1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 #include <sys/cdefs.h> 33 #include "opt_ddb.h" 34 #include "opt_ktrace.h" 35 #include "opt_kstack_pages.h" 36 #include "opt_stack.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/bitstring.h> 41 #include <sys/elf.h> 42 #include <sys/eventhandler.h> 43 #include <sys/exec.h> 44 #include <sys/fcntl.h> 45 #include <sys/jail.h> 46 #include <sys/kernel.h> 47 #include <sys/limits.h> 48 #include <sys/lock.h> 49 #include <sys/loginclass.h> 50 #include <sys/malloc.h> 51 #include <sys/mman.h> 52 #include <sys/mount.h> 53 #include <sys/mutex.h> 54 #include <sys/namei.h> 55 #include <sys/proc.h> 56 #include <sys/ptrace.h> 57 #include <sys/refcount.h> 58 #include <sys/resourcevar.h> 59 #include <sys/rwlock.h> 60 #include <sys/sbuf.h> 61 #include <sys/sysent.h> 62 #include <sys/sched.h> 63 #include <sys/smp.h> 64 #include <sys/stack.h> 65 #include <sys/stat.h> 66 #include <sys/dtrace_bsd.h> 67 #include <sys/sysctl.h> 68 #include <sys/filedesc.h> 69 #include <sys/tty.h> 70 #include <sys/signalvar.h> 71 #include <sys/sdt.h> 72 #include <sys/sx.h> 73 #include <sys/user.h> 74 #include <sys/vnode.h> 75 #include <sys/wait.h> 76 #ifdef KTRACE 77 #include <sys/ktrace.h> 78 #endif 79 80 #ifdef DDB 81 #include <ddb/ddb.h> 82 #endif 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_extern.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_page.h> 91 #include <vm/uma.h> 92 93 #include <fs/devfs/devfs.h> 94 95 #ifdef COMPAT_FREEBSD32 96 #include <compat/freebsd32/freebsd32.h> 97 #include <compat/freebsd32/freebsd32_util.h> 98 #endif 99 100 SDT_PROVIDER_DEFINE(proc); 101 102 MALLOC_DEFINE(M_SESSION, "session", "session header"); 103 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 104 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 105 106 static void doenterpgrp(struct proc *, struct pgrp *); 107 static void orphanpg(struct pgrp *pg); 108 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 109 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 110 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 111 int preferthread); 112 static void pgdelete(struct pgrp *); 113 static int pgrp_init(void *mem, int size, int flags); 114 static int proc_ctor(void *mem, int size, void *arg, int flags); 115 static void proc_dtor(void *mem, int size, void *arg); 116 static int proc_init(void *mem, int size, int flags); 117 static void proc_fini(void *mem, int size); 118 static void pargs_free(struct pargs *pa); 119 120 /* 121 * Other process lists 122 */ 123 struct pidhashhead *pidhashtbl = NULL; 124 struct sx *pidhashtbl_lock; 125 u_long pidhash; 126 u_long pidhashlock; 127 struct pgrphashhead *pgrphashtbl; 128 u_long pgrphash; 129 struct proclist allproc = LIST_HEAD_INITIALIZER(allproc); 130 struct sx __exclusive_cache_line allproc_lock; 131 struct sx __exclusive_cache_line proctree_lock; 132 struct mtx __exclusive_cache_line ppeers_lock; 133 struct mtx __exclusive_cache_line procid_lock; 134 uma_zone_t proc_zone; 135 uma_zone_t pgrp_zone; 136 137 /* 138 * The offset of various fields in struct proc and struct thread. 139 * These are used by kernel debuggers to enumerate kernel threads and 140 * processes. 141 */ 142 const int proc_off_p_pid = offsetof(struct proc, p_pid); 143 const int proc_off_p_comm = offsetof(struct proc, p_comm); 144 const int proc_off_p_list = offsetof(struct proc, p_list); 145 const int proc_off_p_hash = offsetof(struct proc, p_hash); 146 const int proc_off_p_threads = offsetof(struct proc, p_threads); 147 const int thread_off_td_tid = offsetof(struct thread, td_tid); 148 const int thread_off_td_name = offsetof(struct thread, td_name); 149 const int thread_off_td_oncpu = offsetof(struct thread, td_oncpu); 150 const int thread_off_td_pcb = offsetof(struct thread, td_pcb); 151 const int thread_off_td_plist = offsetof(struct thread, td_plist); 152 153 EVENTHANDLER_LIST_DEFINE(process_ctor); 154 EVENTHANDLER_LIST_DEFINE(process_dtor); 155 EVENTHANDLER_LIST_DEFINE(process_init); 156 EVENTHANDLER_LIST_DEFINE(process_fini); 157 EVENTHANDLER_LIST_DEFINE(process_exit); 158 EVENTHANDLER_LIST_DEFINE(process_fork); 159 EVENTHANDLER_LIST_DEFINE(process_exec); 160 161 int kstack_pages = KSTACK_PAGES; 162 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH, 163 &kstack_pages, 0, 164 "Kernel stack size in pages"); 165 static int vmmap_skip_res_cnt = 0; 166 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 167 &vmmap_skip_res_cnt, 0, 168 "Skip calculation of the pages resident count in kern.proc.vmmap"); 169 170 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 171 #ifdef COMPAT_FREEBSD32 172 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 173 #endif 174 175 /* 176 * Initialize global process hashing structures. 177 */ 178 void 179 procinit(void) 180 { 181 u_long i; 182 183 sx_init(&allproc_lock, "allproc"); 184 sx_init(&proctree_lock, "proctree"); 185 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 186 mtx_init(&procid_lock, "procid", NULL, MTX_DEF); 187 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 188 pidhashlock = (pidhash + 1) / 64; 189 if (pidhashlock > 0) 190 pidhashlock--; 191 pidhashtbl_lock = malloc(sizeof(*pidhashtbl_lock) * (pidhashlock + 1), 192 M_PROC, M_WAITOK | M_ZERO); 193 for (i = 0; i < pidhashlock + 1; i++) 194 sx_init_flags(&pidhashtbl_lock[i], "pidhash", SX_DUPOK); 195 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 196 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 197 proc_ctor, proc_dtor, proc_init, proc_fini, 198 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 199 pgrp_zone = uma_zcreate("PGRP", sizeof(struct pgrp), NULL, NULL, 200 pgrp_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 201 uihashinit(); 202 } 203 204 /* 205 * Prepare a proc for use. 206 */ 207 static int 208 proc_ctor(void *mem, int size, void *arg, int flags) 209 { 210 struct proc *p; 211 struct thread *td; 212 213 p = (struct proc *)mem; 214 #ifdef KDTRACE_HOOKS 215 kdtrace_proc_ctor(p); 216 #endif 217 EVENTHANDLER_DIRECT_INVOKE(process_ctor, p); 218 td = FIRST_THREAD_IN_PROC(p); 219 if (td != NULL) { 220 /* Make sure all thread constructors are executed */ 221 EVENTHANDLER_DIRECT_INVOKE(thread_ctor, td); 222 } 223 return (0); 224 } 225 226 /* 227 * Reclaim a proc after use. 228 */ 229 static void 230 proc_dtor(void *mem, int size, void *arg) 231 { 232 struct proc *p; 233 struct thread *td; 234 235 /* INVARIANTS checks go here */ 236 p = (struct proc *)mem; 237 td = FIRST_THREAD_IN_PROC(p); 238 if (td != NULL) { 239 #ifdef INVARIANTS 240 KASSERT((p->p_numthreads == 1), 241 ("bad number of threads in exiting process")); 242 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 243 #endif 244 /* Free all OSD associated to this thread. */ 245 osd_thread_exit(td); 246 ast_kclear(td); 247 248 /* Make sure all thread destructors are executed */ 249 EVENTHANDLER_DIRECT_INVOKE(thread_dtor, td); 250 } 251 EVENTHANDLER_DIRECT_INVOKE(process_dtor, p); 252 #ifdef KDTRACE_HOOKS 253 kdtrace_proc_dtor(p); 254 #endif 255 if (p->p_ksi != NULL) 256 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 257 } 258 259 /* 260 * Initialize type-stable parts of a proc (when newly created). 261 */ 262 static int 263 proc_init(void *mem, int size, int flags) 264 { 265 struct proc *p; 266 267 p = (struct proc *)mem; 268 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK | MTX_NEW); 269 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_NEW); 270 mtx_init(&p->p_statmtx, "pstatl", NULL, MTX_SPIN | MTX_NEW); 271 mtx_init(&p->p_itimmtx, "pitiml", NULL, MTX_SPIN | MTX_NEW); 272 mtx_init(&p->p_profmtx, "pprofl", NULL, MTX_SPIN | MTX_NEW); 273 cv_init(&p->p_pwait, "ppwait"); 274 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 275 EVENTHANDLER_DIRECT_INVOKE(process_init, p); 276 p->p_stats = pstats_alloc(); 277 p->p_pgrp = NULL; 278 return (0); 279 } 280 281 /* 282 * UMA should ensure that this function is never called. 283 * Freeing a proc structure would violate type stability. 284 */ 285 static void 286 proc_fini(void *mem, int size) 287 { 288 #ifdef notnow 289 struct proc *p; 290 291 p = (struct proc *)mem; 292 EVENTHANDLER_DIRECT_INVOKE(process_fini, p); 293 pstats_free(p->p_stats); 294 thread_free(FIRST_THREAD_IN_PROC(p)); 295 mtx_destroy(&p->p_mtx); 296 if (p->p_ksi != NULL) 297 ksiginfo_free(p->p_ksi); 298 #else 299 panic("proc reclaimed"); 300 #endif 301 } 302 303 static int 304 pgrp_init(void *mem, int size, int flags) 305 { 306 struct pgrp *pg; 307 308 pg = mem; 309 mtx_init(&pg->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 310 sx_init(&pg->pg_killsx, "killpg racer"); 311 return (0); 312 } 313 314 /* 315 * PID space management. 316 * 317 * These bitmaps are used by fork_findpid. 318 */ 319 bitstr_t bit_decl(proc_id_pidmap, PID_MAX); 320 bitstr_t bit_decl(proc_id_grpidmap, PID_MAX); 321 bitstr_t bit_decl(proc_id_sessidmap, PID_MAX); 322 bitstr_t bit_decl(proc_id_reapmap, PID_MAX); 323 324 static bitstr_t *proc_id_array[] = { 325 proc_id_pidmap, 326 proc_id_grpidmap, 327 proc_id_sessidmap, 328 proc_id_reapmap, 329 }; 330 331 void 332 proc_id_set(int type, pid_t id) 333 { 334 335 KASSERT(type >= 0 && type < nitems(proc_id_array), 336 ("invalid type %d\n", type)); 337 mtx_lock(&procid_lock); 338 KASSERT(bit_test(proc_id_array[type], id) == 0, 339 ("bit %d already set in %d\n", id, type)); 340 bit_set(proc_id_array[type], id); 341 mtx_unlock(&procid_lock); 342 } 343 344 void 345 proc_id_set_cond(int type, pid_t id) 346 { 347 348 KASSERT(type >= 0 && type < nitems(proc_id_array), 349 ("invalid type %d\n", type)); 350 if (bit_test(proc_id_array[type], id)) 351 return; 352 mtx_lock(&procid_lock); 353 bit_set(proc_id_array[type], id); 354 mtx_unlock(&procid_lock); 355 } 356 357 void 358 proc_id_clear(int type, pid_t id) 359 { 360 361 KASSERT(type >= 0 && type < nitems(proc_id_array), 362 ("invalid type %d\n", type)); 363 mtx_lock(&procid_lock); 364 KASSERT(bit_test(proc_id_array[type], id) != 0, 365 ("bit %d not set in %d\n", id, type)); 366 bit_clear(proc_id_array[type], id); 367 mtx_unlock(&procid_lock); 368 } 369 370 /* 371 * Is p an inferior of the current process? 372 */ 373 int 374 inferior(struct proc *p) 375 { 376 377 sx_assert(&proctree_lock, SX_LOCKED); 378 PROC_LOCK_ASSERT(p, MA_OWNED); 379 for (; p != curproc; p = proc_realparent(p)) { 380 if (p->p_pid == 0) 381 return (0); 382 } 383 return (1); 384 } 385 386 /* 387 * Shared lock all the pid hash lists. 388 */ 389 void 390 pidhash_slockall(void) 391 { 392 u_long i; 393 394 for (i = 0; i < pidhashlock + 1; i++) 395 sx_slock(&pidhashtbl_lock[i]); 396 } 397 398 /* 399 * Shared unlock all the pid hash lists. 400 */ 401 void 402 pidhash_sunlockall(void) 403 { 404 u_long i; 405 406 for (i = 0; i < pidhashlock + 1; i++) 407 sx_sunlock(&pidhashtbl_lock[i]); 408 } 409 410 /* 411 * Similar to pfind_any(), this function finds zombies. 