1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 3. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/eventhandler.h> 45 #include <sys/exec.h> 46 #include <sys/jail.h> 47 #include <sys/kernel.h> 48 #include <sys/limits.h> 49 #include <sys/lock.h> 50 #include <sys/loginclass.h> 51 #include <sys/malloc.h> 52 #include <sys/mman.h> 53 #include <sys/mount.h> 54 #include <sys/mutex.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/sysctl.h> 67 #include <sys/filedesc.h> 68 #include <sys/tty.h> 69 #include <sys/signalvar.h> 70 #include <sys/sdt.h> 71 #include <sys/sx.h> 72 #include <sys/user.h> 73 #include <sys/vnode.h> 74 #include <sys/wait.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE4(proc, , ctor, entry, "struct proc *", "int", "void *", 96 "int"); 97 SDT_PROBE_DEFINE4(proc, , ctor, return, "struct proc *", "int", "void *", 98 "int"); 99 SDT_PROBE_DEFINE4(proc, , dtor, entry, "struct proc *", "int", "void *", 100 "struct thread *"); 101 SDT_PROBE_DEFINE3(proc, , dtor, return, "struct proc *", "int", "void *"); 102 SDT_PROBE_DEFINE3(proc, , init, entry, "struct proc *", "int", "int"); 103 SDT_PROBE_DEFINE3(proc, , init, return, "struct proc *", "int", "int"); 104 105 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 106 MALLOC_DEFINE(M_SESSION, "session", "session header"); 107 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 108 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 109 110 static void doenterpgrp(struct proc *, struct pgrp *); 111 static void orphanpg(struct pgrp *pg); 112 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 113 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 114 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 115 int preferthread); 116 static void pgadjustjobc(struct pgrp *pgrp, int entering); 117 static void pgdelete(struct pgrp *); 118 static int proc_ctor(void *mem, int size, void *arg, int flags); 119 static void proc_dtor(void *mem, int size, void *arg); 120 static int proc_init(void *mem, int size, int flags); 121 static void proc_fini(void *mem, int size); 122 static void pargs_free(struct pargs *pa); 123 static struct proc *zpfind_locked(pid_t pid); 124 125 /* 126 * Other process lists 127 */ 128 struct pidhashhead *pidhashtbl; 129 u_long pidhash; 130 struct pgrphashhead *pgrphashtbl; 131 u_long pgrphash; 132 struct proclist allproc; 133 struct proclist zombproc; 134 struct sx __exclusive_cache_line allproc_lock; 135 struct sx __exclusive_cache_line proctree_lock; 136 struct mtx __exclusive_cache_line ppeers_lock; 137 uma_zone_t proc_zone; 138 139 /* 140 * The offset of various fields in struct proc and struct thread. 141 * These are used by kernel debuggers to enumerate kernel threads and 142 * processes. 143 */ 144 const int proc_off_p_pid = offsetof(struct proc, p_pid); 145 const int proc_off_p_comm = offsetof(struct proc, p_comm); 146 const int proc_off_p_list = offsetof(struct proc, p_list); 147 const int proc_off_p_threads = offsetof(struct proc, p_threads); 148 const int thread_off_td_tid = offsetof(struct thread, td_tid); 149 const int thread_off_td_name = offsetof(struct thread, td_name); 150 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 151 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 152 const int thread_off_td_plist = offsetof(struct thread, td_plist); 153 154 int kstack_pages = KSTACK_PAGES; 155 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 156 "Kernel stack size in pages"); 157 static int vmmap_skip_res_cnt = 0; 158 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 159 &vmmap_skip_res_cnt, 0, 160 "Skip calculation of the pages resident count in kern.proc.vmmap"); 161 162 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 163 #ifdef COMPAT_FREEBSD32 164 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 165 #endif 166 167 /* 168 * Initialize global process hashing structures. 169 */ 170 void 171 procinit(void) 172 { 173 174 sx_init(&allproc_lock, "allproc"); 175 sx_init(&proctree_lock, "proctree"); 176 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 177 LIST_INIT(&allproc); 178 LIST_INIT(&zombproc); 179 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 180 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 181 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 182 proc_ctor, proc_dtor, proc_init, proc_fini, 183 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 184 uihashinit(); 185 } 186 187 /* 188 * Prepare a proc for use. 189 */ 190 static int 191 proc_ctor(void *mem, int size, void *arg, int flags) 192 { 193 struct proc *p; 194 struct thread *td; 195 196 p = (struct proc *)mem; 197 SDT_PROBE4(proc, , ctor , entry, p, size, arg, flags); 198 EVENTHANDLER_INVOKE(process_ctor, p); 199 SDT_PROBE4(proc, , ctor , return, p, size, arg, flags); 200 td = FIRST_THREAD_IN_PROC(p); 201 if (td != NULL) { 202 /* Make sure all thread constructors are executed */ 203 EVENTHANDLER_INVOKE(thread_ctor, td); 204 } 205 return (0); 206 } 207 208 /* 209 * Reclaim a proc after use. 210 */ 211 static void 212 proc_dtor(void *mem, int size, void *arg) 213 { 214 struct proc *p; 215 struct thread *td; 216 217 /* INVARIANTS checks go here */ 218 p = (struct proc *)mem; 219 td = FIRST_THREAD_IN_PROC(p); 220 SDT_PROBE4(proc, , dtor, entry, p, size, arg, td); 221 if (td != NULL) { 222 #ifdef INVARIANTS 223 KASSERT((p->p_numthreads == 1), 224 ("bad number of threads in exiting process")); 225 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 226 #endif 227 /* Free all OSD associated to this thread. */ 228 osd_thread_exit(td); 229 td_softdep_cleanup(td); 230 MPASS(td->td_su == NULL); 231 232 /* Make sure all thread destructors are executed */ 233 EVENTHANDLER_INVOKE(thread_dtor, td); 234 } 235 EVENTHANDLER_INVOKE(process_dtor, p); 236 if (p->p_ksi != NULL) 237 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 238 SDT_PROBE3(proc, , dtor, return, p, size, arg); 239 } 240 241 /* 242 * Initialize type-stable parts of a proc (when newly created). 243 */ 244 static int 245 proc_init(void *mem, int size, int flags) 246 { 247 struct proc *p; 248 249 p = (struct proc *)mem; 250 SDT_PROBE3(proc, , init, entry, p, size, flags); 251 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 252 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 253 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 254 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 255 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 256 cv_init(&p->p_pwait, "ppwait"); 257 cv_init(&p->p_dbgwait, "dbgwait"); 258 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 259 EVENTHANDLER_INVOKE(process_init, p); 260 p->p_stats = pstats_alloc(); 261 p->p_pgrp = NULL; 262 SDT_PROBE3(proc, , init, return, p, size, flags); 263 return (0); 264 } 265 266 /* 267 * UMA should ensure that this function is never called. 268 * Freeing a proc structure would violate type stability. 269 */ 270 static void 271 proc_fini(void *mem, int size) 272 { 273 #ifdef notnow 274 struct proc *p; 275 276 p = (struct proc *)mem; 277 EVENTHANDLER_INVOKE(process_fini, p); 278 pstats_free(p->p_stats); 279 thread_free(FIRST_THREAD_IN_PROC(p)); 280 mtx_destroy(&p->p_mtx); 281 if (p->p_ksi != NULL) 282 ksiginfo_free(p->p_ksi); 283 #else 284 panic("proc reclaimed"); 285 #endif 286 } 287 288 /* 289 * Is p an inferior of the current process? 290 */ 291 int 292 inferior(struct proc *p) 293 { 294 295 sx_assert(&proctree_lock, SX_LOCKED); 296 PROC_LOCK_ASSERT(p, MA_OWNED); 297 for (; p != curproc; p = proc_realparent(p)) { 298 if (p->p_pid == 0) 299 return (0); 300 } 301 return (1); 302 } 303 304 struct proc * 305 pfind_locked(pid_t pid) 306 { 307 struct proc *p; 308 309 sx_assert(&allproc_lock, SX_LOCKED); 310 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 311 if (p->p_pid == pid) { 312 PROC_LOCK(p); 313 if (p->p_state == PRS_NEW) { 314 PROC_UNLOCK(p); 315 p = NULL; 316 } 317 break; 318 } 319 } 320 return (p); 321 } 322 323 /* 324 * Locate a process by number; return only "live" processes -- i.e., neither 325 * zombies nor newly born but incompletely initialized processes. By not 326 * returning processes in the PRS_NEW state, we allow callers to avoid 327 * testing for that condition to avoid dereferencing p_ucred, et al. 328 */ 329 struct proc * 330 pfind(pid_t pid) 331 { 332 struct proc *p; 333 334 sx_slock(&allproc_lock); 335 p = pfind_locked(pid); 336 sx_sunlock(&allproc_lock); 337 return (p); 338 } 339 340 static struct proc * 341 pfind_tid_locked(pid_t tid) 342 { 343 struct proc *p; 344 struct thread *td; 345 346 sx_assert(&allproc_lock, SX_LOCKED); 347 FOREACH_PROC_IN_SYSTEM(p) { 348 PROC_LOCK(p); 349 if (p->p_state == PRS_NEW) { 350 PROC_UNLOCK(p); 351 continue; 352 } 353 FOREACH_THREAD_IN_PROC(p, td) { 354 if (td->td_tid == tid) 355 goto found; 356 } 357 PROC_UNLOCK(p); 358 } 359 found: 360 return (p); 361 } 362 363 /* 364 * Locate a process group by number. 365 * The caller must hold proctree_lock. 366 */ 367 struct pgrp * 368 pgfind(pid_t pgid) 369 { 370 struct pgrp *pgrp; 371 372 sx_assert(&proctree_lock, SX_LOCKED); 373 374 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 375 if (pgrp->pg_id == pgid) { 376 PGRP_LOCK(pgrp); 377 return (pgrp); 378 } 379 } 380 return (NULL); 381 } 382 383 /* 384 * Locate process and do additional manipulations, depending on flags. 385 */ 386 int 387 pget(pid_t pid, int flags, struct proc **pp) 388 { 389 struct proc *p; 390 int error; 391 392 p = curproc; 393 if (p->p_pid == pid) { 394 PROC_LOCK(p); 395 } else { 396 sx_slock(&allproc_lock); 397 if (pid <= PID_MAX) { 398 p = pfind_locked(pid); 399 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 400 p = zpfind_locked(pid); 401 } else if ((flags & PGET_NOTID) == 0) { 402 p = pfind_tid_locked(pid); 403 } else { 404 p = NULL; 405 } 406 sx_sunlock(&allproc_lock); 407 if (p == NULL) 408 return (ESRCH); 409 if ((flags & PGET_CANSEE) != 0) { 410 error = p_cansee(curthread, p); 411 if (error != 0) 412 goto errout; 413 } 414 } 415 if ((flags & PGET_CANDEBUG) != 0) { 416 error = p_candebug(curthread, p); 417 if (error != 0) 418 goto errout; 419 } 420 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 421 error = EPERM; 422 goto errout; 423 } 424 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 425 error = ESRCH; 426 goto errout; 427 } 428 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 429 /* 430 * XXXRW: Not clear ESRCH is the right error during proc 431 * execve(). 