xref: /freebsd/sys/kern/kern_proc.c (revision 6f9c8e5b074419423648ffb89b83fd2f257e90b7)
1 /*-
2  * Copyright (c) 1982, 1986, 1989, 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 4. Neither the name of the University nor the names of its contributors
14  *    may be used to endorse or promote products derived from this software
15  *    without specific prior written permission.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	@(#)kern_proc.c	8.7 (Berkeley) 2/14/95
30  */
31 
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34 
35 #include "opt_compat.h"
36 #include "opt_ddb.h"
37 #include "opt_kdtrace.h"
38 #include "opt_ktrace.h"
39 #include "opt_kstack_pages.h"
40 #include "opt_stack.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/lock.h>
47 #include <sys/loginclass.h>
48 #include <sys/malloc.h>
49 #include <sys/mount.h>
50 #include <sys/mutex.h>
51 #include <sys/proc.h>
52 #include <sys/refcount.h>
53 #include <sys/sbuf.h>
54 #include <sys/sysent.h>
55 #include <sys/sched.h>
56 #include <sys/smp.h>
57 #include <sys/stack.h>
58 #include <sys/sysctl.h>
59 #include <sys/filedesc.h>
60 #include <sys/tty.h>
61 #include <sys/signalvar.h>
62 #include <sys/sdt.h>
63 #include <sys/sx.h>
64 #include <sys/user.h>
65 #include <sys/jail.h>
66 #include <sys/vnode.h>
67 #include <sys/eventhandler.h>
68 
69 #ifdef DDB
70 #include <ddb/ddb.h>
71 #endif
72 
73 #include <vm/vm.h>
74 #include <vm/vm_extern.h>
75 #include <vm/pmap.h>
76 #include <vm/vm_map.h>
77 #include <vm/vm_object.h>
78 #include <vm/uma.h>
79 
80 #ifdef COMPAT_FREEBSD32
81 #include <compat/freebsd32/freebsd32.h>
82 #include <compat/freebsd32/freebsd32_util.h>
83 #endif
84 
85 SDT_PROVIDER_DEFINE(proc);
86 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry);
87 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *");
88 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int");
89 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *");
90 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int");
91 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return);
92 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *");
93 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int");
94 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *");
95 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int");
96 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry);
97 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *");
98 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int");
99 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *");
100 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *");
101 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return);
102 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *");
103 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int");
104 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *");
105 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry);
106 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *");
107 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int");
108 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int");
109 SDT_PROBE_DEFINE(proc, kernel, init, return, return);
110 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *");
111 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int");
112 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int");
113 
114 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header");
115 MALLOC_DEFINE(M_SESSION, "session", "session header");
116 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures");
117 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures");
118 
119 static void doenterpgrp(struct proc *, struct pgrp *);
120 static void orphanpg(struct pgrp *pg);
121 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp);
122 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp);
123 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp,
124     int preferthread);
125 static void pgadjustjobc(struct pgrp *pgrp, int entering);
126 static void pgdelete(struct pgrp *);
127 static int proc_ctor(void *mem, int size, void *arg, int flags);
128 static void proc_dtor(void *mem, int size, void *arg);
129 static int proc_init(void *mem, int size, int flags);
130 static void proc_fini(void *mem, int size);
131 static void pargs_free(struct pargs *pa);
132 
133 /*
134  * Other process lists
135  */
136 struct pidhashhead *pidhashtbl;
137 u_long pidhash;
138 struct pgrphashhead *pgrphashtbl;
139 u_long pgrphash;
140 struct proclist allproc;
141 struct proclist zombproc;
142 struct sx allproc_lock;
143 struct sx proctree_lock;
144 struct mtx ppeers_lock;
145 uma_zone_t proc_zone;
146 
147 int kstack_pages = KSTACK_PAGES;
148 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0,
149     "Kernel stack size in pages");
150 
151 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE);
152 #ifdef COMPAT_FREEBSD32
153 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE);
154 #endif
155 
156 /*
157  * Initialize global process hashing structures.
158  */
159 void
160 procinit()
161 {
162 
163 	sx_init(&allproc_lock, "allproc");
164 	sx_init(&proctree_lock, "proctree");
165 	mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF);
166 	LIST_INIT(&allproc);
167 	LIST_INIT(&zombproc);
168 	pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash);
169 	pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash);
170 	proc_zone = uma_zcreate("PROC", sched_sizeof_proc(),
171 	    proc_ctor, proc_dtor, proc_init, proc_fini,
172 	    UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
173 	uihashinit();
174 }
175 
176 /*
177  * Prepare a proc for use.
178  */
179 static int
180 proc_ctor(void *mem, int size, void *arg, int flags)
181 {
182 	struct proc *p;
183 
184 	p = (struct proc *)mem;
185 	SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0);
186 	EVENTHANDLER_INVOKE(process_ctor, p);
187 	SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0);
188 	return (0);
189 }
190 
191 /*
192  * Reclaim a proc after use.
193  */
194 static void
195 proc_dtor(void *mem, int size, void *arg)
196 {
197 	struct proc *p;
198 	struct thread *td;
199 
200 	/* INVARIANTS checks go here */
201 	p = (struct proc *)mem;
202 	td = FIRST_THREAD_IN_PROC(p);
203 	SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0);
204 	if (td != NULL) {
205 #ifdef INVARIANTS
206 		KASSERT((p->p_numthreads == 1),
207 		    ("bad number of threads in exiting process"));
208 		KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr"));
209 #endif
210 		/* Free all OSD associated to this thread. */
211 		osd_thread_exit(td);
212 	}
213 	EVENTHANDLER_INVOKE(process_dtor, p);
214 	if (p->p_ksi != NULL)
215 		KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue"));
216 	SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0);
217 }
218 
219 /*
220  * Initialize type-stable parts of a proc (when newly created).
221  */
222 static int
223 proc_init(void *mem, int size, int flags)
224 {
225 	struct proc *p;
226 
227 	p = (struct proc *)mem;
228 	SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0);
229 	p->p_sched = (struct p_sched *)&p[1];
230 	bzero(&p->p_mtx, sizeof(struct mtx));
231 	mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK);
232 	mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE);
233 	cv_init(&p->p_pwait, "ppwait");
234 	cv_init(&p->p_dbgwait, "dbgwait");
235 	TAILQ_INIT(&p->p_threads);	     /* all threads in proc */
236 	EVENTHANDLER_INVOKE(process_init, p);
237 	p->p_stats = pstats_alloc();
238 	SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0);
239 	return (0);
240 }
241 
242 /*
243  * UMA should ensure that this function is never called.
244  * Freeing a proc structure would violate type stability.
245  */
246 static void
247 proc_fini(void *mem, int size)
248 {
249 #ifdef notnow
250 	struct proc *p;
251 
252 	p = (struct proc *)mem;
253 	EVENTHANDLER_INVOKE(process_fini, p);
254 	pstats_free(p->p_stats);
255 	thread_free(FIRST_THREAD_IN_PROC(p));
256 	mtx_destroy(&p->p_mtx);
257 	if (p->p_ksi != NULL)
258 		ksiginfo_free(p->p_ksi);
259 #else
260 	panic("proc reclaimed");
261 #endif
262 }
263 
264 /*
265  * Is p an inferior of the current process?
266  */
267 int
268 inferior(p)
269 	register struct proc *p;
270 {
271 
272 	sx_assert(&proctree_lock, SX_LOCKED);
273 	for (; p != curproc; p = p->p_pptr)
274 		if (p->p_pid == 0)
275 			return (0);
276 	return (1);
277 }
278 
279 /*
280  * Locate a process by number; return only "live" processes -- i.e., neither
281  * zombies nor newly born but incompletely initialized processes.  By not
282  * returning processes in the PRS_NEW state, we allow callers to avoid
283  * testing for that condition to avoid dereferencing p_ucred, et al.
284  */
285 struct proc *
286 pfind(pid)
287 	register pid_t pid;
288 {
289 	register struct proc *p;
290 
291 	sx_slock(&allproc_lock);
292 	LIST_FOREACH(p, PIDHASH(pid), p_hash)
293 		if (p->p_pid == pid) {
294 			PROC_LOCK(p);
295 			if (p->p_state == PRS_NEW) {
296 				PROC_UNLOCK(p);
297 				p = NULL;
298 			}
299 			break;
300 		}
301 	sx_sunlock(&allproc_lock);
302 	return (p);
303 }
304 
305 /*
306  * Locate a process group by number.
307  * The caller must hold proctree_lock.
308  */
309 struct pgrp *
310 pgfind(pgid)
311 	register pid_t pgid;
312 {
313 	register struct pgrp *pgrp;
314 
315 	sx_assert(&proctree_lock, SX_LOCKED);
316 
317 	LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) {
318 		if (pgrp->pg_id == pgid) {
319 			PGRP_LOCK(pgrp);
320 			return (pgrp);
321 		}
322 	}
323 	return (NULL);
324 }
325 
326 /*
327  * Create a new process group.