412 */ 413 struct proc * 414 pfind_any_locked(pid_t pid) 415 { 416 struct proc *p; 417 418 sx_assert(PIDHASHLOCK(pid), SX_LOCKED); 419 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 420 if (p->p_pid == pid) { 421 PROC_LOCK(p); 422 if (p->p_state == PRS_NEW) { 423 PROC_UNLOCK(p); 424 p = NULL; 425 } 426 break; 427 } 428 } 429 return (p); 430 } 431 432 /* 433 * Locate a process by number. 434 * 435 * By not returning processes in the PRS_NEW state, we allow callers to avoid 436 * testing for that condition to avoid dereferencing p_ucred, et al. 437 */ 438 static __always_inline struct proc * 439 _pfind(pid_t pid, bool zombie) 440 { 441 struct proc *p; 442 443 p = curproc; 444 if (p->p_pid == pid) { 445 PROC_LOCK(p); 446 return (p); 447 } 448 sx_slock(PIDHASHLOCK(pid)); 449 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 450 if (p->p_pid == pid) { 451 PROC_LOCK(p); 452 if (p->p_state == PRS_NEW || 453 (!zombie && p->p_state == PRS_ZOMBIE)) { 454 PROC_UNLOCK(p); 455 p = NULL; 456 } 457 break; 458 } 459 } 460 sx_sunlock(PIDHASHLOCK(pid)); 461 return (p); 462 } 463 464 struct proc * 465 pfind(pid_t pid) 466 { 467 468 return (_pfind(pid, false)); 469 } 470 471 /* 472 * Same as pfind but allow zombies. 473 */ 474 struct proc * 475 pfind_any(pid_t pid) 476 { 477 478 return (_pfind(pid, true)); 479 } 480 481 /* 482 * Locate a process group by number. 483 * The caller must hold proctree_lock. 484 */ 485 struct pgrp * 486 pgfind(pid_t pgid) 487 { 488 struct pgrp *pgrp; 489 490 sx_assert(&proctree_lock, SX_LOCKED); 491 492 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 493 if (pgrp->pg_id == pgid) { 494 PGRP_LOCK(pgrp); 495 return (pgrp); 496 } 497 } 498 return (NULL); 499 } 500 501 /* 502 * Locate process and do additional manipulations, depending on flags. 503 */ 504 int 505 pget(pid_t pid, int flags, struct proc **pp) 506 { 507 struct proc *p; 508 struct thread *td1; 509 int error; 510 511 p = curproc; 512 if (p->p_pid == pid) { 513 PROC_LOCK(p); 514 } else { 515 p = NULL; 516 if (pid <= PID_MAX) { 517 if ((flags & PGET_NOTWEXIT) == 0) 518 p = pfind_any(pid); 519 else 520 p = pfind(pid); 521 } else if ((flags & PGET_NOTID) == 0) { 522 td1 = tdfind(pid, -1); 523 if (td1 != NULL) 524 p = td1->td_proc; 525 } 526 if (p == NULL) 527 return (ESRCH); 528 if ((flags & PGET_CANSEE) != 0) { 529 error = p_cansee(curthread, p); 530 if (error != 0) 531 goto errout; 532 } 533 } 534 if ((flags & PGET_CANDEBUG) != 0) { 535 error = p_candebug(curthread, p); 536 if (error != 0) 537 goto errout; 538 } 539 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 540 error = EPERM; 541 goto errout; 542 } 543 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 544 error = ESRCH; 545 goto errout; 546 } 547 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 548 /* 549 * XXXRW: Not clear ESRCH is the right error during proc 550 * execve(). 551 */ 552 error = ESRCH; 553 goto errout; 554 } 555 if ((flags & PGET_HOLD) != 0) { 556 _PHOLD(p); 557 PROC_UNLOCK(p); 558 } 559 *pp = p; 560 return (0); 561 errout: 562 PROC_UNLOCK(p); 563 return (error); 564 } 565 566 /* 567 * Create a new process group. 568 * pgid must be equal to the pid of p. 569 * Begin a new session if required. 570 */ 571 int 572 enterpgrp(struct proc *p, pid_t pgid, struct pgrp *pgrp, struct session *sess) 573 { 574 struct pgrp *old_pgrp; 575 576 sx_assert(&proctree_lock, SX_XLOCKED); 577 578 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 579 KASSERT(p->p_pid == pgid, 580 ("enterpgrp: new pgrp and pid != pgid")); 581 KASSERT(pgfind(pgid) == NULL, 582 ("enterpgrp: pgrp with pgid exists")); 583 KASSERT(!SESS_LEADER(p), 584 ("enterpgrp: session leader attempted setpgrp")); 585 586 old_pgrp = p->p_pgrp; 587 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 588 sx_xunlock(&proctree_lock); 589 sx_xlock(&old_pgrp->pg_killsx); 590 sx_xunlock(&old_pgrp->pg_killsx); 591 return (ERESTART); 592 } 593 MPASS(old_pgrp == p->p_pgrp); 594 595 if (sess != NULL) { 596 /* 597 * new session 598 */ 599 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 600 PROC_LOCK(p); 601 p->p_flag &= ~P_CONTROLT; 602 PROC_UNLOCK(p); 603 PGRP_LOCK(pgrp); 604 sess->s_leader = p; 605 sess->s_sid = p->p_pid; 606 proc_id_set(PROC_ID_SESSION, p->p_pid); 607 refcount_init(&sess->s_count, 1); 608 sess->s_ttyvp = NULL; 609 sess->s_ttydp = NULL; 610 sess->s_ttyp = NULL; 611 bcopy(p->p_session->s_login, sess->s_login, 612 sizeof(sess->s_login)); 613 pgrp->pg_session = sess; 614 KASSERT(p == curproc, 615 ("enterpgrp: mksession and p != curproc")); 616 } else { 617 pgrp->pg_session = p->p_session; 618 sess_hold(pgrp->pg_session); 619 PGRP_LOCK(pgrp); 620 } 621 pgrp->pg_id = pgid; 622 proc_id_set(PROC_ID_GROUP, p->p_pid); 623 LIST_INIT(&pgrp->pg_members); 624 pgrp->pg_flags = 0; 625 626 /* 627 * As we have an exclusive lock of proctree_lock, 628 * this should not deadlock. 629 */ 630 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 631 SLIST_INIT(&pgrp->pg_sigiolst); 632 PGRP_UNLOCK(pgrp); 633 634 doenterpgrp(p, pgrp); 635 636 sx_xunlock(&old_pgrp->pg_killsx); 637 return (0); 638 } 639 640 /* 641 * Move p to an existing process group 642 */ 643 int 644 enterthispgrp(struct proc *p, struct pgrp *pgrp) 645 { 646 struct pgrp *old_pgrp; 647 648 sx_assert(&proctree_lock, SX_XLOCKED); 649 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 650 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 651 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 652 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 653 KASSERT(pgrp->pg_session == p->p_session, 654 ("%s: pgrp's session %p, p->p_session %p proc %p\n", 655 __func__, pgrp->pg_session, p->p_session, p)); 656 KASSERT(pgrp != p->p_pgrp, 657 ("%s: p %p belongs to pgrp %p", __func__, p, pgrp)); 658 659 old_pgrp = p->p_pgrp; 660 if (!sx_try_xlock(&old_pgrp->pg_killsx)) { 661 sx_xunlock(&proctree_lock); 662 sx_xlock(&old_pgrp->pg_killsx); 663 sx_xunlock(&old_pgrp->pg_killsx); 664 return (ERESTART); 665 } 666 MPASS(old_pgrp == p->p_pgrp); 667 if (!sx_try_xlock(&pgrp->pg_killsx)) { 668 sx_xunlock(&old_pgrp->pg_killsx); 669 sx_xunlock(&proctree_lock); 670 sx_xlock(&pgrp->pg_killsx); 671 sx_xunlock(&pgrp->pg_killsx); 672 return (ERESTART); 673 } 674 675 doenterpgrp(p, pgrp); 676 677 sx_xunlock(&pgrp->pg_killsx); 678 sx_xunlock(&old_pgrp->pg_killsx); 679 return (0); 680 } 681 682 /* 683 * If true, any child of q which belongs to group pgrp, qualifies the 684 * process group pgrp as not orphaned. 685 */ 686 static bool 687 isjobproc(struct proc *q, struct pgrp *pgrp) 688 { 689 sx_assert(&proctree_lock, SX_LOCKED); 690 691 return (q->p_pgrp != pgrp && 692 q->p_pgrp->pg_session == pgrp->pg_session); 693 } 694 695 static struct proc * 696 jobc_reaper(struct proc *p) 697 { 698 struct proc *pp; 699 700 sx_assert(&proctree_lock, SA_LOCKED); 701 702 for (pp = p;;) { 703 pp = pp->p_reaper; 704 if (pp->p_reaper == pp || 705 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 706 return (pp); 707 } 708 } 709 710 static struct proc * 711 jobc_parent(struct proc *p, struct proc *p_exiting) 712 { 713 struct proc *pp; 714 715 sx_assert(&proctree_lock, SA_LOCKED); 716 717 pp = proc_realparent(p); 718 if (pp->p_pptr == NULL || pp == p_exiting || 719 (pp->p_treeflag & P_TREE_GRPEXITED) == 0) 720 return (pp); 721 return (jobc_reaper(pp)); 722 } 723 724 static int 725 pgrp_calc_jobc(struct pgrp *pgrp) 726 { 727 struct proc *q; 728 int cnt; 729 730 #ifdef INVARIANTS 731 if (!mtx_owned(&pgrp->pg_mtx)) 732 sx_assert(&proctree_lock, SA_LOCKED); 733 #endif 734 735 cnt = 0; 736 LIST_FOREACH(q, &pgrp->pg_members, p_pglist) { 737 if ((q->p_treeflag & P_TREE_GRPEXITED) != 0 || 738 q->p_pptr == NULL) 739 continue; 740 if (isjobproc(jobc_parent(q, NULL), pgrp)) 741 cnt++; 742 } 743 return (cnt); 744 } 745 746 /* 747 * Move p to a process group 748 */ 749 static void 750 doenterpgrp(struct proc *p, struct pgrp *pgrp) 751 { 752 struct pgrp *savepgrp; 753 struct proc *pp; 754 755 sx_assert(&proctree_lock, SX_XLOCKED); 756 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 757 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 758 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 759 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 760 761 savepgrp = p->p_pgrp; 762 pp = jobc_parent(p, NULL); 763 764 PGRP_LOCK(pgrp); 765 PGRP_LOCK(savepgrp); 766 if (isjobproc(pp, savepgrp) && pgrp_calc_jobc(savepgrp) == 1) 767 orphanpg(savepgrp); 768 PROC_LOCK(p); 769 LIST_REMOVE(p, p_pglist); 770 p->p_pgrp = pgrp; 771 PROC_UNLOCK(p); 772 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 773 if (isjobproc(pp, pgrp)) 774 pgrp->pg_flags &= ~PGRP_ORPHANED; 775 PGRP_UNLOCK(savepgrp); 776 PGRP_UNLOCK(pgrp); 777 if (LIST_EMPTY(&savepgrp->pg_members)) 778 pgdelete(savepgrp); 779 } 780 781 /* 782 * remove process from process group 783 */ 784 int 785 leavepgrp(struct proc *p) 786 { 787 struct pgrp *savepgrp; 788 789 sx_assert(&proctree_lock, SX_XLOCKED); 790 savepgrp = p->p_pgrp; 791 PGRP_LOCK(savepgrp); 792 PROC_LOCK(p); 793 LIST_REMOVE(p, p_pglist); 794 p->p_pgrp = NULL; 795 PROC_UNLOCK(p); 796 PGRP_UNLOCK(savepgrp); 797 if (LIST_EMPTY(&savepgrp->pg_members)) 798 pgdelete(savepgrp); 799 return (0); 800 } 801 802 /* 803 * delete a process group 804 */ 805 static void 806 pgdelete(struct pgrp *pgrp) 807 { 808 struct session *savesess; 809 struct tty *tp; 810 811 sx_assert(&proctree_lock, SX_XLOCKED); 812 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 813 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 814 815 /* 816 * Reset any sigio structures pointing to us as a result of 817 * F_SETOWN with our pgid. The proctree lock ensures that 818 * new sigio structures will not be added after this point. 819 */ 820 funsetownlst(&pgrp->pg_sigiolst); 821 822 PGRP_LOCK(pgrp); 823 tp = pgrp->pg_session->s_ttyp; 824 LIST_REMOVE(pgrp, pg_hash); 825 savesess = pgrp->pg_session; 826 PGRP_UNLOCK(pgrp); 827 828 /* Remove the reference to the pgrp before deallocating it. */ 829 if (tp != NULL) { 830 tty_lock(tp); 831 tty_rel_pgrp(tp, pgrp); 832 } 833 834 proc_id_clear(PROC_ID_GROUP, pgrp->pg_id); 835 uma_zfree(pgrp_zone, pgrp); 836 sess_release(savesess); 837 } 838 839 840 static void 841 fixjobc_kill(struct proc *p) 842 { 843 struct proc *q; 844 struct pgrp *pgrp; 845 846 sx_assert(&proctree_lock, SX_LOCKED); 847 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 848 pgrp = p->p_pgrp; 849 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 850 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 851 852 /* 853 * p no longer affects process group orphanage for children. 854 * It is marked by the flag because p is only physically 855 * removed from its process group on wait(2). 856 */ 857 MPASS((p->p_treeflag & P_TREE_GRPEXITED) == 0); 858 p->p_treeflag |= P_TREE_GRPEXITED; 859 860 /* 861 * Check if exiting p orphans its own group. 862 */ 863 pgrp = p->p_pgrp; 864 if (isjobproc(jobc_parent(p, NULL), pgrp)) { 865 PGRP_LOCK(pgrp); 866 if (pgrp_calc_jobc(pgrp) == 0) 867 orphanpg(pgrp); 868 PGRP_UNLOCK(pgrp); 869 } 870 871 /* 872 * Check this process' children to see whether they qualify 873 * their process groups after reparenting to reaper. 