432 */ 433 error = ESRCH; 434 goto errout; 435 } 436 if ((flags & PGET_HOLD) != 0) { 437 _PHOLD(p); 438 PROC_UNLOCK(p); 439 } 440 *pp = p; 441 return (0); 442 errout: 443 PROC_UNLOCK(p); 444 return (error); 445 } 446 447 /* 448 * Create a new process group. 449 * pgid must be equal to the pid of p. 450 * Begin a new session if required. 451 */ 452 int 453 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 454 { 455 456 sx_assert(&proctree_lock, SX_XLOCKED); 457 458 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 459 KASSERT(p->p_pid == pgid, 460 ("enterpgrp: new pgrp and pid != pgid")); 461 KASSERT(pgfind(pgid) == NULL, 462 ("enterpgrp: pgrp with pgid exists")); 463 KASSERT(!SESS_LEADER(p), 464 ("enterpgrp: session leader attempted setpgrp")); 465 466 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 467 468 if (sess != NULL) { 469 /* 470 * new session 471 */ 472 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 473 PROC_LOCK(p); 474 p->p_flag &= ~P_CONTROLT; 475 PROC_UNLOCK(p); 476 PGRP_LOCK(pgrp); 477 sess->s_leader = p; 478 sess->s_sid = p->p_pid; 479 refcount_init(&sess->s_count, 1); 480 sess->s_ttyvp = NULL; 481 sess->s_ttydp = NULL; 482 sess->s_ttyp = NULL; 483 bcopy(p->p_session->s_login, sess->s_login, 484 sizeof(sess->s_login)); 485 pgrp->pg_session = sess; 486 KASSERT(p == curproc, 487 ("enterpgrp: mksession and p != curproc")); 488 } else { 489 pgrp->pg_session = p->p_session; 490 sess_hold(pgrp->pg_session); 491 PGRP_LOCK(pgrp); 492 } 493 pgrp->pg_id = pgid; 494 LIST_INIT(&pgrp->pg_members); 495 496 /* 497 * As we have an exclusive lock of proctree_lock, 498 * this should not deadlock. 499 */ 500 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 501 pgrp->pg_jobc = 0; 502 SLIST_INIT(&pgrp->pg_sigiolst); 503 PGRP_UNLOCK(pgrp); 504 505 doenterpgrp(p, pgrp); 506 507 return (0); 508 } 509 510 /* 511 * Move p to an existing process group 512 */ 513 int 514 enterthispgrp(struct proc *p, struct pgrp *pgrp) 515 { 516 517 sx_assert(&proctree_lock, SX_XLOCKED); 518 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 519 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 520 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 521 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 522 KASSERT(pgrp->pg_session == p->p_session, 523 ("%s: pgrp's session %p, p->p_session %p.\n", 524 __func__, 525 pgrp->pg_session, 526 p->p_session)); 527 KASSERT(pgrp != p->p_pgrp, 528 ("%s: p belongs to pgrp.", __func__)); 529 530 doenterpgrp(p, pgrp); 531 532 return (0); 533 } 534 535 /* 536 * Move p to a process group 537 */ 538 static void 539 doenterpgrp(struct proc *p, struct pgrp *pgrp) 540 { 541 struct pgrp *savepgrp; 542 543 sx_assert(&proctree_lock, SX_XLOCKED); 544 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 545 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 546 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 547 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 548 549 savepgrp = p->p_pgrp; 550 551 /* 552 * Adjust eligibility of affected pgrps to participate in job control. 553 * Increment eligibility counts before decrementing, otherwise we 554 * could reach 0 spuriously during the first call. 555 */ 556 fixjobc(p, pgrp, 1); 557 fixjobc(p, p->p_pgrp, 0); 558 559 PGRP_LOCK(pgrp); 560 PGRP_LOCK(savepgrp); 561 PROC_LOCK(p); 562 LIST_REMOVE(p, p_pglist); 563 p->p_pgrp = pgrp; 564 PROC_UNLOCK(p); 565 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 566 PGRP_UNLOCK(savepgrp); 567 PGRP_UNLOCK(pgrp); 568 if (LIST_EMPTY(&savepgrp->pg_members)) 569 pgdelete(savepgrp); 570 } 571 572 /* 573 * remove process from process group 574 */ 575 int 576 leavepgrp(struct proc *p) 577 { 578 struct pgrp *savepgrp; 579 580 sx_assert(&proctree_lock, SX_XLOCKED); 581 savepgrp = p->p_pgrp; 582 PGRP_LOCK(savepgrp); 583 PROC_LOCK(p); 584 LIST_REMOVE(p, p_pglist); 585 p->p_pgrp = NULL; 586 PROC_UNLOCK(p); 587 PGRP_UNLOCK(savepgrp); 588 if (LIST_EMPTY(&savepgrp->pg_members)) 589 pgdelete(savepgrp); 590 return (0); 591 } 592 593 /* 594 * delete a process group 595 */ 596 static void 597 pgdelete(struct pgrp *pgrp) 598 { 599 struct session *savesess; 600 struct tty *tp; 601 602 sx_assert(&proctree_lock, SX_XLOCKED); 603 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 604 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 605 606 /* 607 * Reset any sigio structures pointing to us as a result of 608 * F_SETOWN with our pgid. 609 */ 610 funsetownlst(&pgrp->pg_sigiolst); 611 612 PGRP_LOCK(pgrp); 613 tp = pgrp->pg_session->s_ttyp; 614 LIST_REMOVE(pgrp, pg_hash); 615 savesess = pgrp->pg_session; 616 PGRP_UNLOCK(pgrp); 617 618 /* Remove the reference to the pgrp before deallocating it. */ 619 if (tp != NULL) { 620 tty_lock(tp); 621 tty_rel_pgrp(tp, pgrp); 622 } 623 624 mtx_destroy(&pgrp->pg_mtx); 625 free(pgrp, M_PGRP); 626 sess_release(savesess); 627 } 628 629 static void 630 pgadjustjobc(struct pgrp *pgrp, int entering) 631 { 632 633 PGRP_LOCK(pgrp); 634 if (entering) 635 pgrp->pg_jobc++; 636 else { 637 --pgrp->pg_jobc; 638 if (pgrp->pg_jobc == 0) 639 orphanpg(pgrp); 640 } 641 PGRP_UNLOCK(pgrp); 642 } 643 644 /* 645 * Adjust pgrp jobc counters when specified process changes process group. 646 * We count the number of processes in each process group that "qualify" 647 * the group for terminal job control (those with a parent in a different 648 * process group of the same session). If that count reaches zero, the 649 * process group becomes orphaned. Check both the specified process' 650 * process group and that of its children. 651 * entering == 0 => p is leaving specified group. 652 * entering == 1 => p is entering specified group. 653 */ 654 void 655 fixjobc(struct proc *p, struct pgrp *pgrp, int entering) 656 { 657 struct pgrp *hispgrp; 658 struct session *mysession; 659 struct proc *q; 660 661 sx_assert(&proctree_lock, SX_LOCKED); 662 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 663 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 664 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 665 666 /* 667 * Check p's parent to see whether p qualifies its own process 668 * group; if so, adjust count for p's process group. 669 */ 670 mysession = pgrp->pg_session; 671 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 672 hispgrp->pg_session == mysession) 673 pgadjustjobc(pgrp, entering); 674 675 /* 676 * Check this process' children to see whether they qualify 677 * their process groups; if so, adjust counts for children's 678 * process groups. 679 */ 680 LIST_FOREACH(q, &p->p_children, p_sibling) { 681 hispgrp = q->p_pgrp; 682 if (hispgrp == pgrp || 683 hispgrp->pg_session != mysession) 684 continue; 685 if (q->p_state == PRS_ZOMBIE) 686 continue; 687 pgadjustjobc(hispgrp, entering); 688 } 689 } 690 691 void 692 killjobc(void) 693 { 694 struct session *sp; 695 struct tty *tp; 696 struct proc *p; 697 struct vnode *ttyvp; 698 699 p = curproc; 700 MPASS(p->p_flag & P_WEXIT); 701 /* 702 * Do a quick check to see if there is anything to do with the 703 * proctree_lock held. pgrp and LIST_EMPTY checks are for fixjobc(). 704 */ 705 PROC_LOCK(p); 706 if (!SESS_LEADER(p) && 707 (p->p_pgrp == p->p_pptr->p_pgrp) && 708 LIST_EMPTY(&p->p_children)) { 709 PROC_UNLOCK(p); 710 return; 711 } 712 PROC_UNLOCK(p); 713 714 sx_xlock(&proctree_lock); 715 if (SESS_LEADER(p)) { 716 sp = p->p_session; 717 718 /* 719 * s_ttyp is not zero'd; we use this to indicate that 720 * the session once had a controlling terminal. (for 721 * logging and informational purposes) 722 */ 723 SESS_LOCK(sp); 724 ttyvp = sp->s_ttyvp; 725 tp = sp->s_ttyp; 726 sp->s_ttyvp = NULL; 727 sp->s_ttydp = NULL; 728 sp->s_leader = NULL; 729 SESS_UNLOCK(sp); 730 731 /* 732 * Signal foreground pgrp and revoke access to 733 * controlling terminal if it has not been revoked 734 * already. 735 * 736 * Because the TTY may have been revoked in the mean 737 * time and could already have a new session associated 738 * with it, make sure we don't send a SIGHUP to a 739 * foreground process group that does not belong to this 740 * session. 741 */ 742 743 if (tp != NULL) { 744 tty_lock(tp); 745 if (tp->t_session == sp) 746 tty_signal_pgrp(tp, SIGHUP); 747 tty_unlock(tp); 748 } 749 750 if (ttyvp != NULL) { 751 sx_xunlock(&proctree_lock); 752 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 753 VOP_REVOKE(ttyvp, REVOKEALL); 754 VOP_UNLOCK(ttyvp, 0); 755 } 756 vrele(ttyvp); 757 sx_xlock(&proctree_lock); 758 } 759 } 760 fixjobc(p, p->p_pgrp, 0); 761 sx_xunlock(&proctree_lock); 762 } 763 764 /* 765 * A process group has become orphaned; 766 * if there are any stopped processes in the group, 767 * hang-up all process in that group. 768 */ 769 static void 770 orphanpg(struct pgrp *pg) 771 { 772 struct proc *p; 773 774 PGRP_LOCK_ASSERT(pg, MA_OWNED); 775 776 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 777 PROC_LOCK(p); 778 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 779 PROC_UNLOCK(p); 780 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 781 PROC_LOCK(p); 782 kern_psignal(p, SIGHUP); 783 kern_psignal(p, SIGCONT); 784 PROC_UNLOCK(p); 785 } 786 return; 787 } 788 PROC_UNLOCK(p); 789 } 790 } 791 792 void 793 sess_hold(struct session *s) 794 { 795 796 refcount_acquire(&s->s_count); 797 } 798 799 void 800 sess_release(struct session *s) 801 { 802 803 if (refcount_release(&s->s_count)) { 804 if (s->s_ttyp != NULL) { 805 tty_lock(s->s_ttyp); 806 tty_rel_sess(s->s_ttyp, s); 807 } 808 mtx_destroy(&s->s_mtx); 809 free(s, M_SESSION); 810 } 811 } 812 813 #ifdef DDB 814 815 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 816 { 817 struct pgrp *pgrp; 818 struct proc *p; 819 int i; 820 821 for (i = 0; i <= pgrphash; i++) { 822 if (!LIST_EMPTY(&pgrphashtbl[i])) { 823 printf("\tindx %d\n", i); 824 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 825 printf( 826 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 827 (void *)pgrp, (long)pgrp->pg_id, 828 (void *)pgrp->pg_session, 829 pgrp->pg_session->s_count, 830 (void *)LIST_FIRST(&pgrp->pg_members)); 831 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 832 printf("\t\tpid %ld addr %p pgrp %p\n", 833 (long)p->p_pid, (void *)p, 834 (void *)p->p_pgrp); 835 } 836 } 837 } 838 } 839 } 840 #endif /* DDB */ 841 842 /* 843 * Calculate the kinfo_proc members which contain process-wide 844 * informations. 845 * Must be called with the target process locked. 