp); 416 if (LIST_EMPTY(&savepgrp->pg_members)) 417 pgdelete(savepgrp); 418 } 419 420 /* 421 * remove process from process group 422 */ 423 int 424 leavepgrp(p) 425 register struct proc *p; 426 { 427 struct pgrp *savepgrp; 428 429 sx_assert(&proctree_lock, SX_XLOCKED); 430 savepgrp = p->p_pgrp; 431 PGRP_LOCK(savepgrp); 432 PROC_LOCK(p); 433 LIST_REMOVE(p, p_pglist); 434 p->p_pgrp = NULL; 435 PROC_UNLOCK(p); 436 PGRP_UNLOCK(savepgrp); 437 if (LIST_EMPTY(&savepgrp->pg_members)) 438 pgdelete(savepgrp); 439 return (0); 440 } 441 442 /* 443 * delete a process group 444 */ 445 static void 446 pgdelete(pgrp) 447 register struct pgrp *pgrp; 448 { 449 struct session *savesess; 450 451 sx_assert(&proctree_lock, SX_XLOCKED); 452 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 453 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 454 455 /* 456 * Reset any sigio structures pointing to us as a result of 457 * F_SETOWN with our pgid. 458 */ 459 funsetownlst(&pgrp->pg_sigiolst); 460 461 PGRP_LOCK(pgrp); 462 if (pgrp->pg_session->s_ttyp != NULL && 463 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 464 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 465 LIST_REMOVE(pgrp, pg_hash); 466 savesess = pgrp->pg_session; 467 SESS_LOCK(savesess); 468 savesess->s_count--; 469 SESS_UNLOCK(savesess); 470 PGRP_UNLOCK(pgrp); 471 if (savesess->s_count == 0) { 472 mtx_destroy(&savesess->s_mtx); 473 FREE(pgrp->pg_session, M_SESSION); 474 } 475 mtx_destroy(&pgrp->pg_mtx); 476 FREE(pgrp, M_PGRP); 477 } 478 479 /* 480 * Adjust pgrp jobc counters when specified process changes process group. 481 * We count the number of processes in each process group that "qualify" 482 * the group for terminal job control (those with a parent in a different 483 * process group of the same session). If that count reaches zero, the 484 * process group becomes orphaned. Check both the specified process' 485 * process group and that of its children. 486 * entering == 0 => p is leaving specified group. 487 * entering == 1 => p is entering specified group. 488 */ 489 void 490 fixjobc(p, pgrp, entering) 491 register struct proc *p; 492 register struct pgrp *pgrp; 493 int entering; 494 { 495 register struct pgrp *hispgrp; 496 register struct session *mysession; 497 498 sx_assert(&proctree_lock, SX_LOCKED); 499 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 500 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 501 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 502 503 /* 504 * Check p's parent to see whether p qualifies its own process 505 * group; if so, adjust count for p's process group. 506 */ 507 mysession = pgrp->pg_session; 508 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 509 hispgrp->pg_session == mysession) { 510 PGRP_LOCK(pgrp); 511 if (entering) 512 pgrp->pg_jobc++; 513 else { 514 --pgrp->pg_jobc; 515 if (pgrp->pg_jobc == 0) 516 orphanpg(pgrp); 517 } 518 PGRP_UNLOCK(pgrp); 519 } 520 521 /* 522 * Check this process' children to see whether they qualify 523 * their process groups; if so, adjust counts for children's 524 * process groups. 525 */ 526 LIST_FOREACH(p, &p->p_children, p_sibling) { 527 if ((hispgrp = p->p_pgrp) != pgrp && 528 hispgrp->pg_session == mysession && 529 p->p_state != PRS_ZOMBIE) { 530 PGRP_LOCK(hispgrp); 531 if (entering) 532 hispgrp->pg_jobc++; 533 else { 534 --hispgrp->pg_jobc; 535 if (hispgrp->pg_jobc == 0) 536 orphanpg(hispgrp); 537 } 538 PGRP_UNLOCK(hispgrp); 539 } 540 } 541 } 542 543 /* 544 * A process group has become orphaned; 545 * if there are any stopped processes in the group, 546 * hang-up all process in that group. 