874 */ 875 LIST_FOREACH(q, &p->p_children, p_sibling) { 876 pgrp = q->p_pgrp; 877 PGRP_LOCK(pgrp); 878 if (pgrp_calc_jobc(pgrp) == 0) { 879 /* 880 * We want to handle exactly the children that 881 * has p as realparent. Then, when calculating 882 * jobc_parent for children, we should ignore 883 * P_TREE_GRPEXITED flag already set on p. 884 */ 885 if (jobc_parent(q, p) == p && isjobproc(p, pgrp)) 886 orphanpg(pgrp); 887 } else 888 pgrp->pg_flags &= ~PGRP_ORPHANED; 889 PGRP_UNLOCK(pgrp); 890 } 891 LIST_FOREACH(q, &p->p_orphans, p_orphan) { 892 pgrp = q->p_pgrp; 893 PGRP_LOCK(pgrp); 894 if (pgrp_calc_jobc(pgrp) == 0) { 895 if (isjobproc(p, pgrp)) 896 orphanpg(pgrp); 897 } else 898 pgrp->pg_flags &= ~PGRP_ORPHANED; 899 PGRP_UNLOCK(pgrp); 900 } 901 } 902 903 void 904 killjobc(void) 905 { 906 struct session *sp; 907 struct tty *tp; 908 struct proc *p; 909 struct vnode *ttyvp; 910 911 p = curproc; 912 MPASS(p->p_flag & P_WEXIT); 913 sx_assert(&proctree_lock, SX_LOCKED); 914 915 if (SESS_LEADER(p)) { 916 sp = p->p_session; 917 918 /* 919 * s_ttyp is not zero'd; we use this to indicate that 920 * the session once had a controlling terminal. (for 921 * logging and informational purposes) 922 */ 923 SESS_LOCK(sp); 924 ttyvp = sp->s_ttyvp; 925 tp = sp->s_ttyp; 926 sp->s_ttyvp = NULL; 927 sp->s_ttydp = NULL; 928 sp->s_leader = NULL; 929 SESS_UNLOCK(sp); 930 931 /* 932 * Signal foreground pgrp and revoke access to 933 * controlling terminal if it has not been revoked 934 * already. 935 * 936 * Because the TTY may have been revoked in the mean 937 * time and could already have a new session associated 938 * with it, make sure we don't send a SIGHUP to a 939 * foreground process group that does not belong to this 940 * session. 941 */ 942 943 if (tp != NULL) { 944 tty_lock(tp); 945 if (tp->t_session == sp) 946 tty_signal_pgrp(tp, SIGHUP); 947 tty_unlock(tp); 948 } 949 950 if (ttyvp != NULL) { 951 sx_xunlock(&proctree_lock); 952 if (vn_lock(ttyvp, LK_EXCLUSIVE) == 0) { 953 VOP_REVOKE(ttyvp, REVOKEALL); 954 VOP_UNLOCK(ttyvp); 955 } 956 devfs_ctty_unref(ttyvp); 957 sx_xlock(&proctree_lock); 958 } 959 } 960 fixjobc_kill(p); 961 } 962 963 /* 964 * A process group has become orphaned, mark it as such for signal 965 * delivery code. If there are any stopped processes in the group, 966 * hang-up all process in that group. 967 */ 968 static void 969 orphanpg(struct pgrp *pg) 970 { 971 struct proc *p; 972 973 PGRP_LOCK_ASSERT(pg, MA_OWNED); 974 975 pg->pg_flags |= PGRP_ORPHANED; 976 977 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 978 PROC_LOCK(p); 979 if (P_SHOULDSTOP(p) == P_STOPPED_SIG) { 980 PROC_UNLOCK(p); 981 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 982 PROC_LOCK(p); 983 kern_psignal(p, SIGHUP); 984 kern_psignal(p, SIGCONT); 985 PROC_UNLOCK(p); 986 } 987 return; 988 } 989 PROC_UNLOCK(p); 990 } 991 } 992 993 void 994 sess_hold(struct session *s) 995 { 996 997 refcount_acquire(&s->s_count); 998 } 999 1000 void 1001 sess_release(struct session *s) 1002 { 1003 1004 if (refcount_release(&s->s_count)) { 1005 if (s->s_ttyp != NULL) { 1006 tty_lock(s->s_ttyp); 1007 tty_rel_sess(s->s_ttyp, s); 1008 } 1009 proc_id_clear(PROC_ID_SESSION, s->s_sid); 1010 mtx_destroy(&s->s_mtx); 1011 free(s, M_SESSION); 1012 } 1013 } 1014 1015 #ifdef DDB 1016 1017 static void 1018 db_print_pgrp_one(struct pgrp *pgrp, struct proc *p) 1019 { 1020 db_printf( 1021 " pid %d at %p pr %d pgrp %p e %d jc %d\n", 1022 p->p_pid, p, p->p_pptr == NULL ? -1 : p->p_pptr->p_pid, 1023 p->p_pgrp, (p->p_treeflag & P_TREE_GRPEXITED) != 0, 1024 p->p_pptr == NULL ? 0 : isjobproc(p->p_pptr, pgrp)); 1025 } 1026 1027 DB_SHOW_COMMAND_FLAGS(pgrpdump, pgrpdump, DB_CMD_MEMSAFE) 1028 { 1029 struct pgrp *pgrp; 1030 struct proc *p; 1031 int i; 1032 1033 for (i = 0; i <= pgrphash; i++) { 1034 if (!LIST_EMPTY(&pgrphashtbl[i])) { 1035 db_printf("indx %d\n", i); 1036 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 1037 db_printf( 1038 " pgrp %p, pgid %d, sess %p, sesscnt %d, mem %p\n", 1039 pgrp, (int)pgrp->pg_id, pgrp->pg_session, 1040 pgrp->pg_session->s_count, 1041 LIST_FIRST(&pgrp->pg_members)); 1042 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) 1043 db_print_pgrp_one(pgrp, p); 1044 } 1045 } 1046 } 1047 } 1048 #endif /* DDB */ 1049 1050 /* 1051 * Calculate the kinfo_proc members which contain process-wide 1052 * informations. 1053 * Must be called with the target process locked. 1054 */ 1055 static void 1056 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 1057 { 1058 struct thread *td; 1059 1060 PROC_LOCK_ASSERT(p, MA_OWNED); 1061 1062 kp->ki_estcpu = 0; 1063 kp->ki_pctcpu = 0; 1064 FOREACH_THREAD_IN_PROC(p, td) { 1065 thread_lock(td); 1066 kp->ki_pctcpu += sched_pctcpu(td); 1067 kp->ki_estcpu += sched_estcpu(td); 1068 thread_unlock(td); 1069 } 1070 } 1071 1072 /* 1073 * Fill in any information that is common to all threads in the process. 1074 * Must be called with the target process locked. 1075 */ 1076 static void 1077 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 1078 { 1079 struct thread *td0; 1080 struct ucred *cred; 1081 struct sigacts *ps; 1082 struct timeval boottime; 1083 1084 PROC_LOCK_ASSERT(p, MA_OWNED); 1085 1086 kp->ki_structsize = sizeof(*kp); 1087 kp->ki_paddr = p; 1088 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 1089 kp->ki_args = p->p_args; 1090 kp->ki_textvp = p->p_textvp; 1091 #ifdef KTRACE 1092 kp->ki_tracep = ktr_get_tracevp(p, false); 1093 kp->ki_traceflag = p->p_traceflag; 1094 #endif 1095 kp->ki_fd = p->p_fd; 1096 kp->ki_pd = p->p_pd; 1097 kp->ki_vmspace = p->p_vmspace; 1098 kp->ki_flag = p->p_flag; 1099 kp->ki_flag2 = p->p_flag2; 1100 cred = p->p_ucred; 1101 if (cred) { 1102 kp->ki_uid = cred->cr_uid; 1103 kp->ki_ruid = cred->cr_ruid; 1104 kp->ki_svuid = cred->cr_svuid; 1105 kp->ki_cr_flags = 0; 1106 if (cred->cr_flags & CRED_FLAG_CAPMODE) 1107 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 1108 /* XXX bde doesn't like KI_NGROUPS */ 1109 if (cred->cr_ngroups > KI_NGROUPS) { 1110 kp->ki_ngroups = KI_NGROUPS; 1111 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 1112 } else 1113 kp->ki_ngroups = cred->cr_ngroups; 1114 bcopy(cred->cr_groups, kp->ki_groups, 1115 kp->ki_ngroups * sizeof(gid_t)); 1116 kp->ki_rgid = cred->cr_rgid; 1117 kp->ki_svgid = cred->cr_svgid; 1118 /* If jailed(cred), emulate the old P_JAILED flag. */ 1119 if (jailed(cred)) { 1120 kp->ki_flag |= P_JAILED; 1121 /* If inside the jail, use 0 as a jail ID. */ 1122 if (cred->cr_prison != curthread->td_ucred->cr_prison) 1123 kp->ki_jid = cred->cr_prison->pr_id; 1124 } 1125 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 1126 sizeof(kp->ki_loginclass)); 1127 } 1128 ps = p->p_sigacts; 1129 if (ps) { 1130 mtx_lock(&ps->ps_mtx); 1131 kp->ki_sigignore = ps->ps_sigignore; 1132 kp->ki_sigcatch = ps->ps_sigcatch; 1133 mtx_unlock(&ps->ps_mtx); 1134 } 1135 if (p->p_state != PRS_NEW && 1136 p->p_state != PRS_ZOMBIE && 1137 p->p_vmspace != NULL) { 1138 struct vmspace *vm = p->p_vmspace; 1139 1140 kp->ki_size = vm->vm_map.size; 1141 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 1142 FOREACH_THREAD_IN_PROC(p, td0) { 1143 if (!TD_IS_SWAPPED(td0)) 1144 kp->ki_rssize += td0->td_kstack_pages; 1145 } 1146 kp->ki_swrss = vm->vm_swrss; 1147 kp->ki_tsize = vm->vm_tsize; 1148 kp->ki_dsize = vm->vm_dsize; 1149 kp->ki_ssize = vm->vm_ssize; 1150 } else if (p->p_state == PRS_ZOMBIE) 1151 kp->ki_stat = SZOMB; 1152 if (kp->ki_flag & P_INMEM) 1153 kp->ki_sflag = PS_INMEM; 1154 else 1155 kp->ki_sflag = 0; 1156 /* Calculate legacy swtime as seconds since 'swtick'. */ 1157 kp->ki_swtime = (ticks - p->p_swtick) / hz; 1158 kp->ki_pid = p->p_pid; 1159 kp->ki_nice = p->p_nice; 1160 kp->ki_fibnum = p->p_fibnum; 1161 kp->ki_start = p->p_stats->p_start; 1162 getboottime(&boottime); 1163 timevaladd(&kp->ki_start, &boottime); 1164 PROC_STATLOCK(p); 1165 rufetch(p, &kp->ki_rusage); 1166 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 1167 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 1168 PROC_STATUNLOCK(p); 1169 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 1170 /* Some callers want child times in a single value. */ 1171 kp->ki_childtime = kp->ki_childstime; 1172 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 1173 1174 FOREACH_THREAD_IN_PROC(p, td0) 1175 kp->ki_cow += td0->td_cow; 1176 1177 if (p->p_comm[0] != '\0') 1178 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 1179 if (p->p_sysent && p->p_sysent->sv_name != NULL && 1180 p->p_sysent->sv_name[0] != '\0') 1181 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 1182 kp->ki_siglist = p->p_siglist; 1183 kp->ki_xstat = KW_EXITCODE(p->p_xexit, p->p_xsig); 1184 kp->ki_acflag = p->p_acflag; 1185 kp->ki_lock = p->p_lock; 1186 if (p->p_pptr) { 1187 kp->ki_ppid = p->p_oppid; 1188 if (p->p_flag & P_TRACED) 1189 kp->ki_tracer = p->p_pptr->p_pid; 1190 } 1191 } 1192 1193 /* 1194 * Fill job-related process information. 1195 */ 1196 static void 1197 fill_kinfo_proc_pgrp(struct proc *p, struct kinfo_proc *kp) 1198 { 1199 struct tty *tp; 1200 struct session *sp; 1201 struct pgrp *pgrp; 1202 1203 sx_assert(&proctree_lock, SA_LOCKED); 1204 PROC_LOCK_ASSERT(p, MA_OWNED); 1205 1206 pgrp = p->p_pgrp; 1207 if (pgrp == NULL) 1208 return; 1209 1210 kp->ki_pgid = pgrp->pg_id; 1211 kp->ki_jobc = pgrp_calc_jobc(pgrp); 1212 1213 sp = pgrp->pg_session; 1214 tp = NULL; 1215 1216 if (sp != NULL) { 1217 kp->ki_sid = sp->s_sid; 1218 SESS_LOCK(sp); 1219 strlcpy(kp->ki_login, sp->s_login, sizeof(kp->ki_login)); 1220 if (sp->s_ttyvp) 1221 kp->ki_kiflag |= KI_CTTY; 1222 if (SESS_LEADER(p)) 1223 kp->ki_kiflag |= KI_SLEADER; 1224 tp = sp->s_ttyp; 1225 SESS_UNLOCK(sp); 1226 } 1227 1228 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 1229 kp->ki_tdev = tty_udev(tp); 1230 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1231 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 1232 if (tp->t_session) 1233 kp->ki_tsid = tp->t_session->s_sid; 1234 } else { 1235 kp->ki_tdev = NODEV; 1236 kp->ki_tdev_freebsd11 = kp->ki_tdev; /* truncate */ 1237 } 1238 } 1239 1240 /* 1241 * Fill in information that is thread specific. Must be called with 1242 * target process locked. If 'preferthread' is set, overwrite certain 1243 * process-related fields that are maintained for both threads and 1244 * processes. 