1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_kdtrace.h" 38 #include "opt_ktrace.h" 39 #include "opt_kstack_pages.h" 40 #include "opt_stack.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/elf.h> 45 #include <sys/exec.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/proc.h> 55 #include <sys/ptrace.h> 56 #include <sys/refcount.h> 57 #include <sys/resourcevar.h> 58 #include <sys/rwlock.h> 59 #include <sys/sbuf.h> 60 #include <sys/sysent.h> 61 #include <sys/sched.h> 62 #include <sys/smp.h> 63 #include <sys/stack.h> 64 #include <sys/stat.h> 65 #include <sys/sysctl.h> 66 #include <sys/filedesc.h> 67 #include <sys/tty.h> 68 #include <sys/signalvar.h> 69 #include <sys/sdt.h> 70 #include <sys/sx.h> 71 #include <sys/user.h> 72 #include <sys/jail.h> 73 #include <sys/vnode.h> 74 #include <sys/eventhandler.h> 75 76 #ifdef DDB 77 #include <ddb/ddb.h> 78 #endif 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_extern.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_page.h> 87 #include <vm/uma.h> 88 89 #ifdef COMPAT_FREEBSD32 90 #include <compat/freebsd32/freebsd32.h> 91 #include <compat/freebsd32/freebsd32_util.h> 92 #endif 93 94 SDT_PROVIDER_DEFINE(proc); 95 SDT_PROBE_DEFINE(proc, kernel, ctor, entry, entry); 96 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 0, "struct proc *"); 97 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 1, "int"); 98 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 2, "void *"); 99 SDT_PROBE_ARGTYPE(proc, kernel, ctor, entry, 3, "int"); 100 SDT_PROBE_DEFINE(proc, kernel, ctor, return, return); 101 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 0, "struct proc *"); 102 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 1, "int"); 103 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 2, "void *"); 104 SDT_PROBE_ARGTYPE(proc, kernel, ctor, return, 3, "int"); 105 SDT_PROBE_DEFINE(proc, kernel, dtor, entry, entry); 106 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 0, "struct proc *"); 107 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 1, "int"); 108 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 2, "void *"); 109 SDT_PROBE_ARGTYPE(proc, kernel, dtor, entry, 3, "struct thread *"); 110 SDT_PROBE_DEFINE(proc, kernel, dtor, return, return); 111 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 0, "struct proc *"); 112 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 1, "int"); 113 SDT_PROBE_ARGTYPE(proc, kernel, dtor, return, 2, "void *"); 114 SDT_PROBE_DEFINE(proc, kernel, init, entry, entry); 115 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 0, "struct proc *"); 116 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 1, "int"); 117 SDT_PROBE_ARGTYPE(proc, kernel, init, entry, 2, "int"); 118 SDT_PROBE_DEFINE(proc, kernel, init, return, return); 119 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 0, "struct proc *"); 120 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 1, "int"); 121 SDT_PROBE_ARGTYPE(proc, kernel, init, return, 2, "int"); 122 123 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 124 MALLOC_DEFINE(M_SESSION, "session", "session header"); 125 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 126 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 127 128 static void doenterpgrp(struct proc *, struct pgrp *); 129 static void orphanpg(struct pgrp *pg); 130 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 131 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 132 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 133 int preferthread); 134 static void pgadjustjobc(struct pgrp *pgrp, int entering); 135 static void pgdelete(struct pgrp *); 136 static int proc_ctor(void *mem, int size, void *arg, int flags); 137 static void proc_dtor(void *mem, int size, void *arg); 138 static int proc_init(void *mem, int size, int flags); 139 static void proc_fini(void *mem, int size); 140 static void pargs_free(struct pargs *pa); 141 static struct proc *zpfind_locked(pid_t pid); 142 143 /* 144 * Other process lists 145 */ 146 struct pidhashhead *pidhashtbl; 147 u_long pidhash; 148 struct pgrphashhead *pgrphashtbl; 149 u_long pgrphash; 150 struct proclist allproc; 151 struct proclist zombproc; 152 struct sx allproc_lock; 153 struct sx proctree_lock; 154 struct mtx ppeers_lock; 155 uma_zone_t proc_zone; 156 157 int kstack_pages = KSTACK_PAGES; 158 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 159 "Kernel stack size in pages"); 160 161 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 162 #ifdef COMPAT_FREEBSD32 163 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 164 #endif 165 166 /* 167 * Initialize global process hashing structures. 168 */ 169 void 170 procinit() 171 { 172 173 sx_init(&allproc_lock, "allproc"); 174 sx_init(&proctree_lock, "proctree"); 175 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 176 LIST_INIT(&allproc); 177 LIST_INIT(&zombproc); 178 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 179 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 180 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 181 proc_ctor, proc_dtor, proc_init, proc_fini, 182 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 183 uihashinit(); 184 } 185 186 /* 187 * Prepare a proc for use. 188 */ 189 static int 190 proc_ctor(void *mem, int size, void *arg, int flags) 191 { 192 struct proc *p; 193 194 p = (struct proc *)mem; 195 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 196 EVENTHANDLER_INVOKE(process_ctor, p); 197 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 198 return (0); 199 } 200 201 /* 202 * Reclaim a proc after use. 203 */ 204 static void 205 proc_dtor(void *mem, int size, void *arg) 206 { 207 struct proc *p; 208 struct thread *td; 209 210 /* INVARIANTS checks go here */ 211 p = (struct proc *)mem; 212 td = FIRST_THREAD_IN_PROC(p); 213 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 214 if (td != NULL) { 215 #ifdef INVARIANTS 216 KASSERT((p->p_numthreads == 1), 217 ("bad number of threads in exiting process")); 218 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 219 #endif 220 /* Free all OSD associated to this thread. */ 221 osd_thread_exit(td); 222 } 223 EVENTHANDLER_INVOKE(process_dtor, p); 224 if (p->p_ksi != NULL) 225 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 226 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 227 } 228 229 /* 230 * Initialize type-stable parts of a proc (when newly created). 231 */ 232 static int 233 proc_init(void *mem, int size, int flags) 234 { 235 struct proc *p; 236 237 p = (struct proc *)mem; 238 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 239 p->p_sched = (struct p_sched *)&p[1]; 240 bzero(&p->p_mtx, sizeof(struct mtx)); 241 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 242 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 243 cv_init(&p->p_pwait, "ppwait"); 244 cv_init(&p->p_dbgwait, "dbgwait"); 245 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 246 EVENTHANDLER_INVOKE(process_init, p); 247 p->p_stats = pstats_alloc(); 248 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 249 return (0); 250 } 251 252 /* 253 * UMA should ensure that this function is never called. 254 * Freeing a proc structure would violate type stability. 255 */ 256 static void 257 proc_fini(void *mem, int size) 258 { 259 #ifdef notnow 260 struct proc *p; 261 262 p = (struct proc *)mem; 263 EVENTHANDLER_INVOKE(process_fini, p); 264 pstats_free(p->p_stats); 265 thread_free(FIRST_THREAD_IN_PROC(p)); 266 mtx_destroy(&p->p_mtx); 267 if (p->p_ksi != NULL) 268 ksiginfo_free(p->p_ksi); 269 #else 270 panic("proc reclaimed"); 271 #endif 272 } 273 274 /* 275 * Is p an inferior of the current process? 276 */ 277 int 278 inferior(p) 279 register struct proc *p; 280 { 281 282 sx_assert(&proctree_lock, SX_LOCKED); 283 for (; p != curproc; p = p->p_pptr) 284 if (p->p_pid == 0) 285 return (0); 286 return (1); 287 } 288 289 struct proc * 290 pfind_locked(pid_t pid) 291 { 292 struct proc *p; 293 294 sx_assert(&allproc_lock, SX_LOCKED); 295 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 296 if (p->p_pid == pid) { 297 PROC_LOCK(p); 298 if (p->p_state == PRS_NEW) { 299 PROC_UNLOCK(p); 300 p = NULL; 301 } 302 break; 303 } 304 } 305 return (p); 306 } 307 308 /* 309 * Locate a process by number; return only "live" processes -- i.e., neither 310 * zombies nor newly born but incompletely initialized processes. By not 311 * returning processes in the PRS_NEW state, we allow callers to avoid 312 * testing for that condition to avoid dereferencing p_ucred, et al. 313 */ 314 struct proc * 315 pfind(pid_t pid) 316 { 317 struct proc *p; 318 319 sx_slock(&allproc_lock); 320 p = pfind_locked(pid); 321 sx_sunlock(&allproc_lock); 322 return (p); 323 } 324 325 static struct proc * 326 pfind_tid_locked(pid_t tid) 327 { 328 struct proc *p; 329 struct thread *td; 330 331 sx_assert(&allproc_lock, SX_LOCKED); 332 FOREACH_PROC_IN_SYSTEM(p) { 333 PROC_LOCK(p); 334 if (p->p_state == PRS_NEW) { 335 PROC_UNLOCK(p); 336 continue; 337 } 338 FOREACH_THREAD_IN_PROC(p, td) { 339 if (td->td_tid == tid) 340 goto found; 341 } 342 PROC_UNLOCK(p); 343 } 344 found: 345 return (p); 346 } 347 348 /* 349 * Locate a process group by number. 