328  * pgid must be equal to the pid of p.
329  * Begin a new session if required.
330  */
331 int
332 enterpgrp(p, pgid, pgrp, sess)
333 	register struct proc *p;
334 	pid_t pgid;
335 	struct pgrp *pgrp;
336 	struct session *sess;
337 {
338 	struct pgrp *pgrp2;
339 
340 	sx_assert(&proctree_lock, SX_XLOCKED);
341 
342 	KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL"));
343 	KASSERT(p->p_pid == pgid,
344 	    ("enterpgrp: new pgrp and pid != pgid"));
345 
346 	pgrp2 = pgfind(pgid);
347 
348 	KASSERT(pgrp2 == NULL,
349 	    ("enterpgrp: pgrp with pgid exists"));
350 	KASSERT(!SESS_LEADER(p),
351 	    ("enterpgrp: session leader attempted setpgrp"));
352 
353 	mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK);
354 
355 	if (sess != NULL) {
356 		/*
357 		 * new session
358 		 */
359 		mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF);
360 		PROC_LOCK(p);
361 		p->p_flag &= ~P_CONTROLT;
362 		PROC_UNLOCK(p);
363 		PGRP_LOCK(pgrp);
364 		sess->s_leader = p;
365 		sess->s_sid = p->p_pid;
366 		refcount_init(&sess->s_count, 1);
367 		sess->s_ttyvp = NULL;
368 		sess->s_ttydp = NULL;
369 		sess->s_ttyp = NULL;
370 		bcopy(p->p_session->s_login, sess->s_login,
371 			    sizeof(sess->s_login));
372 		pgrp->pg_session = sess;
373 		KASSERT(p == curproc,
374 		    ("enterpgrp: mksession and p != curproc"));
375 	} else {
376 		pgrp->pg_session = p->p_session;
377 		sess_hold(pgrp->pg_session);
378 		PGRP_LOCK(pgrp);
379 	}
380 	pgrp->pg_id = pgid;
381 	LIST_INIT(&pgrp->pg_members);
382 
383 	/*
384 	 * As we have an exclusive lock of proctree_lock,
385 	 * this should not deadlock.
386 	 */
387 	LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash);
388 	pgrp->pg_jobc = 0;
389 	SLIST_INIT(&pgrp->pg_sigiolst);
390 	PGRP_UNLOCK(pgrp);
391 
392 	doenterpgrp(p, pgrp);
393 
394 	return (0);
395 }
396 
397 /*
398  * Move p to an existing process group
399  */
400 int
401 enterthispgrp(p, pgrp)
402 	register struct proc *p;
403 	struct pgrp *pgrp;
404 {
405 
406 	sx_assert(&proctree_lock, SX_XLOCKED);
407 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
408 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
409 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
410 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
411 	KASSERT(pgrp->pg_session == p->p_session,
412 		("%s: pgrp's session %p, p->p_session %p.\n",
413 		__func__,
414 		pgrp->pg_session,
415 		p->p_session));
416 	KASSERT(pgrp != p->p_pgrp,
417 		("%s: p belongs to pgrp.", __func__));
418 
419 	doenterpgrp(p, pgrp);
420 
421 	return (0);
422 }
423 
424 /*
425  * Move p to a process group
426  */
427 static void
428 doenterpgrp(p, pgrp)
429 	struct proc *p;
430 	struct pgrp *pgrp;
431 {
432 	struct pgrp *savepgrp;
433 
434 	sx_assert(&proctree_lock, SX_XLOCKED);
435 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
436 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
437 	PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED);
438 	SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED);
439 
440 	savepgrp = p->p_pgrp;
441 
442 	/*
443 	 * Adjust eligibility of affected pgrps to participate in job control.
444 	 * Increment eligibility counts before decrementing, otherwise we
445 	 * could reach 0 spuriously during the first call.
446 	 */
447 	fixjobc(p, pgrp, 1);
448 	fixjobc(p, p->p_pgrp, 0);
449 
450 	PGRP_LOCK(pgrp);
451 	PGRP_LOCK(savepgrp);
452 	PROC_LOCK(p);
453 	LIST_REMOVE(p, p_pglist);
454 	p->p_pgrp = pgrp;
455 	PROC_UNLOCK(p);
456 	LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist);
457 	PGRP_UNLOCK(savepgrp);
458 	PGRP_UNLOCK(pgrp);
459 	if (LIST_EMPTY(&savepgrp->pg_members))
460 		pgdelete(savepgrp);
461 }
462 
463 /*
464  * remove process from process group
465  */
466 int
467 leavepgrp(p)
468 	register struct proc *p;
469 {
470 	struct pgrp *savepgrp;
471 
472 	sx_assert(&proctree_lock, SX_XLOCKED);
473 	savepgrp = p->p_pgrp;
474 	PGRP_LOCK(savepgrp);
475 	PROC_LOCK(p);
476 	LIST_REMOVE(p, p_pglist);
477 	p->p_pgrp = NULL;
478 	PROC_UNLOCK(p);
479 	PGRP_UNLOCK(savepgrp);
480 	if (LIST_EMPTY(&savepgrp->pg_members))
481 		pgdelete(savepgrp);
482 	return (0);
483 }
484 
485 /*
486  * delete a process group
487  */
488 static void
489 pgdelete(pgrp)
490 	register struct pgrp *pgrp;
491 {
492 	struct session *savesess;
493 	struct tty *tp;
494 
495 	sx_assert(&proctree_lock, SX_XLOCKED);
496 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
497 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
498 
499 	/*
500 	 * Reset any sigio structures pointing to us as a result of
501 	 * F_SETOWN with our pgid.
502 	 */
503 	funsetownlst(&pgrp->pg_sigiolst);
504 
505 	PGRP_LOCK(pgrp);
506 	tp = pgrp->pg_session->s_ttyp;
507 	LIST_REMOVE(pgrp, pg_hash);
508 	savesess = pgrp->pg_session;
509 	PGRP_UNLOCK(pgrp);
510 
511 	/* Remove the reference to the pgrp before deallocating it. */
512 	if (tp != NULL) {
513 		tty_lock(tp);
514 		tty_rel_pgrp(tp, pgrp);
515 	}
516 
517 	mtx_destroy(&pgrp->pg_mtx);
518 	free(pgrp, M_PGRP);
519 	sess_release(savesess);
520 }
521 
522 static void
523 pgadjustjobc(pgrp, entering)
524 	struct pgrp *pgrp;
525 	int entering;
526 {
527 
528 	PGRP_LOCK(pgrp);
529 	if (entering)
530 		pgrp->pg_jobc++;
531 	else {
532 		--pgrp->pg_jobc;
533 		if (pgrp->pg_jobc == 0)
534 			orphanpg(pgrp);
535 	}
536 	PGRP_UNLOCK(pgrp);
537 }
538 
539 /*
540  * Adjust pgrp jobc counters when specified process changes process group.
541  * We count the number of processes in each process group that "qualify"
542  * the group for terminal job control (those with a parent in a different
543  * process group of the same session).  If that count reaches zero, the
544  * process group becomes orphaned.  Check both the specified process'
545  * process group and that of its children.
546  * entering == 0 => p is leaving specified group.
547  * entering == 1 => p is entering specified group.
548  */
549 void
550 fixjobc(p, pgrp, entering)
551 	register struct proc *p;
552 	register struct pgrp *pgrp;
553 	int entering;
554 {
555 	register struct pgrp *hispgrp;
556 	register struct session *mysession;
557 
558 	sx_assert(&proctree_lock, SX_LOCKED);
559 	PROC_LOCK_ASSERT(p, MA_NOTOWNED);
560 	PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED);
561 	SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED);
562 
563 	/*
564 	 * Check p's parent to see whether p qualifies its own process
565 	 * group; if so, adjust count for p's process group.
566 	 */
567 	mysession = pgrp->pg_session;
568 	if ((hispgrp = p->p_pptr->p_pgrp) != pgrp &&
569 	    hispgrp->pg_session == mysession)
570 		pgadjustjobc(pgrp, entering);
571 
572 	/*
573 	 * Check this process' children to see whether they qualify
574 	 * their process groups; if so, adjust counts for children's
575 	 * process groups.
576 	 */
577 	LIST_FOREACH(p, &p->p_children, p_sibling) {
578 		hispgrp = p->p_pgrp;
579 		if (hispgrp == pgrp ||
580 		    hispgrp->pg_session != mysession)
581 			continue;
582 		PROC_LOCK(p);
583 		if (p->p_state == PRS_ZOMBIE) {
584 			PROC_UNLOCK(p);
585 			continue;
586 		}
587 		PROC_UNLOCK(p);
588 		pgadjustjobc(hispgrp, entering);
589 	}
590 }
591 
592 /*
593  * A process group has become orphaned;
594  * if there are any stopped processes in the group,
595  * hang-up all process in that group.