1245 */ 1246 static void 1247 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 1248 { 1249 struct proc *p; 1250 1251 p = td->td_proc; 1252 kp->ki_tdaddr = td; 1253 PROC_LOCK_ASSERT(p, MA_OWNED); 1254 1255 if (preferthread) 1256 PROC_STATLOCK(p); 1257 thread_lock(td); 1258 if (td->td_wmesg != NULL) 1259 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 1260 else 1261 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 1262 if (strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)) >= 1263 sizeof(kp->ki_tdname)) { 1264 strlcpy(kp->ki_moretdname, 1265 td->td_name + sizeof(kp->ki_tdname) - 1, 1266 sizeof(kp->ki_moretdname)); 1267 } else { 1268 bzero(kp->ki_moretdname, sizeof(kp->ki_moretdname)); 1269 } 1270 if (TD_ON_LOCK(td)) { 1271 kp->ki_kiflag |= KI_LOCKBLOCK; 1272 strlcpy(kp->ki_lockname, td->td_lockname, 1273 sizeof(kp->ki_lockname)); 1274 } else { 1275 kp->ki_kiflag &= ~KI_LOCKBLOCK; 1276 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 1277 } 1278 1279 if (p->p_state == PRS_NORMAL) { /* approximate. */ 1280 if (TD_ON_RUNQ(td) || 1281 TD_CAN_RUN(td) || 1282 TD_IS_RUNNING(td)) { 1283 kp->ki_stat = SRUN; 1284 } else if (P_SHOULDSTOP(p)) { 1285 kp->ki_stat = SSTOP; 1286 } else if (TD_IS_SLEEPING(td)) { 1287 kp->ki_stat = SSLEEP; 1288 } else if (TD_ON_LOCK(td)) { 1289 kp->ki_stat = SLOCK; 1290 } else { 1291 kp->ki_stat = SWAIT; 1292 } 1293 } else if (p->p_state == PRS_ZOMBIE) { 1294 kp->ki_stat = SZOMB; 1295 } else { 1296 kp->ki_stat = SIDL; 1297 } 1298 1299 /* Things in the thread */ 1300 kp->ki_wchan = td->td_wchan; 1301 kp->ki_pri.pri_level = td->td_priority; 1302 kp->ki_pri.pri_native = td->td_base_pri; 1303 1304 /* 1305 * Note: legacy fields; clamp at the old NOCPU value and/or 1306 * the maximum u_char CPU value. 1307 */ 1308 if (td->td_lastcpu == NOCPU) 1309 kp->ki_lastcpu_old = NOCPU_OLD; 1310 else if (td->td_lastcpu > MAXCPU_OLD) 1311 kp->ki_lastcpu_old = MAXCPU_OLD; 1312 else 1313 kp->ki_lastcpu_old = td->td_lastcpu; 1314 1315 if (td->td_oncpu == NOCPU) 1316 kp->ki_oncpu_old = NOCPU_OLD; 1317 else if (td->td_oncpu > MAXCPU_OLD) 1318 kp->ki_oncpu_old = MAXCPU_OLD; 1319 else 1320 kp->ki_oncpu_old = td->td_oncpu; 1321 1322 kp->ki_lastcpu = td->td_lastcpu; 1323 kp->ki_oncpu = td->td_oncpu; 1324 kp->ki_tdflags = td->td_flags; 1325 kp->ki_tid = td->td_tid; 1326 kp->ki_numthreads = p->p_numthreads; 1327 kp->ki_pcb = td->td_pcb; 1328 kp->ki_kstack = (void *)td->td_kstack; 1329 kp->ki_slptime = (ticks - td->td_slptick) / hz; 1330 kp->ki_pri.pri_class = td->td_pri_class; 1331 kp->ki_pri.pri_user = td->td_user_pri; 1332 1333 if (preferthread) { 1334 rufetchtd(td, &kp->ki_rusage); 1335 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1336 kp->ki_pctcpu = sched_pctcpu(td); 1337 kp->ki_estcpu = sched_estcpu(td); 1338 kp->ki_cow = td->td_cow; 1339 } 1340 1341 /* We can't get this anymore but ps etc never used it anyway. */ 1342 kp->ki_rqindex = 0; 1343 1344 if (preferthread) 1345 kp->ki_siglist = td->td_siglist; 1346 kp->ki_sigmask = td->td_sigmask; 1347 thread_unlock(td); 1348 if (preferthread) 1349 PROC_STATUNLOCK(p); 1350 } 1351 1352 /* 1353 * Fill in a kinfo_proc structure for the specified process. 1354 * Must be called with the target process locked. 1355 */ 1356 void 1357 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1358 { 1359 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1360 1361 bzero(kp, sizeof(*kp)); 1362 1363 fill_kinfo_proc_pgrp(p,kp); 1364 fill_kinfo_proc_only(p, kp); 1365 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1366 fill_kinfo_aggregate(p, kp); 1367 } 1368 1369 struct pstats * 1370 pstats_alloc(void) 1371 { 1372 1373 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1374 } 1375 1376 /* 1377 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1378 */ 1379 void 1380 pstats_fork(struct pstats *src, struct pstats *dst) 1381 { 1382 1383 bzero(&dst->pstat_startzero, 1384 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1385 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1386 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1387 } 1388 1389 void 1390 pstats_free(struct pstats *ps) 1391 { 1392 1393 free(ps, M_SUBPROC); 1394 } 1395 1396 #ifdef COMPAT_FREEBSD32 1397 1398 /* 1399 * This function is typically used to copy out the kernel address, so 1400 * it can be replaced by assignment of zero. 1401 */ 1402 static inline uint32_t 1403 ptr32_trim(const void *ptr) 1404 { 1405 uintptr_t uptr; 1406 1407 uptr = (uintptr_t)ptr; 1408 return ((uptr > UINT_MAX) ? 0 : uptr); 1409 } 1410 1411 #define PTRTRIM_CP(src,dst,fld) \ 1412 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1413 1414 static void 1415 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1416 { 1417 int i; 1418 1419 bzero(ki32, sizeof(struct kinfo_proc32)); 1420 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1421 CP(*ki, *ki32, ki_layout); 1422 PTRTRIM_CP(*ki, *ki32, ki_args); 1423 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1424 PTRTRIM_CP(*ki, *ki32, ki_addr); 1425 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1426 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1427 PTRTRIM_CP(*ki, *ki32, ki_fd); 1428 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1429 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1430 CP(*ki, *ki32, ki_pid); 1431 CP(*ki, *ki32, ki_ppid); 1432 CP(*ki, *ki32, ki_pgid); 1433 CP(*ki, *ki32, ki_tpgid); 1434 CP(*ki, *ki32, ki_sid); 1435 CP(*ki, *ki32, ki_tsid); 1436 CP(*ki, *ki32, ki_jobc); 1437 CP(*ki, *ki32, ki_tdev); 1438 CP(*ki, *ki32, ki_tdev_freebsd11); 1439 CP(*ki, *ki32, ki_siglist); 1440 CP(*ki, *ki32, ki_sigmask); 1441 CP(*ki, *ki32, ki_sigignore); 1442 CP(*ki, *ki32, ki_sigcatch); 1443 CP(*ki, *ki32, ki_uid); 1444 CP(*ki, *ki32, ki_ruid); 1445 CP(*ki, *ki32, ki_svuid); 1446 CP(*ki, *ki32, ki_rgid); 1447 CP(*ki, *ki32, ki_svgid); 1448 CP(*ki, *ki32, ki_ngroups); 1449 for (i = 0; i < KI_NGROUPS; i++) 1450 CP(*ki, *ki32, ki_groups[i]); 1451 CP(*ki, *ki32, ki_size); 1452 CP(*ki, *ki32, ki_rssize); 1453 CP(*ki, *ki32, ki_swrss); 1454 CP(*ki, *ki32, ki_tsize); 1455 CP(*ki, *ki32, ki_dsize); 1456 CP(*ki, *ki32, ki_ssize); 1457 CP(*ki, *ki32, ki_xstat); 1458 CP(*ki, *ki32, ki_acflag); 1459 CP(*ki, *ki32, ki_pctcpu); 1460 CP(*ki, *ki32, ki_estcpu); 1461 CP(*ki, *ki32, ki_slptime); 1462 CP(*ki, *ki32, ki_swtime); 1463 CP(*ki, *ki32, ki_cow); 1464 CP(*ki, *ki32, ki_runtime); 1465 TV_CP(*ki, *ki32, ki_start); 1466 TV_CP(*ki, *ki32, ki_childtime); 1467 CP(*ki, *ki32, ki_flag); 1468 CP(*ki, *ki32, ki_kiflag); 1469 CP(*ki, *ki32, ki_traceflag); 1470 CP(*ki, *ki32, ki_stat); 1471 CP(*ki, *ki32, ki_nice); 1472 CP(*ki, *ki32, ki_lock); 1473 CP(*ki, *ki32, ki_rqindex); 1474 CP(*ki, *ki32, ki_oncpu); 1475 CP(*ki, *ki32, ki_lastcpu); 1476 1477 /* XXX TODO: wrap cpu value as appropriate */ 1478 CP(*ki, *ki32, ki_oncpu_old); 1479 CP(*ki, *ki32, ki_lastcpu_old); 1480 1481 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1482 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1483 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1484 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1485 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1486 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1487 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1488 bcopy(ki->ki_moretdname, ki32->ki_moretdname, MAXCOMLEN - TDNAMLEN + 1); 1489 CP(*ki, *ki32, ki_tracer); 1490 CP(*ki, *ki32, ki_flag2); 1491 CP(*ki, *ki32, ki_fibnum); 1492 CP(*ki, *ki32, ki_cr_flags); 1493 CP(*ki, *ki32, ki_jid); 1494 CP(*ki, *ki32, ki_numthreads); 1495 CP(*ki, *ki32, ki_tid); 1496 CP(*ki, *ki32, ki_pri); 1497 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1498 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1499 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1500 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1501 PTRTRIM_CP(*ki, *ki32, ki_udata); 1502 PTRTRIM_CP(*ki, *ki32, ki_tdaddr); 1503 CP(*ki, *ki32, ki_sflag); 1504 CP(*ki, *ki32, ki_tdflags); 1505 } 1506 #endif 1507 1508 static ssize_t 1509 kern_proc_out_size(struct proc *p, int flags) 1510 { 1511 ssize_t size = 0; 1512 1513 PROC_LOCK_ASSERT(p, MA_OWNED); 1514 1515 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1516 #ifdef COMPAT_FREEBSD32 1517 if ((flags & KERN_PROC_MASK32) != 0) { 1518 size += sizeof(struct kinfo_proc32); 1519 } else 1520 #endif 1521 size += sizeof(struct kinfo_proc); 1522 } else { 1523 #ifdef COMPAT_FREEBSD32 1524 if ((flags & KERN_PROC_MASK32) != 0) 1525 size += sizeof(struct kinfo_proc32) * p->p_numthreads; 1526 else 1527 #endif 1528 size += sizeof(struct kinfo_proc) * p->p_numthreads; 1529 } 1530 PROC_UNLOCK(p); 1531 return (size); 1532 } 1533 1534 int 1535 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1536 { 1537 struct thread *td; 1538 struct kinfo_proc ki; 1539 #ifdef COMPAT_FREEBSD32 1540 struct kinfo_proc32 ki32; 1541 #endif 1542 int error; 1543 1544 PROC_LOCK_ASSERT(p, MA_OWNED); 1545 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1546 1547 error = 0; 1548 fill_kinfo_proc(p, &ki); 1549 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1550 #ifdef COMPAT_FREEBSD32 1551 if ((flags & KERN_PROC_MASK32) != 0) { 1552 freebsd32_kinfo_proc_out(&ki, &ki32); 1553 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1554 error = ENOMEM; 1555 } else 1556 #endif 1557 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1558 error = ENOMEM; 1559 } else { 1560 FOREACH_THREAD_IN_PROC(p, td) { 1561 fill_kinfo_thread(td, &ki, 1); 1562 #ifdef COMPAT_FREEBSD32 1563 if ((flags & KERN_PROC_MASK32) != 0) { 1564 freebsd32_kinfo_proc_out(&ki, &ki32); 1565 if (sbuf_bcat(sb, &ki32, sizeof(ki32)) != 0) 1566 error = ENOMEM; 1567 } else 1568 #endif 1569 if (sbuf_bcat(sb, &ki, sizeof(ki)) != 0) 1570 error = ENOMEM; 1571 if (error != 0) 1572 break; 1573 } 1574 } 1575 PROC_UNLOCK(p); 1576 return (error); 1577 } 1578 1579 static int 1580 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 1581 { 1582 struct sbuf sb; 1583 struct kinfo_proc ki; 1584 int error, error2; 1585 1586 if (req->oldptr == NULL) 1587 return (SYSCTL_OUT(req, 0, kern_proc_out_size(p, flags))); 1588 1589 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1590 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 1591 error = kern_proc_out(p, &sb, flags); 1592 error2 = sbuf_finish(&sb); 1593 sbuf_delete(&sb); 1594 if (error != 0) 1595 return (error); 1596 else if (error2 != 0) 1597 return (error2); 1598 return (0); 1599 } 1600 1601 int 1602 proc_iterate(int (*cb)(struct proc *, void *), void *cbarg) 1603 { 1604 struct proc *p; 1605 int error, i, j; 1606 1607 for (i = 0; i < pidhashlock + 1; i++) { 1608 sx_slock(&proctree_lock); 1609 sx_slock(&pidhashtbl_lock[i]); 1610 for (j = i; j <= pidhash; j += pidhashlock + 1) { 1611 LIST_FOREACH(p, &pidhashtbl[j], p_hash) { 1612 if (p->p_state == PRS_NEW) 1613 continue; 1614 error = cb(p, cbarg); 1615 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1616 if (error != 0) { 1617 sx_sunlock(&pidhashtbl_lock[i]); 1618 sx_sunlock(&proctree_lock); 1619 return (error); 1620 } 1621 } 1622 } 1623 sx_sunlock(&pidhashtbl_lock[i]); 1624 sx_sunlock(&proctree_lock); 1625 } 1626 return (0); 1627 } 1628 1629 struct kern_proc_out_args { 1630 struct sysctl_req *req; 1631 int flags; 1632 int oid_number; 1633 int *name; 1634 }; 1635 1636 static int 1637 sysctl_kern_proc_iterate(struct proc *p, void *origarg) 1638 { 1639 struct kern_proc_out_args *arg = origarg; 1640 int *name = arg->name; 1641 int oid_number = arg->oid_number; 1642 int flags = arg->flags; 1643 struct sysctl_req *req = arg->req; 1644 int error = 0; 1645 1646 PROC_LOCK(p); 1647 1648 KASSERT(p->p_ucred != NULL, 1649 ("process credential is NULL for non-NEW proc")); 1650 /* 1651 * Show a user only appropriate processes. 