350 * The caller must hold proctree_lock. 351 */ 352 struct pgrp * 353 pgfind(pgid) 354 register pid_t pgid; 355 { 356 register struct pgrp *pgrp; 357 358 sx_assert(&proctree_lock, SX_LOCKED); 359 360 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 361 if (pgrp->pg_id == pgid) { 362 PGRP_LOCK(pgrp); 363 return (pgrp); 364 } 365 } 366 return (NULL); 367 } 368 369 /* 370 * Locate process and do additional manipulations, depending on flags. 371 */ 372 int 373 pget(pid_t pid, int flags, struct proc **pp) 374 { 375 struct proc *p; 376 int error; 377 378 sx_slock(&allproc_lock); 379 if (pid <= PID_MAX) { 380 p = pfind_locked(pid); 381 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 382 p = zpfind_locked(pid); 383 } else if ((flags & PGET_NOTID) == 0) { 384 p = pfind_tid_locked(pid); 385 } else { 386 p = NULL; 387 } 388 sx_sunlock(&allproc_lock); 389 if (p == NULL) 390 return (ESRCH); 391 if ((flags & PGET_CANSEE) != 0) { 392 error = p_cansee(curthread, p); 393 if (error != 0) 394 goto errout; 395 } 396 if ((flags & PGET_CANDEBUG) != 0) { 397 error = p_candebug(curthread, p); 398 if (error != 0) 399 goto errout; 400 } 401 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 402 error = EPERM; 403 goto errout; 404 } 405 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 406 error = ESRCH; 407 goto errout; 408 } 409 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 410 /* 411 * XXXRW: Not clear ESRCH is the right error during proc 412 * execve(). 413 */ 414 error = ESRCH; 415 goto errout; 416 } 417 if ((flags & PGET_HOLD) != 0) { 418 _PHOLD(p); 419 PROC_UNLOCK(p); 420 } 421 *pp = p; 422 return (0); 423 errout: 424 PROC_UNLOCK(p); 425 return (error); 426 } 427 428 /* 429 * Create a new process group. 430 * pgid must be equal to the pid of p. 431 * Begin a new session if required. 432 */ 433 int 434 enterpgrp(p, pgid, pgrp, sess) 435 register struct proc *p; 436 pid_t pgid; 437 struct pgrp *pgrp; 438 struct session *sess; 439 { 440 441 sx_assert(&proctree_lock, SX_XLOCKED); 442 443 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 444 KASSERT(p->p_pid == pgid, 445 ("enterpgrp: new pgrp and pid != pgid")); 446 KASSERT(pgfind(pgid) == NULL, 447 ("enterpgrp: pgrp with pgid exists")); 448 KASSERT(!SESS_LEADER(p), 449 ("enterpgrp: session leader attempted setpgrp")); 450 451 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 452 453 if (sess != NULL) { 454 /* 455 * new session 456 */ 457 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 458 PROC_LOCK(p); 459 p->p_flag &= ~P_CONTROLT; 460 PROC_UNLOCK(p); 461 PGRP_LOCK(pgrp); 462 sess->s_leader = p; 463 sess->s_sid = p->p_pid; 464 refcount_init(&sess->s_count, 1); 465 sess->s_ttyvp = NULL; 466 sess->s_ttydp = NULL; 467 sess->s_ttyp = NULL; 468 bcopy(p->p_session->s_login, sess->s_login, 469 sizeof(sess->s_login)); 470 pgrp->pg_session = sess; 471 KASSERT(p == curproc, 472 ("enterpgrp: mksession and p != curproc")); 473 } else { 474 pgrp->pg_session = p->p_session; 475 sess_hold(pgrp->pg_session); 476 PGRP_LOCK(pgrp); 477 } 478 pgrp->pg_id = pgid; 479 LIST_INIT(&pgrp->pg_members); 480 481 /* 482 * As we have an exclusive lock of proctree_lock, 483 * this should not deadlock. 484 */ 485 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 486 pgrp->pg_jobc = 0; 487 SLIST_INIT(&pgrp->pg_sigiolst); 488 PGRP_UNLOCK(pgrp); 489 490 doenterpgrp(p, pgrp); 491 492 return (0); 493 } 494 495 /* 496 * Move p to an existing process group 497 */ 498 int 499 enterthispgrp(p, pgrp) 500 register struct proc *p; 501 struct pgrp *pgrp; 502 { 503 504 sx_assert(&proctree_lock, SX_XLOCKED); 505 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 506 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 507 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 508 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 509 KASSERT(pgrp->pg_session == p->p_session, 510 ("%s: pgrp's session %p, p->p_session %p.\n", 511 __func__, 512 pgrp->pg_session, 513 p->p_session)); 514 KASSERT(pgrp != p->p_pgrp, 515 ("%s: p belongs to pgrp.", __func__)); 516 517 doenterpgrp(p, pgrp); 518 519 return (0); 520 } 521 522 /* 523 * Move p to a process group 524 */ 525 static void 526 doenterpgrp(p, pgrp) 527 struct proc *p; 528 struct pgrp *pgrp; 529 { 530 struct pgrp *savepgrp; 531 532 sx_assert(&proctree_lock, SX_XLOCKED); 533 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 534 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 535 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 536 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 537 538 savepgrp = p->p_pgrp; 539 540 /* 541 * Adjust eligibility of affected pgrps to participate in job control. 542 * Increment eligibility counts before decrementing, otherwise we 543 * could reach 0 spuriously during the first call. 544 */ 545 fixjobc(p, pgrp, 1); 546 fixjobc(p, p->p_pgrp, 0); 547 548 PGRP_LOCK(pgrp); 549 PGRP_LOCK(savepgrp); 550 PROC_LOCK(p); 551 LIST_REMOVE(p, p_pglist); 552 p->p_pgrp = pgrp; 553 PROC_UNLOCK(p); 554 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 555 PGRP_UNLOCK(savepgrp); 556 PGRP_UNLOCK(pgrp); 557 if (LIST_EMPTY(&savepgrp->pg_members)) 558 pgdelete(savepgrp); 559 } 560 561 /* 562 * remove process from process group 563 */ 564 int 565 leavepgrp(p) 566 register struct proc *p; 567 { 568 struct pgrp *savepgrp; 569 570 sx_assert(&proctree_lock, SX_XLOCKED); 571 savepgrp = p->p_pgrp; 572 PGRP_LOCK(savepgrp); 573 PROC_LOCK(p); 574 LIST_REMOVE(p, p_pglist); 575 p->p_pgrp = NULL; 576 PROC_UNLOCK(p); 577 PGRP_UNLOCK(savepgrp); 578 if (LIST_EMPTY(&savepgrp->pg_members)) 579 pgdelete(savepgrp); 580 return (0); 581 } 582 583 /* 584 * delete a process group 585 */ 586 static void 587 pgdelete(pgrp) 588 register struct pgrp *pgrp; 589 { 590 struct session *savesess; 591 struct tty *tp; 592 593 sx_assert(&proctree_lock, SX_XLOCKED); 594 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 595 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 596 597 /* 598 * Reset any sigio structures pointing to us as a result of 599 * F_SETOWN with our pgid. 600 */ 601 funsetownlst(&pgrp->pg_sigiolst); 602 603 PGRP_LOCK(pgrp); 604 tp = pgrp->pg_session->s_ttyp; 605 LIST_REMOVE(pgrp, pg_hash); 606 savesess = pgrp->pg_session; 607 PGRP_UNLOCK(pgrp); 608 609 /* Remove the reference to the pgrp before deallocating it. */ 610 if (tp != NULL) { 611 tty_lock(tp); 612 tty_rel_pgrp(tp, pgrp); 613 } 614 615 mtx_destroy(&pgrp->pg_mtx); 616 free(pgrp, M_PGRP); 617 sess_release(savesess); 618 } 619 620 static void 621 pgadjustjobc(pgrp, entering) 622 struct pgrp *pgrp; 623 int entering; 624 { 625 626 PGRP_LOCK(pgrp); 627 if (entering) 628 pgrp->pg_jobc++; 629 else { 630 --pgrp->pg_jobc; 631 if (pgrp->pg_jobc == 0) 632 orphanpg(pgrp); 633 } 634 PGRP_UNLOCK(pgrp); 635 } 636 637 /* 638 * Adjust pgrp jobc counters when specified process changes process group. 639 * We count the number of processes in each process group that "qualify" 640 * the group for terminal job control (those with a parent in a different 641 * process group of the same session). If that count reaches zero, the 642 * process group becomes orphaned. Check both the specified process' 643 * process group and that of its children. 644 * entering == 0 => p is leaving specified group. 645 * entering == 1 => p is entering specified group. 646 */ 647 void 648 fixjobc(p, pgrp, entering) 649 register struct proc *p; 650 register struct pgrp *pgrp; 651 int entering; 652 { 653 register struct pgrp *hispgrp; 654 register struct session *mysession; 655 656 sx_assert(&proctree_lock, SX_LOCKED); 657 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 658 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 659 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 660 661 /* 662 * Check p's parent to see whether p qualifies its own process 663 * group; if so, adjust count for p's process group. 664 */ 665 mysession = pgrp->pg_session; 666 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 667 hispgrp->pg_session == mysession) 668 pgadjustjobc(pgrp, entering); 669 670 /* 671 * Check this process' children to see whether they qualify 672 * their process groups; if so, adjust counts for children's 673 * process groups. 674 */ 675 LIST_FOREACH(p, &p->p_children, p_sibling) { 676 hispgrp = p->p_pgrp; 677 if (hispgrp == pgrp || 678 hispgrp->pg_session != mysession) 679 continue; 680 PROC_LOCK(p); 681 if (p->p_state == PRS_ZOMBIE) { 682 PROC_UNLOCK(p); 683 continue; 684 } 685 PROC_UNLOCK(p); 686 pgadjustjobc(hispgrp, entering); 687 } 688 } 689 690 /* 691 * A process group has become orphaned; 692 * if there are any stopped processes in the group, 693 * hang-up all process in that group. 