596  */
597 static void
598 orphanpg(pg)
599 	struct pgrp *pg;
600 {
601 	register struct proc *p;
602 
603 	PGRP_LOCK_ASSERT(pg, MA_OWNED);
604 
605 	LIST_FOREACH(p, &pg->pg_members, p_pglist) {
606 		PROC_LOCK(p);
607 		if (P_SHOULDSTOP(p)) {
608 			PROC_UNLOCK(p);
609 			LIST_FOREACH(p, &pg->pg_members, p_pglist) {
610 				PROC_LOCK(p);
611 				psignal(p, SIGHUP);
612 				psignal(p, SIGCONT);
613 				PROC_UNLOCK(p);
614 			}
615 			return;
616 		}
617 		PROC_UNLOCK(p);
618 	}
619 }
620 
621 void
622 sess_hold(struct session *s)
623 {
624 
625 	refcount_acquire(&s->s_count);
626 }
627 
628 void
629 sess_release(struct session *s)
630 {
631 
632 	if (refcount_release(&s->s_count)) {
633 		if (s->s_ttyp != NULL) {
634 			tty_lock(s->s_ttyp);
635 			tty_rel_sess(s->s_ttyp, s);
636 		}
637 		mtx_destroy(&s->s_mtx);
638 		free(s, M_SESSION);
639 	}
640 }
641 
642 #include "opt_ddb.h"
643 #ifdef DDB
644 #include <ddb/ddb.h>
645 
646 DB_SHOW_COMMAND(pgrpdump, pgrpdump)
647 {
648 	register struct pgrp *pgrp;
649 	register struct proc *p;
650 	register int i;
651 
652 	for (i = 0; i <= pgrphash; i++) {
653 		if (!LIST_EMPTY(&pgrphashtbl[i])) {
654 			printf("\tindx %d\n", i);
655 			LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) {
656 				printf(
657 			"\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n",
658 				    (void *)pgrp, (long)pgrp->pg_id,
659 				    (void *)pgrp->pg_session,
660 				    pgrp->pg_session->s_count,
661 				    (void *)LIST_FIRST(&pgrp->pg_members));
662 				LIST_FOREACH(p, &pgrp->pg_members, p_pglist) {
663 					printf("\t\tpid %ld addr %p pgrp %p\n",
664 					    (long)p->p_pid, (void *)p,
665 					    (void *)p->p_pgrp);
666 				}
667 			}
668 		}
669 	}
670 }
671 #endif /* DDB */
672 
673 /*
674  * Calculate the kinfo_proc members which contain process-wide
675  * informations.
676  * Must be called with the target process locked.
677  */
678 static void
679 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp)
680 {
681 	struct thread *td;
682 
683 	PROC_LOCK_ASSERT(p, MA_OWNED);
684 
685 	kp->ki_estcpu = 0;
686 	kp->ki_pctcpu = 0;
687 	FOREACH_THREAD_IN_PROC(p, td) {
688 		thread_lock(td);
689 		kp->ki_pctcpu += sched_pctcpu(td);
690 		kp->ki_estcpu += td->td_estcpu;
691 		thread_unlock(td);
692 	}
693 }
694 
695 /*
696  * Clear kinfo_proc and fill in any information that is common
697  * to all threads in the process.
698  * Must be called with the target process locked.
699  */
700 static void
701 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp)
702 {
703 	struct thread *td0;
704 	struct tty *tp;
705 	struct session *sp;
706 	struct ucred *cred;
707 	struct sigacts *ps;
708 
709 	PROC_LOCK_ASSERT(p, MA_OWNED);
710 	bzero(kp, sizeof(*kp));
711 
712 	kp->ki_structsize = sizeof(*kp);
713 	kp->ki_paddr = p;
714 	kp->ki_addr =/* p->p_addr; */0; /* XXX */
715 	kp->ki_args = p->p_args;
716 	kp->ki_textvp = p->p_textvp;
717 #ifdef KTRACE
718 	kp->ki_tracep = p->p_tracevp;
719 	kp->ki_traceflag = p->p_traceflag;
720 #endif
721 	kp->ki_fd = p->p_fd;
722 	kp->ki_vmspace = p->p_vmspace;
723 	kp->ki_flag = p->p_flag;
724 	cred = p->p_ucred;
725 	if (cred) {
726 		kp->ki_uid = cred->cr_uid;
727 		kp->ki_ruid = cred->cr_ruid;
728 		kp->ki_svuid = cred->cr_svuid;
729 		kp->ki_cr_flags = 0;
730 		if (cred->cr_flags & CRED_FLAG_CAPMODE)
731 			kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE;
732 		/* XXX bde doesn't like KI_NGROUPS */
733 		if (cred->cr_ngroups > KI_NGROUPS) {
734 			kp->ki_ngroups = KI_NGROUPS;
735 			kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
736 		} else
737 			kp->ki_ngroups = cred->cr_ngroups;
738 		bcopy(cred->cr_groups, kp->ki_groups,
739 		    kp->ki_ngroups * sizeof(gid_t));
740 		kp->ki_rgid = cred->cr_rgid;
741 		kp->ki_svgid = cred->cr_svgid;
742 		/* If jailed(cred), emulate the old P_JAILED flag. */
743 		if (jailed(cred)) {
744 			kp->ki_flag |= P_JAILED;
745 			/* If inside the jail, use 0 as a jail ID. */
746 			if (cred->cr_prison != curthread->td_ucred->cr_prison)
747 				kp->ki_jid = cred->cr_prison->pr_id;
748 		}
749 		strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name,
750 		    sizeof(kp->ki_loginclass));
751 	}
752 	ps = p->p_sigacts;
753 	if (ps) {
754 		mtx_lock(&ps->ps_mtx);
755 		kp->ki_sigignore = ps->ps_sigignore;
756 		kp->ki_sigcatch = ps->ps_sigcatch;
757 		mtx_unlock(&ps->ps_mtx);
758 	}
759 	if (p->p_state != PRS_NEW &&
760 	    p->p_state != PRS_ZOMBIE &&
761 	    p->p_vmspace != NULL) {
762 		struct vmspace *vm = p->p_vmspace;
763 
764 		kp->ki_size = vm->vm_map.size;
765 		kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/
766 		FOREACH_THREAD_IN_PROC(p, td0) {
767 			if (!TD_IS_SWAPPED(td0))
768 				kp->ki_rssize += td0->td_kstack_pages;
769 		}
770 		kp->ki_swrss = vm->vm_swrss;
771 		kp->ki_tsize = vm->vm_tsize;
772 		kp->ki_dsize = vm->vm_dsize;
773 		kp->ki_ssize = vm->vm_ssize;
774 	} else if (p->p_state == PRS_ZOMBIE)
775 		kp->ki_stat = SZOMB;
776 	if (kp->ki_flag & P_INMEM)
777 		kp->ki_sflag = PS_INMEM;
778 	else
779 		kp->ki_sflag = 0;
780 	/* Calculate legacy swtime as seconds since 'swtick'. */
781 	kp->ki_swtime = (ticks - p->p_swtick) / hz;
782 	kp->ki_pid = p->p_pid;
783 	kp->ki_nice = p->p_nice;
784 	kp->ki_start = p->p_stats->p_start;
785 	timevaladd(&kp->ki_start, &boottime);
786 	PROC_SLOCK(p);
787 	rufetch(p, &kp->ki_rusage);
788 	kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime);
789 	calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime);
790 	PROC_SUNLOCK(p);
791 	calccru(p, &kp->ki_childutime, &kp->ki_childstime);
792 	/* Some callers want child times in a single value. */
793 	kp->ki_childtime = kp->ki_childstime;
794 	timevaladd(&kp->ki_childtime, &kp->ki_childutime);
795 
796 	tp = NULL;
797 	if (p->p_pgrp) {
798 		kp->ki_pgid = p->p_pgrp->pg_id;
799 		kp->ki_jobc = p->p_pgrp->pg_jobc;
800 		sp = p->p_pgrp->pg_session;
801 
802 		if (sp != NULL) {
803 			kp->ki_sid = sp->s_sid;
804 			SESS_LOCK(sp);
805 			strlcpy(kp->ki_login, sp->s_login,
806 			    sizeof(kp->ki_login));
807 			if (sp->s_ttyvp)
808 				kp->ki_kiflag |= KI_CTTY;
809 			if (SESS_LEADER(p))
810 				kp->ki_kiflag |= KI_SLEADER;
811 			/* XXX proctree_lock */
812 			tp = sp->s_ttyp;
813 			SESS_UNLOCK(sp);
814 		}
815 	}
816 	if ((p->p_flag & P_CONTROLT) && tp != NULL) {
817 		kp->ki_tdev = tty_udev(tp);
818 		kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID;
819 		if (tp->t_session)
820 			kp->ki_tsid = tp->t_session->s_sid;
821 	} else
822 		kp->ki_tdev = NODEV;
823 	if (p->p_comm[0] != '\0')
824 		strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm));
825 	if (p->p_sysent && p->p_sysent->sv_name != NULL &&
826 	    p->p_sysent->sv_name[0] != '\0')
827 		strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul));
828 	kp->ki_siglist = p->p_siglist;
829 	kp->ki_xstat = p->p_xstat;
830 	kp->ki_acflag = p->p_acflag;
831 	kp->ki_lock = p->p_lock;
832 	if (p->p_pptr)
833 		kp->ki_ppid = p->p_pptr->p_pid;
834 }
835 
836 /*
837  * Fill in information that is thread specific.  Must be called with
838  * target process locked.  If 'preferthread' is set, overwrite certain
839  * process-related fields that are maintained for both threads and
840  * processes.