547 */ 548 static void 549 orphanpg(pg) 550 struct pgrp *pg; 551 { 552 register struct proc *p; 553 554 PGRP_LOCK_ASSERT(pg, MA_OWNED); 555 556 mtx_lock_spin(&sched_lock); 557 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 558 if (P_SHOULDSTOP(p)) { 559 mtx_unlock_spin(&sched_lock); 560 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 561 PROC_LOCK(p); 562 psignal(p, SIGHUP); 563 psignal(p, SIGCONT); 564 PROC_UNLOCK(p); 565 } 566 return; 567 } 568 } 569 mtx_unlock_spin(&sched_lock); 570 } 571 572 #include "opt_ddb.h" 573 #ifdef DDB 574 #include <ddb/ddb.h> 575 576 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 577 { 578 register struct pgrp *pgrp; 579 register struct proc *p; 580 register int i; 581 582 for (i = 0; i <= pgrphash; i++) { 583 if (!LIST_EMPTY(&pgrphashtbl[i])) { 584 printf("\tindx %d\n", i); 585 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 586 printf( 587 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 588 (void *)pgrp, (long)pgrp->pg_id, 589 (void *)pgrp->pg_session, 590 pgrp->pg_session->s_count, 591 (void *)LIST_FIRST(&pgrp->pg_members)); 592 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 593 printf("\t\tpid %ld addr %p pgrp %p\n", 594 (long)p->p_pid, (void *)p, 595 (void *)p->p_pgrp); 596 } 597 } 598 } 599 } 600 } 601 #endif /* DDB */ 602 603 /* 604 * Fill in a kinfo_proc structure for the specified process. 605 * Must be called with the target process locked. 606 */ 607 void 608 fill_kinfo_proc(p, kp) 609 struct proc *p; 610 struct kinfo_proc *kp; 611 { 612 struct thread *td; 613 struct kse *ke; 614 struct ksegrp *kg; 615 struct tty *tp; 616 struct session *sp; 617 struct timeval tv; 618 619 bzero(kp, sizeof(*kp)); 620 621 kp->ki_structsize = sizeof(*kp); 622 kp->ki_paddr = p; 623 PROC_LOCK_ASSERT(p, MA_OWNED); 624 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 625 kp->ki_args = p->p_args; 626 kp->ki_textvp = p->p_textvp; 627 #ifdef KTRACE 628 kp->ki_tracep = p->p_tracevp; 629 mtx_lock(&ktrace_mtx); 630 kp->ki_traceflag = p->p_traceflag; 631 mtx_unlock(&ktrace_mtx); 632 #endif 633 kp->ki_fd = p->p_fd; 634 kp->ki_vmspace = p->p_vmspace; 635 if (p->p_ucred) { 636 kp->ki_uid = p->p_ucred->cr_uid; 637 kp->ki_ruid = p->p_ucred->cr_ruid; 638 kp->ki_svuid = p->p_ucred->cr_svuid; 639 /* XXX bde doesn't like KI_NGROUPS */ 640 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 641 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 642 kp->ki_ngroups * sizeof(gid_t)); 643 kp->ki_rgid = p->p_ucred->cr_rgid; 644 kp->ki_svgid = p->p_ucred->cr_svgid; 645 } 646 if (p->p_procsig) { 647 kp->ki_sigignore = p->p_procsig->ps_sigignore; 648 kp->ki_sigcatch = p->p_procsig->ps_sigcatch; 649 } 650 mtx_lock_spin(&sched_lock); 651 if (p->p_state != PRS_NEW && 652 p->p_state != PRS_ZOMBIE && 653 p->p_vmspace != NULL) { 654 struct vmspace *vm = p->p_vmspace; 655 656 kp->ki_size = vm->vm_map.size; 657 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 658 if (p->p_sflag & PS_INMEM) 659 kp->ki_rssize += UAREA_PAGES; 660 FOREACH_THREAD_IN_PROC(p, td) /* XXXKSE: thread swapout check */ 661 kp->ki_rssize += KSTACK_PAGES; 662 kp->ki_swrss = vm->vm_swrss; 663 kp->ki_tsize = vm->vm_tsize; 664 kp->ki_dsize = vm->vm_dsize; 665 kp->ki_ssize = vm->vm_ssize; 666 } 667 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 668 kp->ki_start = p->p_stats->p_start; 669 kp->ki_rusage = p->p_stats->p_ru; 670 kp->ki_childtime.tv_sec = p->p_stats->p_cru.ru_utime.tv_sec + 671 p->p_stats->p_cru.ru_stime.tv_sec; 672 kp->ki_childtime.tv_usec = p->p_stats->p_cru.ru_utime.tv_usec + 673 p->p_stats->p_cru.ru_stime.tv_usec; 674 } 675 if (p->p_state != PRS_ZOMBIE) { 676 td = FIRST_THREAD_IN_PROC(p); 677 if (td == NULL) { 678 /* XXXKSE: This should never happen. */ 679 printf("fill_kinfo_proc(): pid %d has no threads!