694 */ 695 static void 696 orphanpg(pg) 697 struct pgrp *pg; 698 { 699 register struct proc *p; 700 701 PGRP_LOCK_ASSERT(pg, MA_OWNED); 702 703 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 704 PROC_LOCK(p); 705 if (P_SHOULDSTOP(p)) { 706 PROC_UNLOCK(p); 707 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 708 PROC_LOCK(p); 709 kern_psignal(p, SIGHUP); 710 kern_psignal(p, SIGCONT); 711 PROC_UNLOCK(p); 712 } 713 return; 714 } 715 PROC_UNLOCK(p); 716 } 717 } 718 719 void 720 sess_hold(struct session *s) 721 { 722 723 refcount_acquire(&s->s_count); 724 } 725 726 void 727 sess_release(struct session *s) 728 { 729 730 if (refcount_release(&s->s_count)) { 731 if (s->s_ttyp != NULL) { 732 tty_lock(s->s_ttyp); 733 tty_rel_sess(s->s_ttyp, s); 734 } 735 mtx_destroy(&s->s_mtx); 736 free(s, M_SESSION); 737 } 738 } 739 740 #ifdef DDB 741 742 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 743 { 744 register struct pgrp *pgrp; 745 register struct proc *p; 746 register int i; 747 748 for (i = 0; i <= pgrphash; i++) { 749 if (!LIST_EMPTY(&pgrphashtbl[i])) { 750 printf("\tindx %d\n", i); 751 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 752 printf( 753 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 754 (void *)pgrp, (long)pgrp->pg_id, 755 (void *)pgrp->pg_session, 756 pgrp->pg_session->s_count, 757 (void *)LIST_FIRST(&pgrp->pg_members)); 758 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 759 printf("\t\tpid %ld addr %p pgrp %p\n", 760 (long)p->p_pid, (void *)p, 761 (void *)p->p_pgrp); 762 } 763 } 764 } 765 } 766 } 767 #endif /* DDB */ 768 769 /* 770 * Calculate the kinfo_proc members which contain process-wide 771 * informations. 772 * Must be called with the target process locked. 773 */ 774 static void 775 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 776 { 777 struct thread *td; 778 779 PROC_LOCK_ASSERT(p, MA_OWNED); 780 781 kp->ki_estcpu = 0; 782 kp->ki_pctcpu = 0; 783 FOREACH_THREAD_IN_PROC(p, td) { 784 thread_lock(td); 785 kp->ki_pctcpu += sched_pctcpu(td); 786 kp->ki_estcpu += td->td_estcpu; 787 thread_unlock(td); 788 } 789 } 790 791 /* 792 * Clear kinfo_proc and fill in any information that is common 793 * to all threads in the process. 794 * Must be called with the target process locked. 795 */ 796 static void 797 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 798 { 799 struct thread *td0; 800 struct tty *tp; 801 struct session *sp; 802 struct ucred *cred; 803 struct sigacts *ps; 804 805 PROC_LOCK_ASSERT(p, MA_OWNED); 806 bzero(kp, sizeof(*kp)); 807 808 kp->ki_structsize = sizeof(*kp); 809 kp->ki_paddr = p; 810 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 811 kp->ki_args = p->p_args; 812 kp->ki_textvp = p->p_textvp; 813 #ifdef KTRACE 814 kp->ki_tracep = p->p_tracevp; 815 kp->ki_traceflag = p->p_traceflag; 816 #endif 817 kp->ki_fd = p->p_fd; 818 kp->ki_vmspace = p->p_vmspace; 819 kp->ki_flag = p->p_flag; 820 cred = p->p_ucred; 821 if (cred) { 822 kp->ki_uid = cred->cr_uid; 823 kp->ki_ruid = cred->cr_ruid; 824 kp->ki_svuid = cred->cr_svuid; 825 kp->ki_cr_flags = 0; 826 if (cred->cr_flags & CRED_FLAG_CAPMODE) 827 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 828 /* XXX bde doesn't like KI_NGROUPS */ 829 if (cred->cr_ngroups > KI_NGROUPS) { 830 kp->ki_ngroups = KI_NGROUPS; 831 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 832 } else 833 kp->ki_ngroups = cred->cr_ngroups; 834 bcopy(cred->cr_groups, kp->ki_groups, 835 kp->ki_ngroups * sizeof(gid_t)); 836 kp->ki_rgid = cred->cr_rgid; 837 kp->ki_svgid = cred->cr_svgid; 838 /* If jailed(cred), emulate the old P_JAILED flag. */ 839 if (jailed(cred)) { 840 kp->ki_flag |= P_JAILED; 841 /* If inside the jail, use 0 as a jail ID. */ 842 if (cred->cr_prison != curthread->td_ucred->cr_prison) 843 kp->ki_jid = cred->cr_prison->pr_id; 844 } 845 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 846 sizeof(kp->ki_loginclass)); 847 } 848 ps = p->p_sigacts; 849 if (ps) { 850 mtx_lock(&ps->ps_mtx); 851 kp->ki_sigignore = ps->ps_sigignore; 852 kp->ki_sigcatch = ps->ps_sigcatch; 853 mtx_unlock(&ps->ps_mtx); 854 } 855 if (p->p_state != PRS_NEW && 856 p->p_state != PRS_ZOMBIE && 857 p->p_vmspace != NULL) { 858 struct vmspace *vm = p->p_vmspace; 859 860 kp->ki_size = vm->vm_map.size; 861 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 862 FOREACH_THREAD_IN_PROC(p, td0) { 863 if (!TD_IS_SWAPPED(td0)) 864 kp->ki_rssize += td0->td_kstack_pages; 865 } 866 kp->ki_swrss = vm->vm_swrss; 867 kp->ki_tsize = vm->vm_tsize; 868 kp->ki_dsize = vm->vm_dsize; 869 kp->ki_ssize = vm->vm_ssize; 870 } else if (p->p_state == PRS_ZOMBIE) 871 kp->ki_stat = SZOMB; 872 if (kp->ki_flag & P_INMEM) 873 kp->ki_sflag = PS_INMEM; 874 else 875 kp->ki_sflag = 0; 876 /* Calculate legacy swtime as seconds since 'swtick'. */ 877 kp->ki_swtime = (ticks - p->p_swtick) / hz; 878 kp->ki_pid = p->p_pid; 879 kp->ki_nice = p->p_nice; 880 kp->ki_start = p->p_stats->p_start; 881 timevaladd(&kp->ki_start, &boottime); 882 PROC_SLOCK(p); 883 rufetch(p, &kp->ki_rusage); 884 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 885 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 886 PROC_SUNLOCK(p); 887 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 888 /* Some callers want child times in a single value. */ 889 kp->ki_childtime = kp->ki_childstime; 890 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 891 892 FOREACH_THREAD_IN_PROC(p, td0) 893 kp->ki_cow += td0->td_cow; 894 895 tp = NULL; 896 if (p->p_pgrp) { 897 kp->ki_pgid = p->p_pgrp->pg_id; 898 kp->ki_jobc = p->p_pgrp->pg_jobc; 899 sp = p->p_pgrp->pg_session; 900 901 if (sp != NULL) { 902 kp->ki_sid = sp->s_sid; 903 SESS_LOCK(sp); 904 strlcpy(kp->ki_login, sp->s_login, 905 sizeof(kp->ki_login)); 906 if (sp->s_ttyvp) 907 kp->ki_kiflag |= KI_CTTY; 908 if (SESS_LEADER(p)) 909 kp->ki_kiflag |= KI_SLEADER; 910 /* XXX proctree_lock */ 911 tp = sp->s_ttyp; 912 SESS_UNLOCK(sp); 913 } 914 } 915 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 916 kp->ki_tdev = tty_udev(tp); 917 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 918 if (tp->t_session) 919 kp->ki_tsid = tp->t_session->s_sid; 920 } else 921 kp->ki_tdev = NODEV; 922 if (p->p_comm[0] != '\0') 923 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 924 if (p->p_sysent && p->p_sysent->sv_name != NULL && 925 p->p_sysent->sv_name[0] != '\0') 926 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 927 kp->ki_siglist = p->p_siglist; 928 kp->ki_xstat = p->p_xstat; 929 kp->ki_acflag = p->p_acflag; 930 kp->ki_lock = p->p_lock; 931 if (p->p_pptr) 932 kp->ki_ppid = p->p_pptr->p_pid; 933 } 934 935 /* 936 * Fill in information that is thread specific. Must be called with 937 * target process locked. If 'preferthread' is set, overwrite certain 938 * process-related fields that are maintained for both threads and 939 * processes. 940 */ 941 static void 942 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 943 { 944 struct proc *p; 945 946 p = td->td_proc; 947 kp->ki_tdaddr = td; 948 PROC_LOCK_ASSERT(p, MA_OWNED); 949 950 if (preferthread) 951 PROC_SLOCK(p); 952 thread_lock(td); 953 if (td->td_wmesg != NULL) 954 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 955 else 956 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 957 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 958 if (TD_ON_LOCK(td)) { 959 kp->ki_kiflag |= KI_LOCKBLOCK; 960 strlcpy(kp->ki_lockname, td->td_lockname, 961 sizeof(kp->ki_lockname)); 962 } else { 963 kp->ki_kiflag &= ~KI_LOCKBLOCK; 964 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 965 } 966 967 if (p->p_state == PRS_NORMAL) { /* approximate. */ 968 if (TD_ON_RUNQ(td) || 969 TD_CAN_RUN(td) || 970 TD_IS_RUNNING(td)) { 971 kp->ki_stat = SRUN; 972 } else if (P_SHOULDSTOP(p)) { 973 kp->ki_stat = SSTOP; 974 } else if (TD_IS_SLEEPING(td)) { 975 kp->ki_stat = SSLEEP; 976 } else if (TD_ON_LOCK(td)) { 977 kp->ki_stat = SLOCK; 978 } else { 979 kp->ki_stat = SWAIT; 980 } 981 } else if (p->p_state == PRS_ZOMBIE) { 982 kp->ki_stat = SZOMB; 983 } else { 984 kp->ki_stat = SIDL; 985 } 986 987 /* Things in the thread */ 988 kp->ki_wchan = td->td_wchan; 989 kp->ki_pri.pri_level = td->td_priority; 990 kp->ki_pri.pri_native = td->td_base_pri; 991 kp->ki_lastcpu = td->td_lastcpu; 992 kp->ki_oncpu = td->td_oncpu; 993 kp->ki_tdflags = td->td_flags; 994 kp->ki_tid = td->td_tid; 995 kp->ki_numthreads = p->p_numthreads; 996 kp->ki_pcb = td->td_pcb; 997 kp->ki_kstack = (void *)td->td_kstack; 998 kp->ki_slptime = (ticks - td->td_slptick) / hz; 999 kp->ki_pri.pri_class = td->td_pri_class; 1000 kp->ki_pri.pri_user = td->td_user_pri; 1001 1002 if (preferthread) { 1003 rufetchtd(td, &kp->ki_rusage); 1004 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1005 kp->ki_pctcpu = sched_pctcpu(td); 1006 kp->ki_estcpu = td->td_estcpu; 1007 kp->ki_cow = td->td_cow; 1008 } 1009 1010 /* We can't get this anymore but ps etc never used it anyway. */ 1011 kp->ki_rqindex = 0; 1012 1013 if (preferthread) 1014 kp->ki_siglist = td->td_siglist; 1015 kp->ki_sigmask = td->td_sigmask; 1016 thread_unlock(td); 1017 if (preferthread) 1018 PROC_SUNLOCK(p); 1019 } 1020 1021 /* 1022 * Fill in a kinfo_proc structure for the specified process. 1023 * Must be called with the target process locked. 