841  */
842 static void
843 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread)
844 {
845 	struct proc *p;
846 
847 	p = td->td_proc;
848 	kp->ki_tdaddr = td;
849 	PROC_LOCK_ASSERT(p, MA_OWNED);
850 
851 	thread_lock(td);
852 	if (td->td_wmesg != NULL)
853 		strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg));
854 	else
855 		bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg));
856 	strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm));
857 	if (TD_ON_LOCK(td)) {
858 		kp->ki_kiflag |= KI_LOCKBLOCK;
859 		strlcpy(kp->ki_lockname, td->td_lockname,
860 		    sizeof(kp->ki_lockname));
861 	} else {
862 		kp->ki_kiflag &= ~KI_LOCKBLOCK;
863 		bzero(kp->ki_lockname, sizeof(kp->ki_lockname));
864 	}
865 
866 	if (p->p_state == PRS_NORMAL) { /* approximate. */
867 		if (TD_ON_RUNQ(td) ||
868 		    TD_CAN_RUN(td) ||
869 		    TD_IS_RUNNING(td)) {
870 			kp->ki_stat = SRUN;
871 		} else if (P_SHOULDSTOP(p)) {
872 			kp->ki_stat = SSTOP;
873 		} else if (TD_IS_SLEEPING(td)) {
874 			kp->ki_stat = SSLEEP;
875 		} else if (TD_ON_LOCK(td)) {
876 			kp->ki_stat = SLOCK;
877 		} else {
878 			kp->ki_stat = SWAIT;
879 		}
880 	} else if (p->p_state == PRS_ZOMBIE) {
881 		kp->ki_stat = SZOMB;
882 	} else {
883 		kp->ki_stat = SIDL;
884 	}
885 
886 	/* Things in the thread */
887 	kp->ki_wchan = td->td_wchan;
888 	kp->ki_pri.pri_level = td->td_priority;
889 	kp->ki_pri.pri_native = td->td_base_pri;
890 	kp->ki_lastcpu = td->td_lastcpu;
891 	kp->ki_oncpu = td->td_oncpu;
892 	kp->ki_tdflags = td->td_flags;
893 	kp->ki_tid = td->td_tid;
894 	kp->ki_numthreads = p->p_numthreads;
895 	kp->ki_pcb = td->td_pcb;
896 	kp->ki_kstack = (void *)td->td_kstack;
897 	kp->ki_slptime = (ticks - td->td_slptick) / hz;
898 	kp->ki_pri.pri_class = td->td_pri_class;
899 	kp->ki_pri.pri_user = td->td_user_pri;
900 
901 	if (preferthread) {
902 		kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime);
903 		kp->ki_pctcpu = sched_pctcpu(td);
904 		kp->ki_estcpu = td->td_estcpu;
905 	}
906 
907 	/* We can't get this anymore but ps etc never used it anyway. */
908 	kp->ki_rqindex = 0;
909 
910 	if (preferthread)
911 		kp->ki_siglist = td->td_siglist;
912 	kp->ki_sigmask = td->td_sigmask;
913 	thread_unlock(td);
914 }
915 
916 /*
917  * Fill in a kinfo_proc structure for the specified process.
918  * Must be called with the target process locked.
919  */
920 void
921 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp)
922 {
923 
924 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
925 
926 	fill_kinfo_proc_only(p, kp);
927 	fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0);
928 	fill_kinfo_aggregate(p, kp);
929 }
930 
931 struct pstats *
932 pstats_alloc(void)
933 {
934 
935 	return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK));
936 }
937 
938 /*
939  * Copy parts of p_stats; zero the rest of p_stats (statistics).
940  */
941 void
942 pstats_fork(struct pstats *src, struct pstats *dst)
943 {
944 
945 	bzero(&dst->pstat_startzero,
946 	    __rangeof(struct pstats, pstat_startzero, pstat_endzero));
947 	bcopy(&src->pstat_startcopy, &dst->pstat_startcopy,
948 	    __rangeof(struct pstats, pstat_startcopy, pstat_endcopy));
949 }
950 
951 void
952 pstats_free(struct pstats *ps)
953 {
954 
955 	free(ps, M_SUBPROC);
956 }
957 
958 /*
959  * Locate a zombie process by number
960  */
961 struct proc *
962 zpfind(pid_t pid)
963 {
964 	struct proc *p;
965 
966 	sx_slock(&allproc_lock);
967 	LIST_FOREACH(p, &zombproc, p_list)
968 		if (p->p_pid == pid) {
969 			PROC_LOCK(p);
970 			break;
971 		}
972 	sx_sunlock(&allproc_lock);
973 	return (p);
974 }
975 
976 #define KERN_PROC_ZOMBMASK	0x3
977 #define KERN_PROC_NOTHREADS	0x4
978 
979 #ifdef COMPAT_FREEBSD32
980 
981 /*
982  * This function is typically used to copy out the kernel address, so
983  * it can be replaced by assignment of zero.
984  */
985 static inline uint32_t
986 ptr32_trim(void *ptr)
987 {
988 	uintptr_t uptr;
989 
990 	uptr = (uintptr_t)ptr;
991 	return ((uptr > UINT_MAX) ? 0 : uptr);
992 }
993 
994 #define PTRTRIM_CP(src,dst,fld) \
995 	do { (dst).fld = ptr32_trim((src).fld); } while (0)
996 
997 static void
998 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32)
999 {
1000 	int i;
1001 
1002 	bzero(ki32, sizeof(struct kinfo_proc32));
1003 	ki32->ki_structsize = sizeof(struct kinfo_proc32);
1004 	CP(*ki, *ki32, ki_layout);
1005 	PTRTRIM_CP(*ki, *ki32, ki_args);
1006 	PTRTRIM_CP(*ki, *ki32, ki_paddr);
1007 	PTRTRIM_CP(*ki, *ki32, ki_addr);
1008 	PTRTRIM_CP(*ki, *ki32, ki_tracep);
1009 	PTRTRIM_CP(*ki, *ki32, ki_textvp);
1010 	PTRTRIM_CP(*ki, *ki32, ki_fd);
1011 	PTRTRIM_CP(*ki, *ki32, ki_vmspace);
1012 	PTRTRIM_CP(*ki, *ki32, ki_wchan);
1013 	CP(*ki, *ki32, ki_pid);
1014 	CP(*ki, *ki32, ki_ppid);
1015 	CP(*ki, *ki32, ki_pgid);
1016 	CP(*ki, *ki32, ki_tpgid);
1017 	CP(*ki, *ki32, ki_sid);
1018 	CP(*ki, *ki32, ki_tsid);
1019 	CP(*ki, *ki32, ki_jobc);
1020 	CP(*ki, *ki32, ki_tdev);
1021 	CP(*ki, *ki32, ki_siglist);
1022 	CP(*ki, *ki32, ki_sigmask);
1023 	CP(*ki, *ki32, ki_sigignore);
1024 	CP(*ki, *ki32, ki_sigcatch);
1025 	CP(*ki, *ki32, ki_uid);
1026 	CP(*ki, *ki32, ki_ruid);
1027 	CP(*ki, *ki32, ki_svuid);
1028 	CP(*ki, *ki32, ki_rgid);
1029 	CP(*ki, *ki32, ki_svgid);
1030 	CP(*ki, *ki32, ki_ngroups);
1031 	for (i = 0; i < KI_NGROUPS; i++)
1032 		CP(*ki, *ki32, ki_groups[i]);
1033 	CP(*ki, *ki32, ki_size);
1034 	CP(*ki, *ki32, ki_rssize);
1035 	CP(*ki, *ki32, ki_swrss);
1036 	CP(*ki, *ki32, ki_tsize);
1037 	CP(*ki, *ki32, ki_dsize);
1038 	CP(*ki, *ki32, ki_ssize);
1039 	CP(*ki, *ki32, ki_xstat);
1040 	CP(*ki, *ki32, ki_acflag);
1041 	CP(*ki, *ki32, ki_pctcpu);
1042 	CP(*ki, *ki32, ki_estcpu);
1043 	CP(*ki, *ki32, ki_slptime);
1044 	CP(*ki, *ki32, ki_swtime);
1045 	CP(*ki, *ki32, ki_runtime);
1046 	TV_CP(*ki, *ki32, ki_start);
1047 	TV_CP(*ki, *ki32, ki_childtime);
1048 	CP(*ki, *ki32, ki_flag);
1049 	CP(*ki, *ki32, ki_kiflag);
1050 	CP(*ki, *ki32, ki_traceflag);
1051 	CP(*ki, *ki32, ki_stat);
1052 	CP(*ki, *ki32, ki_nice);
1053 	CP(*ki, *ki32, ki_lock);
1054 	CP(*ki, *ki32, ki_rqindex);
1055 	CP(*ki, *ki32, ki_oncpu);
1056 	CP(*ki, *ki32, ki_lastcpu);
1057 	bcopy(ki->ki_ocomm, ki32->ki_ocomm, OCOMMLEN + 1);
1058 	bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1);
1059 	bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1);
1060 	bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1);
1061 	bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1);
1062 	bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1);
1063 	bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1);
1064 	CP(*ki, *ki32, ki_cr_flags);
1065 	CP(*ki, *ki32, ki_jid);
1066 	CP(*ki, *ki32, ki_numthreads);
1067 	CP(*ki, *ki32, ki_tid);
1068 	CP(*ki, *ki32, ki_pri);
1069 	freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage);
1070 	freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch);
1071 	PTRTRIM_CP(*ki, *ki32, ki_pcb);
1072 	PTRTRIM_CP(*ki, *ki32, ki_kstack);
1073 	PTRTRIM_CP(*ki, *ki32, ki_udata);
1074 	CP(*ki, *ki32, ki_sflag);
1075 	CP(*ki, *ki32, ki_tdflags);
1076 }
1077 
1078 static int
1079 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1080 {
1081 	struct kinfo_proc32 ki32;
1082 	int error;
1083 
1084 	if (req->flags & SCTL_MASK32) {
1085 		freebsd32_kinfo_proc_out(ki, &ki32);
1086 		error = SYSCTL_OUT(req, &ki32, sizeof(struct kinfo_proc32));
1087 	} else
1088 		error = SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc));
1089 	return (error);
1090 }
1091 #else
1092 static int
1093 sysctl_out_proc_copyout(struct kinfo_proc *ki, struct sysctl_req *req)
1094 {
1095 
1096 	return (SYSCTL_OUT(req, ki, sizeof(struct kinfo_proc)));
1097 }
1098 #endif
1099 
1100 /*
1101  * Must be called with the process locked and will return with it unlocked.