846 */ 847 static void 848 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 849 { 850 struct thread *td; 851 852 PROC_LOCK_ASSERT(p, MA_OWNED); 853 854 kp->ki_estcpu = 0; 855 kp->ki_pctcpu = 0; 856 FOREACH_THREAD_IN_PROC(p, td) { 857 thread_lock(td); 858 kp->ki_pctcpu += sched_pctcpu(td); 859 kp->ki_estcpu += sched_estcpu(td); 860 thread_unlock(td); 861 } 862 } 863 864 /* 865 * Clear kinfo_proc and fill in any information that is common 866 * to all threads in the process. 867 * Must be called with the target process locked. 868 */ 869 static void 870 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 871 { 872 struct thread *td0; 873 struct tty *tp; 874 struct session *sp; 875 struct ucred *cred; 876 struct sigacts *ps; 877 struct timeval boottime; 878 879 /* For proc_realparent. */ 880 sx_assert(&proctree_lock, SX_LOCKED); 881 PROC_LOCK_ASSERT(p, MA_OWNED); 882 bzero(kp, sizeof(*kp)); 883 884 kp->ki_structsize = sizeof(*kp); 885 kp->ki_paddr = p; 886 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 887 kp->ki_args = p->p_args; 888 kp->ki_textvp = p->p_textvp; 889 #ifdef KTRACE 890 kp->ki_tracep = p->p_tracevp; 891 kp->ki_traceflag = p->p_traceflag; 892 #endif 893 kp->ki_fd = p->p_fd; 894 kp->ki_vmspace = p->p_vmspace; 895 kp->ki_flag = p->p_flag; 896 kp->ki_flag2 = p->p_flag2; 897 cred = p->p_ucred; 898 if (cred) { 899 kp->ki_uid = cred->cr_uid; 900 kp->ki_ruid = cred->cr_ruid; 901 kp->ki_svuid = cred->cr_svuid; 902 kp->ki_cr_flags = 0; 903 if (cred->cr_flags & CRED_FLAG_CAPMODE) 904 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 905 /* XXX bde doesn't like KI_NGROUPS */ 906 if (cred->cr_ngroups > KI_NGROUPS) { 907 kp->ki_ngroups = KI_NGROUPS; 908 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 909 } else 910 kp->ki_ngroups = cred->cr_ngroups; 911 bcopy(cred->cr_groups, kp->ki_groups, 912 kp->ki_ngroups * sizeof(gid_t)); 913 kp->ki_rgid = cred->cr_rgid; 914 kp->ki_svgid = cred->cr_svgid; 915 /* If jailed(cred), emulate the old P_JAILED flag. */ 916 if (jailed(cred)) { 917 kp->ki_flag |= P_JAILED; 918 /* If inside the jail, use 0 as a jail ID. */ 919 if (cred->cr_prison != curthread->td_ucred->cr_prison) 920 kp->ki_jid = cred->cr_prison->pr_id; 921 } 922 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 923 sizeof(kp->ki_loginclass)); 924 } 925 ps = p->p_sigacts; 926 if (ps) { 927 mtx_lock(&ps->ps_mtx); 928 kp->ki_sigignore = ps->ps_sigignore; 929 kp->ki_sigcatch = ps->ps_sigcatch; 930 mtx_unlock(&ps->ps_mtx); 931 } 932 if (p->p_state != PRS_NEW && 933 p->p_state != PRS_ZOMBIE && 934 p->p_vmspace != NULL) { 935 struct vmspace *vm = p->p_vmspace; 936 937 kp->ki_size = vm->vm_map.size; 938 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 939 FOREACH_THREAD_IN_PROC(p, td0) { 940 if (!TD_IS_SWAPPED(td0)) 941 kp->ki_rssize += td0->td_kstack_pages; 942 } 943 kp->ki_swrss = vm->vm_swrss; 944 kp->ki_tsize = vm->vm_tsize; 945 kp->ki_dsize = vm->vm_dsize; 946 kp->ki_ssize = vm->vm_ssize; 947 } else if (p->p_state == PRS_ZOMBIE) 948 kp->ki_stat = SZOMB; 949 if (kp->ki_flag & P_INMEM) 950 kp->ki_sflag = PS_INMEM; 951 else 952 kp->ki_sflag = 0; 953 /* Calculate legacy swtime as seconds since 'swtick'. */ 954 kp->ki_swtime = (ticks - p->p_swtick) / hz; 955 kp->ki_pid = p->p_pid; 956 kp->ki_nice = p->p_nice; 957 kp->ki_fibnum = p->p_fibnum; 958 kp->ki_start = p->p_stats->p_start; 959 getboottime(&boottime); 960 timevaladd(&kp->ki_start, &boottime); 961 PROC_STATLOCK(p); 962 rufetch(p, &kp->ki_rusage); 963 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 964 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 965 PROC_STATUNLOCK(p); 966 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 967 /* Some callers want child times in a single value. */ 968 kp->ki_childtime = kp->ki_childstime; 969 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 970 971 FOREACH_THREAD_IN_PROC(p, td0) 972 kp->ki_cow += td0->td_cow; 973 974 tp = NULL; 975 if (p->p_pgrp) { 976 kp->ki_pgid = p->p_pgrp->pg_id; 977 kp->ki_jobc = p->p_pgrp->pg_jobc; 978 sp = p->p_pgrp->pg_session; 979 980 if (sp != NULL) { 981 kp->ki_sid = sp->s_sid; 982 SESS_LOCK(sp); 983 strlcpy(kp->ki_login, sp->s_login, 984 sizeof(kp->ki_login)); 985 if (sp->s_ttyvp) 986 kp->ki_kiflag |= KI_CTTY; 987 if (SESS_LEADER(p)) 988 kp->ki_kiflag |= KI_SLEADER; 989 /* XXX proctree_lock */ 990 tp = sp->s_ttyp; 991 SESS_UNLOCK(sp); 992 } 993 } 994 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 995 kp->ki_tdev = tty_udev(tp); 996 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 997 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 998 if (tp->t_session) 999 kp->ki_tsid = tp->t_session->s_sid; 1000 } else { 1001 kp->ki_tdev = NODEV; 1002 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1003 } 1004 if (p->p_comm[0] != '\0') 1005 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1006 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1007 p->p_sysent->sv_name[0] != '\0') 1008 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1009 kp->ki_siglist = p->p_siglist; 1010 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1011 kp->ki_acflag = p->p_acflag; 1012 kp->ki_lock = p->p_lock; 1013 if (p->p_pptr) { 1014 kp->ki_ppid = proc_realparent(p)->p_pid; 1015 if (p->p_flag & P_TRACED) 1016 kp->ki_tracer = p->p_pptr->p_pid; 1017 } 1018 } 1019 1020 /* 1021 * Fill in information that is thread specific. Must be called with 1022 * target process locked. If 'preferthread' is set, overwrite certain 1023 * process-related fields that are maintained for both threads and 1024 * processes. 1025 */ 1026 static void 1027 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1028 { 1029 struct proc *p; 1030 1031 p = td->td_proc; 1032 kp->ki_tdaddr = td; 1033 PROC_LOCK_ASSERT(p, MA_OWNED); 1034 1035 if (preferthread) 1036 PROC_STATLOCK(p); 1037 thread_lock(td); 1038 if (td->td_wmesg != NULL) 1039 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1040 else 1041 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1042 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1043 sizeof(kp->ki_tdname)) { 1044 strlcpy(kp->ki_moretdname, 1045 td->td_name + sizeof(kp->ki_tdname) - 1, 1046 sizeof(kp->ki_moretdname)); 1047 } else { 1048 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1049 } 1050 if (TD_ON_LOCK(td)) { 1051 kp->ki_kiflag |= KI_LOCKBLOCK; 1052 strlcpy(kp->ki_lockname, td->td_lockname, 1053 sizeof(kp->ki_lockname)); 1054 } else { 1055 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1056 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1057 } 1058 1059 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1060 if (TD_ON_RUNQ(td) || 1061 TD_CAN_RUN(td) || 1062 TD_IS_RUNNING(td)) { 1063 kp->ki_stat = SRUN; 1064 } else if (P_SHOULDSTOP(p)) { 1065 kp->ki_stat = SSTOP; 1066 } else if (TD_IS_SLEEPING(td)) { 1067 kp->ki_stat = SSLEEP; 1068 } else if (TD_ON_LOCK(td)) { 1069 kp->ki_stat = SLOCK; 1070 } else { 1071 kp->ki_stat = SWAIT; 1072 } 1073 } else if (p->p_state == PRS_ZOMBIE) { 1074 kp->ki_stat = SZOMB; 1075 } else { 1076 kp->ki_stat = SIDL; 1077 } 1078 1079 /* Things in the thread */ 1080 kp->ki_wchan = td->td_wchan; 1081 kp->ki_pri.pri_level = td->td_priority; 1082 kp->ki_pri.pri_native = td->td_base_pri; 1083 1084 /* 1085 * Note: legacy fields; clamp at the old NOCPU value and/or 1086 * the maximum u_char CPU value. 1087 */ 1088 if (td->td_lastcpu == NOCPU) 1089 kp->ki_lastcpu_old = NOCPU_OLD; 1090 else if (td->td_lastcpu > MAXCPU_OLD) 1091 kp->ki_lastcpu_old = MAXCPU_OLD; 1092 else 1093 kp->ki_lastcpu_old = td->td_lastcpu; 1094 1095 if (td->td_oncpu == NOCPU) 1096 kp->ki_oncpu_old = NOCPU_OLD; 1097 else if (td->td_oncpu > MAXCPU_OLD) 1098 kp->ki_oncpu_old = MAXCPU_OLD; 1099 else 1100 kp->ki_oncpu_old = td->td_oncpu; 1101 1102 kp->ki_lastcpu = td->td_lastcpu; 1103 kp->ki_oncpu = td->td_oncpu; 1104 kp->ki_tdflags = td->td_flags; 1105 kp->ki_tid = td->td_tid; 1106 kp->ki_numthreads = p->p_numthreads; 1107 kp->ki_pcb = td->td_pcb; 1108 kp->ki_kstack = (void *)td->td_kstack; 1109 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1110 kp->ki_pri.pri_class = td->td_pri_class; 1111 kp->ki_pri.pri_user = td->td_user_pri; 1112 1113 if (preferthread) { 1114 rufetchtd(td, &kp->ki_rusage); 1115 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1116 kp->ki_pctcpu = sched_pctcpu(td); 1117 kp->ki_estcpu = sched_estcpu(td); 1118 kp->ki_cow = td->td_cow; 1119 } 1120 1121 /* We can't get this anymore but ps etc never used it anyway. */ 1122 kp->ki_rqindex = 0; 1123 1124 if (preferthread) 1125 kp->ki_siglist = td->td_siglist; 1126 kp->ki_sigmask = td->td_sigmask; 1127 thread_unlock(td); 1128 if (preferthread) 1129 PROC_STATUNLOCK(p); 1130 } 1131 1132 /* 1133 * Fill in a kinfo_proc structure for the specified process. 1134 * Must be called with the target process locked. 1135 */ 1136 void 1137 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1138 { 1139 1140 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1141 1142 fill_kinfo_proc_only(p, kp); 1143 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1144 fill_kinfo_aggregate(p, kp); 1145 } 1146 1147 struct pstats * 1148 pstats_alloc(void) 1149 { 1150 1151 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1152 } 1153 1154 /* 1155 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1156 */ 1157 void 1158 pstats_fork(struct pstats *src, struct pstats *dst) 1159 { 1160 1161 bzero(&dst->pstat_startzero, 1162 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1163 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1164 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1165 } 1166 1167 void 1168 pstats_free(struct pstats *ps) 1169 { 1170 1171 free(ps, M_SUBPROC); 1172 } 1173 1174 static struct proc * 1175 zpfind_locked(pid_t pid) 1176 { 1177 struct proc *p; 1178 1179 sx_assert(&allproc_lock, SX_LOCKED); 1180 LIST_FOREACH(p, &zombproc, p_list) { 1181 if (p->p_pid == pid) { 1182 PROC_LOCK(p); 1183 break; 1184 } 1185 } 1186 return (p); 1187 } 1188 1189 /* 1190 * Locate a zombie process by number 1191 */ 1192 struct proc * 1193 zpfind(pid_t pid) 1194 { 1195 struct proc *p; 1196 1197 sx_slock(&allproc_lock); 1198 p = zpfind_locked(pid); 1199 sx_sunlock(&allproc_lock); 1200 return (p); 1201 } 1202 1203 #ifdef COMPAT_FREEBSD32 1204 1205 /* 1206 * This function is typically used to copy out the kernel address, so 1207 * it can be replaced by assignment of zero. 1208 */ 1209 static inline uint32_t 1210 ptr32_trim(void *ptr) 1211 { 1212 uintptr_t uptr; 1213 1214 uptr = (uintptr_t)ptr; 1215 return ((uptr > UINT_MAX) ? 