1024 */ 1025 void 1026 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1027 { 1028 1029 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1030 1031 fill_kinfo_proc_only(p, kp); 1032 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1033 fill_kinfo_aggregate(p, kp); 1034 } 1035 1036 struct pstats * 1037 pstats_alloc(void) 1038 { 1039 1040 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1041 } 1042 1043 /* 1044 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1045 */ 1046 void 1047 pstats_fork(struct pstats *src, struct pstats *dst) 1048 { 1049 1050 bzero(&dst->pstat_startzero, 1051 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1052 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1053 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1054 } 1055 1056 void 1057 pstats_free(struct pstats *ps) 1058 { 1059 1060 free(ps, M_SUBPROC); 1061 } 1062 1063 static struct proc * 1064 zpfind_locked(pid_t pid) 1065 { 1066 struct proc *p; 1067 1068 sx_assert(&allproc_lock, SX_LOCKED); 1069 LIST_FOREACH(p, &zombproc, p_list) { 1070 if (p->p_pid == pid) { 1071 PROC_LOCK(p); 1072 break; 1073 } 1074 } 1075 return (p); 1076 } 1077 1078 /* 1079 * Locate a zombie process by number 1080 */ 1081 struct proc * 1082 zpfind(pid_t pid) 1083 { 1084 struct proc *p; 1085 1086 sx_slock(&allproc_lock); 1087 p = zpfind_locked(pid); 1088 sx_sunlock(&allproc_lock); 1089 return (p); 1090 } 1091 1092 #ifdef COMPAT_FREEBSD32 1093 1094 /* 1095 * This function is typically used to copy out the kernel address, so 1096 * it can be replaced by assignment of zero. 1097 */ 1098 static inline uint32_t 1099 ptr32_trim(void *ptr) 1100 { 1101 uintptr_t uptr; 1102 1103 uptr = (uintptr_t)ptr; 1104 return ((uptr > UINT_MAX) ? 0 : uptr); 1105 } 1106 1107 #define PTRTRIM_CP(src,dst,fld) \ 1108 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1109 1110 static void 1111 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1112 { 1113 int i; 1114 1115 bzero(ki32, sizeof(struct kinfo_proc32)); 1116 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1117 CP(*ki, *ki32, ki_layout); 1118 PTRTRIM_CP(*ki, *ki32, ki_args); 1119 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1120 PTRTRIM_CP(*ki, *ki32, ki_addr); 1121 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1122 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1123 PTRTRIM_CP(*ki, *ki32, ki_fd); 1124 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1125 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1126 CP(*ki, *ki32, ki_pid); 1127 CP(*ki, *ki32, ki_ppid); 1128 CP(*ki, *ki32, ki_pgid); 1129 CP(*ki, *ki32, ki_tpgid); 1130 CP(*ki, *ki32, ki_sid); 1131 CP(*ki, *ki32, ki_tsid); 1132 CP(*ki, *ki32, ki_jobc); 1133 CP(*ki, *ki32, ki_tdev); 1134 CP(*ki, *ki32, ki_siglist); 1135 CP(*ki, *ki32, ki_sigmask); 1136 CP(*ki, *ki32, ki_sigignore); 1137 CP(*ki, *ki32, ki_sigcatch); 1138 CP(*ki, *ki32, ki_uid); 1139 CP(*ki, *ki32, ki_ruid); 1140 CP(*ki, *ki32, ki_svuid); 1141 CP(*ki, *ki32, ki_rgid); 1142 CP(*ki, *ki32, ki_svgid); 1143 CP(*ki, *ki32, ki_ngroups); 1144 for (i = 0; i < KI_NGROUPS; i++) 1145 CP(*ki, *ki32, ki_groups[i]); 1146 CP(*ki, *ki32, ki_size); 1147 CP(*ki, *ki32, ki_rssize); 1148 CP(*ki, *ki32, ki_swrss); 1149 CP(*ki, *ki32, ki_tsize); 1150 CP(*ki, *ki32, ki_dsize); 1151 CP(*ki, *ki32, ki_ssize); 1152 CP(*ki, *ki32, ki_xstat); 1153 CP(*ki, *ki32, ki_acflag); 1154 CP(*ki, *ki32, ki_pctcpu); 1155 CP(*ki, *ki32, ki_estcpu); 1156 CP(*ki, *ki32, ki_slptime); 1157 CP(*ki, *ki32, ki_swtime); 1158 CP(*ki, *ki32, ki_cow); 1159 CP(*ki, *ki32, ki_runtime); 1160 TV_CP(*ki, *ki32, ki_start); 1161 TV_CP(*ki, *ki32, ki_childtime); 1162 CP(*ki, *ki32, ki_flag); 1163 CP(*ki, *ki32, ki_kiflag); 1164 CP(*ki, *ki32, ki_traceflag); 1165 CP(*ki, *ki32, ki_stat); 1166 CP(*ki, *ki32, ki_nice); 1167 CP(*ki, *ki32, ki_lock); 1168 CP(*ki, *ki32, ki_rqindex); 1169 CP(*ki, *ki32, ki_oncpu); 1170 CP(*ki, *ki32, ki_lastcpu); 1171 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1172 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1173 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1174 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1175 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1176 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1177 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1178 CP(*ki, *ki32, ki_cr_flags); 1179 CP(*ki, *ki32, ki_jid); 1180 CP(*ki, *ki32, ki_numthreads); 1181 CP(*ki, *ki32, ki_tid); 1182 CP(*ki, *ki32, ki_pri); 1183 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1184 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1185 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1186 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1187 PTRTRIM_CP(*ki, *ki32, ki_udata); 1188 CP(*ki, *ki32, ki_sflag); 1189 CP(*ki, *ki32, ki_tdflags); 1190 } 1191 #endif 1192 1193 int 1194 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1195 { 1196 struct thread *td; 1197 struct kinfo_proc ki; 1198 #ifdef COMPAT_FREEBSD32 1199 struct kinfo_proc32 ki32; 1200 #endif 1201 int error; 1202 1203 PROC_LOCK_ASSERT(p, MA_OWNED); 1204 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1205 1206 error = 0; 1207 fill_kinfo_proc(p, &ki); 1208 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1209 #ifdef COMPAT_FREEBSD32 1210 if ((flags & KERN_PROC_MASK32) != 0) { 1211 freebsd32_kinfo_proc_out(&ki, &ki32); 1212 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1213 } else 1214 #endif 1215 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1216 } else { 1217 FOREACH_THREAD_IN_PROC(p, td) { 1218 fill_kinfo_thread(td, &ki, 1); 1219 #ifdef COMPAT_FREEBSD32 1220 if ((flags & KERN_PROC_MASK32) != 0) { 1221 freebsd32_kinfo_proc_out(&ki, &ki32); 1222 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1223 } else 1224 #endif 1225 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1226 if (error) 1227 break; 1228 } 1229 } 1230 PROC_UNLOCK(p); 1231 return (error); 1232 } 1233 1234 static int 1235 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1236 int doingzomb) 1237 { 1238 struct sbuf sb; 1239 struct kinfo_proc ki; 1240 struct proc *np; 1241 int error, error2; 1242 pid_t pid; 1243 1244 pid = p->p_pid; 1245 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1246 error = kern_proc_out(p, &sb, flags); 1247 error2 = sbuf_finish(&sb); 1248 sbuf_delete(&sb); 1249 if (error != 0) 1250 return (error); 1251 else if (error2 != 0) 1252 return (error2); 1253 if (doingzomb) 1254 np = zpfind(pid); 1255 else { 1256 if (pid == 0) 1257 return (0); 1258 np = pfind(pid); 1259 } 1260 if (np == NULL) 1261 return (ESRCH); 1262 if (np != p) { 1263 PROC_UNLOCK(np); 1264 return (ESRCH); 1265 } 1266 PROC_UNLOCK(np); 1267 return (0); 1268 } 1269 1270 static int 1271 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1272 { 1273 int *name = (int *)arg1; 1274 u_int namelen = arg2; 1275 struct proc *p; 1276 int flags, doingzomb, oid_number; 1277 int error = 0; 1278 1279 oid_number = oidp->oid_number; 1280 if (oid_number != KERN_PROC_ALL && 1281 (oid_number & KERN_PROC_INC_THREAD) == 0) 1282 flags = KERN_PROC_NOTHREADS; 1283 else { 1284 flags = 0; 1285 oid_number &= ~KERN_PROC_INC_THREAD; 1286 } 1287 #ifdef COMPAT_FREEBSD32 1288 if (req->flags & SCTL_MASK32) 1289 flags |= KERN_PROC_MASK32; 1290 #endif 1291 if (oid_number == KERN_PROC_PID) { 1292 if (namelen != 1) 1293 return (EINVAL); 1294 error = sysctl_wire_old_buffer(req, 0); 1295 if (error) 1296 return (error); 1297 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1298 if (error != 0) 1299 return (error); 1300 error = sysctl_out_proc(p, req, flags, 0); 1301 return (error); 1302 } 1303 1304 switch (oid_number) { 1305 case KERN_PROC_ALL: 1306 if (namelen != 0) 1307 return (EINVAL); 1308 break; 1309 case KERN_PROC_PROC: 1310 if (namelen != 0 && namelen != 1) 1311 return (EINVAL); 1312 break; 1313 default: 1314 if (namelen != 1) 1315 return (EINVAL); 1316 break; 1317 } 1318 1319 if (!req->oldptr) { 1320 /* overestimate by 5 procs */ 1321 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1322 if (error) 1323 return (error); 1324 } 1325 error = sysctl_wire_old_buffer(req, 0); 1326 if (error != 0) 1327 return (error); 1328 sx_slock(&allproc_lock); 1329 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1330 if (!doingzomb) 1331 p = LIST_FIRST(&allproc); 1332 else 1333 p = LIST_FIRST(&zombproc); 1334 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1335 /* 1336 * Skip embryonic processes. 1337 */ 1338 PROC_LOCK(p); 1339 if (p->p_state == PRS_NEW) { 1340 PROC_UNLOCK(p); 1341 continue; 1342 } 1343 KASSERT(p->p_ucred != NULL, 1344 ("process credential is NULL for non-NEW proc")); 1345 /* 1346 * Show a user only appropriate processes. 1347 */ 1348 if (p_cansee(curthread, p)) { 1349 PROC_UNLOCK(p); 1350 continue; 1351 } 1352 /* 1353 * TODO - make more efficient (see notes below). 1354 * do by session. 