1102  */
1103 static int
1104 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags)
1105 {
1106 	struct thread *td;
1107 	struct kinfo_proc kinfo_proc;
1108 	int error = 0;
1109 	struct proc *np;
1110 	pid_t pid = p->p_pid;
1111 
1112 	PROC_LOCK_ASSERT(p, MA_OWNED);
1113 	MPASS(FIRST_THREAD_IN_PROC(p) != NULL);
1114 
1115 	fill_kinfo_proc(p, &kinfo_proc);
1116 	if (flags & KERN_PROC_NOTHREADS)
1117 		error = sysctl_out_proc_copyout(&kinfo_proc, req);
1118 	else {
1119 		FOREACH_THREAD_IN_PROC(p, td) {
1120 			fill_kinfo_thread(td, &kinfo_proc, 1);
1121 			error = sysctl_out_proc_copyout(&kinfo_proc, req);
1122 			if (error)
1123 				break;
1124 		}
1125 	}
1126 	PROC_UNLOCK(p);
1127 	if (error)
1128 		return (error);
1129 	if (flags & KERN_PROC_ZOMBMASK)
1130 		np = zpfind(pid);
1131 	else {
1132 		if (pid == 0)
1133 			return (0);
1134 		np = pfind(pid);
1135 	}
1136 	if (np == NULL)
1137 		return (ESRCH);
1138 	if (np != p) {
1139 		PROC_UNLOCK(np);
1140 		return (ESRCH);
1141 	}
1142 	PROC_UNLOCK(np);
1143 	return (0);
1144 }
1145 
1146 static int
1147 sysctl_kern_proc(SYSCTL_HANDLER_ARGS)
1148 {
1149 	int *name = (int*) arg1;
1150 	u_int namelen = arg2;
1151 	struct proc *p;
1152 	int flags, doingzomb, oid_number;
1153 	int error = 0;
1154 
1155 	oid_number = oidp->oid_number;
1156 	if (oid_number != KERN_PROC_ALL &&
1157 	    (oid_number & KERN_PROC_INC_THREAD) == 0)
1158 		flags = KERN_PROC_NOTHREADS;
1159 	else {
1160 		flags = 0;
1161 		oid_number &= ~KERN_PROC_INC_THREAD;
1162 	}
1163 	if (oid_number == KERN_PROC_PID) {
1164 		if (namelen != 1)
1165 			return (EINVAL);
1166 		error = sysctl_wire_old_buffer(req, 0);
1167 		if (error)
1168 			return (error);
1169 		p = pfind((pid_t)name[0]);
1170 		if (!p)
1171 			return (ESRCH);
1172 		if ((error = p_cansee(curthread, p))) {
1173 			PROC_UNLOCK(p);
1174 			return (error);
1175 		}
1176 		error = sysctl_out_proc(p, req, flags);
1177 		return (error);
1178 	}
1179 
1180 	switch (oid_number) {
1181 	case KERN_PROC_ALL:
1182 		if (namelen != 0)
1183 			return (EINVAL);
1184 		break;
1185 	case KERN_PROC_PROC:
1186 		if (namelen != 0 && namelen != 1)
1187 			return (EINVAL);
1188 		break;
1189 	default:
1190 		if (namelen != 1)
1191 			return (EINVAL);
1192 		break;
1193 	}
1194 
1195 	if (!req->oldptr) {
1196 		/* overestimate by 5 procs */
1197 		error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5);
1198 		if (error)
1199 			return (error);
1200 	}
1201 	error = sysctl_wire_old_buffer(req, 0);
1202 	if (error != 0)
1203 		return (error);
1204 	sx_slock(&allproc_lock);
1205 	for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) {
1206 		if (!doingzomb)
1207 			p = LIST_FIRST(&allproc);
1208 		else
1209 			p = LIST_FIRST(&zombproc);
1210 		for (; p != 0; p = LIST_NEXT(p, p_list)) {
1211 			/*
1212 			 * Skip embryonic processes.
1213 			 */
1214 			PROC_LOCK(p);
1215 			if (p->p_state == PRS_NEW) {
1216 				PROC_UNLOCK(p);
1217 				continue;
1218 			}
1219 			KASSERT(p->p_ucred != NULL,
1220 			    ("process credential is NULL for non-NEW proc"));
1221 			/*
1222 			 * Show a user only appropriate processes.
1223 			 */
1224 			if (p_cansee(curthread, p)) {
1225 				PROC_UNLOCK(p);
1226 				continue;
1227 			}
1228 			/*
1229 			 * TODO - make more efficient (see notes below).
1230 			 * do by session.
1231 			 */
1232 			switch (oid_number) {
1233 
1234 			case KERN_PROC_GID:
1235 				if (p->p_ucred->cr_gid != (gid_t)name[0]) {
1236 					PROC_UNLOCK(p);
1237 					continue;
1238 				}
1239 				break;
1240 
1241 			case KERN_PROC_PGRP:
1242 				/* could do this by traversing pgrp */
1243 				if (p->p_pgrp == NULL ||
1244 				    p->p_pgrp->pg_id != (pid_t)name[0]) {
1245 					PROC_UNLOCK(p);
1246 					continue;
1247 				}
1248 				break;
1249 
1250 			case KERN_PROC_RGID:
1251 				if (p->p_ucred->cr_rgid != (gid_t)name[0]) {
1252 					PROC_UNLOCK(p);
1253 					continue;
1254 				}
1255 				break;
1256 
1257 			case KERN_PROC_SESSION:
1258 				if (p->p_session == NULL ||
1259 				    p->p_session->s_sid != (pid_t)name[0]) {
1260 					PROC_UNLOCK(p);
1261 					continue;
1262 				}
1263 				break;
1264 
1265 			case KERN_PROC_TTY:
1266 				if ((p->p_flag & P_CONTROLT) == 0 ||
1267 				    p->p_session == NULL) {
1268 					PROC_UNLOCK(p);
1269 					continue;
1270 				}
1271 				/* XXX proctree_lock */
1272 				SESS_LOCK(p->p_session);
1273 				if (p->p_session->s_ttyp == NULL ||
1274 				    tty_udev(p->p_session->s_ttyp) !=
1275 				    (dev_t)name[0]) {
1276 					SESS_UNLOCK(p->p_session);
1277 					PROC_UNLOCK(p);
1278 					continue;
1279 				}
1280 				SESS_UNLOCK(p->p_session);
1281 				break;
1282 
1283 			case KERN_PROC_UID:
1284 				if (p->p_ucred->cr_uid != (uid_t)name[0]) {
1285 					PROC_UNLOCK(p);
1286 					continue;
1287 				}
1288 				break;
1289 
1290 			case KERN_PROC_RUID:
1291 				if (p->p_ucred->cr_ruid != (uid_t)name[0]) {
1292 					PROC_UNLOCK(p);
1293 					continue;
1294 				}
1295 				break;
1296 
1297 			case KERN_PROC_PROC:
1298 				break;
1299 
1300 			default:
1301 				break;
1302 
1303 			}
1304 
1305 			error = sysctl_out_proc(p, req, flags | doingzomb);
1306 			if (error) {
1307 				sx_sunlock(&allproc_lock);
1308 				return (error);
1309 			}
1310 		}
1311 	}
1312 	sx_sunlock(&allproc_lock);
1313 	return (0);
1314 }
1315 
1316 struct pargs *
1317 pargs_alloc(int len)
1318 {
1319 	struct pargs *pa;
1320 
1321 	pa = malloc(sizeof(struct pargs) + len, M_PARGS,
1322 		M_WAITOK);
1323 	refcount_init(&pa->ar_ref, 1);
1324 	pa->ar_length = len;
1325 	return (pa);
1326 }
1327 
1328 static void
1329 pargs_free(struct pargs *pa)
1330 {
1331 
1332 	free(pa, M_PARGS);
1333 }
1334 
1335 void
1336 pargs_hold(struct pargs *pa)
1337 {
1338 
1339 	if (pa == NULL)
1340 		return;
1341 	refcount_acquire(&pa->ar_ref);
1342 }
1343 
1344 void
1345 pargs_drop(struct pargs *pa)
1346 {
1347 
1348 	if (pa == NULL)
1349 		return;
1350 	if (refcount_release(&pa->ar_ref))
1351 		pargs_free(pa);
1352 }
1353 
1354 /*
1355  * This sysctl allows a process to retrieve the argument list or process
1356  * title for another process without groping around in the address space
1357  * of the other process.  It also allow a process to set its own "process
1358  * title to a string of its own choice.