1652 */ 1653 if (p_cansee(curthread, p)) 1654 goto skip; 1655 /* 1656 * TODO - make more efficient (see notes below). 1657 * do by session. 1658 */ 1659 switch (oid_number) { 1660 case KERN_PROC_GID: 1661 if (p->p_ucred->cr_gid != (gid_t)name[0]) 1662 goto skip; 1663 break; 1664 1665 case KERN_PROC_PGRP: 1666 /* could do this by traversing pgrp */ 1667 if (p->p_pgrp == NULL || 1668 p->p_pgrp->pg_id != (pid_t)name[0]) 1669 goto skip; 1670 break; 1671 1672 case KERN_PROC_RGID: 1673 if (p->p_ucred->cr_rgid != (gid_t)name[0]) 1674 goto skip; 1675 break; 1676 1677 case KERN_PROC_SESSION: 1678 if (p->p_session == NULL || 1679 p->p_session->s_sid != (pid_t)name[0]) 1680 goto skip; 1681 break; 1682 1683 case KERN_PROC_TTY: 1684 if ((p->p_flag & P_CONTROLT) == 0 || 1685 p->p_session == NULL) 1686 goto skip; 1687 /* XXX proctree_lock */ 1688 SESS_LOCK(p->p_session); 1689 if (p->p_session->s_ttyp == NULL || 1690 tty_udev(p->p_session->s_ttyp) != 1691 (dev_t)name[0]) { 1692 SESS_UNLOCK(p->p_session); 1693 goto skip; 1694 } 1695 SESS_UNLOCK(p->p_session); 1696 break; 1697 1698 case KERN_PROC_UID: 1699 if (p->p_ucred->cr_uid != (uid_t)name[0]) 1700 goto skip; 1701 break; 1702 1703 case KERN_PROC_RUID: 1704 if (p->p_ucred->cr_ruid != (uid_t)name[0]) 1705 goto skip; 1706 break; 1707 1708 case KERN_PROC_PROC: 1709 break; 1710 1711 default: 1712 break; 1713 } 1714 error = sysctl_out_proc(p, req, flags); 1715 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 1716 return (error); 1717 skip: 1718 PROC_UNLOCK(p); 1719 return (0); 1720 } 1721 1722 static int 1723 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1724 { 1725 struct kern_proc_out_args iterarg; 1726 int *name = (int *)arg1; 1727 u_int namelen = arg2; 1728 struct proc *p; 1729 int flags, oid_number; 1730 int error = 0; 1731 1732 oid_number = oidp->oid_number; 1733 if (oid_number != KERN_PROC_ALL && 1734 (oid_number & KERN_PROC_INC_THREAD) == 0) 1735 flags = KERN_PROC_NOTHREADS; 1736 else { 1737 flags = 0; 1738 oid_number &= ~KERN_PROC_INC_THREAD; 1739 } 1740 #ifdef COMPAT_FREEBSD32 1741 if (req->flags & SCTL_MASK32) 1742 flags |= KERN_PROC_MASK32; 1743 #endif 1744 if (oid_number == KERN_PROC_PID) { 1745 if (namelen != 1) 1746 return (EINVAL); 1747 error = sysctl_wire_old_buffer(req, 0); 1748 if (error) 1749 return (error); 1750 sx_slock(&proctree_lock); 1751 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1752 if (error == 0) 1753 error = sysctl_out_proc(p, req, flags); 1754 sx_sunlock(&proctree_lock); 1755 return (error); 1756 } 1757 1758 switch (oid_number) { 1759 case KERN_PROC_ALL: 1760 if (namelen != 0) 1761 return (EINVAL); 1762 break; 1763 case KERN_PROC_PROC: 1764 if (namelen != 0 && namelen != 1) 1765 return (EINVAL); 1766 break; 1767 default: 1768 if (namelen != 1) 1769 return (EINVAL); 1770 break; 1771 } 1772 1773 if (req->oldptr == NULL) { 1774 /* overestimate by 5 procs */ 1775 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1776 if (error) 1777 return (error); 1778 } else { 1779 error = sysctl_wire_old_buffer(req, 0); 1780 if (error != 0) 1781 return (error); 1782 } 1783 iterarg.flags = flags; 1784 iterarg.oid_number = oid_number; 1785 iterarg.req = req; 1786 iterarg.name = name; 1787 error = proc_iterate(sysctl_kern_proc_iterate, &iterarg); 1788 return (error); 1789 } 1790 1791 struct pargs * 1792 pargs_alloc(int len) 1793 { 1794 struct pargs *pa; 1795 1796 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1797 M_WAITOK); 1798 refcount_init(&pa->ar_ref, 1); 1799 pa->ar_length = len; 1800 return (pa); 1801 } 1802 1803 static void 1804 pargs_free(struct pargs *pa) 1805 { 1806 1807 free(pa, M_PARGS); 1808 } 1809 1810 void 1811 pargs_hold(struct pargs *pa) 1812 { 1813 1814 if (pa == NULL) 1815 return; 1816 refcount_acquire(&pa->ar_ref); 1817 } 1818 1819 void 1820 pargs_drop(struct pargs *pa) 1821 { 1822 1823 if (pa == NULL) 1824 return; 1825 if (refcount_release(&pa->ar_ref)) 1826 pargs_free(pa); 1827 } 1828 1829 static int 1830 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1831 size_t len) 1832 { 1833 ssize_t n; 1834 1835 /* 1836 * This may return a short read if the string is shorter than the chunk 1837 * and is aligned at the end of the page, and the following page is not 1838 * mapped. 1839 */ 1840 n = proc_readmem(td, p, (vm_offset_t)sptr, buf, len); 1841 if (n <= 0) 1842 return (ENOMEM); 1843 return (0); 1844 } 1845 1846 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1847 1848 enum proc_vector_type { 1849 PROC_ARG, 1850 PROC_ENV, 1851 PROC_AUX, 1852 }; 1853 1854 #ifdef COMPAT_FREEBSD32 1855 static int 1856 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1857 size_t *vsizep, enum proc_vector_type type) 1858 { 1859 struct freebsd32_ps_strings pss; 1860 Elf32_Auxinfo aux; 1861 vm_offset_t vptr, ptr; 1862 uint32_t *proc_vector32; 1863 char **proc_vector; 1864 size_t vsize, size; 1865 int i, error; 1866 1867 error = 0; 1868 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1869 sizeof(pss)) 1870 return (ENOMEM); 1871 switch (type) { 1872 case PROC_ARG: 1873 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1874 vsize = pss.ps_nargvstr; 1875 if (vsize > ARG_MAX) 1876 return (ENOEXEC); 1877 size = vsize * sizeof(int32_t); 1878 break; 1879 case PROC_ENV: 1880 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1881 vsize = pss.ps_nenvstr; 1882 if (vsize > ARG_MAX) 1883 return (ENOEXEC); 1884 size = vsize * sizeof(int32_t); 1885 break; 1886 case PROC_AUX: 1887 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1888 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1889 if (vptr % 4 != 0) 1890 return (ENOEXEC); 1891 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1892 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1893 sizeof(aux)) 1894 return (ENOMEM); 1895 if (aux.a_type == AT_NULL) 1896 break; 1897 ptr += sizeof(aux); 1898 } 1899 if (aux.a_type != AT_NULL) 1900 return (ENOEXEC); 1901 vsize = i + 1; 1902 size = vsize * sizeof(aux); 1903 break; 1904 default: 1905 KASSERT(0, ("Wrong proc vector type: %d", type)); 1906 return (EINVAL); 1907 } 1908 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1909 if (proc_readmem(td, p, vptr, proc_vector32, size) != size) { 1910 error = ENOMEM; 1911 goto done; 1912 } 1913 if (type == PROC_AUX) { 1914 *proc_vectorp = (char **)proc_vector32; 1915 *vsizep = vsize; 1916 return (0); 1917 } 1918 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1919 for (i = 0; i < (int)vsize; i++) 1920 proc_vector[i] = PTRIN(proc_vector32[i]); 1921 *proc_vectorp = proc_vector; 1922 *vsizep = vsize; 1923 done: 1924 free(proc_vector32, M_TEMP); 1925 return (error); 1926 } 1927 #endif 1928 1929 static int 1930 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1931 size_t *vsizep, enum proc_vector_type type) 1932 { 1933 struct ps_strings pss; 1934 Elf_Auxinfo aux; 1935 vm_offset_t vptr, ptr; 1936 char **proc_vector; 1937 size_t vsize, size; 1938 int i; 1939 1940 #ifdef COMPAT_FREEBSD32 1941 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1942 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1943 #endif 1944 if (proc_readmem(td, p, PROC_PS_STRINGS(p), &pss, sizeof(pss)) != 1945 sizeof(pss)) 1946 return (ENOMEM); 1947 switch (type) { 1948 case PROC_ARG: 1949 vptr = (vm_offset_t)pss.ps_argvstr; 1950 vsize = pss.ps_nargvstr; 1951 if (vsize > ARG_MAX) 1952 return (ENOEXEC); 1953 size = vsize * sizeof(char *); 1954 break; 1955 case PROC_ENV: 1956 vptr = (vm_offset_t)pss.ps_envstr; 1957 vsize = pss.ps_nenvstr; 1958 if (vsize > ARG_MAX) 1959 return (ENOEXEC); 1960 size = vsize * sizeof(char *); 1961 break; 1962 case PROC_AUX: 1963 /* 1964 * The aux array is just above env array on the stack. Check 1965 * that the address is naturally aligned. 1966 */ 1967 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1968 * sizeof(char *); 1969 #if __ELF_WORD_SIZE == 64 1970 if (vptr % sizeof(uint64_t) != 0) 1971 #else 1972 if (vptr % sizeof(uint32_t) != 0) 1973 #endif 1974 return (ENOEXEC); 1975 /* 1976 * We count the array size reading the aux vectors from the 1977 * stack until AT_NULL vector is returned. So (to keep the code 1978 * simple) we read the process stack twice: the first time here 1979 * to find the size and the second time when copying the vectors 1980 * to the allocated proc_vector. 1981 */ 1982 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1983 if (proc_readmem(td, p, ptr, &aux, sizeof(aux)) != 1984 sizeof(aux)) 1985 return (ENOMEM); 1986 if (aux.a_type == AT_NULL) 1987 break; 1988 ptr += sizeof(aux); 1989 } 1990 /* 1991 * If the PROC_AUXV_MAX entries are iterated over, and we have 1992 * not reached AT_NULL, it is most likely we are reading wrong 1993 * data: either the process doesn't have auxv array or data has 1994 * been modified. Return the error in this case. 1995 */ 1996 if (aux.a_type != AT_NULL) 1997 return (ENOEXEC); 1998 vsize = i + 1; 1999 size = vsize * sizeof(aux); 2000 break; 2001 default: 2002 KASSERT(0, ("Wrong proc vector type: %d", type)); 2003 return (EINVAL); /* In case we are built without INVARIANTS. */ 2004 } 2005 proc_vector = malloc(size, M_TEMP, M_WAITOK); 2006 if (proc_readmem(td, p, vptr, proc_vector, size) != size) { 2007 free(proc_vector, M_TEMP); 2008 return (ENOMEM); 2009 } 2010 *proc_vectorp = proc_vector; 2011 *vsizep = vsize; 2012 2013 return (0); 2014 } 2015 2016 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 2017 2018 static int 2019 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 2020 enum proc_vector_type type) 2021 { 2022 size_t done, len, nchr, vsize; 2023 int error, i; 2024 char **proc_vector, *sptr; 2025 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 2026 2027 PROC_ASSERT_HELD(p); 2028 2029 /* 2030 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 2031 */ 2032 nchr = 2 * (PATH_MAX + ARG_MAX); 2033 2034 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 2035 if (error != 0) 2036 return (error); 2037 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 2038 /* 2039 * The program may have scribbled into its argv array, e.g. to 2040 * remove some arguments. If that has happened, break out 2041 * before trying to read from NULL. 2042 */ 2043 if (proc_vector[i] == NULL) 2044 break; 2045 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 2046 error = proc_read_string(td, p, sptr, pss_string, 2047 sizeof(pss_string)); 2048 if (error != 0) 2049 goto done; 2050 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 2051 if (done + len >= nchr) 2052 len = nchr - done - 1; 2053 sbuf_bcat(sb, pss_string, len); 2054 if (len != GET_PS_STRINGS_CHUNK_SZ) 2055 break; 2056 done += GET_PS_STRINGS_CHUNK_SZ; 2057 } 2058 sbuf_bcat(sb, "", 1); 2059 done += len + 1; 2060 } 2061 done: 2062 free(proc_vector, M_TEMP); 2063 return (error); 2064 } 2065 2066 int 2067 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 2068 { 2069 2070 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 2071 } 2072 2073 int 2074 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 2075 { 2076 2077 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 2078 } 2079 2080 int 2081 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 2082 { 2083 size_t vsize, size; 2084 char **auxv; 2085 int error; 2086 2087 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 2088 if (error == 0) { 2089 #ifdef COMPAT_FREEBSD32 2090 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 2091 size = vsize * sizeof(Elf32_Auxinfo); 2092 else 2093 #endif 2094 size = vsize * sizeof(Elf_Auxinfo); 2095 if (sbuf_bcat(sb, auxv, size) != 0) 2096 error = ENOMEM; 2097 free(auxv, M_TEMP); 2098 } 2099 return (error); 2100 } 2101 2102 /* 2103 * This sysctl allows a process to retrieve the argument list or process 2104 * title for another process without groping around in the address space 2105 * of the other process. It also allow a process to set its own "process 2106 * title to a string of its own choice. 