0 : uptr); 1216 } 1217 1218 #define PTRTRIM_CP(src,dst,fld) \ 1219 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1220 1221 static void 1222 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1223 { 1224 int i; 1225 1226 bzero(ki32, sizeof(struct kinfo_proc32)); 1227 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1228 CP(*ki, *ki32, ki_layout); 1229 PTRTRIM_CP(*ki, *ki32, ki_args); 1230 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1231 PTRTRIM_CP(*ki, *ki32, ki_addr); 1232 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1233 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1234 PTRTRIM_CP(*ki, *ki32, ki_fd); 1235 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1236 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1237 CP(*ki, *ki32, ki_pid); 1238 CP(*ki, *ki32, ki_ppid); 1239 CP(*ki, *ki32, ki_pgid); 1240 CP(*ki, *ki32, ki_tpgid); 1241 CP(*ki, *ki32, ki_sid); 1242 CP(*ki, *ki32, ki_tsid); 1243 CP(*ki, *ki32, ki_jobc); 1244 CP(*ki, *ki32, ki_tdev); 1245 CP(*ki, *ki32, ki_tdev_freebsd11); 1246 CP(*ki, *ki32, ki_siglist); 1247 CP(*ki, *ki32, ki_sigmask); 1248 CP(*ki, *ki32, ki_sigignore); 1249 CP(*ki, *ki32, ki_sigcatch); 1250 CP(*ki, *ki32, ki_uid); 1251 CP(*ki, *ki32, ki_ruid); 1252 CP(*ki, *ki32, ki_svuid); 1253 CP(*ki, *ki32, ki_rgid); 1254 CP(*ki, *ki32, ki_svgid); 1255 CP(*ki, *ki32, ki_ngroups); 1256 for (i = 0; i < KI_NGROUPS; i++) 1257 CP(*ki, *ki32, ki_groups[i]); 1258 CP(*ki, *ki32, ki_size); 1259 CP(*ki, *ki32, ki_rssize); 1260 CP(*ki, *ki32, ki_swrss); 1261 CP(*ki, *ki32, ki_tsize); 1262 CP(*ki, *ki32, ki_dsize); 1263 CP(*ki, *ki32, ki_ssize); 1264 CP(*ki, *ki32, ki_xstat); 1265 CP(*ki, *ki32, ki_acflag); 1266 CP(*ki, *ki32, ki_pctcpu); 1267 CP(*ki, *ki32, ki_estcpu); 1268 CP(*ki, *ki32, ki_slptime); 1269 CP(*ki, *ki32, ki_swtime); 1270 CP(*ki, *ki32, ki_cow); 1271 CP(*ki, *ki32, ki_runtime); 1272 TV_CP(*ki, *ki32, ki_start); 1273 TV_CP(*ki, *ki32, ki_childtime); 1274 CP(*ki, *ki32, ki_flag); 1275 CP(*ki, *ki32, ki_kiflag); 1276 CP(*ki, *ki32, ki_traceflag); 1277 CP(*ki, *ki32, ki_stat); 1278 CP(*ki, *ki32, ki_nice); 1279 CP(*ki, *ki32, ki_lock); 1280 CP(*ki, *ki32, ki_rqindex); 1281 CP(*ki, *ki32, ki_oncpu); 1282 CP(*ki, *ki32, ki_lastcpu); 1283 1284 /* XXX TODO: wrap cpu value as appropriate */ 1285 CP(*ki, *ki32, ki_oncpu_old); 1286 CP(*ki, *ki32, ki_lastcpu_old); 1287 1288 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1289 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1290 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1291 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1292 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1293 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1294 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1295 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1296 CP(*ki, *ki32, ki_tracer); 1297 CP(*ki, *ki32, ki_flag2); 1298 CP(*ki, *ki32, ki_fibnum); 1299 CP(*ki, *ki32, ki_cr_flags); 1300 CP(*ki, *ki32, ki_jid); 1301 CP(*ki, *ki32, ki_numthreads); 1302 CP(*ki, *ki32, ki_tid); 1303 CP(*ki, *ki32, ki_pri); 1304 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1305 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1306 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1307 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1308 PTRTRIM_CP(*ki, *ki32, ki_udata); 1309 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1310 CP(*ki, *ki32, ki_sflag); 1311 CP(*ki, *ki32, ki_tdflags); 1312 } 1313 #endif 1314 1315 int 1316 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1317 { 1318 struct thread *td; 1319 struct kinfo_proc ki; 1320 #ifdef COMPAT_FREEBSD32 1321 struct kinfo_proc32 ki32; 1322 #endif 1323 int error; 1324 1325 PROC_LOCK_ASSERT(p, MA_OWNED); 1326 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1327 1328 error = 0; 1329 fill_kinfo_proc(p, &ki); 1330 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1331 #ifdef COMPAT_FREEBSD32 1332 if ((flags & KERN_PROC_MASK32) != 0) { 1333 freebsd32_kinfo_proc_out(&ki, &ki32); 1334 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1335 error = ENOMEM; 1336 } else 1337 #endif 1338 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1339 error = ENOMEM; 1340 } else { 1341 FOREACH_THREAD_IN_PROC(p, td) { 1342 fill_kinfo_thread(td, &ki, 1); 1343 #ifdef COMPAT_FREEBSD32 1344 if ((flags & KERN_PROC_MASK32) != 0) { 1345 freebsd32_kinfo_proc_out(&ki, &ki32); 1346 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1347 error = ENOMEM; 1348 } else 1349 #endif 1350 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1351 error = ENOMEM; 1352 if (error != 0) 1353 break; 1354 } 1355 } 1356 PROC_UNLOCK(p); 1357 return (error); 1358 } 1359 1360 static int 1361 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1362 int doingzomb) 1363 { 1364 struct sbuf sb; 1365 struct kinfo_proc ki; 1366 struct proc *np; 1367 int error, error2; 1368 pid_t pid; 1369 1370 pid = p->p_pid; 1371 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1372 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1373 error = kern_proc_out(p, &sb, flags); 1374 error2 = sbuf_finish(&sb); 1375 sbuf_delete(&sb); 1376 if (error != 0) 1377 return (error); 1378 else if (error2 != 0) 1379 return (error2); 1380 if (doingzomb) 1381 np = zpfind(pid); 1382 else { 1383 if (pid == 0) 1384 return (0); 1385 np = pfind(pid); 1386 } 1387 if (np == NULL) 1388 return (ESRCH); 1389 if (np != p) { 1390 PROC_UNLOCK(np); 1391 return (ESRCH); 1392 } 1393 PROC_UNLOCK(np); 1394 return (0); 1395 } 1396 1397 static int 1398 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1399 { 1400 int *name = (int *)arg1; 1401 u_int namelen = arg2; 1402 struct proc *p; 1403 int flags, doingzomb, oid_number; 1404 int error = 0; 1405 1406 oid_number = oidp->oid_number; 1407 if (oid_number != KERN_PROC_ALL && 1408 (oid_number & KERN_PROC_INC_THREAD) == 0) 1409 flags = KERN_PROC_NOTHREADS; 1410 else { 1411 flags = 0; 1412 oid_number &= ~KERN_PROC_INC_THREAD; 1413 } 1414 #ifdef COMPAT_FREEBSD32 1415 if (req->flags & SCTL_MASK32) 1416 flags |= KERN_PROC_MASK32; 1417 #endif 1418 if (oid_number == KERN_PROC_PID) { 1419 if (namelen != 1) 1420 return (EINVAL); 1421 error = sysctl_wire_old_buffer(req, 0); 1422 if (error) 1423 return (error); 1424 sx_slock(&proctree_lock); 1425 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1426 if (error == 0) 1427 error = sysctl_out_proc(p, req, flags, 0); 1428 sx_sunlock(&proctree_lock); 1429 return (error); 1430 } 1431 1432 switch (oid_number) { 1433 case KERN_PROC_ALL: 1434 if (namelen != 0) 1435 return (EINVAL); 1436 break; 1437 case KERN_PROC_PROC: 1438 if (namelen != 0 && namelen != 1) 1439 return (EINVAL); 1440 break; 1441 default: 1442 if (namelen != 1) 1443 return (EINVAL); 1444 break; 1445 } 1446 1447 if (!req->oldptr) { 1448 /* overestimate by 5 procs */ 1449 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1450 if (error) 1451 return (error); 1452 } 1453 error = sysctl_wire_old_buffer(req, 0); 1454 if (error != 0) 1455 return (error); 1456 sx_slock(&proctree_lock); 1457 sx_slock(&allproc_lock); 1458 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1459 if (!doingzomb) 1460 p = LIST_FIRST(&allproc); 1461 else 1462 p = LIST_FIRST(&zombproc); 1463 for (; p != NULL; p = LIST_NEXT(p, p_list)) { 1464 /* 1465 * Skip embryonic processes. 1466 */ 1467 PROC_LOCK(p); 1468 if (p->p_state == PRS_NEW) { 1469 PROC_UNLOCK(p); 1470 continue; 1471 } 1472 KASSERT(p->p_ucred != NULL, 1473 ("process credential is NULL for non-NEW proc")); 1474 /* 1475 * Show a user only appropriate processes. 1476 */ 1477 if (p_cansee(curthread, p)) { 1478 PROC_UNLOCK(p); 1479 continue; 1480 } 1481 /* 1482 * TODO - make more efficient (see notes below). 1483 * do by session. 1484 */ 1485 switch (oid_number) { 1486 1487 case KERN_PROC_GID: 1488 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1489 PROC_UNLOCK(p); 1490 continue; 1491 } 1492 break; 1493 1494 case KERN_PROC_PGRP: 1495 /* could do this by traversing pgrp */ 1496 if (p->p_pgrp == NULL || 1497 p->p_pgrp->pg_id != (pid_t)name[0]) { 1498 PROC_UNLOCK(p); 1499 continue; 1500 } 1501 break; 1502 1503 case KERN_PROC_RGID: 1504 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1505 PROC_UNLOCK(p); 1506 continue; 1507 } 1508 break; 1509 1510 case KERN_PROC_SESSION: 1511 if (p->p_session == NULL || 1512 p->p_session->s_sid != (pid_t)name[0]) { 1513 PROC_UNLOCK(p); 1514 continue; 1515 } 1516 break; 1517 1518 case KERN_PROC_TTY: 1519 if ((p->p_flag & P_CONTROLT) == 0 || 1520 p->p_session == NULL) { 1521 PROC_UNLOCK(p); 1522 continue; 1523 } 1524 /* XXX proctree_lock */ 1525 SESS_LOCK(p->p_session); 1526 if (p->p_session->s_ttyp == NULL || 1527 tty_udev(p->p_session->s_ttyp) != 1528 (dev_t)name[0]) { 1529 SESS_UNLOCK(p->p_session); 1530 PROC_UNLOCK(p); 1531 continue; 1532 } 1533 SESS_UNLOCK(p->p_session); 1534 break; 1535 1536 case KERN_PROC_UID: 1537 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1538 PROC_UNLOCK(p); 1539 continue; 1540 } 1541 break; 1542 1543 case KERN_PROC_RUID: 1544 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1545 PROC_UNLOCK(p); 1546 continue; 1547 } 1548 break; 1549 1550 case KERN_PROC_PROC: 1551 break; 1552 1553 default: 1554 break; 1555 1556 } 1557 1558 error = sysctl_out_proc(p, req, flags, doingzomb); 1559 if (error) { 1560 sx_sunlock(&allproc_lock); 1561 sx_sunlock(&proctree_lock); 1562 return (error); 1563 } 1564 } 1565 } 1566 sx_sunlock(&allproc_lock); 1567 sx_sunlock(&proctree_lock); 1568 return (0); 1569 } 1570 1571 struct pargs * 1572 pargs_alloc(int len) 1573 { 1574 struct pargs *pa; 1575 1576 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1577 M_WAITOK); 1578 refcount_init(&pa->ar_ref, 1); 1579 pa->ar_length = len; 1580 return (pa); 1581 } 1582 1583 static void 1584 pargs_free(struct pargs *pa) 1585 { 1586 1587 free(pa, M_PARGS); 1588 } 1589 1590 void 1591 pargs_hold(struct pargs *pa) 1592 { 1593 1594 if (pa == NULL) 1595 return; 1596 refcount_acquire(&pa->ar_ref); 1597 } 1598 1599 void 1600 pargs_drop(struct pargs *pa) 1601 { 1602 1603 if (pa == NULL) 1604 return; 1605 if (refcount_release(&pa->ar_ref)) 1606 pargs_free(pa); 1607 } 1608 1609 static int 1610 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1611 size_t len) 1612 { 1613 ssize_t n; 1614 1615 /* 1616 * This may return a short read if the string is shorter than the chunk 1617 * and is aligned at the end of the page, and the following page is not 1618 * mapped. 