1359  */
1360 static int
1361 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS)
1362 {
1363 	int *name = (int*) arg1;
1364 	u_int namelen = arg2;
1365 	struct pargs *newpa, *pa;
1366 	struct proc *p;
1367 	int error = 0;
1368 
1369 	if (namelen != 1)
1370 		return (EINVAL);
1371 
1372 	p = pfind((pid_t)name[0]);
1373 	if (!p)
1374 		return (ESRCH);
1375 
1376 	if ((error = p_cansee(curthread, p)) != 0) {
1377 		PROC_UNLOCK(p);
1378 		return (error);
1379 	}
1380 
1381 	if (req->newptr && curproc != p) {
1382 		PROC_UNLOCK(p);
1383 		return (EPERM);
1384 	}
1385 
1386 	pa = p->p_args;
1387 	pargs_hold(pa);
1388 	PROC_UNLOCK(p);
1389 	if (req->oldptr != NULL && pa != NULL)
1390 		error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length);
1391 	pargs_drop(pa);
1392 	if (error != 0 || req->newptr == NULL)
1393 		return (error);
1394 
1395 	if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit)
1396 		return (ENOMEM);
1397 	newpa = pargs_alloc(req->newlen);
1398 	error = SYSCTL_IN(req, newpa->ar_args, req->newlen);
1399 	if (error != 0) {
1400 		pargs_free(newpa);
1401 		return (error);
1402 	}
1403 	PROC_LOCK(p);
1404 	pa = p->p_args;
1405 	p->p_args = newpa;
1406 	PROC_UNLOCK(p);
1407 	pargs_drop(pa);
1408 	return (0);
1409 }
1410 
1411 /*
1412  * This sysctl allows a process to retrieve the path of the executable for
1413  * itself or another process.
1414  */
1415 static int
1416 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS)
1417 {
1418 	pid_t *pidp = (pid_t *)arg1;
1419 	unsigned int arglen = arg2;
1420 	struct proc *p;
1421 	struct vnode *vp;
1422 	char *retbuf, *freebuf;
1423 	int error, vfslocked;
1424 
1425 	if (arglen != 1)
1426 		return (EINVAL);
1427 	if (*pidp == -1) {	/* -1 means this process */
1428 		p = req->td->td_proc;
1429 	} else {
1430 		p = pfind(*pidp);
1431 		if (p == NULL)
1432 			return (ESRCH);
1433 		if ((error = p_cansee(curthread, p)) != 0) {
1434 			PROC_UNLOCK(p);
1435 			return (error);
1436 		}
1437 	}
1438 
1439 	vp = p->p_textvp;
1440 	if (vp == NULL) {
1441 		if (*pidp != -1)
1442 			PROC_UNLOCK(p);
1443 		return (0);
1444 	}
1445 	vref(vp);
1446 	if (*pidp != -1)
1447 		PROC_UNLOCK(p);
1448 	error = vn_fullpath(req->td, vp, &retbuf, &freebuf);
1449 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1450 	vrele(vp);
1451 	VFS_UNLOCK_GIANT(vfslocked);
1452 	if (error)
1453 		return (error);
1454 	error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1);
1455 	free(freebuf, M_TEMP);
1456 	return (error);
1457 }
1458 
1459 static int
1460 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS)
1461 {
1462 	struct proc *p;
1463 	char *sv_name;
1464 	int *name;
1465 	int namelen;
1466 	int error;
1467 
1468 	namelen = arg2;
1469 	if (namelen != 1)
1470 		return (EINVAL);
1471 
1472 	name = (int *)arg1;
1473 	if ((p = pfind((pid_t)name[0])) == NULL)
1474 		return (ESRCH);
1475 	if ((error = p_cansee(curthread, p))) {
1476 		PROC_UNLOCK(p);
1477 		return (error);
1478 	}
1479 	sv_name = p->p_sysent->sv_name;
1480 	PROC_UNLOCK(p);
1481 	return (sysctl_handle_string(oidp, sv_name, 0, req));
1482 }
1483 
1484 #ifdef KINFO_OVMENTRY_SIZE
1485 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE);
1486 #endif
1487 
1488 #ifdef COMPAT_FREEBSD7
1489 static int
1490 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS)
1491 {
1492 	vm_map_entry_t entry, tmp_entry;
1493 	unsigned int last_timestamp;
1494 	char *fullpath, *freepath;
1495 	struct kinfo_ovmentry *kve;
1496 	struct vattr va;
1497 	struct ucred *cred;
1498 	int error, *name;
1499 	struct vnode *vp;
1500 	struct proc *p;
1501 	vm_map_t map;
1502 	struct vmspace *vm;
1503 
1504 	name = (int *)arg1;
1505 	if ((p = pfind((pid_t)name[0])) == NULL)
1506 		return (ESRCH);
1507 	if (p->p_flag & P_WEXIT) {
1508 		PROC_UNLOCK(p);
1509 		return (ESRCH);
1510 	}
1511 	if ((error = p_candebug(curthread, p))) {
1512 		PROC_UNLOCK(p);
1513 		return (error);
1514 	}
1515 	_PHOLD(p);
1516 	PROC_UNLOCK(p);
1517 	vm = vmspace_acquire_ref(p);
1518 	if (vm == NULL) {
1519 		PRELE(p);
1520 		return (ESRCH);
1521 	}
1522 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1523 
1524 	map = &p->p_vmspace->vm_map;	/* XXXRW: More locking required? */
1525 	vm_map_lock_read(map);
1526 	for (entry = map->header.next; entry != &map->header;
1527 	    entry = entry->next) {
1528 		vm_object_t obj, tobj, lobj;
1529 		vm_offset_t addr;
1530 		int vfslocked;
1531 
1532 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1533 			continue;
1534 
1535 		bzero(kve, sizeof(*kve));
1536 		kve->kve_structsize = sizeof(*kve);
1537 
1538 		kve->kve_private_resident = 0;
1539 		obj = entry->object.vm_object;
1540 		if (obj != NULL) {
1541 			VM_OBJECT_LOCK(obj);
1542 			if (obj->shadow_count == 1)
1543 				kve->kve_private_resident =
1544 				    obj->resident_page_count;
1545 		}
1546 		kve->kve_resident = 0;
1547 		addr = entry->start;
1548 		while (addr < entry->end) {
1549 			if (pmap_extract(map->pmap, addr))
1550 				kve->kve_resident++;
1551 			addr += PAGE_SIZE;
1552 		}
1553 
1554 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1555 			if (tobj != obj)
1556 				VM_OBJECT_LOCK(tobj);
1557 			if (lobj != obj)
1558 				VM_OBJECT_UNLOCK(lobj);
1559 			lobj = tobj;
1560 		}
1561 
1562 		kve->kve_start = (void*)entry->start;
1563 		kve->kve_end = (void*)entry->end;
1564 		kve->kve_offset = (off_t)entry->offset;
1565 
1566 		if (entry->protection & VM_PROT_READ)
1567 			kve->kve_protection |= KVME_PROT_READ;
1568 		if (entry->protection & VM_PROT_WRITE)
1569 			kve->kve_protection |= KVME_PROT_WRITE;
1570 		if (entry->protection & VM_PROT_EXECUTE)
1571 			kve->kve_protection |= KVME_PROT_EXEC;
1572 
1573 		if (entry->eflags & MAP_ENTRY_COW)
1574 			kve->kve_flags |= KVME_FLAG_COW;
1575 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1576 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1577 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1578 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1579 
1580 		last_timestamp = map->timestamp;
1581 		vm_map_unlock_read(map);
1582 
1583 		kve->kve_fileid = 0;
1584 		kve->kve_fsid = 0;
1585 		freepath = NULL;
1586 		fullpath = "";
1587 		if (lobj) {
1588 			vp = NULL;
1589 			switch (lobj->type) {
1590 			case OBJT_DEFAULT:
1591 				kve->kve_type = KVME_TYPE_DEFAULT;
1592 				break;
1593 			case OBJT_VNODE:
1594 				kve->kve_type = KVME_TYPE_VNODE;
1595 				vp = lobj->handle;
1596 				vref(vp);
1597 				break;
1598 			case OBJT_SWAP:
1599 				kve->kve_type = KVME_TYPE_SWAP;
1600 				break;
1601 			case OBJT_DEVICE:
1602 				kve->kve_type = KVME_TYPE_DEVICE;
1603 				break;
1604 			case OBJT_PHYS:
1605 				kve->kve_type = KVME_TYPE_PHYS;
1606 				break;
1607 			case OBJT_DEAD:
1608 				kve->kve_type = KVME_TYPE_DEAD;
1609 				break;
1610 			case OBJT_SG:
1611 				kve->kve_type = KVME_TYPE_SG;
1612 				break;
1613 			default:
1614 				kve->kve_type = KVME_TYPE_UNKNOWN;
1615 				break;
1616 			}
1617 			if (lobj != obj)
1618 				VM_OBJECT_UNLOCK(lobj);
1619 
1620 			kve->kve_ref_count = obj->ref_count;
1621 			kve->kve_shadow_count = obj->shadow_count;