2107 */ 2108 static int 2109 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 2110 { 2111 int *name = (int *)arg1; 2112 u_int namelen = arg2; 2113 struct pargs *newpa, *pa; 2114 struct proc *p; 2115 struct sbuf sb; 2116 int flags, error = 0, error2; 2117 pid_t pid; 2118 2119 if (namelen != 1) 2120 return (EINVAL); 2121 2122 p = curproc; 2123 pid = (pid_t)name[0]; 2124 if (pid == -1) { 2125 pid = p->p_pid; 2126 } 2127 2128 /* 2129 * If the query is for this process and it is single-threaded, there 2130 * is nobody to modify pargs, thus we can just read. 2131 */ 2132 if (pid == p->p_pid && p->p_numthreads == 1 && req->newptr == NULL && 2133 (pa = p->p_args) != NULL) 2134 return (SYSCTL_OUT(req, pa->ar_args, pa->ar_length)); 2135 2136 flags = PGET_CANSEE; 2137 if (req->newptr != NULL) 2138 flags |= PGET_ISCURRENT; 2139 error = pget(pid, flags, &p); 2140 if (error) 2141 return (error); 2142 2143 pa = p->p_args; 2144 if (pa != NULL) { 2145 pargs_hold(pa); 2146 PROC_UNLOCK(p); 2147 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 2148 pargs_drop(pa); 2149 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 2150 _PHOLD(p); 2151 PROC_UNLOCK(p); 2152 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2153 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2154 error = proc_getargv(curthread, p, &sb); 2155 error2 = sbuf_finish(&sb); 2156 PRELE(p); 2157 sbuf_delete(&sb); 2158 if (error == 0 && error2 != 0) 2159 error = error2; 2160 } else { 2161 PROC_UNLOCK(p); 2162 } 2163 if (error != 0 || req->newptr == NULL) 2164 return (error); 2165 2166 if (req->newlen > ps_arg_cache_limit - sizeof(struct pargs)) 2167 return (ENOMEM); 2168 2169 if (req->newlen == 0) { 2170 /* 2171 * Clear the argument pointer, so that we'll fetch arguments 2172 * with proc_getargv() until further notice. 2173 */ 2174 newpa = NULL; 2175 } else { 2176 newpa = pargs_alloc(req->newlen); 2177 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 2178 if (error != 0) { 2179 pargs_free(newpa); 2180 return (error); 2181 } 2182 } 2183 PROC_LOCK(p); 2184 pa = p->p_args; 2185 p->p_args = newpa; 2186 PROC_UNLOCK(p); 2187 pargs_drop(pa); 2188 return (0); 2189 } 2190 2191 /* 2192 * This sysctl allows a process to retrieve environment of another process. 2193 */ 2194 static int 2195 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 2196 { 2197 int *name = (int *)arg1; 2198 u_int namelen = arg2; 2199 struct proc *p; 2200 struct sbuf sb; 2201 int error, error2; 2202 2203 if (namelen != 1) 2204 return (EINVAL); 2205 2206 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2207 if (error != 0) 2208 return (error); 2209 if ((p->p_flag & P_SYSTEM) != 0) { 2210 PRELE(p); 2211 return (0); 2212 } 2213 2214 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2215 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2216 error = proc_getenvv(curthread, p, &sb); 2217 error2 = sbuf_finish(&sb); 2218 PRELE(p); 2219 sbuf_delete(&sb); 2220 return (error != 0 ? error : error2); 2221 } 2222 2223 /* 2224 * This sysctl allows a process to retrieve ELF auxiliary vector of 2225 * another process. 2226 */ 2227 static int 2228 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 2229 { 2230 int *name = (int *)arg1; 2231 u_int namelen = arg2; 2232 struct proc *p; 2233 struct sbuf sb; 2234 int error, error2; 2235 2236 if (namelen != 1) 2237 return (EINVAL); 2238 2239 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2240 if (error != 0) 2241 return (error); 2242 if ((p->p_flag & P_SYSTEM) != 0) { 2243 PRELE(p); 2244 return (0); 2245 } 2246 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 2247 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2248 error = proc_getauxv(curthread, p, &sb); 2249 error2 = sbuf_finish(&sb); 2250 PRELE(p); 2251 sbuf_delete(&sb); 2252 return (error != 0 ? error : error2); 2253 } 2254 2255 /* 2256 * Look up the canonical executable path running in the specified process. 2257 * It tries to return the same hardlink name as was used for execve(2). 2258 * This allows the programs that modify their behavior based on their progname, 2259 * to operate correctly. 2260 * 2261 * Result is returned in retbuf, it must not be freed, similar to vn_fullpath() 2262 * calling conventions. 2263 * binname is a pointer to temporary string buffer of length MAXPATHLEN, 2264 * allocated and freed by caller. 2265 * freebuf should be freed by caller, from the M_TEMP malloc type. 2266 */ 2267 int 2268 proc_get_binpath(struct proc *p, char *binname, char **retbuf, 2269 char **freebuf) 2270 { 2271 struct nameidata nd; 2272 struct vnode *vp, *dvp; 2273 size_t freepath_size; 2274 int error; 2275 bool do_fullpath; 2276 2277 PROC_LOCK_ASSERT(p, MA_OWNED); 2278 2279 vp = p->p_textvp; 2280 if (vp == NULL) { 2281 PROC_UNLOCK(p); 2282 *retbuf = ""; 2283 *freebuf = NULL; 2284 return (0); 2285 } 2286 vref(vp); 2287 dvp = p->p_textdvp; 2288 if (dvp != NULL) 2289 vref(dvp); 2290 if (p->p_binname != NULL) 2291 strlcpy(binname, p->p_binname, MAXPATHLEN); 2292 PROC_UNLOCK(p); 2293 2294 do_fullpath = true; 2295 *freebuf = NULL; 2296 if (dvp != NULL && binname[0] != '\0') { 2297 freepath_size = MAXPATHLEN; 2298 if (vn_fullpath_hardlink(vp, dvp, binname, strlen(binname), 2299 retbuf, freebuf, &freepath_size) == 0) { 2300 /* 2301 * Recheck the looked up path. The binary 2302 * might have been renamed or replaced, in 2303 * which case we should not report old name. 2304 */ 2305 NDINIT(&nd, LOOKUP, FOLLOW, UIO_SYSSPACE, *retbuf); 2306 error = namei(&nd); 2307 if (error == 0) { 2308 if (nd.ni_vp == vp) 2309 do_fullpath = false; 2310 vrele(nd.ni_vp); 2311 NDFREE_PNBUF(&nd); 2312 } 2313 } 2314 } 2315 if (do_fullpath) { 2316 free(*freebuf, M_TEMP); 2317 *freebuf = NULL; 2318 error = vn_fullpath(vp, retbuf, freebuf); 2319 } 2320 vrele(vp); 2321 if (dvp != NULL) 2322 vrele(dvp); 2323 return (error); 2324 } 2325 2326 /* 2327 * This sysctl allows a process to retrieve the path of the executable for 2328 * itself or another process. 2329 */ 2330 static int 2331 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 2332 { 2333 pid_t *pidp = (pid_t *)arg1; 2334 unsigned int arglen = arg2; 2335 struct proc *p; 2336 char *retbuf, *freebuf, *binname; 2337 int error; 2338 2339 if (arglen != 1) 2340 return (EINVAL); 2341 binname = malloc(MAXPATHLEN, M_TEMP, M_WAITOK); 2342 binname[0] = '\0'; 2343 if (*pidp == -1) { /* -1 means this process */ 2344 error = 0; 2345 p = req->td->td_proc; 2346 PROC_LOCK(p); 2347 } else { 2348 error = pget(*pidp, PGET_CANSEE, &p); 2349 } 2350 2351 if (error == 0) 2352 error = proc_get_binpath(p, binname, &retbuf, &freebuf); 2353 free(binname, M_TEMP); 2354 if (error != 0) 2355 return (error); 2356 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 2357 free(freebuf, M_TEMP); 2358 return (error); 2359 } 2360 2361 static int 2362 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 2363 { 2364 struct proc *p; 2365 char *sv_name; 2366 int *name; 2367 int namelen; 2368 int error; 2369 2370 namelen = arg2; 2371 if (namelen != 1) 2372 return (EINVAL); 2373 2374 name = (int *)arg1; 2375 error = pget((pid_t)name[0], PGET_CANSEE, &p); 2376 if (error != 0) 2377 return (error); 2378 sv_name = p->p_sysent->sv_name; 2379 PROC_UNLOCK(p); 2380 return (sysctl_handle_string(oidp, sv_name, 0, req)); 2381 } 2382 2383 #ifdef KINFO_OVMENTRY_SIZE 2384 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 2385 #endif 2386 2387 #ifdef COMPAT_FREEBSD7 2388 static int 2389 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 2390 { 2391 vm_map_entry_t entry, tmp_entry; 2392 unsigned int last_timestamp, namelen; 2393 char *fullpath, *freepath; 2394 struct kinfo_ovmentry *kve; 2395 struct vattr va; 2396 struct ucred *cred; 2397 int error, *name; 2398 struct vnode *vp; 2399 struct proc *p; 2400 vm_map_t map; 2401 struct vmspace *vm; 2402 2403 namelen = arg2; 2404 if (namelen != 1) 2405 return (EINVAL); 2406 2407 name = (int *)arg1; 2408 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2409 if (error != 0) 2410 return (error); 2411 vm = vmspace_acquire_ref(p); 2412 if (vm == NULL) { 2413 PRELE(p); 2414 return (ESRCH); 2415 } 2416 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2417 2418 map = &vm->vm_map; 2419 vm_map_lock_read(map); 2420 VM_MAP_ENTRY_FOREACH(entry, map) { 2421 vm_object_t obj, tobj, lobj; 2422 vm_offset_t addr; 2423 2424 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2425 continue; 2426 2427 bzero(kve, sizeof(*kve)); 2428 kve->kve_structsize = sizeof(*kve); 2429 2430 kve->kve_private_resident = 0; 2431 obj = entry->object.vm_object; 2432 if (obj != NULL) { 2433 VM_OBJECT_RLOCK(obj); 2434 if (obj->shadow_count == 1) 2435 kve->kve_private_resident = 2436 obj->resident_page_count; 2437 } 2438 kve->kve_resident = 0; 2439 addr = entry->start; 2440 while (addr < entry->end) { 2441 if (pmap_extract(map->pmap, addr)) 2442 kve->kve_resident++; 2443 addr += PAGE_SIZE; 2444 } 2445 2446 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2447 if (tobj != obj) { 2448 VM_OBJECT_RLOCK(tobj); 2449 kve->kve_offset += tobj->backing_object_offset; 2450 } 2451 if (lobj != obj) 2452 VM_OBJECT_RUNLOCK(lobj); 2453 lobj = tobj; 2454 } 2455 2456 kve->kve_start = (void*)entry->start; 2457 kve->kve_end = (void*)entry->end; 2458 kve->kve_offset += (off_t)entry->offset; 2459 2460 if (entry->protection & VM_PROT_READ) 2461 kve->kve_protection |= KVME_PROT_READ; 2462 if (entry->protection & VM_PROT_WRITE) 2463 kve->kve_protection |= KVME_PROT_WRITE; 2464 if (entry->protection & VM_PROT_EXECUTE) 2465 kve->kve_protection |= KVME_PROT_EXEC; 2466 2467 if (entry->eflags & MAP_ENTRY_COW) 2468 kve->kve_flags |= KVME_FLAG_COW; 2469 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2470 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2471 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2472 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2473 