1619 */ 1620 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1621 if (n <= 0) 1622 return (ENOMEM); 1623 return (0); 1624 } 1625 1626 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1627 1628 enum proc_vector_type { 1629 PROC_ARG, 1630 PROC_ENV, 1631 PROC_AUX, 1632 }; 1633 1634 #ifdef COMPAT_FREEBSD32 1635 static int 1636 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1637 size_t *vsizep, enum proc_vector_type type) 1638 { 1639 struct freebsd32_ps_strings pss; 1640 Elf32_Auxinfo aux; 1641 vm_offset_t vptr, ptr; 1642 uint32_t *proc_vector32; 1643 char **proc_vector; 1644 size_t vsize, size; 1645 int i, error; 1646 1647 error = 0; 1648 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1649 sizeof(pss)) != sizeof(pss)) 1650 return (ENOMEM); 1651 switch (type) { 1652 case PROC_ARG: 1653 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1654 vsize = pss.ps_nargvstr; 1655 if (vsize > ARG_MAX) 1656 return (ENOEXEC); 1657 size = vsize * sizeof(int32_t); 1658 break; 1659 case PROC_ENV: 1660 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1661 vsize = pss.ps_nenvstr; 1662 if (vsize > ARG_MAX) 1663 return (ENOEXEC); 1664 size = vsize * sizeof(int32_t); 1665 break; 1666 case PROC_AUX: 1667 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1668 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1669 if (vptr % 4 != 0) 1670 return (ENOEXEC); 1671 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1672 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1673 sizeof(aux)) 1674 return (ENOMEM); 1675 if (aux.a_type == AT_NULL) 1676 break; 1677 ptr += sizeof(aux); 1678 } 1679 if (aux.a_type != AT_NULL) 1680 return (ENOEXEC); 1681 vsize = i + 1; 1682 size = vsize * sizeof(aux); 1683 break; 1684 default: 1685 KASSERT(0, ("Wrong proc vector type: %d", type)); 1686 return (EINVAL); 1687 } 1688 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1689 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1690 error = ENOMEM; 1691 goto done; 1692 } 1693 if (type == PROC_AUX) { 1694 *proc_vectorp = (char **)proc_vector32; 1695 *vsizep = vsize; 1696 return (0); 1697 } 1698 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1699 for (i = 0; i < (int)vsize; i++) 1700 proc_vector[i] = PTRIN(proc_vector32[i]); 1701 *proc_vectorp = proc_vector; 1702 *vsizep = vsize; 1703 done: 1704 free(proc_vector32, M_TEMP); 1705 return (error); 1706 } 1707 #endif 1708 1709 static int 1710 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1711 size_t *vsizep, enum proc_vector_type type) 1712 { 1713 struct ps_strings pss; 1714 Elf_Auxinfo aux; 1715 vm_offset_t vptr, ptr; 1716 char **proc_vector; 1717 size_t vsize, size; 1718 int i; 1719 1720 #ifdef COMPAT_FREEBSD32 1721 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1722 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1723 #endif 1724 if (proc_readmem(td, p, (vm_offset_t)p->p_sysent->sv_psstrings, &pss, 1725 sizeof(pss)) != sizeof(pss)) 1726 return (ENOMEM); 1727 switch (type) { 1728 case PROC_ARG: 1729 vptr = (vm_offset_t)pss.ps_argvstr; 1730 vsize = pss.ps_nargvstr; 1731 if (vsize > ARG_MAX) 1732 return (ENOEXEC); 1733 size = vsize * sizeof(char *); 1734 break; 1735 case PROC_ENV: 1736 vptr = (vm_offset_t)pss.ps_envstr; 1737 vsize = pss.ps_nenvstr; 1738 if (vsize > ARG_MAX) 1739 return (ENOEXEC); 1740 size = vsize * sizeof(char *); 1741 break; 1742 case PROC_AUX: 1743 /* 1744 * The aux array is just above env array on the stack. Check 1745 * that the address is naturally aligned. 1746 */ 1747 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1748 * sizeof(char *); 1749 #if __ELF_WORD_SIZE == 64 1750 if (vptr % sizeof(uint64_t) != 0) 1751 #else 1752 if (vptr % sizeof(uint32_t) != 0) 1753 #endif 1754 return (ENOEXEC); 1755 /* 1756 * We count the array size reading the aux vectors from the 1757 * stack until AT_NULL vector is returned. So (to keep the code 1758 * simple) we read the process stack twice: the first time here 1759 * to find the size and the second time when copying the vectors 1760 * to the allocated proc_vector. 1761 */ 1762 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1763 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1764 sizeof(aux)) 1765 return (ENOMEM); 1766 if (aux.a_type == AT_NULL) 1767 break; 1768 ptr += sizeof(aux); 1769 } 1770 /* 1771 * If the PROC_AUXV_MAX entries are iterated over, and we have 1772 * not reached AT_NULL, it is most likely we are reading wrong 1773 * data: either the process doesn't have auxv array or data has 1774 * been modified. Return the error in this case. 1775 */ 1776 if (aux.a_type != AT_NULL) 1777 return (ENOEXEC); 1778 vsize = i + 1; 1779 size = vsize * sizeof(aux); 1780 break; 1781 default: 1782 KASSERT(0, ("Wrong proc vector type: %d", type)); 1783 return (EINVAL); /* In case we are built without INVARIANTS. */ 1784 } 1785 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1786 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 1787 free(proc_vector, M_TEMP); 1788 return (ENOMEM); 1789 } 1790 *proc_vectorp = proc_vector; 1791 *vsizep = vsize; 1792 1793 return (0); 1794 } 1795 1796 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1797 1798 static int 1799 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1800 enum proc_vector_type type) 1801 { 1802 size_t done, len, nchr, vsize; 1803 int error, i; 1804 char **proc_vector, *sptr; 1805 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1806 1807 PROC_ASSERT_HELD(p); 1808 1809 /* 1810 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1811 */ 1812 nchr = 2 * (PATH_MAX + ARG_MAX); 1813 1814 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1815 if (error != 0) 1816 return (error); 1817 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1818 /* 1819 * The program may have scribbled into its argv array, e.g. to 1820 * remove some arguments. If that has happened, break out 1821 * before trying to read from NULL. 1822 */ 1823 if (proc_vector[i] == NULL) 1824 break; 1825 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1826 error = proc_read_string(td, p, sptr, pss_string, 1827 sizeof(pss_string)); 1828 if (error != 0) 1829 goto done; 1830 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1831 if (done + len >= nchr) 1832 len = nchr - done - 1; 1833 sbuf_bcat(sb, pss_string, len); 1834 if (len != GET_PS_STRINGS_CHUNK_SZ) 1835 break; 1836 done += GET_PS_STRINGS_CHUNK_SZ; 1837 } 1838 sbuf_bcat(sb, "", 1); 1839 done += len + 1; 1840 } 1841 done: 1842 free(proc_vector, M_TEMP); 1843 return (error); 1844 } 1845 1846 int 1847 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1848 { 1849 1850 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1851 } 1852 1853 int 1854 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1855 { 1856 1857 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1858 } 1859 1860 int 1861 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1862 { 1863 size_t vsize, size; 1864 char **auxv; 1865 int error; 1866 1867 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1868 if (error == 0) { 1869 #ifdef COMPAT_FREEBSD32 1870 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1871 size = vsize * sizeof(Elf32_Auxinfo); 1872 else 1873 #endif 1874 size = vsize * sizeof(Elf_Auxinfo); 1875 if (sbuf_bcat(sb, auxv, size) != 0) 1876 error = ENOMEM; 1877 free(auxv, M_TEMP); 1878 } 1879 return (error); 1880 } 1881 1882 /* 1883 * This sysctl allows a process to retrieve the argument list or process 1884 * title for another process without groping around in the address space 1885 * of the other process. It also allow a process to set its own "process 1886 * title to a string of its own choice. 1887 */ 1888 static int 1889 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1890 { 1891 int *name = (int *)arg1; 1892 u_int namelen = arg2; 1893 struct pargs *newpa, *pa; 1894 struct proc *p; 1895 struct sbuf sb; 1896 int flags, error = 0, error2; 1897 1898 if (namelen != 1) 1899 return (EINVAL); 1900 1901 flags = PGET_CANSEE; 1902 if (req->newptr != NULL) 1903 flags |= PGET_ISCURRENT; 1904 error = pget((pid_t)name[0], flags, &p); 1905 if (error) 1906 return (error); 1907 1908 pa = p->p_args; 1909 if (pa != NULL) { 1910 pargs_hold(pa); 1911 PROC_UNLOCK(p); 1912 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1913 pargs_drop(pa); 1914 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1915 _PHOLD(p); 1916 PROC_UNLOCK(p); 1917 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1918 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1919 error = proc_getargv(curthread, p, &sb); 1920 error2 = sbuf_finish(&sb); 1921 PRELE(p); 1922 sbuf_delete(&sb); 1923 if (error == 0 && error2 != 0) 1924 error = error2; 1925 } else { 1926 PROC_UNLOCK(p); 1927 } 1928 if (error != 0 || req->newptr == NULL) 1929 return (error); 1930 1931 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1932 return (ENOMEM); 1933 newpa = pargs_alloc(req->newlen); 1934 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1935 if (error != 0) { 1936 pargs_free(newpa); 1937 return (error); 1938 } 1939 PROC_LOCK(p); 1940 pa = p->p_args; 1941 p->p_args = newpa; 1942 PROC_UNLOCK(p); 1943 pargs_drop(pa); 1944 return (0); 1945 } 1946 1947 /* 1948 * This sysctl allows a process to retrieve environment of another process. 1949 */ 1950 static int 1951 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1952 { 1953 int *name = (int *)arg1; 1954 u_int namelen = arg2; 1955 struct proc *p; 1956 struct sbuf sb; 1957 int error, error2; 1958 1959 if (namelen != 1) 1960 return (EINVAL); 1961 1962 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1963 if (error != 0) 1964 return (error); 1965 if ((p->p_flag & P_SYSTEM) != 0) { 1966 PRELE(p); 1967 return (0); 1968 } 1969 1970 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1971 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1972 error = proc_getenvv(curthread, p, &sb); 1973 error2 = sbuf_finish(&sb); 1974 PRELE(p); 1975 sbuf_delete(&sb); 1976 return (error != 0 ? error : error2); 1977 } 1978 1979 /* 1980 * This sysctl allows a process to retrieve ELF auxiliary vector of 1981 * another process. 