1355 */ 1356 switch (oid_number) { 1357 1358 case KERN_PROC_GID: 1359 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1360 PROC_UNLOCK(p); 1361 continue; 1362 } 1363 break; 1364 1365 case KERN_PROC_PGRP: 1366 /* could do this by traversing pgrp */ 1367 if (p->p_pgrp == NULL || 1368 p->p_pgrp->pg_id != (pid_t)name[0]) { 1369 PROC_UNLOCK(p); 1370 continue; 1371 } 1372 break; 1373 1374 case KERN_PROC_RGID: 1375 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1376 PROC_UNLOCK(p); 1377 continue; 1378 } 1379 break; 1380 1381 case KERN_PROC_SESSION: 1382 if (p->p_session == NULL || 1383 p->p_session->s_sid != (pid_t)name[0]) { 1384 PROC_UNLOCK(p); 1385 continue; 1386 } 1387 break; 1388 1389 case KERN_PROC_TTY: 1390 if ((p->p_flag & P_CONTROLT) == 0 || 1391 p->p_session == NULL) { 1392 PROC_UNLOCK(p); 1393 continue; 1394 } 1395 /* XXX proctree_lock */ 1396 SESS_LOCK(p->p_session); 1397 if (p->p_session->s_ttyp == NULL || 1398 tty_udev(p->p_session->s_ttyp) != 1399 (dev_t)name[0]) { 1400 SESS_UNLOCK(p->p_session); 1401 PROC_UNLOCK(p); 1402 continue; 1403 } 1404 SESS_UNLOCK(p->p_session); 1405 break; 1406 1407 case KERN_PROC_UID: 1408 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1409 PROC_UNLOCK(p); 1410 continue; 1411 } 1412 break; 1413 1414 case KERN_PROC_RUID: 1415 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1416 PROC_UNLOCK(p); 1417 continue; 1418 } 1419 break; 1420 1421 case KERN_PROC_PROC: 1422 break; 1423 1424 default: 1425 break; 1426 1427 } 1428 1429 error = sysctl_out_proc(p, req, flags, doingzomb); 1430 if (error) { 1431 sx_sunlock(&allproc_lock); 1432 return (error); 1433 } 1434 } 1435 } 1436 sx_sunlock(&allproc_lock); 1437 return (0); 1438 } 1439 1440 struct pargs * 1441 pargs_alloc(int len) 1442 { 1443 struct pargs *pa; 1444 1445 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1446 M_WAITOK); 1447 refcount_init(&pa->ar_ref, 1); 1448 pa->ar_length = len; 1449 return (pa); 1450 } 1451 1452 static void 1453 pargs_free(struct pargs *pa) 1454 { 1455 1456 free(pa, M_PARGS); 1457 } 1458 1459 void 1460 pargs_hold(struct pargs *pa) 1461 { 1462 1463 if (pa == NULL) 1464 return; 1465 refcount_acquire(&pa->ar_ref); 1466 } 1467 1468 void 1469 pargs_drop(struct pargs *pa) 1470 { 1471 1472 if (pa == NULL) 1473 return; 1474 if (refcount_release(&pa->ar_ref)) 1475 pargs_free(pa); 1476 } 1477 1478 static int 1479 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1480 size_t len) 1481 { 1482 struct iovec iov; 1483 struct uio uio; 1484 1485 iov.iov_base = (caddr_t)buf; 1486 iov.iov_len = len; 1487 uio.uio_iov = &iov; 1488 uio.uio_iovcnt = 1; 1489 uio.uio_offset = offset; 1490 uio.uio_resid = (ssize_t)len; 1491 uio.uio_segflg = UIO_SYSSPACE; 1492 uio.uio_rw = UIO_READ; 1493 uio.uio_td = td; 1494 1495 return (proc_rwmem(p, &uio)); 1496 } 1497 1498 static int 1499 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1500 size_t len) 1501 { 1502 size_t i; 1503 int error; 1504 1505 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1506 /* 1507 * Reading the chunk may validly return EFAULT if the string is shorter 1508 * than the chunk and is aligned at the end of the page, assuming the 1509 * next page is not mapped. So if EFAULT is returned do a fallback to 1510 * one byte read loop. 1511 */ 1512 if (error == EFAULT) { 1513 for (i = 0; i < len; i++, buf++, sptr++) { 1514 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1515 if (error != 0) 1516 return (error); 1517 if (*buf == '\0') 1518 break; 1519 } 1520 error = 0; 1521 } 1522 return (error); 1523 } 1524 1525 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1526 1527 enum proc_vector_type { 1528 PROC_ARG, 1529 PROC_ENV, 1530 PROC_AUX, 1531 }; 1532 1533 #ifdef COMPAT_FREEBSD32 1534 static int 1535 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1536 size_t *vsizep, enum proc_vector_type type) 1537 { 1538 struct freebsd32_ps_strings pss; 1539 Elf32_Auxinfo aux; 1540 vm_offset_t vptr, ptr; 1541 uint32_t *proc_vector32; 1542 char **proc_vector; 1543 size_t vsize, size; 1544 int i, error; 1545 1546 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1547 &pss, sizeof(pss)); 1548 if (error != 0) 1549 return (error); 1550 switch (type) { 1551 case PROC_ARG: 1552 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1553 vsize = pss.ps_nargvstr; 1554 if (vsize > ARG_MAX) 1555 return (ENOEXEC); 1556 size = vsize * sizeof(int32_t); 1557 break; 1558 case PROC_ENV: 1559 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1560 vsize = pss.ps_nenvstr; 1561 if (vsize > ARG_MAX) 1562 return (ENOEXEC); 1563 size = vsize * sizeof(int32_t); 1564 break; 1565 case PROC_AUX: 1566 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1567 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1568 if (vptr % 4 != 0) 1569 return (ENOEXEC); 1570 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1571 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1572 if (error != 0) 1573 return (error); 1574 if (aux.a_type == AT_NULL) 1575 break; 1576 ptr += sizeof(aux); 1577 } 1578 if (aux.a_type != AT_NULL) 1579 return (ENOEXEC); 1580 vsize = i + 1; 1581 size = vsize * sizeof(aux); 1582 break; 1583 default: 1584 KASSERT(0, ("Wrong proc vector type: %d", type)); 1585 return (EINVAL); 1586 } 1587 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1588 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1589 if (error != 0) 1590 goto done; 1591 if (type == PROC_AUX) { 1592 *proc_vectorp = (char **)proc_vector32; 1593 *vsizep = vsize; 1594 return (0); 1595 } 1596 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1597 for (i = 0; i < (int)vsize; i++) 1598 proc_vector[i] = PTRIN(proc_vector32[i]); 1599 *proc_vectorp = proc_vector; 1600 *vsizep = vsize; 1601 done: 1602 free(proc_vector32, M_TEMP); 1603 return (error); 1604 } 1605 #endif 1606 1607 static int 1608 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1609 size_t *vsizep, enum proc_vector_type type) 1610 { 1611 struct ps_strings pss; 1612 Elf_Auxinfo aux; 1613 vm_offset_t vptr, ptr; 1614 char **proc_vector; 1615 size_t vsize, size; 1616 int error, i; 1617 1618 #ifdef COMPAT_FREEBSD32 1619 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1620 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1621 #endif 1622 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1623 &pss, sizeof(pss)); 1624 if (error != 0) 1625 return (error); 1626 switch (type) { 1627 case PROC_ARG: 1628 vptr = (vm_offset_t)pss.ps_argvstr; 1629 vsize = pss.ps_nargvstr; 1630 if (vsize > ARG_MAX) 1631 return (ENOEXEC); 1632 size = vsize * sizeof(char *); 1633 break; 1634 case PROC_ENV: 1635 vptr = (vm_offset_t)pss.ps_envstr; 1636 vsize = pss.ps_nenvstr; 1637 if (vsize > ARG_MAX) 1638 return (ENOEXEC); 1639 size = vsize * sizeof(char *); 1640 break; 1641 case PROC_AUX: 1642 /* 1643 * The aux array is just above env array on the stack. Check 1644 * that the address is naturally aligned. 1645 */ 1646 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1647 * sizeof(char *); 1648 #if __ELF_WORD_SIZE == 64 1649 if (vptr % sizeof(uint64_t) != 0) 1650 #else 1651 if (vptr % sizeof(uint32_t) != 0) 1652 #endif 1653 return (ENOEXEC); 1654 /* 1655 * We count the array size reading the aux vectors from the 1656 * stack until AT_NULL vector is returned. So (to keep the code 1657 * simple) we read the process stack twice: the first time here 1658 * to find the size and the second time when copying the vectors 1659 * to the allocated proc_vector. 1660 */ 1661 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1662 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1663 if (error != 0) 1664 return (error); 1665 if (aux.a_type == AT_NULL) 1666 break; 1667 ptr += sizeof(aux); 1668 } 1669 /* 1670 * If the PROC_AUXV_MAX entries are iterated over, and we have 1671 * not reached AT_NULL, it is most likely we are reading wrong 1672 * data: either the process doesn't have auxv array or data has 1673 * been modified. Return the error in this case. 1674 */ 1675 if (aux.a_type != AT_NULL) 1676 return (ENOEXEC); 1677 vsize = i + 1; 1678 size = vsize * sizeof(aux); 1679 break; 1680 default: 1681 KASSERT(0, ("Wrong proc vector type: %d", type)); 1682 return (EINVAL); /* In case we are built without INVARIANTS. */ 1683 } 1684 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1685 if (proc_vector == NULL) 1686 return (ENOMEM); 1687 error = proc_read_mem(td, p, vptr, proc_vector, size); 1688 if (error != 0) { 1689 free(proc_vector, M_TEMP); 1690 return (error); 1691 } 1692 *proc_vectorp = proc_vector; 1693 *vsizep = vsize; 1694 1695 return (0); 1696 } 1697 1698 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1699 1700 static int 1701 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1702 enum proc_vector_type type) 1703 { 1704 size_t done, len, nchr, vsize; 1705 int error, i; 1706 char **proc_vector, *sptr; 1707 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1708 1709 PROC_ASSERT_HELD(p); 1710 1711 /* 1712 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1713 */ 1714 nchr = 2 * (PATH_MAX + ARG_MAX); 1715 1716 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1717 if (error != 0) 1718 return (error); 1719 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1720 /* 1721 * The program may have scribbled into its argv array, e.g. to 1722 * remove some arguments. If that has happened, break out 1723 * before trying to read from NULL. 1724 */ 1725 if (proc_vector[i] == NULL) 1726 break; 1727 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1728 error = proc_read_string(td, p, sptr, pss_string, 1729 sizeof(pss_string)); 1730 if (error != 0) 1731 goto done; 1732 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1733 if (done + len >= nchr) 1734 len = nchr - done - 1; 1735 sbuf_bcat(sb, pss_string, len); 1736 if (len != GET_PS_STRINGS_CHUNK_SZ) 1737 break; 1738 done += GET_PS_STRINGS_CHUNK_SZ; 1739 } 1740 sbuf_bcat(sb, "", 1); 1741 done += len + 1; 1742 } 1743 done: 1744 free(proc_vector, M_TEMP); 1745 return (error); 1746 } 1747 1748 int 1749 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1750 { 1751 1752 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1753 } 1754 1755 int 1756 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1757 { 1758 1759 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1760 } 1761 1762 int 1763 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1764 { 1765 size_t vsize, size; 1766 char **auxv; 1767 int error; 1768 1769 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1770 if (error == 0) { 1771 #ifdef COMPAT_FREEBSD32 1772 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1773 size = vsize * sizeof(Elf32_Auxinfo); 1774 else 1775 #endif 1776 size = vsize * sizeof(Elf_Auxinfo); 1777 error = sbuf_bcat(sb, auxv, size); 1778 free(auxv, M_TEMP); 1779 } 1780 return (error); 1781 } 1782 1783 /* 1784 * This sysctl allows a process to retrieve the argument list or process 1785 * title for another process without groping around in the address space 1786 * of the other process. It also allow a process to set its own "process 1787 * title to a string of its own choice. 