2474 last_timestamp = map->timestamp; 2475 vm_map_unlock_read(map); 2476 2477 kve->kve_fileid = 0; 2478 kve->kve_fsid = 0; 2479 freepath = NULL; 2480 fullpath = ""; 2481 if (lobj) { 2482 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2483 if (kve->kve_type == KVME_TYPE_MGTDEVICE) 2484 kve->kve_type = KVME_TYPE_UNKNOWN; 2485 if (vp != NULL) 2486 vref(vp); 2487 if (lobj != obj) 2488 VM_OBJECT_RUNLOCK(lobj); 2489 2490 kve->kve_ref_count = obj->ref_count; 2491 kve->kve_shadow_count = obj->shadow_count; 2492 VM_OBJECT_RUNLOCK(obj); 2493 if (vp != NULL) { 2494 vn_fullpath(vp, &fullpath, &freepath); 2495 cred = curthread->td_ucred; 2496 vn_lock(vp, LK_SHARED | LK_RETRY); 2497 if (VOP_GETATTR(vp, &va, cred) == 0) { 2498 kve->kve_fileid = va.va_fileid; 2499 /* truncate */ 2500 kve->kve_fsid = va.va_fsid; 2501 } 2502 vput(vp); 2503 } 2504 } else { 2505 kve->kve_type = KVME_TYPE_NONE; 2506 kve->kve_ref_count = 0; 2507 kve->kve_shadow_count = 0; 2508 } 2509 2510 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2511 if (freepath != NULL) 2512 free(freepath, M_TEMP); 2513 2514 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2515 vm_map_lock_read(map); 2516 if (error) 2517 break; 2518 if (last_timestamp != map->timestamp) { 2519 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2520 entry = tmp_entry; 2521 } 2522 } 2523 vm_map_unlock_read(map); 2524 vmspace_free(vm); 2525 PRELE(p); 2526 free(kve, M_TEMP); 2527 return (error); 2528 } 2529 #endif /* COMPAT_FREEBSD7 */ 2530 2531 #ifdef KINFO_VMENTRY_SIZE 2532 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2533 #endif 2534 2535 void 2536 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2537 int *resident_count, bool *super) 2538 { 2539 vm_object_t obj, tobj; 2540 vm_page_t m, m_adv; 2541 vm_offset_t addr; 2542 vm_paddr_t pa; 2543 vm_pindex_t pi, pi_adv, pindex; 2544 2545 *super = false; 2546 *resident_count = 0; 2547 if (vmmap_skip_res_cnt) 2548 return; 2549 2550 pa = 0; 2551 obj = entry->object.vm_object; 2552 addr = entry->start; 2553 m_adv = NULL; 2554 pi = OFF_TO_IDX(entry->offset); 2555 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2556 if (m_adv != NULL) { 2557 m = m_adv; 2558 } else { 2559 pi_adv = atop(entry->end - addr); 2560 pindex = pi; 2561 for (tobj = obj;; tobj = tobj->backing_object) { 2562 m = vm_page_find_least(tobj, pindex); 2563 if (m != NULL) { 2564 if (m->pindex == pindex) 2565 break; 2566 if (pi_adv > m->pindex - pindex) { 2567 pi_adv = m->pindex - pindex; 2568 m_adv = m; 2569 } 2570 } 2571 if (tobj->backing_object == NULL) 2572 goto next; 2573 pindex += OFF_TO_IDX(tobj-> 2574 backing_object_offset); 2575 } 2576 } 2577 m_adv = NULL; 2578 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2579 (addr & (pagesizes[1] - 1)) == 0 && 2580 (pmap_mincore(map->pmap, addr, &pa) & MINCORE_SUPER) != 0) { 2581 *super = true; 2582 pi_adv = atop(pagesizes[1]); 2583 } else { 2584 /* 2585 * We do not test the found page on validity. 2586 * Either the page is busy and being paged in, 2587 * or it was invalidated. The first case 2588 * should be counted as resident, the second 2589 * is not so clear; we do account both. 2590 */ 2591 pi_adv = 1; 2592 } 2593 *resident_count += pi_adv; 2594 next:; 2595 } 2596 } 2597 2598 /* 2599 * Must be called with the process locked and will return unlocked. 2600 */ 2601 int 2602 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb, ssize_t maxlen, int flags) 2603 { 2604 vm_map_entry_t entry, tmp_entry; 2605 struct vattr va; 2606 vm_map_t map; 2607 vm_object_t lobj, nobj, obj, tobj; 2608 char *fullpath, *freepath; 2609 struct kinfo_vmentry *kve; 2610 struct ucred *cred; 2611 struct vnode *vp; 2612 struct vmspace *vm; 2613 vm_offset_t addr; 2614 unsigned int last_timestamp; 2615 int error; 2616 bool guard, super; 2617 2618 PROC_LOCK_ASSERT(p, MA_OWNED); 2619 2620 _PHOLD(p); 2621 PROC_UNLOCK(p); 2622 vm = vmspace_acquire_ref(p); 2623 if (vm == NULL) { 2624 PRELE(p); 2625 return (ESRCH); 2626 } 2627 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK | M_ZERO); 2628 2629 error = 0; 2630 map = &vm->vm_map; 2631 vm_map_lock_read(map); 2632 VM_MAP_ENTRY_FOREACH(entry, map) { 2633 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2634 continue; 2635 2636 addr = entry->end; 2637 bzero(kve, sizeof(*kve)); 2638 obj = entry->object.vm_object; 2639 if (obj != NULL) { 2640 if ((obj->flags & OBJ_ANON) != 0) 2641 kve->kve_obj = (uintptr_t)obj; 2642 2643 for (tobj = obj; tobj != NULL; 2644 tobj = tobj->backing_object) { 2645 VM_OBJECT_RLOCK(tobj); 2646 kve->kve_offset += tobj->backing_object_offset; 2647 lobj = tobj; 2648 } 2649 if (obj->backing_object == NULL) 2650 kve->kve_private_resident = 2651 obj->resident_page_count; 2652 kern_proc_vmmap_resident(map, entry, 2653 &kve->kve_resident, &super); 2654 if (super) 2655 kve->kve_flags |= KVME_FLAG_SUPER; 2656 for (tobj = obj; tobj != NULL; tobj = nobj) { 2657 nobj = tobj->backing_object; 2658 if (tobj != obj && tobj != lobj) 2659 VM_OBJECT_RUNLOCK(tobj); 2660 } 2661 } else { 2662 lobj = NULL; 2663 } 2664 2665 kve->kve_start = entry->start; 2666 kve->kve_end = entry->end; 2667 kve->kve_offset += entry->offset; 2668 2669 if (entry->protection & VM_PROT_READ) 2670 kve->kve_protection |= KVME_PROT_READ; 2671 if (entry->protection & VM_PROT_WRITE) 2672 kve->kve_protection |= KVME_PROT_WRITE; 2673 if (entry->protection & VM_PROT_EXECUTE) 2674 kve->kve_protection |= KVME_PROT_EXEC; 2675 2676 if (entry->eflags & MAP_ENTRY_COW) 2677 kve->kve_flags |= KVME_FLAG_COW; 2678 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2679 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2680 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2681 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2682 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2683 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2684 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2685 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2686 if (entry->eflags & MAP_ENTRY_USER_WIRED) 2687 kve->kve_flags |= KVME_FLAG_USER_WIRED; 2688 2689 guard = (entry->eflags & MAP_ENTRY_GUARD) != 0; 2690 2691 last_timestamp = map->timestamp; 2692 vm_map_unlock_read(map); 2693 2694 freepath = NULL; 2695 fullpath = ""; 2696 if (lobj != NULL) { 2697 kve->kve_type = vm_object_kvme_type(lobj, &vp); 2698 if (vp != NULL) 2699 vref(vp); 2700 if (lobj != obj) 2701 VM_OBJECT_RUNLOCK(lobj); 2702 2703 kve->kve_ref_count = obj->ref_count; 2704 kve->kve_shadow_count = obj->shadow_count; 2705 VM_OBJECT_RUNLOCK(obj); 2706 if (vp != NULL) { 2707 vn_fullpath(vp, &fullpath, &freepath); 2708 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2709 cred = curthread->td_ucred; 2710 vn_lock(vp, LK_SHARED | LK_RETRY); 2711 if (VOP_GETATTR(vp, &va, cred) == 0) { 2712 kve->kve_vn_fileid = va.va_fileid; 2713 kve->kve_vn_fsid = va.va_fsid; 2714 kve->kve_vn_fsid_freebsd11 = 2715 kve->kve_vn_fsid; /* truncate */ 2716 kve->kve_vn_mode = 2717 MAKEIMODE(va.va_type, va.va_mode); 2718 kve->kve_vn_size = va.va_size; 2719 kve->kve_vn_rdev = va.va_rdev; 2720 kve->kve_vn_rdev_freebsd11 = 2721 kve->kve_vn_rdev; /* truncate */ 2722 kve->kve_status = KF_ATTR_VALID; 2723 } 2724 vput(vp); 2725 } 2726 } else { 2727 kve->kve_type = guard ? KVME_TYPE_GUARD : 2728 KVME_TYPE_NONE; 2729 kve->kve_ref_count = 0; 2730 kve->kve_shadow_count = 0; 2731 } 2732 2733 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2734 if (freepath != NULL) 2735 free(freepath, M_TEMP); 2736 2737 /* Pack record size down */ 2738 if ((flags & KERN_VMMAP_PACK_KINFO) != 0) 2739 kve->kve_structsize = 2740 offsetof(struct kinfo_vmentry, kve_path) + 2741 strlen(kve->kve_path) + 1; 2742 else 2743 kve->kve_structsize = sizeof(*kve); 2744 kve->kve_structsize = roundup(kve->kve_structsize, 2745 sizeof(uint64_t)); 2746 2747 /* Halt filling and truncate rather than exceeding maxlen */ 2748 if (maxlen != -1 && maxlen < kve->kve_structsize) { 2749 error = 0; 2750 vm_map_lock_read(map); 2751 break; 2752 } else if (maxlen != -1) 2753 maxlen -= kve->kve_structsize; 2754 2755 if (sbuf_bcat(sb, kve, kve->kve_structsize) != 0) 2756 error = ENOMEM; 2757 vm_map_lock_read(map); 2758 if (error != 0) 2759 break; 2760 if (last_timestamp != map->timestamp) { 2761 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2762 entry = tmp_entry; 2763 } 2764 } 2765 vm_map_unlock_read(map); 2766 vmspace_free(vm); 2767 PRELE(p); 2768 free(kve, M_TEMP); 2769 return (error); 2770 } 2771 2772 static int 2773 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2774 { 2775 struct proc *p; 2776 struct sbuf sb; 2777 u_int namelen; 2778 int error, error2, *name; 2779 2780 namelen = arg2; 2781 if (namelen != 1) 2782 return (EINVAL); 2783 2784 name = (int *)arg1; 2785 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2786 sbuf_clear_flags(&sb, SBUF_INCLUDENUL); 2787 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2788 if (error != 0) { 2789 sbuf_delete(&sb); 2790 return (error); 2791 } 2792 error = kern_proc_vmmap_out(p, &sb, -1, KERN_VMMAP_PACK_KINFO); 2793 error2 = sbuf_finish(&sb); 2794 sbuf_delete(&sb); 2795 return (error != 0 ? error : error2); 2796 } 2797 2798 #if defined(STACK) || defined(DDB) 2799 static int 2800 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2801 { 2802 struct kinfo_kstack *kkstp; 2803 int error, i, *name, numthreads; 2804 lwpid_t *lwpidarray; 2805 struct thread *td; 2806 struct stack *st; 2807 struct sbuf sb; 2808 struct proc *p; 2809 u_int namelen; 2810 2811 namelen = arg2; 2812 if (namelen != 1) 2813 return (EINVAL); 2814 2815 name = (int *)arg1; 2816 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2817 if (error != 0) 2818 return (error); 2819 2820 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2821 st = stack_create(M_WAITOK); 2822 2823 lwpidarray = NULL; 2824 PROC_LOCK(p); 2825 do { 2826 if (lwpidarray != NULL) { 2827 free(lwpidarray, M_TEMP); 2828 lwpidarray = NULL; 2829 } 2830 numthreads = p->p_numthreads; 2831 PROC_UNLOCK(p); 2832 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2833 M_WAITOK | M_ZERO); 2834 PROC_LOCK(p); 2835 } while (numthreads < p->p_numthreads); 2836 2837 /* 2838 * XXXRW: During the below loop, execve(2) and countless other sorts 2839 * of changes could have taken place. Should we check to see if the 2840 * vmspace has been replaced, or the like, in order to prevent 2841 * giving a snapshot that spans, say, execve(2), with some threads 2842 * before and some after? Among other things, the credentials could 2843 * have changed, in which case the right to extract debug info might 2844 * no longer be assured. 