1982 */ 1983 static int 1984 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1985 { 1986 int *name = (int *)arg1; 1987 u_int namelen = arg2; 1988 struct proc *p; 1989 struct sbuf sb; 1990 int error, error2; 1991 1992 if (namelen != 1) 1993 return (EINVAL); 1994 1995 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1996 if (error != 0) 1997 return (error); 1998 if ((p->p_flag & P_SYSTEM) != 0) { 1999 PRELE(p); 2000 return (0); 2001 } 2002 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2003 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2004 error = proc_getauxv(curthread, p, &sb); 2005 error2 = sbuf_finish(&sb); 2006 PRELE(p); 2007 sbuf_delete(&sb); 2008 return (error != 0 ? error : error2); 2009 } 2010 2011 /* 2012 * This sysctl allows a process to retrieve the path of the executable for 2013 * itself or another process. 2014 */ 2015 static int 2016 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2017 { 2018 pid_t *pidp = (pid_t *)arg1; 2019 unsigned int arglen = arg2; 2020 struct proc *p; 2021 struct vnode *vp; 2022 char *retbuf, *freebuf; 2023 int error; 2024 2025 if (arglen != 1) 2026 return (EINVAL); 2027 if (*pidp == -1) { /* -1 means this process */ 2028 p = req->td->td_proc; 2029 } else { 2030 error = pget(*pidp, PGET_CANSEE, &p); 2031 if (error != 0) 2032 return (error); 2033 } 2034 2035 vp = p->p_textvp; 2036 if (vp == NULL) { 2037 if (*pidp != -1) 2038 PROC_UNLOCK(p); 2039 return (0); 2040 } 2041 vref(vp); 2042 if (*pidp != -1) 2043 PROC_UNLOCK(p); 2044 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 2045 vrele(vp); 2046 if (error) 2047 return (error); 2048 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2049 free(freebuf, M_TEMP); 2050 return (error); 2051 } 2052 2053 static int 2054 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2055 { 2056 struct proc *p; 2057 char *sv_name; 2058 int *name; 2059 int namelen; 2060 int error; 2061 2062 namelen = arg2; 2063 if (namelen != 1) 2064 return (EINVAL); 2065 2066 name = (int *)arg1; 2067 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2068 if (error != 0) 2069 return (error); 2070 sv_name = p->p_sysent->sv_name; 2071 PROC_UNLOCK(p); 2072 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2073 } 2074 2075 #ifdef KINFO_OVMENTRY_SIZE 2076 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2077 #endif 2078 2079 #ifdef COMPAT_FREEBSD7 2080 static int 2081 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2082 { 2083 vm_map_entry_t entry, tmp_entry; 2084 unsigned int last_timestamp; 2085 char *fullpath, *freepath; 2086 struct kinfo_ovmentry *kve; 2087 struct vattr va; 2088 struct ucred *cred; 2089 int error, *name; 2090 struct vnode *vp; 2091 struct proc *p; 2092 vm_map_t map; 2093 struct vmspace *vm; 2094 2095 name = (int *)arg1; 2096 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2097 if (error != 0) 2098 return (error); 2099 vm = vmspace_acquire_ref(p); 2100 if (vm == NULL) { 2101 PRELE(p); 2102 return (ESRCH); 2103 } 2104 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2105 2106 map = &vm->vm_map; 2107 vm_map_lock_read(map); 2108 for (entry = map->header.next; entry != &map->header; 2109 entry = entry->next) { 2110 vm_object_t obj, tobj, lobj; 2111 vm_offset_t addr; 2112 2113 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2114 continue; 2115 2116 bzero(kve, sizeof(*kve)); 2117 kve->kve_structsize = sizeof(*kve); 2118 2119 kve->kve_private_resident = 0; 2120 obj = entry->object.vm_object; 2121 if (obj != NULL) { 2122 VM_OBJECT_RLOCK(obj); 2123 if (obj->shadow_count == 1) 2124 kve->kve_private_resident = 2125 obj->resident_page_count; 2126 } 2127 kve->kve_resident = 0; 2128 addr = entry->start; 2129 while (addr < entry->end) { 2130 if (pmap_extract(map->pmap, addr)) 2131 kve->kve_resident++; 2132 addr += PAGE_SIZE; 2133 } 2134 2135 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2136 if (tobj != obj) 2137 VM_OBJECT_RLOCK(tobj); 2138 if (lobj != obj) 2139 VM_OBJECT_RUNLOCK(lobj); 2140 lobj = tobj; 2141 } 2142 2143 kve->kve_start = (void*)entry->start; 2144 kve->kve_end = (void*)entry->end; 2145 kve->kve_offset = (off_t)entry->offset; 2146 2147 if (entry->protection & VM_PROT_READ) 2148 kve->kve_protection |= KVME_PROT_READ; 2149 if (entry->protection & VM_PROT_WRITE) 2150 kve->kve_protection |= KVME_PROT_WRITE; 2151 if (entry->protection & VM_PROT_EXECUTE) 2152 kve->kve_protection |= KVME_PROT_EXEC; 2153 2154 if (entry->eflags & MAP_ENTRY_COW) 2155 kve->kve_flags |= KVME_FLAG_COW; 2156 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2157 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2158 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2159 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2160 2161 last_timestamp = map->timestamp; 2162 vm_map_unlock_read(map); 2163 2164 kve->kve_fileid = 0; 2165 kve->kve_fsid = 0; 2166 freepath = NULL; 2167 fullpath = ""; 2168 if (lobj) { 2169 vp = NULL; 2170 switch (lobj->type) { 2171 case OBJT_DEFAULT: 2172 kve->kve_type = KVME_TYPE_DEFAULT; 2173 break; 2174 case OBJT_VNODE: 2175 kve->kve_type = KVME_TYPE_VNODE; 2176 vp = lobj->handle; 2177 vref(vp); 2178 break; 2179 case OBJT_SWAP: 2180 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2181 kve->kve_type = KVME_TYPE_VNODE; 2182 if ((lobj->flags & OBJ_TMPFS) != 0) { 2183 vp = lobj->un_pager.swp.swp_tmpfs; 2184 vref(vp); 2185 } 2186 } else { 2187 kve->kve_type = KVME_TYPE_SWAP; 2188 } 2189 break; 2190 case OBJT_DEVICE: 2191 kve->kve_type = KVME_TYPE_DEVICE; 2192 break; 2193 case OBJT_PHYS: 2194 kve->kve_type = KVME_TYPE_PHYS; 2195 break; 2196 case OBJT_DEAD: 2197 kve->kve_type = KVME_TYPE_DEAD; 2198 break; 2199 case OBJT_SG: 2200 kve->kve_type = KVME_TYPE_SG; 2201 break; 2202 default: 2203 kve->kve_type = KVME_TYPE_UNKNOWN; 2204 break; 2205 } 2206 if (lobj != obj) 2207 VM_OBJECT_RUNLOCK(lobj); 2208 2209 kve->kve_ref_count = obj->ref_count; 2210 kve->kve_shadow_count = obj->shadow_count; 2211 VM_OBJECT_RUNLOCK(obj); 2212 if (vp != NULL) { 2213 vn_fullpath(curthread, vp, &fullpath, 2214 &freepath); 2215 cred = curthread->td_ucred; 2216 vn_lock(vp, LK_SHARED | LK_RETRY); 2217 if (VOP_GETATTR(vp, &va, cred) == 0) { 2218 kve->kve_fileid = va.va_fileid; 2219 /* truncate */ 2220 kve->kve_fsid = va.va_fsid; 2221 } 2222 vput(vp); 2223 } 2224 } else { 2225 kve->kve_type = KVME_TYPE_NONE; 2226 kve->kve_ref_count = 0; 2227 kve->kve_shadow_count = 0; 2228 } 2229 2230 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2231 if (freepath != NULL) 2232 free(freepath, M_TEMP); 2233 2234 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2235 vm_map_lock_read(map); 2236 if (error) 2237 break; 2238 if (last_timestamp != map->timestamp) { 2239 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2240 entry = tmp_entry; 2241 } 2242 } 2243 vm_map_unlock_read(map); 2244 vmspace_free(vm); 2245 PRELE(p); 2246 free(kve, M_TEMP); 2247 return (error); 2248 } 2249 #endif /* COMPAT_FREEBSD7 */ 2250 2251 #ifdef KINFO_VMENTRY_SIZE 2252 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2253 #endif 2254 2255 static void 2256 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2257 struct kinfo_vmentry *kve) 2258 { 2259 vm_object_t obj, tobj; 2260 vm_page_t m, m_adv; 2261 vm_offset_t addr; 2262 vm_paddr_t locked_pa; 2263 vm_pindex_t pi, pi_adv, pindex; 2264 2265 locked_pa = 0; 2266 obj = entry->object.vm_object; 2267 addr = entry->start; 2268 m_adv = NULL; 2269 pi = OFF_TO_IDX(entry->offset); 2270 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2271 if (m_adv != NULL) { 2272 m = m_adv; 2273 } else { 2274 pi_adv = atop(entry->end - addr); 2275 pindex = pi; 2276 for (tobj = obj;; tobj = tobj->backing_object) { 2277 m = vm_page_find_least(tobj, pindex); 2278 if (m != NULL) { 2279 if (m->pindex == pindex) 2280 break; 2281 if (pi_adv > m->pindex - pindex) { 2282 pi_adv = m->pindex - pindex; 2283 m_adv = m; 2284 } 2285 } 2286 if (tobj->backing_object == NULL) 2287 goto next; 2288 pindex += OFF_TO_IDX(tobj-> 2289 backing_object_offset); 2290 } 2291 } 2292 m_adv = NULL; 2293 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2294 (addr & (pagesizes[1] - 1)) == 0 && 2295 (pmap_mincore(map->pmap, addr, &locked_pa) & 2296 MINCORE_SUPER) != 0) { 2297 kve->kve_flags |= KVME_FLAG_SUPER; 2298 pi_adv = atop(pagesizes[1]); 2299 } else { 2300 /* 2301 * We do not test the found page on validity. 2302 * Either the page is busy and being paged in, 2303 * or it was invalidated. The first case 2304 * should be counted as resident, the second 2305 * is not so clear; we do account both. 2306 */ 2307 pi_adv = 1; 2308 } 2309 kve->kve_resident += pi_adv; 2310 next:; 2311 } 2312 PA_UNLOCK_COND(locked_pa); 2313 } 2314 2315 /* 2316 * Must be called with the process locked and will return unlocked. 2317 */ 2318 int 2319 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2320 { 2321 vm_map_entry_t entry, tmp_entry; 2322 struct vattr va; 2323 vm_map_t map; 2324 vm_object_t obj, tobj, lobj; 2325 char *fullpath, *freepath; 2326 struct kinfo_vmentry *kve; 2327 struct ucred *cred; 2328 struct vnode *vp; 2329 struct vmspace *vm; 2330 vm_offset_t addr; 2331 unsigned int last_timestamp; 2332 int error; 2333 2334 PROC_LOCK_ASSERT(p, MA_OWNED); 2335 2336 _PHOLD(p); 2337 PROC_UNLOCK(p); 2338 vm = vmspace_acquire_ref(p); 2339 if (vm == NULL) { 2340 PRELE(p); 2341 return (ESRCH); 2342 } 2343 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2344 2345 error = 0; 2346 map = &vm->vm_map; 2347 vm_map_lock_read(map); 2348 for (entry = map->header.next; entry != &map->header; 2349 entry = entry->next) { 2350 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2351 continue; 2352 2353 addr = entry->end; 2354 bzero(kve, sizeof(*kve)); 2355 obj = entry->object.vm_object; 2356 if (obj != NULL) { 2357 for (tobj = obj; tobj != NULL; 2358 tobj = tobj->backing_object) { 2359 VM_OBJECT_RLOCK(tobj); 2360 lobj = tobj; 2361 } 2362 if (obj->backing_object == NULL) 2363 kve->kve_private_resident = 2364 obj->resident_page_count; 2365 if (!vmmap_skip_res_cnt) 2366 kern_proc_vmmap_resident(map, entry, kve); 2367 for (tobj = obj; tobj != NULL; 2368 tobj = tobj->backing_object) { 2369 if (tobj != obj && tobj != lobj) 2370 VM_OBJECT_RUNLOCK(tobj); 2371 } 2372 } else { 2373 lobj = NULL; 2374 } 2375 2376 kve->kve_start = entry->start; 2377 kve->kve_end = entry->end; 2378 kve->kve_offset = entry->offset; 2379 2380 if (entry->protection & VM_PROT_READ) 2381 kve->kve_protection |= KVME_PROT_READ; 2382 if (entry->protection & VM_PROT_WRITE) 2383 kve->kve_protection |= KVME_PROT_WRITE; 2384 if (entry->protection & VM_PROT_EXECUTE) 2385 kve->kve_protection |= KVME_PROT_EXEC; 2386 2387 if (entry->eflags & MAP_ENTRY_COW) 2388 kve->kve_flags |= KVME_FLAG_COW; 2389 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2390 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2391 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2392 