1622 			VM_OBJECT_UNLOCK(obj);
1623 			if (vp != NULL) {
1624 				vn_fullpath(curthread, vp, &fullpath,
1625 				    &freepath);
1626 				cred = curthread->td_ucred;
1627 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1628 				vn_lock(vp, LK_SHARED | LK_RETRY);
1629 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1630 					kve->kve_fileid = va.va_fileid;
1631 					kve->kve_fsid = va.va_fsid;
1632 				}
1633 				vput(vp);
1634 				VFS_UNLOCK_GIANT(vfslocked);
1635 			}
1636 		} else {
1637 			kve->kve_type = KVME_TYPE_NONE;
1638 			kve->kve_ref_count = 0;
1639 			kve->kve_shadow_count = 0;
1640 		}
1641 
1642 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1643 		if (freepath != NULL)
1644 			free(freepath, M_TEMP);
1645 
1646 		error = SYSCTL_OUT(req, kve, sizeof(*kve));
1647 		vm_map_lock_read(map);
1648 		if (error)
1649 			break;
1650 		if (last_timestamp != map->timestamp) {
1651 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1652 			entry = tmp_entry;
1653 		}
1654 	}
1655 	vm_map_unlock_read(map);
1656 	vmspace_free(vm);
1657 	PRELE(p);
1658 	free(kve, M_TEMP);
1659 	return (error);
1660 }
1661 #endif	/* COMPAT_FREEBSD7 */
1662 
1663 #ifdef KINFO_VMENTRY_SIZE
1664 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE);
1665 #endif
1666 
1667 static int
1668 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS)
1669 {
1670 	vm_map_entry_t entry, tmp_entry;
1671 	unsigned int last_timestamp;
1672 	char *fullpath, *freepath;
1673 	struct kinfo_vmentry *kve;
1674 	struct vattr va;
1675 	struct ucred *cred;
1676 	int error, *name;
1677 	struct vnode *vp;
1678 	struct proc *p;
1679 	struct vmspace *vm;
1680 	vm_map_t map;
1681 
1682 	name = (int *)arg1;
1683 	if ((p = pfind((pid_t)name[0])) == NULL)
1684 		return (ESRCH);
1685 	if (p->p_flag & P_WEXIT) {
1686 		PROC_UNLOCK(p);
1687 		return (ESRCH);
1688 	}
1689 	if ((error = p_candebug(curthread, p))) {
1690 		PROC_UNLOCK(p);
1691 		return (error);
1692 	}
1693 	_PHOLD(p);
1694 	PROC_UNLOCK(p);
1695 	vm = vmspace_acquire_ref(p);
1696 	if (vm == NULL) {
1697 		PRELE(p);
1698 		return (ESRCH);
1699 	}
1700 	kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK);
1701 
1702 	map = &vm->vm_map;	/* XXXRW: More locking required? */
1703 	vm_map_lock_read(map);
1704 	for (entry = map->header.next; entry != &map->header;
1705 	    entry = entry->next) {
1706 		vm_object_t obj, tobj, lobj;
1707 		vm_offset_t addr;
1708 		int vfslocked;
1709 
1710 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
1711 			continue;
1712 
1713 		bzero(kve, sizeof(*kve));
1714 
1715 		kve->kve_private_resident = 0;
1716 		obj = entry->object.vm_object;
1717 		if (obj != NULL) {
1718 			VM_OBJECT_LOCK(obj);
1719 			if (obj->shadow_count == 1)
1720 				kve->kve_private_resident =
1721 				    obj->resident_page_count;
1722 		}
1723 		kve->kve_resident = 0;
1724 		addr = entry->start;
1725 		while (addr < entry->end) {
1726 			if (pmap_extract(map->pmap, addr))
1727 				kve->kve_resident++;
1728 			addr += PAGE_SIZE;
1729 		}
1730 
1731 		for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) {
1732 			if (tobj != obj)
1733 				VM_OBJECT_LOCK(tobj);
1734 			if (lobj != obj)
1735 				VM_OBJECT_UNLOCK(lobj);
1736 			lobj = tobj;
1737 		}
1738 
1739 		kve->kve_start = entry->start;
1740 		kve->kve_end = entry->end;
1741 		kve->kve_offset = entry->offset;
1742 
1743 		if (entry->protection & VM_PROT_READ)
1744 			kve->kve_protection |= KVME_PROT_READ;
1745 		if (entry->protection & VM_PROT_WRITE)
1746 			kve->kve_protection |= KVME_PROT_WRITE;
1747 		if (entry->protection & VM_PROT_EXECUTE)
1748 			kve->kve_protection |= KVME_PROT_EXEC;
1749 
1750 		if (entry->eflags & MAP_ENTRY_COW)
1751 			kve->kve_flags |= KVME_FLAG_COW;
1752 		if (entry->eflags & MAP_ENTRY_NEEDS_COPY)
1753 			kve->kve_flags |= KVME_FLAG_NEEDS_COPY;
1754 		if (entry->eflags & MAP_ENTRY_NOCOREDUMP)
1755 			kve->kve_flags |= KVME_FLAG_NOCOREDUMP;
1756 
1757 		last_timestamp = map->timestamp;
1758 		vm_map_unlock_read(map);
1759 
1760 		freepath = NULL;
1761 		fullpath = "";
1762 		if (lobj) {
1763 			vp = NULL;
1764 			switch (lobj->type) {
1765 			case OBJT_DEFAULT:
1766 				kve->kve_type = KVME_TYPE_DEFAULT;
1767 				break;
1768 			case OBJT_VNODE:
1769 				kve->kve_type = KVME_TYPE_VNODE;
1770 				vp = lobj->handle;
1771 				vref(vp);
1772 				break;
1773 			case OBJT_SWAP:
1774 				kve->kve_type = KVME_TYPE_SWAP;
1775 				break;
1776 			case OBJT_DEVICE:
1777 				kve->kve_type = KVME_TYPE_DEVICE;
1778 				break;
1779 			case OBJT_PHYS:
1780 				kve->kve_type = KVME_TYPE_PHYS;
1781 				break;
1782 			case OBJT_DEAD:
1783 				kve->kve_type = KVME_TYPE_DEAD;
1784 				break;
1785 			case OBJT_SG:
1786 				kve->kve_type = KVME_TYPE_SG;
1787 				break;
1788 			default:
1789 				kve->kve_type = KVME_TYPE_UNKNOWN;
1790 				break;
1791 			}
1792 			if (lobj != obj)
1793 				VM_OBJECT_UNLOCK(lobj);
1794 
1795 			kve->kve_ref_count = obj->ref_count;
1796 			kve->kve_shadow_count = obj->shadow_count;
1797 			VM_OBJECT_UNLOCK(obj);
1798 			if (vp != NULL) {
1799 				vn_fullpath(curthread, vp, &fullpath,
1800 				    &freepath);
1801 				kve->kve_vn_type = vntype_to_kinfo(vp->v_type);
1802 				cred = curthread->td_ucred;
1803 				vfslocked = VFS_LOCK_GIANT(vp->v_mount);
1804 				vn_lock(vp, LK_SHARED | LK_RETRY);
1805 				if (VOP_GETATTR(vp, &va, cred) == 0) {
1806 					kve->kve_vn_fileid = va.va_fileid;
1807 					kve->kve_vn_fsid = va.va_fsid;
1808 					kve->kve_vn_mode =
1809 					    MAKEIMODE(va.va_type, va.va_mode);
1810 					kve->kve_vn_size = va.va_size;
1811 					kve->kve_vn_rdev = va.va_rdev;
1812 					kve->kve_status = KF_ATTR_VALID;
1813 				}
1814 				vput(vp);
1815 				VFS_UNLOCK_GIANT(vfslocked);
1816 			}
1817 		} else {
1818 			kve->kve_type = KVME_TYPE_NONE;
1819 			kve->kve_ref_count = 0;
1820 			kve->kve_shadow_count = 0;
1821 		}
1822 
1823 		strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path));
1824 		if (freepath != NULL)
1825 			free(freepath, M_TEMP);
1826 
1827 		/* Pack record size down */
1828 		kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) +
1829 		    strlen(kve->kve_path) + 1;
1830 		kve->kve_structsize = roundup(kve->kve_structsize,
1831 		    sizeof(uint64_t));
1832 		error = SYSCTL_OUT(req, kve, kve->kve_structsize);
1833 		vm_map_lock_read(map);
1834 		if (error)
1835 			break;
1836 		if (last_timestamp != map->timestamp) {
1837 			vm_map_lookup_entry(map, addr - 1, &tmp_entry);
1838 			entry = tmp_entry;
1839 		}
1840 	}
1841 	vm_map_unlock_read(map);
1842 	vmspace_free(vm);
1843 	PRELE(p);
1844 	free(kve, M_TEMP);
1845 	return (error);
1846 }
1847 
1848 #if defined(STACK) || defined(DDB)
1849 static int
1850 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS)
1851 {
1852 	struct kinfo_kstack *kkstp;
1853 	int error, i, *name, numthreads;
1854 	lwpid_t *lwpidarray;
1855 	struct thread *td;
1856 	struct stack *st;
1857 	struct sbuf sb;
1858 	struct proc *p;
1859 
1860 	name = (int *)arg1;
1861 	if ((p = pfind((pid_t)name[0])) == NULL)
1862 		return (ESRCH);
1863 	/* XXXRW: Not clear ESRCH is the right error during proc execve(). */