1788 */ 1789 static int 1790 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1791 { 1792 int *name = (int *)arg1; 1793 u_int namelen = arg2; 1794 struct pargs *newpa, *pa; 1795 struct proc *p; 1796 struct sbuf sb; 1797 int flags, error = 0, error2; 1798 1799 if (namelen != 1) 1800 return (EINVAL); 1801 1802 flags = PGET_CANSEE; 1803 if (req->newptr != NULL) 1804 flags |= PGET_ISCURRENT; 1805 error = pget((pid_t)name[0], flags, &p); 1806 if (error) 1807 return (error); 1808 1809 pa = p->p_args; 1810 if (pa != NULL) { 1811 pargs_hold(pa); 1812 PROC_UNLOCK(p); 1813 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1814 pargs_drop(pa); 1815 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1816 _PHOLD(p); 1817 PROC_UNLOCK(p); 1818 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1819 error = proc_getargv(curthread, p, &sb); 1820 error2 = sbuf_finish(&sb); 1821 PRELE(p); 1822 sbuf_delete(&sb); 1823 if (error == 0 && error2 != 0) 1824 error = error2; 1825 } else { 1826 PROC_UNLOCK(p); 1827 } 1828 if (error != 0 || req->newptr == NULL) 1829 return (error); 1830 1831 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1832 return (ENOMEM); 1833 newpa = pargs_alloc(req->newlen); 1834 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1835 if (error != 0) { 1836 pargs_free(newpa); 1837 return (error); 1838 } 1839 PROC_LOCK(p); 1840 pa = p->p_args; 1841 p->p_args = newpa; 1842 PROC_UNLOCK(p); 1843 pargs_drop(pa); 1844 return (0); 1845 } 1846 1847 /* 1848 * This sysctl allows a process to retrieve environment of another process. 1849 */ 1850 static int 1851 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1852 { 1853 int *name = (int *)arg1; 1854 u_int namelen = arg2; 1855 struct proc *p; 1856 struct sbuf sb; 1857 int error, error2; 1858 1859 if (namelen != 1) 1860 return (EINVAL); 1861 1862 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1863 if (error != 0) 1864 return (error); 1865 if ((p->p_flag & P_SYSTEM) != 0) { 1866 PRELE(p); 1867 return (0); 1868 } 1869 1870 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1871 error = proc_getenvv(curthread, p, &sb); 1872 error2 = sbuf_finish(&sb); 1873 PRELE(p); 1874 sbuf_delete(&sb); 1875 return (error != 0 ? error : error2); 1876 } 1877 1878 /* 1879 * This sysctl allows a process to retrieve ELF auxiliary vector of 1880 * another process. 1881 */ 1882 static int 1883 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1884 { 1885 int *name = (int *)arg1; 1886 u_int namelen = arg2; 1887 struct proc *p; 1888 struct sbuf sb; 1889 int error, error2; 1890 1891 if (namelen != 1) 1892 return (EINVAL); 1893 1894 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1895 if (error != 0) 1896 return (error); 1897 if ((p->p_flag & P_SYSTEM) != 0) { 1898 PRELE(p); 1899 return (0); 1900 } 1901 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1902 error = proc_getauxv(curthread, p, &sb); 1903 error2 = sbuf_finish(&sb); 1904 PRELE(p); 1905 sbuf_delete(&sb); 1906 return (error != 0 ? error : error2); 1907 } 1908 1909 /* 1910 * This sysctl allows a process to retrieve the path of the executable for 1911 * itself or another process. 1912 */ 1913 static int 1914 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1915 { 1916 pid_t *pidp = (pid_t *)arg1; 1917 unsigned int arglen = arg2; 1918 struct proc *p; 1919 struct vnode *vp; 1920 char *retbuf, *freebuf; 1921 int error; 1922 1923 if (arglen != 1) 1924 return (EINVAL); 1925 if (*pidp == -1) { /* -1 means this process */ 1926 p = req->td->td_proc; 1927 } else { 1928 error = pget(*pidp, PGET_CANSEE, &p); 1929 if (error != 0) 1930 return (error); 1931 } 1932 1933 vp = p->p_textvp; 1934 if (vp == NULL) { 1935 if (*pidp != -1) 1936 PROC_UNLOCK(p); 1937 return (0); 1938 } 1939 vref(vp); 1940 if (*pidp != -1) 1941 PROC_UNLOCK(p); 1942 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1943 vrele(vp); 1944 if (error) 1945 return (error); 1946 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1947 free(freebuf, M_TEMP); 1948 return (error); 1949 } 1950 1951 static int 1952 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1953 { 1954 struct proc *p; 1955 char *sv_name; 1956 int *name; 1957 int namelen; 1958 int error; 1959 1960 namelen = arg2; 1961 if (namelen != 1) 1962 return (EINVAL); 1963 1964 name = (int *)arg1; 1965 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1966 if (error != 0) 1967 return (error); 1968 sv_name = p->p_sysent->sv_name; 1969 PROC_UNLOCK(p); 1970 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1971 } 1972 1973 #ifdef KINFO_OVMENTRY_SIZE 1974 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1975 #endif 1976 1977 #ifdef COMPAT_FREEBSD7 1978 static int 1979 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1980 { 1981 vm_map_entry_t entry, tmp_entry; 1982 unsigned int last_timestamp; 1983 char *fullpath, *freepath; 1984 struct kinfo_ovmentry *kve; 1985 struct vattr va; 1986 struct ucred *cred; 1987 int error, *name; 1988 struct vnode *vp; 1989 struct proc *p; 1990 vm_map_t map; 1991 struct vmspace *vm; 1992 1993 name = (int *)arg1; 1994 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1995 if (error != 0) 1996 return (error); 1997 vm = vmspace_acquire_ref(p); 1998 if (vm == NULL) { 1999 PRELE(p); 2000 return (ESRCH); 2001 } 2002 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2003 2004 map = &vm->vm_map; 2005 vm_map_lock_read(map); 2006 for (entry = map->header.next; entry != &map->header; 2007 entry = entry->next) { 2008 vm_object_t obj, tobj, lobj; 2009 vm_offset_t addr; 2010 2011 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2012 continue; 2013 2014 bzero(kve, sizeof(*kve)); 2015 kve->kve_structsize = sizeof(*kve); 2016 2017 kve->kve_private_resident = 0; 2018 obj = entry->object.vm_object; 2019 if (obj != NULL) { 2020 VM_OBJECT_RLOCK(obj); 2021 if (obj->shadow_count == 1) 2022 kve->kve_private_resident = 2023 obj->resident_page_count; 2024 } 2025 kve->kve_resident = 0; 2026 addr = entry->start; 2027 while (addr < entry->end) { 2028 if (pmap_extract(map->pmap, addr)) 2029 kve->kve_resident++; 2030 addr += PAGE_SIZE; 2031 } 2032 2033 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2034 if (tobj != obj) 2035 VM_OBJECT_RLOCK(tobj); 2036 if (lobj != obj) 2037 VM_OBJECT_RUNLOCK(lobj); 2038 lobj = tobj; 2039 } 2040 2041 kve->kve_start = (void*)entry->start; 2042 kve->kve_end = (void*)entry->end; 2043 kve->kve_offset = (off_t)entry->offset; 2044 2045 if (entry->protection & VM_PROT_READ) 2046 kve->kve_protection |= KVME_PROT_READ; 2047 if (entry->protection & VM_PROT_WRITE) 2048 kve->kve_protection |= KVME_PROT_WRITE; 2049 if (entry->protection & VM_PROT_EXECUTE) 2050 kve->kve_protection |= KVME_PROT_EXEC; 2051 2052 if (entry->eflags & MAP_ENTRY_COW) 2053 kve->kve_flags |= KVME_FLAG_COW; 2054 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2055 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2056 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2057 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2058 2059 last_timestamp = map->timestamp; 2060 vm_map_unlock_read(map); 2061 2062 kve->kve_fileid = 0; 2063 kve->kve_fsid = 0; 2064 freepath = NULL; 2065 fullpath = ""; 2066 if (lobj) { 2067 vp = NULL; 2068 switch (lobj->type) { 2069 case OBJT_DEFAULT: 2070 kve->kve_type = KVME_TYPE_DEFAULT; 2071 break; 2072 case OBJT_VNODE: 2073 kve->kve_type = KVME_TYPE_VNODE; 2074 vp = lobj->handle; 2075 vref(vp); 2076 break; 2077 case OBJT_SWAP: 2078 kve->kve_type = KVME_TYPE_SWAP; 2079 break; 2080 case OBJT_DEVICE: 2081 kve->kve_type = KVME_TYPE_DEVICE; 2082 break; 2083 case OBJT_PHYS: 2084 kve->kve_type = KVME_TYPE_PHYS; 2085 break; 2086 case OBJT_DEAD: 2087 kve->kve_type = KVME_TYPE_DEAD; 2088 break; 2089 case OBJT_SG: 2090 kve->kve_type = KVME_TYPE_SG; 2091 break; 2092 default: 2093 kve->kve_type = KVME_TYPE_UNKNOWN; 2094 break; 2095 } 2096 if (lobj != obj) 2097 VM_OBJECT_RUNLOCK(lobj); 2098 2099 kve->kve_ref_count = obj->ref_count; 2100 kve->kve_shadow_count = obj->shadow_count; 2101 VM_OBJECT_RUNLOCK(obj); 2102 if (vp != NULL) { 2103 vn_fullpath(curthread, vp, &fullpath, 2104 &freepath); 2105 cred = curthread->td_ucred; 2106 vn_lock(vp, LK_SHARED | LK_RETRY); 2107 if (VOP_GETATTR(vp, &va, cred) == 0) { 2108 kve->kve_fileid = va.va_fileid; 2109 kve->kve_fsid = va.va_fsid; 2110 } 2111 vput(vp); 2112 } 2113 } else { 2114 kve->kve_type = KVME_TYPE_NONE; 2115 kve->kve_ref_count = 0; 2116 kve->kve_shadow_count = 0; 2117 } 2118 2119 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2120 if (freepath != NULL) 2121 free(freepath, M_TEMP); 2122 2123 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2124 vm_map_lock_read(map); 2125 if (error) 2126 break; 2127 if (last_timestamp != map->timestamp) { 2128 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2129 entry = tmp_entry; 2130 } 2131 } 2132 vm_map_unlock_read(map); 2133 vmspace_free(vm); 2134 PRELE(p); 2135 free(kve, M_TEMP); 2136 return (error); 2137 } 2138 #endif /* COMPAT_FREEBSD7 */ 2139 2140 #ifdef KINFO_VMENTRY_SIZE 2141 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2142 #endif 2143 2144 /* 2145 * Must be called with the process locked and will return unlocked. 