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2393 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2394 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2395 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2396 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2397 2398 last_timestamp = map->timestamp; 2399 vm_map_unlock_read(map); 2400 2401 freepath = NULL; 2402 fullpath = ""; 2403 if (lobj != NULL) { 2404 vp = NULL; 2405 switch (lobj->type) { 2406 case OBJT_DEFAULT: 2407 kve->kve_type = KVME_TYPE_DEFAULT; 2408 break; 2409 case OBJT_VNODE: 2410 kve->kve_type = KVME_TYPE_VNODE; 2411 vp = lobj->handle; 2412 vref(vp); 2413 break; 2414 case OBJT_SWAP: 2415 if ((lobj->flags & OBJ_TMPFS_NODE) != 0) { 2416 kve->kve_type = KVME_TYPE_VNODE; 2417 if ((lobj->flags & OBJ_TMPFS) != 0) { 2418 vp = lobj->un_pager.swp.swp_tmpfs; 2419 vref(vp); 2420 } 2421 } else { 2422 kve->kve_type = KVME_TYPE_SWAP; 2423 } 2424 break; 2425 case OBJT_DEVICE: 2426 kve->kve_type = KVME_TYPE_DEVICE; 2427 break; 2428 case OBJT_PHYS: 2429 kve->kve_type = KVME_TYPE_PHYS; 2430 break; 2431 case OBJT_DEAD: 2432 kve->kve_type = KVME_TYPE_DEAD; 2433 break; 2434 case OBJT_SG: 2435 kve->kve_type = KVME_TYPE_SG; 2436 break; 2437 case OBJT_MGTDEVICE: 2438 kve->kve_type = KVME_TYPE_MGTDEVICE; 2439 break; 2440 default: 2441 kve->kve_type = KVME_TYPE_UNKNOWN; 2442 break; 2443 } 2444 if (lobj != obj) 2445 VM_OBJECT_RUNLOCK(lobj); 2446 2447 kve->kve_ref_count = obj->ref_count; 2448 kve->kve_shadow_count = obj->shadow_count; 2449 VM_OBJECT_RUNLOCK(obj); 2450 if (vp != NULL) { 2451 vn_fullpath(curthread, vp, &fullpath, 2452 &freepath); 2453 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2454 cred = curthread->td_ucred; 2455 vn_lock(vp, LK_SHARED | LK_RETRY); 2456 if (VOP_GETATTR(vp, &va, cred) == 0) { 2457 kve->kve_vn_fileid = va.va_fileid; 2458 kve->kve_vn_fsid = va.va_fsid; 2459 kve->kve_vn_fsid_freebsd11 = 2460 kve->kve_vn_fsid; /* truncate */ 2461 kve->kve_vn_mode = 2462 MAKEIMODE(va.va_type, va.va_mode); 2463 kve->kve_vn_size = va.va_size; 2464 kve->kve_vn_rdev = va.va_rdev; 2465 kve->kve_vn_rdev_freebsd11 = 2466 kve->kve_vn_rdev; /* truncate */ 2467 kve->kve_status = KF_ATTR_VALID; 2468 } 2469 vput(vp); 2470 } 2471 } else { 2472 kve->kve_type = KVME_TYPE_NONE; 2473 kve->kve_ref_count = 0; 2474 kve->kve_shadow_count = 0; 2475 } 2476 2477 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2478 if (freepath != NULL) 2479 free(freepath, M_TEMP); 2480 2481 /* Pack record size down */ 2482 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2483 kve->kve_structsize = 2484 offsetof(struct kinfo_vmentry, kve_path) + 2485 strlen(kve->kve_path) + 1; 2486 else 2487 kve->kve_structsize = sizeof(*kve); 2488 kve->kve_structsize = roundup(kve->kve_structsize, 2489 sizeof(uint64_t)); 2490 2491 /* Halt filling and truncate rather than exceeding maxlen */ 2492 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2493 error = 0; 2494 vm_map_lock_read(map); 2495 break; 2496 } else if (maxlen != -1) 2497 maxlen -= kve->kve_structsize; 2498 2499 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2500 error = ENOMEM; 2501 vm_map_lock_read(map); 2502 if (error != 0) 2503 break; 2504 if (last_timestamp != map->timestamp) { 2505 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2506 entry = tmp_entry; 2507 } 2508 } 2509 vm_map_unlock_read(map); 2510 vmspace_free(vm); 2511 PRELE(p); 2512 free(kve, M_TEMP); 2513 return (error); 2514 } 2515 2516 static int 2517 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2518 { 2519 struct proc *p; 2520 struct sbuf sb; 2521 int error, error2, *name; 2522 2523 name = (int *)arg1; 2524 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2525 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2526 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2527 if (error != 0) { 2528 sbuf_delete(&sb); 2529 return (error); 2530 } 2531 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2532 error2 = sbuf_finish(&sb); 2533 sbuf_delete(&sb); 2534 return (error != 0 ? error : error2); 2535 } 2536 2537 #if defined(STACK) || defined(DDB) 2538 static int 2539 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2540 { 2541 struct kinfo_kstack *kkstp; 2542 int error, i, *name, numthreads; 2543 lwpid_t *lwpidarray; 2544 struct thread *td; 2545 struct stack *st; 2546 struct sbuf sb; 2547 struct proc *p; 2548 2549 name = (int *)arg1; 2550 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2551 if (error != 0) 2552 return (error); 2553 2554 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2555 st = stack_create(M_WAITOK); 2556 2557 lwpidarray = NULL; 2558 PROC_LOCK(p); 2559 do { 2560 if (lwpidarray != NULL) { 2561 free(lwpidarray, M_TEMP); 2562 lwpidarray = NULL; 2563 } 2564 numthreads = p->p_numthreads; 2565 PROC_UNLOCK(p); 2566 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2567 M_WAITOK | M_ZERO); 2568 PROC_LOCK(p); 2569 } while (numthreads < p->p_numthreads); 2570 2571 /* 2572 * XXXRW: During the below loop, execve(2) and countless other sorts 2573 * of changes could have taken place. Should we check to see if the 2574 * vmspace has been replaced, or the like, in order to prevent 2575 * giving a snapshot that spans, say, execve(2), with some threads 2576 * before and some after? Among other things, the credentials could 2577 * have changed, in which case the right to extract debug info might 2578 * no longer be assured. 2579 */ 2580 i = 0; 2581 FOREACH_THREAD_IN_PROC(p, td) { 2582 KASSERT(i < numthreads, 2583 ("sysctl_kern_proc_kstack: numthreads")); 2584 lwpidarray[i] = td->td_tid; 2585 i++; 2586 } 2587 numthreads = i; 2588 for (i = 0; i < numthreads; i++) { 2589 td = thread_find(p, lwpidarray[i]); 2590 if (td == NULL) { 2591 continue; 2592 } 2593 bzero(kkstp, sizeof(*kkstp)); 2594 (void)sbuf_new(&sb, kkstp->kkst_trace, 2595 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2596 thread_lock(td); 2597 kkstp->kkst_tid = td->td_tid; 2598 if (TD_IS_SWAPPED(td)) { 2599 kkstp->kkst_state = KKST_STATE_SWAPPED; 2600 } else if (TD_IS_RUNNING(td)) { 2601 if (stack_save_td_running(st, td) == 0) 2602 kkstp->kkst_state = KKST_STATE_STACKOK; 2603 else 2604 kkstp->kkst_state = KKST_STATE_RUNNING; 2605 } else { 2606 kkstp->kkst_state = KKST_STATE_STACKOK; 2607 stack_save_td(st, td); 2608 } 2609 thread_unlock(td); 2610 PROC_UNLOCK(p); 2611 stack_sbuf_print(&sb, st); 2612 sbuf_finish(&sb); 2613 sbuf_delete(&sb); 2614 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2615 PROC_LOCK(p); 2616 if (error) 2617 break; 2618 } 2619 _PRELE(p); 2620 PROC_UNLOCK(p); 2621 if (lwpidarray != NULL) 2622 free(lwpidarray, M_TEMP); 2623 stack_destroy(st); 2624 free(kkstp, M_TEMP); 2625 return (error); 2626 } 2627 #endif 2628 2629 /* 2630 * This sysctl allows a process to retrieve the full list of groups from 2631 * itself or another process. 2632 */ 2633 static int 2634 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2635 { 2636 pid_t *pidp = (pid_t *)arg1; 2637 unsigned int arglen = arg2; 2638 struct proc *p; 2639 struct ucred *cred; 2640 int error; 2641 2642 if (arglen != 1) 2643 return (EINVAL); 2644 if (*pidp == -1) { /* -1 means this process */ 2645 p = req->td->td_proc; 2646 PROC_LOCK(p); 2647 } else { 2648 error = pget(*pidp, PGET_CANSEE, &p); 2649 if (error != 0) 2650 return (error); 2651 } 2652 2653 cred = crhold(p->p_ucred); 2654 PROC_UNLOCK(p); 2655 2656 error = SYSCTL_OUT(req, cred->cr_groups, 2657 cred->cr_ngroups * sizeof(gid_t)); 2658 crfree(cred); 2659 return (error); 2660 } 2661 2662 /* 2663 * This sysctl allows a process to retrieve or/and set the resource limit for 2664 * another process. 2665 */ 2666 static int 2667 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2668 { 2669 int *name = (int *)arg1; 2670 u_int namelen = arg2; 2671 struct rlimit rlim; 2672 struct proc *p; 2673 u_int which; 2674 int flags, error; 2675 2676 if (namelen != 2) 2677 return (EINVAL); 2678 2679 which = (u_int)name[1]; 2680 if (which >= RLIM_NLIMITS) 2681 return (EINVAL); 2682 2683 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2684 return (EINVAL); 2685 2686 flags = PGET_HOLD | PGET_NOTWEXIT; 2687 if (req->newptr != NULL) 2688 flags |= PGET_CANDEBUG; 2689 else 2690 flags |= PGET_CANSEE; 2691 error = pget((pid_t)name[0], flags, &p); 2692 if (error != 0) 2693 return (error); 2694 2695 /* 2696 * Retrieve limit. 2697 */ 2698 if (req->oldptr != NULL) { 2699 PROC_LOCK(p); 2700 lim_rlimit_proc(p, which, &rlim); 2701 PROC_UNLOCK(p); 2702 } 2703 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2704 if (error != 0) 2705 goto errout; 2706 2707 /* 2708 * Set limit. 2709 */ 2710 if (req->newptr != NULL) { 2711 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2712 if (error == 0) 2713 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2714 } 2715 2716 errout: 2717 PRELE(p); 2718 return (error); 2719 } 2720 2721 /* 2722 * This sysctl allows a process to retrieve ps_strings structure location of 2723 * another process. 2724 */ 2725 static int 2726 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2727 { 2728 int *name = (int *)arg1; 2729 u_int namelen = arg2; 2730 struct proc *p; 2731 vm_offset_t ps_strings; 2732 int error; 2733 #ifdef COMPAT_FREEBSD32 2734 uint32_t ps_strings32; 2735 #endif 2736 2737 if (namelen != 1) 2738 return (EINVAL); 2739 2740 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2741 if (error != 0) 2742 return (error); 2743 #ifdef COMPAT_FREEBSD32 2744 if ((req->flags & SCTL_MASK32) != 0) { 2745 /* 2746 * We return 0 if the 32 bit emulation request is for a 64 bit 2747 * process. 2748 */ 2749 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2750 PTROUT(p->p_sysent->sv_psstrings) : 0; 2751 PROC_UNLOCK(p); 2752 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2753 return (error); 2754 } 2755 #endif 2756 ps_strings = p->p_sysent->sv_psstrings; 2757 PROC_UNLOCK(p); 2758 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2759 return (error); 2760 } 2761 2762 /* 2763 * This sysctl allows a process to retrieve umask of another process. 2764 */ 2765 static int 2766 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2767 { 2768 int *name = (int *)arg1; 2769 u_int namelen = arg2; 2770 struct proc *p; 2771 int error; 2772 u_short fd_cmask; 2773 2774 if (namelen != 1) 2775 return (EINVAL); 2776 2777 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2778 if (error != 0) 2779 return (error); 2780 2781 FILEDESC_SLOCK(p->p_fd); 2782 fd_cmask = p->p_fd->fd_cmask; 2783 FILEDESC_SUNLOCK(p->p_fd); 2784 PRELE(p); 2785 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2786 return (error); 2787 } 2788 2789 /* 2790 * This sysctl allows a process to set and retrieve binary osreldate of 2791 * another process. 