1864 	if (p->p_flag & P_WEXIT || p->p_flag & P_INEXEC) {
1865 		PROC_UNLOCK(p);
1866 		return (ESRCH);
1867 	}
1868 	if ((error = p_candebug(curthread, p))) {
1869 		PROC_UNLOCK(p);
1870 		return (error);
1871 	}
1872 	_PHOLD(p);
1873 	PROC_UNLOCK(p);
1874 
1875 	kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK);
1876 	st = stack_create();
1877 
1878 	lwpidarray = NULL;
1879 	numthreads = 0;
1880 	PROC_LOCK(p);
1881 repeat:
1882 	if (numthreads < p->p_numthreads) {
1883 		if (lwpidarray != NULL) {
1884 			free(lwpidarray, M_TEMP);
1885 			lwpidarray = NULL;
1886 		}
1887 		numthreads = p->p_numthreads;
1888 		PROC_UNLOCK(p);
1889 		lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP,
1890 		    M_WAITOK | M_ZERO);
1891 		PROC_LOCK(p);
1892 		goto repeat;
1893 	}
1894 	i = 0;
1895 
1896 	/*
1897 	 * XXXRW: During the below loop, execve(2) and countless other sorts
1898 	 * of changes could have taken place.  Should we check to see if the
1899 	 * vmspace has been replaced, or the like, in order to prevent
1900 	 * giving a snapshot that spans, say, execve(2), with some threads
1901 	 * before and some after?  Among other things, the credentials could
1902 	 * have changed, in which case the right to extract debug info might
1903 	 * no longer be assured.
1904 	 */
1905 	FOREACH_THREAD_IN_PROC(p, td) {
1906 		KASSERT(i < numthreads,
1907 		    ("sysctl_kern_proc_kstack: numthreads"));
1908 		lwpidarray[i] = td->td_tid;
1909 		i++;
1910 	}
1911 	numthreads = i;
1912 	for (i = 0; i < numthreads; i++) {
1913 		td = thread_find(p, lwpidarray[i]);
1914 		if (td == NULL) {
1915 			continue;
1916 		}
1917 		bzero(kkstp, sizeof(*kkstp));
1918 		(void)sbuf_new(&sb, kkstp->kkst_trace,
1919 		    sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN);
1920 		thread_lock(td);
1921 		kkstp->kkst_tid = td->td_tid;
1922 		if (TD_IS_SWAPPED(td))
1923 			kkstp->kkst_state = KKST_STATE_SWAPPED;
1924 		else if (TD_IS_RUNNING(td))
1925 			kkstp->kkst_state = KKST_STATE_RUNNING;
1926 		else {
1927 			kkstp->kkst_state = KKST_STATE_STACKOK;
1928 			stack_save_td(st, td);
1929 		}
1930 		thread_unlock(td);
1931 		PROC_UNLOCK(p);
1932 		stack_sbuf_print(&sb, st);
1933 		sbuf_finish(&sb);
1934 		sbuf_delete(&sb);
1935 		error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp));
1936 		PROC_LOCK(p);
1937 		if (error)
1938 			break;
1939 	}
1940 	_PRELE(p);
1941 	PROC_UNLOCK(p);
1942 	if (lwpidarray != NULL)
1943 		free(lwpidarray, M_TEMP);
1944 	stack_destroy(st);
1945 	free(kkstp, M_TEMP);
1946 	return (error);
1947 }
1948 #endif
1949 
1950 /*
1951  * This sysctl allows a process to retrieve the full list of groups from
1952  * itself or another process.
1953  */
1954 static int
1955 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS)
1956 {
1957 	pid_t *pidp = (pid_t *)arg1;
1958 	unsigned int arglen = arg2;
1959 	struct proc *p;
1960 	struct ucred *cred;
1961 	int error;
1962 
1963 	if (arglen != 1)
1964 		return (EINVAL);
1965 	if (*pidp == -1) {	/* -1 means this process */
1966 		p = req->td->td_proc;
1967 	} else {
1968 		p = pfind(*pidp);
1969 		if (p == NULL)
1970 			return (ESRCH);
1971 		if ((error = p_cansee(curthread, p)) != 0) {
1972 			PROC_UNLOCK(p);
1973 			return (error);
1974 		}
1975 	}
1976 
1977 	cred = crhold(p->p_ucred);
1978 	if (*pidp != -1)
1979 		PROC_UNLOCK(p);
1980 
1981 	error = SYSCTL_OUT(req, cred->cr_groups,
1982 	    cred->cr_ngroups * sizeof(gid_t));
1983 	crfree(cred);
1984 	return (error);
1985 }
1986 
1987 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD,  0, "Process table");
1988 
1989 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT|
1990 	CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc",
1991 	"Return entire process table");
1992 
1993 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE,
1994 	sysctl_kern_proc, "Process table");
1995 
1996 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE,
1997 	sysctl_kern_proc, "Process table");
1998 
1999 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2000 	sysctl_kern_proc, "Process table");
2001 
2002 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD |
2003 	CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2004 
2005 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE,
2006 	sysctl_kern_proc, "Process table");
2007 
2008 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2009 	sysctl_kern_proc, "Process table");
2010 
2011 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2012 	sysctl_kern_proc, "Process table");
2013 
2014 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE,
2015 	sysctl_kern_proc, "Process table");
2016 
2017 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE,
2018 	sysctl_kern_proc, "Return process table, no threads");
2019 
2020 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args,
2021 	CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE,
2022 	sysctl_kern_proc_args, "Process argument list");
2023 
2024 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD |
2025 	CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path");
2026 
2027 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD |
2028 	CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name,
2029 	"Process syscall vector name (ABI type)");
2030 
2031 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td,
2032 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2033 
2034 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td,
2035 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2036 
2037 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td,
2038 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2039 
2040 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD),
2041 	sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2042 
2043 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td,
2044 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2045 
2046 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td,
2047 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2048 
2049 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td,
2050 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2051 
2052 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td,
2053 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table");
2054 
2055 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td,
2056 	CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc,
2057 	"Return process table, no threads");
2058 
2059 #ifdef COMPAT_FREEBSD7
2060 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD |
2061 	CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries");
2062 #endif
2063 
2064 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD |
2065 	CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries");
2066 
2067 #if defined(STACK) || defined(DDB)
2068 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD |
2069 	CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks");
2070 #endif
2071 
2072 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD |
2073 	CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups");
2074