2146 */ 2147 int 2148 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2149 { 2150 vm_map_entry_t entry, tmp_entry; 2151 unsigned int last_timestamp; 2152 char *fullpath, *freepath; 2153 struct kinfo_vmentry *kve; 2154 struct vattr va; 2155 struct ucred *cred; 2156 int error; 2157 struct vnode *vp; 2158 struct vmspace *vm; 2159 vm_map_t map; 2160 2161 PROC_LOCK_ASSERT(p, MA_OWNED); 2162 2163 _PHOLD(p); 2164 PROC_UNLOCK(p); 2165 vm = vmspace_acquire_ref(p); 2166 if (vm == NULL) { 2167 PRELE(p); 2168 return (ESRCH); 2169 } 2170 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2171 2172 error = 0; 2173 map = &vm->vm_map; 2174 vm_map_lock_read(map); 2175 for (entry = map->header.next; entry != &map->header; 2176 entry = entry->next) { 2177 vm_object_t obj, tobj, lobj; 2178 vm_offset_t addr; 2179 vm_paddr_t locked_pa; 2180 int mincoreinfo; 2181 2182 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2183 continue; 2184 2185 bzero(kve, sizeof(*kve)); 2186 2187 kve->kve_private_resident = 0; 2188 obj = entry->object.vm_object; 2189 if (obj != NULL) { 2190 VM_OBJECT_RLOCK(obj); 2191 if (obj->shadow_count == 1) 2192 kve->kve_private_resident = 2193 obj->resident_page_count; 2194 } 2195 kve->kve_resident = 0; 2196 addr = entry->start; 2197 while (addr < entry->end) { 2198 locked_pa = 0; 2199 mincoreinfo = pmap_mincore(map->pmap, addr, &locked_pa); 2200 if (locked_pa != 0) 2201 vm_page_unlock(PHYS_TO_VM_PAGE(locked_pa)); 2202 if (mincoreinfo & MINCORE_INCORE) 2203 kve->kve_resident++; 2204 if (mincoreinfo & MINCORE_SUPER) 2205 kve->kve_flags |= KVME_FLAG_SUPER; 2206 addr += PAGE_SIZE; 2207 } 2208 2209 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2210 if (tobj != obj) 2211 VM_OBJECT_RLOCK(tobj); 2212 if (lobj != obj) 2213 VM_OBJECT_RUNLOCK(lobj); 2214 lobj = tobj; 2215 } 2216 2217 kve->kve_start = entry->start; 2218 kve->kve_end = entry->end; 2219 kve->kve_offset = entry->offset; 2220 2221 if (entry->protection & VM_PROT_READ) 2222 kve->kve_protection |= KVME_PROT_READ; 2223 if (entry->protection & VM_PROT_WRITE) 2224 kve->kve_protection |= KVME_PROT_WRITE; 2225 if (entry->protection & VM_PROT_EXECUTE) 2226 kve->kve_protection |= KVME_PROT_EXEC; 2227 2228 if (entry->eflags & MAP_ENTRY_COW) 2229 kve->kve_flags |= KVME_FLAG_COW; 2230 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2231 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2232 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2233 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2234 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2235 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2236 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2237 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2238 2239 last_timestamp = map->timestamp; 2240 vm_map_unlock_read(map); 2241 2242 freepath = NULL; 2243 fullpath = ""; 2244 if (lobj) { 2245 vp = NULL; 2246 switch (lobj->type) { 2247 case OBJT_DEFAULT: 2248 kve->kve_type = KVME_TYPE_DEFAULT; 2249 break; 2250 case OBJT_VNODE: 2251 kve->kve_type = KVME_TYPE_VNODE; 2252 vp = lobj->handle; 2253 vref(vp); 2254 break; 2255 case OBJT_SWAP: 2256 kve->kve_type = KVME_TYPE_SWAP; 2257 break; 2258 case OBJT_DEVICE: 2259 kve->kve_type = KVME_TYPE_DEVICE; 2260 break; 2261 case OBJT_PHYS: 2262 kve->kve_type = KVME_TYPE_PHYS; 2263 break; 2264 case OBJT_DEAD: 2265 kve->kve_type = KVME_TYPE_DEAD; 2266 break; 2267 case OBJT_SG: 2268 kve->kve_type = KVME_TYPE_SG; 2269 break; 2270 default: 2271 kve->kve_type = KVME_TYPE_UNKNOWN; 2272 break; 2273 } 2274 if (lobj != obj) 2275 VM_OBJECT_RUNLOCK(lobj); 2276 2277 kve->kve_ref_count = obj->ref_count; 2278 kve->kve_shadow_count = obj->shadow_count; 2279 VM_OBJECT_RUNLOCK(obj); 2280 if (vp != NULL) { 2281 vn_fullpath(curthread, vp, &fullpath, 2282 &freepath); 2283 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2284 cred = curthread->td_ucred; 2285 vn_lock(vp, LK_SHARED | LK_RETRY); 2286 if (VOP_GETATTR(vp, &va, cred) == 0) { 2287 kve->kve_vn_fileid = va.va_fileid; 2288 kve->kve_vn_fsid = va.va_fsid; 2289 kve->kve_vn_mode = 2290 MAKEIMODE(va.va_type, va.va_mode); 2291 kve->kve_vn_size = va.va_size; 2292 kve->kve_vn_rdev = va.va_rdev; 2293 kve->kve_status = KF_ATTR_VALID; 2294 } 2295 vput(vp); 2296 } 2297 } else { 2298 kve->kve_type = KVME_TYPE_NONE; 2299 kve->kve_ref_count = 0; 2300 kve->kve_shadow_count = 0; 2301 } 2302 2303 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2304 if (freepath != NULL) 2305 free(freepath, M_TEMP); 2306 2307 /* Pack record size down */ 2308 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2309 strlen(kve->kve_path) + 1; 2310 kve->kve_structsize = roundup(kve->kve_structsize, 2311 sizeof(uint64_t)); 2312 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2313 vm_map_lock_read(map); 2314 if (error) 2315 break; 2316 if (last_timestamp != map->timestamp) { 2317 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2318 entry = tmp_entry; 2319 } 2320 } 2321 vm_map_unlock_read(map); 2322 vmspace_free(vm); 2323 PRELE(p); 2324 free(kve, M_TEMP); 2325 return (error); 2326 } 2327 2328 static int 2329 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2330 { 2331 struct proc *p; 2332 struct sbuf sb; 2333 int error, error2, *name; 2334 2335 name = (int *)arg1; 2336 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2337 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2338 if (error != 0) { 2339 sbuf_delete(&sb); 2340 return (error); 2341 } 2342 error = kern_proc_vmmap_out(p, &sb); 2343 error2 = sbuf_finish(&sb); 2344 sbuf_delete(&sb); 2345 return (error != 0 ? error : error2); 2346 } 2347 2348 #if defined(STACK) || defined(DDB) 2349 static int 2350 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2351 { 2352 struct kinfo_kstack *kkstp; 2353 int error, i, *name, numthreads; 2354 lwpid_t *lwpidarray; 2355 struct thread *td; 2356 struct stack *st; 2357 struct sbuf sb; 2358 struct proc *p; 2359 2360 name = (int *)arg1; 2361 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2362 if (error != 0) 2363 return (error); 2364 2365 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2366 st = stack_create(); 2367 2368 lwpidarray = NULL; 2369 numthreads = 0; 2370 PROC_LOCK(p); 2371 repeat: 2372 if (numthreads < p->p_numthreads) { 2373 if (lwpidarray != NULL) { 2374 free(lwpidarray, M_TEMP); 2375 lwpidarray = NULL; 2376 } 2377 numthreads = p->p_numthreads; 2378 PROC_UNLOCK(p); 2379 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2380 M_WAITOK | M_ZERO); 2381 PROC_LOCK(p); 2382 goto repeat; 2383 } 2384 i = 0; 2385 2386 /* 2387 * XXXRW: During the below loop, execve(2) and countless other sorts 2388 * of changes could have taken place. Should we check to see if the 2389 * vmspace has been replaced, or the like, in order to prevent 2390 * giving a snapshot that spans, say, execve(2), with some threads 2391 * before and some after? Among other things, the credentials could 2392 * have changed, in which case the right to extract debug info might 2393 * no longer be assured. 2394 */ 2395 FOREACH_THREAD_IN_PROC(p, td) { 2396 KASSERT(i < numthreads, 2397 ("sysctl_kern_proc_kstack: numthreads")); 2398 lwpidarray[i] = td->td_tid; 2399 i++; 2400 } 2401 numthreads = i; 2402 for (i = 0; i < numthreads; i++) { 2403 td = thread_find(p, lwpidarray[i]); 2404 if (td == NULL) { 2405 continue; 2406 } 2407 bzero(kkstp, sizeof(*kkstp)); 2408 (void)sbuf_new(&sb, kkstp->kkst_trace, 2409 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2410 thread_lock(td); 2411 kkstp->kkst_tid = td->td_tid; 2412 if (TD_IS_SWAPPED(td)) 2413 kkstp->kkst_state = KKST_STATE_SWAPPED; 2414 else if (TD_IS_RUNNING(td)) 2415 kkstp->kkst_state = KKST_STATE_RUNNING; 2416 else { 2417 kkstp->kkst_state = KKST_STATE_STACKOK; 2418 stack_save_td(st, td); 2419 } 2420 thread_unlock(td); 2421 PROC_UNLOCK(p); 2422 stack_sbuf_print(&sb, st); 2423 sbuf_finish(&sb); 2424 sbuf_delete(&sb); 2425 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2426 PROC_LOCK(p); 2427 if (error) 2428 break; 2429 } 2430 _PRELE(p); 2431 PROC_UNLOCK(p); 2432 if (lwpidarray != NULL) 2433 free(lwpidarray, M_TEMP); 2434 stack_destroy(st); 2435 free(kkstp, M_TEMP); 2436 return (error); 2437 } 2438 #endif 2439 2440 /* 2441 * This sysctl allows a process to retrieve the full list of groups from 2442 * itself or another process. 