\n", 680 p->p_pid); 681 mtx_unlock_spin(&sched_lock); 682 return; 683 } 684 if (!(p->p_flag & P_THREADED)) { 685 if (td->td_wmesg != NULL) { 686 strlcpy(kp->ki_wmesg, td->td_wmesg, 687 sizeof(kp->ki_wmesg)); 688 } 689 if (TD_ON_LOCK(td)) { 690 kp->ki_kiflag |= KI_LOCKBLOCK; 691 strlcpy(kp->ki_lockname, td->td_lockname, 692 sizeof(kp->ki_lockname)); 693 } 694 } 695 696 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 697 if (TD_ON_RUNQ(td) || 698 TD_CAN_RUN(td) || 699 TD_IS_RUNNING(td)) { 700 kp->ki_stat = SRUN; 701 } else if (P_SHOULDSTOP(p)) { 702 kp->ki_stat = SSTOP; 703 } else if (TD_IS_SLEEPING(td)) { 704 kp->ki_stat = SSLEEP; 705 } else if (TD_ON_LOCK(td)) { 706 kp->ki_stat = SLOCK; 707 } else { 708 kp->ki_stat = SWAIT; 709 } 710 } else { 711 kp->ki_stat = SIDL; 712 } 713 714 kp->ki_sflag = p->p_sflag; 715 kp->ki_swtime = p->p_swtime; 716 kp->ki_pid = p->p_pid; 717 /* vvv XXXKSE */ 718 if (!(p->p_flag & P_THREADED)) { 719 kg = td->td_ksegrp; 720 ke = td->td_kse; 721 KASSERT((ke != NULL), ("fill_kinfo_proc: Null KSE")); 722 bintime2timeval(&p->p_runtime, &tv); 723 kp->ki_runtime = 724 tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 725 726 /* things in the KSE GROUP */ 727 kp->ki_estcpu = kg->kg_estcpu; 728 kp->ki_slptime = kg->kg_slptime; 729 kp->ki_pri.pri_user = kg->kg_user_pri; 730 kp->ki_pri.pri_class = kg->kg_pri_class; 731 kp->ki_nice = kg->kg_nice; 732 733 /* Things in the thread */ 734 kp->ki_wchan = td->td_wchan; 735 kp->ki_pri.pri_level = td->td_priority; 736 kp->ki_pri.pri_native = td->td_base_pri; 737 kp->ki_lastcpu = td->td_lastcpu; 738 kp->ki_tdflags = td->td_flags; 739 kp->ki_pcb = td->td_pcb; 740 kp->ki_kstack = (void *)td->td_kstack; 741 742 /* Things in the kse */ 743 kp->ki_rqindex = ke->ke_rqindex; 744 kp->ki_oncpu = ke->ke_oncpu; 745 kp->ki_pctcpu = sched_pctcpu(ke); 746 } else { 747 kp->ki_oncpu = -1; 748 kp->ki_lastcpu = -1; 749 kp->ki_tdflags = -1; 750 /* All the rest are 0 for now */ 751 } 752 /* ^^^ XXXKSE */ 753 } else { 754 kp->ki_stat = SZOMB; 755 } 756 mtx_unlock_spin(&sched_lock); 757 sp = NULL; 758 tp = NULL; 759 if (p->p_pgrp) { 760 kp->ki_pgid = p->p_pgrp->pg_id; 761 kp->ki_jobc = p->p_pgrp->pg_jobc; 762 sp = p->p_pgrp->pg_session; 763 764 if (sp != NULL) { 765 kp->ki_sid = sp->s_sid; 766 SESS_LOCK(sp); 767 strlcpy(kp->ki_login, sp->s_login, 768 sizeof(kp->ki_login)); 769 if (sp->s_ttyvp) 770 kp->ki_kiflag |= KI_CTTY; 771 if (SESS_LEADER(p)) 772 kp->ki_kiflag |= KI_SLEADER; 773 tp = sp->s_ttyp; 774 SESS_UNLOCK(sp); 775 } 776 } 777 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 778 kp->ki_tdev = dev2udev(tp->t_dev); 779 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 780 if (tp->t_session) 781 kp->ki_tsid = tp->t_session->s_sid; 782 } else 783 kp->ki_tdev = NOUDEV; 784 if (p->p_comm[0] != '\0') { 785 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 786 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 787 } 788 kp->ki_siglist = p->p_siglist; 789 