2792 */ 2793 static int 2794 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2795 { 2796 int *name = (int *)arg1; 2797 u_int namelen = arg2; 2798 struct proc *p; 2799 int flags, error, osrel; 2800 2801 if (namelen != 1) 2802 return (EINVAL); 2803 2804 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2805 return (EINVAL); 2806 2807 flags = PGET_HOLD | PGET_NOTWEXIT; 2808 if (req->newptr != NULL) 2809 flags |= PGET_CANDEBUG; 2810 else 2811 flags |= PGET_CANSEE; 2812 error = pget((pid_t)name[0], flags, &p); 2813 if (error != 0) 2814 return (error); 2815 2816 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2817 if (error != 0) 2818 goto errout; 2819 2820 if (req->newptr != NULL) { 2821 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2822 if (error != 0) 2823 goto errout; 2824 if (osrel < 0) { 2825 error = EINVAL; 2826 goto errout; 2827 } 2828 p->p_osrel = osrel; 2829 } 2830 errout: 2831 PRELE(p); 2832 return (error); 2833 } 2834 2835 static int 2836 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2837 { 2838 int *name = (int *)arg1; 2839 u_int namelen = arg2; 2840 struct proc *p; 2841 struct kinfo_sigtramp kst; 2842 const struct sysentvec *sv; 2843 int error; 2844 #ifdef COMPAT_FREEBSD32 2845 struct kinfo_sigtramp32 kst32; 2846 #endif 2847 2848 if (namelen != 1) 2849 return (EINVAL); 2850 2851 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2852 if (error != 0) 2853 return (error); 2854 sv = p->p_sysent; 2855 #ifdef COMPAT_FREEBSD32 2856 if ((req->flags & SCTL_MASK32) != 0) { 2857 bzero(&kst32, sizeof(kst32)); 2858 if (SV_PROC_FLAG(p, SV_ILP32)) { 2859 if (sv->sv_sigcode_base != 0) { 2860 kst32.ksigtramp_start = sv->sv_sigcode_base; 2861 kst32.ksigtramp_end = sv->sv_sigcode_base + 2862 *sv->sv_szsigcode; 2863 } else { 2864 kst32.ksigtramp_start = sv->sv_psstrings - 2865 *sv->sv_szsigcode; 2866 kst32.ksigtramp_end = sv->sv_psstrings; 2867 } 2868 } 2869 PROC_UNLOCK(p); 2870 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2871 return (error); 2872 } 2873 #endif 2874 bzero(&kst, sizeof(kst)); 2875 if (sv->sv_sigcode_base != 0) { 2876 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2877 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2878 *sv->sv_szsigcode; 2879 } else { 2880 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2881 *sv->sv_szsigcode; 2882 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2883 } 2884 PROC_UNLOCK(p); 2885 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2886 return (error); 2887 } 2888 2889 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2890 2891 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2892 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2893 "Return entire process table"); 2894 2895 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2896 sysctl_kern_proc, "Process table"); 2897 2898 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2899 sysctl_kern_proc, "Process table"); 2900 2901 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2902 sysctl_kern_proc, "Process table"); 2903 2904 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2905 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2906 2907 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2908 sysctl_kern_proc, "Process table"); 2909 2910 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2911 sysctl_kern_proc, "Process table"); 2912 2913 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2914 sysctl_kern_proc, "Process table"); 2915 2916 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2917 sysctl_kern_proc, "Process table"); 2918 2919 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2920 sysctl_kern_proc, "Return process table, no threads"); 2921 2922 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2923 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2924 sysctl_kern_proc_args, "Process argument list"); 2925 2926 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2927 sysctl_kern_proc_env, "Process environment"); 2928 2929 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2930 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2931 2932 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2933 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2934 2935 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2936 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2937 "Process syscall vector name (ABI type)"); 2938 2939 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2940 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2941 2942 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2943 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2944 2945 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2946 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2947 2948 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2949 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2950 2951 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2952 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2953 2954 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2955 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2956 2957 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2958 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2959 2960 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2961 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2962 2963 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2964 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2965 "Return process table, no threads"); 2966 2967 #ifdef COMPAT_FREEBSD7 2968 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2969 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2970 #endif 2971 2972 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2973 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2974 2975 #if defined(STACK) || defined(DDB) 2976 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2977 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2978 #endif 2979 2980 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2981 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2982 2983 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2984 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2985 "Process resource limits"); 2986 2987 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2988 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2989 "Process ps_strings location"); 2990 2991 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2992 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2993 2994 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2995 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2996 "Process binary osreldate"); 2997 2998 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2999 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3000 "Process signal trampoline location"); 3001 3002 int allproc_gen; 3003 3004 /* 3005 * stop_all_proc() purpose is to stop all process which have usermode, 3006 * except current process for obvious reasons. This makes it somewhat 3007 * unreliable when invoked from multithreaded process. The service 3008 * must not be user-callable anyway. 3009 */ 3010 void 3011 stop_all_proc(void) 3012 { 3013 struct proc *cp, *p; 3014 int r, gen; 3015 bool restart, seen_stopped, seen_exiting, stopped_some; 3016 3017 cp = curproc; 3018 allproc_loop: 3019 sx_xlock(&allproc_lock); 3020 gen = allproc_gen; 3021 seen_exiting = seen_stopped = stopped_some = restart = false; 3022 LIST_REMOVE(cp, p_list); 3023 LIST_INSERT_HEAD(&allproc, cp, p_list); 3024 for (;;) { 3025 p = LIST_NEXT(cp, p_list); 3026 if (p == NULL) 3027 break; 3028 LIST_REMOVE(cp, p_list); 3029 LIST_INSERT_AFTER(p, cp, p_list); 3030 PROC_LOCK(p); 3031 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3032 PROC_UNLOCK(p); 3033 continue; 3034 } 3035 if ((p->p_flag & P_WEXIT) != 0) { 3036 seen_exiting = true; 3037 PROC_UNLOCK(p); 3038 continue; 3039 } 3040 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3041 /* 3042 * Stopped processes are tolerated when there 3043 * are no other processes which might continue 3044 * them. P_STOPPED_SINGLE but not 3045 * P_TOTAL_STOP process still has at least one 3046 * thread running. 3047 */ 3048 seen_stopped = true; 3049 PROC_UNLOCK(p); 3050 continue; 3051 } 3052 _PHOLD(p); 3053 sx_xunlock(&allproc_lock); 3054 r = thread_single(p, SINGLE_ALLPROC); 3055 if (r != 0) 3056 restart = true; 3057 else 3058 stopped_some = true; 3059 _PRELE(p); 3060 PROC_UNLOCK(p); 3061 sx_xlock(&allproc_lock); 3062 } 3063 /* Catch forked children we did not see in iteration. */ 3064 if (gen != allproc_gen) 3065 restart = true; 3066 sx_xunlock(&allproc_lock); 3067 if (restart || stopped_some || seen_exiting || seen_stopped) { 3068 kern_yield(PRI_USER); 3069 goto allproc_loop; 3070 } 3071 } 3072 3073 void 3074 resume_all_proc(void) 3075 { 3076 struct proc *cp, *p; 3077 3078 cp = curproc; 3079 sx_xlock(&allproc_lock); 3080 LIST_REMOVE(cp, p_list); 3081 LIST_INSERT_HEAD(&allproc, cp, p_list); 3082 for (;;) { 3083 p = LIST_NEXT(cp, p_list); 3084 if (p == NULL) 3085 break; 3086 LIST_REMOVE(cp, p_list); 3087 LIST_INSERT_AFTER(p, cp, p_list); 3088 PROC_LOCK(p); 3089 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3090 sx_xunlock(&allproc_lock); 3091 _PHOLD(p); 3092 thread_single_end(p, SINGLE_ALLPROC); 3093 _PRELE(p); 3094 PROC_UNLOCK(p); 3095 sx_xlock(&allproc_lock); 3096 } else { 3097 PROC_UNLOCK(p); 3098 } 3099 } 3100 sx_xunlock(&allproc_lock); 3101 } 3102 3103 /* #define TOTAL_STOP_DEBUG 1 */ 3104 #ifdef TOTAL_STOP_DEBUG 3105 volatile static int ap_resume; 3106 #include <sys/mount.h> 3107 3108 static int 3109 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3110 { 3111 int error, val; 3112 3113 val = 0; 3114 ap_resume = 0; 3115 error = sysctl_handle_int(oidp, &val, 0, req); 3116 if (error != 0 || req->newptr == NULL) 3117 return (error); 3118 if (val != 0) { 3119 stop_all_proc(); 3120 syncer_suspend(); 3121 while (ap_resume == 0) 3122 ; 3123 syncer_resume(); 3124 resume_all_proc(); 3125 } 3126 return (0); 3127 } 3128 3129 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3130 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3131 sysctl_debug_stop_all_proc, "I", 3132 ""); 3133 #endif 3134