2443 */ 2444 static int 2445 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2446 { 2447 pid_t *pidp = (pid_t *)arg1; 2448 unsigned int arglen = arg2; 2449 struct proc *p; 2450 struct ucred *cred; 2451 int error; 2452 2453 if (arglen != 1) 2454 return (EINVAL); 2455 if (*pidp == -1) { /* -1 means this process */ 2456 p = req->td->td_proc; 2457 } else { 2458 error = pget(*pidp, PGET_CANSEE, &p); 2459 if (error != 0) 2460 return (error); 2461 } 2462 2463 cred = crhold(p->p_ucred); 2464 if (*pidp != -1) 2465 PROC_UNLOCK(p); 2466 2467 error = SYSCTL_OUT(req, cred->cr_groups, 2468 cred->cr_ngroups * sizeof(gid_t)); 2469 crfree(cred); 2470 return (error); 2471 } 2472 2473 /* 2474 * This sysctl allows a process to retrieve or/and set the resource limit for 2475 * another process. 2476 */ 2477 static int 2478 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2479 { 2480 int *name = (int *)arg1; 2481 u_int namelen = arg2; 2482 struct rlimit rlim; 2483 struct proc *p; 2484 u_int which; 2485 int flags, error; 2486 2487 if (namelen != 2) 2488 return (EINVAL); 2489 2490 which = (u_int)name[1]; 2491 if (which >= RLIM_NLIMITS) 2492 return (EINVAL); 2493 2494 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2495 return (EINVAL); 2496 2497 flags = PGET_HOLD | PGET_NOTWEXIT; 2498 if (req->newptr != NULL) 2499 flags |= PGET_CANDEBUG; 2500 else 2501 flags |= PGET_CANSEE; 2502 error = pget((pid_t)name[0], flags, &p); 2503 if (error != 0) 2504 return (error); 2505 2506 /* 2507 * Retrieve limit. 2508 */ 2509 if (req->oldptr != NULL) { 2510 PROC_LOCK(p); 2511 lim_rlimit(p, which, &rlim); 2512 PROC_UNLOCK(p); 2513 } 2514 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2515 if (error != 0) 2516 goto errout; 2517 2518 /* 2519 * Set limit. 2520 */ 2521 if (req->newptr != NULL) { 2522 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2523 if (error == 0) 2524 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2525 } 2526 2527 errout: 2528 PRELE(p); 2529 return (error); 2530 } 2531 2532 /* 2533 * This sysctl allows a process to retrieve ps_strings structure location of 2534 * another process. 2535 */ 2536 static int 2537 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2538 { 2539 int *name = (int *)arg1; 2540 u_int namelen = arg2; 2541 struct proc *p; 2542 vm_offset_t ps_strings; 2543 int error; 2544 #ifdef COMPAT_FREEBSD32 2545 uint32_t ps_strings32; 2546 #endif 2547 2548 if (namelen != 1) 2549 return (EINVAL); 2550 2551 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2552 if (error != 0) 2553 return (error); 2554 #ifdef COMPAT_FREEBSD32 2555 if ((req->flags & SCTL_MASK32) != 0) { 2556 /* 2557 * We return 0 if the 32 bit emulation request is for a 64 bit 2558 * process. 2559 */ 2560 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2561 PTROUT(p->p_sysent->sv_psstrings) : 0; 2562 PROC_UNLOCK(p); 2563 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2564 return (error); 2565 } 2566 #endif 2567 ps_strings = p->p_sysent->sv_psstrings; 2568 PROC_UNLOCK(p); 2569 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2570 return (error); 2571 } 2572 2573 /* 2574 * This sysctl allows a process to retrieve umask of another process. 2575 */ 2576 static int 2577 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2578 { 2579 int *name = (int *)arg1; 2580 u_int namelen = arg2; 2581 struct proc *p; 2582 int error; 2583 u_short fd_cmask; 2584 2585 if (namelen != 1) 2586 return (EINVAL); 2587 2588 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2589 if (error != 0) 2590 return (error); 2591 2592 FILEDESC_SLOCK(p->p_fd); 2593 fd_cmask = p->p_fd->fd_cmask; 2594 FILEDESC_SUNLOCK(p->p_fd); 2595 PRELE(p); 2596 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2597 return (error); 2598 } 2599 2600 /* 2601 * This sysctl allows a process to set and retrieve binary osreldate of 2602 * another process. 2603 */ 2604 static int 2605 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2606 { 2607 int *name = (int *)arg1; 2608 u_int namelen = arg2; 2609 struct proc *p; 2610 int flags, error, osrel; 2611 2612 if (namelen != 1) 2613 return (EINVAL); 2614 2615 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2616 return (EINVAL); 2617 2618 flags = PGET_HOLD | PGET_NOTWEXIT; 2619 if (req->newptr != NULL) 2620 flags |= PGET_CANDEBUG; 2621 else 2622 flags |= PGET_CANSEE; 2623 error = pget((pid_t)name[0], flags, &p); 2624 if (error != 0) 2625 return (error); 2626 2627 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2628 if (error != 0) 2629 goto errout; 2630 2631 if (req->newptr != NULL) { 2632 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2633 if (error != 0) 2634 goto errout; 2635 if (osrel < 0) { 2636 error = EINVAL; 2637 goto errout; 2638 } 2639 p->p_osrel = osrel; 2640 } 2641 errout: 2642 PRELE(p); 2643 return (error); 2644 } 2645 2646 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2647 2648 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2649 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2650 "Return entire process table"); 2651 2652 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2653 sysctl_kern_proc, "Process table"); 2654 2655 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2656 sysctl_kern_proc, "Process table"); 2657 2658 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2659 sysctl_kern_proc, "Process table"); 2660 2661 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2662 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2663 2664 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2665 sysctl_kern_proc, "Process table"); 2666 2667 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2668 sysctl_kern_proc, "Process table"); 2669 2670 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2671 sysctl_kern_proc, "Process table"); 2672 2673 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2674 sysctl_kern_proc, "Process table"); 2675 2676 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2677 sysctl_kern_proc, "Return process table, no threads"); 2678 2679 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2680 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2681 sysctl_kern_proc_args, "Process argument list"); 2682 2683 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2684 sysctl_kern_proc_env, "Process environment"); 2685 2686 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2687 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2688 2689 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2690 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2691 2692 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2693 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2694 "Process syscall vector name (ABI type)"); 2695 2696 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2697 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2698 2699 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2700 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2701 2702 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2703 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2704 2705 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2706 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2707 2708 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2709 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2710 2711 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2712 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2713 2714 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2715 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2716 2717 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2718 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2719 2720 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2721 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2722 "Return process table, no threads"); 2723 2724 #ifdef COMPAT_FREEBSD7 2725 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2726 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2727 #endif 2728 2729 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2730 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2731 2732 #if defined(STACK) || defined(DDB) 2733 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2734 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2735 #endif 2736 2737 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2738 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2739 2740 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2741 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2742 "Process resource limits"); 2743 2744 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2745 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2746 "Process ps_strings location"); 2747 2748 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2749 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2750 2751 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2752 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2753 "Process binary osreldate"); 2754