kp->ki_sigmask = p->p_sigmask; 790 kp->ki_xstat = p->p_xstat; 791 kp->ki_acflag = p->p_acflag; 792 kp->ki_flag = p->p_flag; 793 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 794 if (jailed(p->p_ucred)) 795 kp->ki_flag |= P_JAILED; 796 kp->ki_lock = p->p_lock; 797 if (p->p_pptr) 798 kp->ki_ppid = p->p_pptr->p_pid; 799 } 800 801 /* 802 * Locate a zombie process by number 803 */ 804 struct proc * 805 zpfind(pid_t pid) 806 { 807 struct proc *p; 808 809 sx_slock(&allproc_lock); 810 LIST_FOREACH(p, &zombproc, p_list) 811 if (p->p_pid == pid) { 812 PROC_LOCK(p); 813 break; 814 } 815 sx_sunlock(&allproc_lock); 816 return (p); 817 } 818 819 820 /* 821 * Must be called with the process locked and will return with it unlocked. 822 */ 823 static int 824 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int doingzomb) 825 { 826 struct kinfo_proc kinfo_proc; 827 int error; 828 struct proc *np; 829 pid_t pid = p->p_pid; 830 831 PROC_LOCK_ASSERT(p, MA_OWNED); 832 fill_kinfo_proc(p, &kinfo_proc); 833 PROC_UNLOCK(p); 834 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, sizeof(kinfo_proc)); 835 if (error) 836 return (error); 837 if (doingzomb) 838 np = zpfind(pid); 839 else { 840 if (pid == 0) 841 return (0); 842 np = pfind(pid); 843 } 844 if (np == NULL) 845 return EAGAIN; 846 if (np != p) { 847 PROC_UNLOCK(np); 848 return EAGAIN; 849 } 850 PROC_UNLOCK(np); 851 return (0); 852 } 853 854 static int 855 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 856 { 857 int *name = (int*) arg1; 858 u_int namelen = arg2; 859 struct proc *p; 860 int doingzomb; 861 int error = 0; 862 863 if (oidp->oid_number == KERN_PROC_PID) { 864 if (namelen != 1) 865 return (EINVAL); 866 p = pfind((pid_t)name[0]); 867 if (!p) 868 return (0); 869 if (p_cansee(curthread, p)) { 870 PROC_UNLOCK(p); 871 return (0); 872 } 873 error = sysctl_out_proc(p, req, 0); 874 return (error); 875 } 876 if (oidp->oid_number == KERN_PROC_ALL && !namelen) 877 ; 878 else if (oidp->oid_number != KERN_PROC_ALL && namelen == 1) 879 ; 880 else 881 return (EINVAL); 882 883 if (!req->oldptr) { 884 /* overestimate by 5 procs */ 885 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 886 if (error) 887 return (error); 888 } 889 sysctl_wire_old_buffer(req, 0); 890 sx_slock(&allproc_lock); 891 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 892 if (!doingzomb) 893 p = LIST_FIRST(&allproc); 894 else 895 p = LIST_FIRST(&zombproc); 896 for (; p != 0; p = LIST_NEXT(p, p_list)) { 897 PROC_LOCK(p); 898 /* 899 * Show a user only appropriate processes. 900 */ 901 if (p_cansee(curthread, p)) { 902 PROC_UNLOCK(p); 903 continue; 904 } 905 /* 906 * Skip embryonic processes. 907 */ 908 if (p->p_state == PRS_NEW) { 909 PROC_UNLOCK(p); 910 continue; 911 } 912 /* 913 * TODO - make more efficient (see notes below). 914 * do by session. 915 */ 916 switch (oidp->oid_number) { 917 918 case KERN_PROC_PGRP: 919 /* could do this by traversing pgrp */ 920 if (p->p_pgrp == NULL || 921 p->p_pgrp->pg_id != (pid_t)name[0]) { 922 PROC_UNLOCK(p); 923 continue; 924 } 925 break; 926 927 case KERN_PROC_TTY: 928 if ((p->p_flag & P_CONTROLT) == 0 || 929 p->p_session == NULL) { 930 PROC_UNLOCK(p); 931 continue; 932 } 933 SESS_LOCK(p->p_session); 934 if (p->p_session->s_ttyp == NULL || 935 dev2udev(p->p_session->s_ttyp->t_dev) != 936 (udev_t)name[0]) { 937 SESS_UNLOCK(p->p_session); 938 PROC_UNLOCK(p); 939 continue; 940 } 941 SESS_UNLOCK(p->p_session); 942 break; 943 944 case KERN_PROC_UID: 945 if (p->p_ucred == NULL || 946 p->p_ucred->cr_uid != (uid_t)name[0]) { 947 PROC_UNLOCK(p); 948 continue; 949 } 950 break; 951 952 case KERN_PROC_RUID: 953 if (p->p_ucred == NULL || 954 p->p_ucred->cr_ruid != (uid_t)name[0]) { 955 PROC_UNLOCK(p); 956 continue; 957 } 958 break; 959 } 960 961 error = sysctl_out_proc(p, req, doingzomb); 962 if (error) { 963 sx_sunlock(&allproc_lock); 964 return (error); 965 } 966 } 967 } 968 sx_sunlock(&allproc_lock); 969 return (0); 970 } 971 972 struct pargs * 973 pargs_alloc(int len) 974 { 975 struct pargs *pa; 976 977 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 978 M_WAITOK); 979 pa->ar_ref = 1; 980 pa->ar_length = len; 981 return (pa); 982 } 983 984 void 985 pargs_free(struct pargs *pa) 986 { 987 988 FREE(pa, M_PARGS); 989 } 990 991 void 992 pargs_hold(struct pargs *pa) 993 { 994 995 if (pa == NULL) 996 return; 997 PARGS_LOCK(pa); 998 pa->ar_ref++; 999 PARGS_UNLOCK(pa); 1000 } 1001 1002 void 1003 pargs_drop(struct pargs *pa) 1004 { 1005 1006 if (pa == NULL) 1007 return; 1008 PARGS_LOCK(pa); 1009 if (--pa->ar_ref == 0) { 1010 PARGS_UNLOCK(pa); 1011 pargs_free(pa); 1012 } else 1013 PARGS_UNLOCK(pa); 1014 } 1015 1016 /* 1017 * This sysctl allows a process to retrieve the argument list or process 1018 * title for another process without groping around in the address space 1019 * of the other process. It also allow a process to set its own "process 1020 * title to a string of its own choice. 1021 */ 1022 static int 1023 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1024 { 1025 int *name = (int*) arg1; 1026 u_int namelen = arg2; 1027 struct pargs *newpa, *pa; 1028 struct proc *p; 1029 int error = 0; 1030 1031 if (namelen != 1) 1032 return (EINVAL); 1033 1034 p = pfind((pid_t)name[0]); 1035 if (!p) 1036 return (0); 1037 1038 if ((!ps_argsopen) && p_cansee(curthread, p)) { 1039 PROC_UNLOCK(p); 1040 return (0); 1041 } 1042 1043 if (req->newptr && curproc != p) { 1044 PROC_UNLOCK(p); 1045 return (EPERM); 1046 } 1047 1048 pa = p->p_args; 1049 pargs_hold(pa); 1050 PROC_UNLOCK(p); 1051 if (req->oldptr != NULL && pa != NULL) 1052 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1053 pargs_drop(pa); 1054 if (error != 0 || req->newptr == NULL) 1055 return (error); 1056 1057 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1058 return (ENOMEM); 1059 newpa = pargs_alloc(req->newlen); 1060 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1061 if (error != 0) { 1062 pargs_free(newpa); 1063 return (error); 1064 } 1065 PROC_LOCK(p); 1066 pa = p->p_args; 1067 p->p_args = newpa; 1068 PROC_UNLOCK(p); 1069 pargs_drop(pa); 1070 return (0); 1071 } 1072 1073 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1074 1075 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1076 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1077 1078 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1079 sysctl_kern_proc, "Process table"); 1080 1081 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1082 sysctl_kern_proc, "Process table"); 1083 1084 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1085 sysctl_kern_proc, "Process table"); 1086 1087 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1088 sysctl_kern_proc, "Process table"); 1089 1090 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1091 sysctl_kern_proc, "Process table"); 1092 1093 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1094 sysctl_kern_proc_args, "Process argument list"); 1095 1096