2845 */ 2846 i = 0; 2847 FOREACH_THREAD_IN_PROC(p, td) { 2848 KASSERT(i < numthreads, 2849 ("sysctl_kern_proc_kstack: numthreads")); 2850 lwpidarray[i] = td->td_tid; 2851 i++; 2852 } 2853 PROC_UNLOCK(p); 2854 numthreads = i; 2855 for (i = 0; i < numthreads; i++) { 2856 td = tdfind(lwpidarray[i], p->p_pid); 2857 if (td == NULL) { 2858 continue; 2859 } 2860 bzero(kkstp, sizeof(*kkstp)); 2861 (void)sbuf_new(&sb, kkstp->kkst_trace, 2862 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2863 thread_lock(td); 2864 kkstp->kkst_tid = td->td_tid; 2865 if (TD_IS_SWAPPED(td)) 2866 kkstp->kkst_state = KKST_STATE_SWAPPED; 2867 else if (stack_save_td(st, td) == 0) 2868 kkstp->kkst_state = KKST_STATE_STACKOK; 2869 else 2870 kkstp->kkst_state = KKST_STATE_RUNNING; 2871 thread_unlock(td); 2872 PROC_UNLOCK(p); 2873 stack_sbuf_print(&sb, st); 2874 sbuf_finish(&sb); 2875 sbuf_delete(&sb); 2876 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2877 if (error) 2878 break; 2879 } 2880 PRELE(p); 2881 if (lwpidarray != NULL) 2882 free(lwpidarray, M_TEMP); 2883 stack_destroy(st); 2884 free(kkstp, M_TEMP); 2885 return (error); 2886 } 2887 #endif 2888 2889 /* 2890 * This sysctl allows a process to retrieve the full list of groups from 2891 * itself or another process. 2892 */ 2893 static int 2894 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2895 { 2896 pid_t *pidp = (pid_t *)arg1; 2897 unsigned int arglen = arg2; 2898 struct proc *p; 2899 struct ucred *cred; 2900 int error; 2901 2902 if (arglen != 1) 2903 return (EINVAL); 2904 if (*pidp == -1) { /* -1 means this process */ 2905 p = req->td->td_proc; 2906 PROC_LOCK(p); 2907 } else { 2908 error = pget(*pidp, PGET_CANSEE, &p); 2909 if (error != 0) 2910 return (error); 2911 } 2912 2913 cred = crhold(p->p_ucred); 2914 PROC_UNLOCK(p); 2915 2916 error = SYSCTL_OUT(req, cred->cr_groups, 2917 cred->cr_ngroups * sizeof(gid_t)); 2918 crfree(cred); 2919 return (error); 2920 } 2921 2922 /* 2923 * This sysctl allows a process to retrieve or/and set the resource limit for 2924 * another process. 2925 */ 2926 static int 2927 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2928 { 2929 int *name = (int *)arg1; 2930 u_int namelen = arg2; 2931 struct rlimit rlim; 2932 struct proc *p; 2933 u_int which; 2934 int flags, error; 2935 2936 if (namelen != 2) 2937 return (EINVAL); 2938 2939 which = (u_int)name[1]; 2940 if (which >= RLIM_NLIMITS) 2941 return (EINVAL); 2942 2943 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2944 return (EINVAL); 2945 2946 flags = PGET_HOLD | PGET_NOTWEXIT; 2947 if (req->newptr != NULL) 2948 flags |= PGET_CANDEBUG; 2949 else 2950 flags |= PGET_CANSEE; 2951 error = pget((pid_t)name[0], flags, &p); 2952 if (error != 0) 2953 return (error); 2954 2955 /* 2956 * Retrieve limit. 2957 */ 2958 if (req->oldptr != NULL) { 2959 PROC_LOCK(p); 2960 lim_rlimit_proc(p, which, &rlim); 2961 PROC_UNLOCK(p); 2962 } 2963 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2964 if (error != 0) 2965 goto errout; 2966 2967 /* 2968 * Set limit. 2969 */ 2970 if (req->newptr != NULL) { 2971 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2972 if (error == 0) 2973 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2974 } 2975 2976 errout: 2977 PRELE(p); 2978 return (error); 2979 } 2980 2981 /* 2982 * This sysctl allows a process to retrieve ps_strings structure location of 2983 * another process. 2984 */ 2985 static int 2986 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2987 { 2988 int *name = (int *)arg1; 2989 u_int namelen = arg2; 2990 struct proc *p; 2991 vm_offset_t ps_strings; 2992 int error; 2993 #ifdef COMPAT_FREEBSD32 2994 uint32_t ps_strings32; 2995 #endif 2996 2997 if (namelen != 1) 2998 return (EINVAL); 2999 3000 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3001 if (error != 0) 3002 return (error); 3003 #ifdef COMPAT_FREEBSD32 3004 if ((req->flags & SCTL_MASK32) != 0) { 3005 /* 3006 * We return 0 if the 32 bit emulation request is for a 64 bit 3007 * process. 3008 */ 3009 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 3010 PTROUT(PROC_PS_STRINGS(p)) : 0; 3011 PROC_UNLOCK(p); 3012 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 3013 return (error); 3014 } 3015 #endif 3016 ps_strings = PROC_PS_STRINGS(p); 3017 PROC_UNLOCK(p); 3018 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 3019 return (error); 3020 } 3021 3022 /* 3023 * This sysctl allows a process to retrieve umask of another process. 3024 */ 3025 static int 3026 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 3027 { 3028 int *name = (int *)arg1; 3029 u_int namelen = arg2; 3030 struct proc *p; 3031 int error; 3032 u_short cmask; 3033 pid_t pid; 3034 3035 if (namelen != 1) 3036 return (EINVAL); 3037 3038 pid = (pid_t)name[0]; 3039 p = curproc; 3040 if (pid == p->p_pid || pid == 0) { 3041 cmask = p->p_pd->pd_cmask; 3042 goto out; 3043 } 3044 3045 error = pget(pid, PGET_WANTREAD, &p); 3046 if (error != 0) 3047 return (error); 3048 3049 cmask = p->p_pd->pd_cmask; 3050 PRELE(p); 3051 out: 3052 error = SYSCTL_OUT(req, &cmask, sizeof(cmask)); 3053 return (error); 3054 } 3055 3056 /* 3057 * This sysctl allows a process to set and retrieve binary osreldate of 3058 * another process. 3059 */ 3060 static int 3061 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 3062 { 3063 int *name = (int *)arg1; 3064 u_int namelen = arg2; 3065 struct proc *p; 3066 int flags, error, osrel; 3067 3068 if (namelen != 1) 3069 return (EINVAL); 3070 3071 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 3072 return (EINVAL); 3073 3074 flags = PGET_HOLD | PGET_NOTWEXIT; 3075 if (req->newptr != NULL) 3076 flags |= PGET_CANDEBUG; 3077 else 3078 flags |= PGET_CANSEE; 3079 error = pget((pid_t)name[0], flags, &p); 3080 if (error != 0) 3081 return (error); 3082 3083 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 3084 if (error != 0) 3085 goto errout; 3086 3087 if (req->newptr != NULL) { 3088 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 3089 if (error != 0) 3090 goto errout; 3091 if (osrel < 0) { 3092 error = EINVAL; 3093 goto errout; 3094 } 3095 p->p_osrel = osrel; 3096 } 3097 errout: 3098 PRELE(p); 3099 return (error); 3100 } 3101 3102 static int 3103 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 3104 { 3105 int *name = (int *)arg1; 3106 u_int namelen = arg2; 3107 struct proc *p; 3108 struct kinfo_sigtramp kst; 3109 const struct sysentvec *sv; 3110 int error; 3111 #ifdef COMPAT_FREEBSD32 3112 struct kinfo_sigtramp32 kst32; 3113 #endif 3114 3115 if (namelen != 1) 3116 return (EINVAL); 3117 3118 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3119 if (error != 0) 3120 return (error); 3121 sv = p->p_sysent; 3122 #ifdef COMPAT_FREEBSD32 3123 if ((req->flags & SCTL_MASK32) != 0) { 3124 bzero(&kst32, sizeof(kst32)); 3125 if (SV_PROC_FLAG(p, SV_ILP32)) { 3126 if (PROC_HAS_SHP(p)) { 3127 kst32.ksigtramp_start = PROC_SIGCODE(p); 3128 kst32.ksigtramp_end = kst32.ksigtramp_start + 3129 ((sv->sv_flags & SV_DSO_SIG) == 0 ? 3130 *sv->sv_szsigcode : 3131 (uintptr_t)sv->sv_szsigcode); 3132 } else { 3133 kst32.ksigtramp_start = PROC_PS_STRINGS(p) - 3134 *sv->sv_szsigcode; 3135 kst32.ksigtramp_end = PROC_PS_STRINGS(p); 3136 } 3137 } 3138 PROC_UNLOCK(p); 3139 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 3140 return (error); 3141 } 3142 #endif 3143 bzero(&kst, sizeof(kst)); 3144 if (PROC_HAS_SHP(p)) { 3145 kst.ksigtramp_start = (char *)PROC_SIGCODE(p); 3146 kst.ksigtramp_end = (char *)kst.ksigtramp_start + 3147 ((sv->sv_flags & SV_DSO_SIG) == 0 ? *sv->sv_szsigcode : 3148 (uintptr_t)sv->sv_szsigcode); 3149 } else { 3150 kst.ksigtramp_start = (char *)PROC_PS_STRINGS(p) - 3151 *sv->sv_szsigcode; 3152 kst.ksigtramp_end = (char *)PROC_PS_STRINGS(p); 3153 } 3154 PROC_UNLOCK(p); 3155 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 3156 return (error); 3157 } 3158 3159 static int 3160 sysctl_kern_proc_sigfastblk(SYSCTL_HANDLER_ARGS) 3161 { 3162 int *name = (int *)arg1; 3163 u_int namelen = arg2; 3164 pid_t pid; 3165 struct proc *p; 3166 struct thread *td1; 3167 uintptr_t addr; 3168 #ifdef COMPAT_FREEBSD32 3169 uint32_t addr32; 3170 #endif 3171 int error; 3172 3173 if (namelen != 1 || req->newptr != NULL) 3174 return (EINVAL); 3175 3176 pid = (pid_t)name[0]; 3177 error = pget(pid, PGET_HOLD | PGET_NOTWEXIT | PGET_CANDEBUG, &p); 3178 if (error != 0) 3179 return (error); 3180 3181 PROC_LOCK(p); 3182 #ifdef COMPAT_FREEBSD32 3183 if (SV_CURPROC_FLAG(SV_ILP32)) { 3184 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3185 error = EINVAL; 3186 goto errlocked; 3187 } 3188 } 3189 #endif 3190 if (pid <= PID_MAX) { 3191 td1 = FIRST_THREAD_IN_PROC(p); 3192 } else { 3193 FOREACH_THREAD_IN_PROC(p, td1) { 3194 if (td1->td_tid == pid) 3195 break; 3196 } 3197 } 3198 if (td1 == NULL) { 3199 error = ESRCH; 3200 goto errlocked; 3201 } 3202 /* 3203 * The access to the private thread flags. It is fine as far 3204 * as no out-of-thin-air values are read from td_pflags, and 3205 * usermode read of the td_sigblock_ptr is racy inherently, 3206 * since target process might have already changed it 3207 * meantime. 3208 */ 3209 if ((td1->td_pflags & TDP_SIGFASTBLOCK) != 0) 3210 addr = (uintptr_t)td1->td_sigblock_ptr; 3211 else 3212 error = ENOTTY; 3213 3214 errlocked: 3215 _PRELE(p); 3216 PROC_UNLOCK(p); 3217 if (error != 0) 3218 return (error); 3219 3220 #ifdef COMPAT_FREEBSD32 3221 if (SV_CURPROC_FLAG(SV_ILP32)) { 3222 addr32 = addr; 3223 error = SYSCTL_OUT(req, &addr32, sizeof(addr32)); 3224 } else 3225 #endif 3226 error = SYSCTL_OUT(req, &addr, sizeof(addr)); 3227 return (error); 3228 } 3229 3230 static int 3231 sysctl_kern_proc_vm_layout(SYSCTL_HANDLER_ARGS) 3232 { 3233 struct kinfo_vm_layout kvm; 3234 struct proc *p; 3235 struct vmspace *vmspace; 3236 int error, *name; 3237 3238 name = (int *)arg1; 3239 if ((u_int)arg2 != 1) 3240 return (EINVAL); 3241 3242 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 3243 if (error != 0) 3244 return (error); 3245 #ifdef COMPAT_FREEBSD32 3246 if (SV_CURPROC_FLAG(SV_ILP32)) { 3247 if (!SV_PROC_FLAG(p, SV_ILP32)) { 3248 PROC_UNLOCK(p); 3249 return (EINVAL); 3250 } 3251 } 3252 #endif 3253 vmspace = vmspace_acquire_ref(p); 3254 PROC_UNLOCK(p); 3255 3256 memset(&kvm, 0, sizeof(kvm)); 3257 kvm.kvm_min_user_addr = vm_map_min(&vmspace->vm_map); 3258 kvm.kvm_max_user_addr = vm_map_max(&vmspace->vm_map); 3259 kvm.kvm_text_addr = (uintptr_t)vmspace->vm_taddr; 3260 kvm.kvm_text_size = vmspace->vm_tsize; 3261 kvm.kvm_data_addr = (uintptr_t)vmspace->vm_daddr; 3262 kvm.kvm_data_size = vmspace->vm_dsize; 3263 kvm.kvm_stack_addr = (uintptr_t)vmspace->vm_maxsaddr; 3264 kvm.kvm_stack_size = vmspace->vm_ssize; 3265 kvm.kvm_shp_addr = vmspace->vm_shp_base; 3266 kvm.kvm_shp_size = p->p_sysent->sv_shared_page_len; 3267 if ((vmspace->vm_map.flags & MAP_WIREFUTURE) != 0) 3268 kvm.kvm_map_flags |= KMAP_FLAG_WIREFUTURE; 3269 if ((vmspace->vm_map.flags & MAP_ASLR) != 0) 3270 kvm.kvm_map_flags |= KMAP_FLAG_ASLR; 3271 if ((vmspace->vm_map.flags & MAP_ASLR_IGNSTART) != 0) 3272 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_IGNSTART; 3273 if ((vmspace->vm_map.flags & MAP_WXORX) != 0) 3274 kvm.kvm_map_flags |= KMAP_FLAG_WXORX; 3275 if ((vmspace->vm_map.flags & MAP_ASLR_STACK) != 0) 3276 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_STACK; 3277 if (vmspace->vm_shp_base != p->p_sysent->sv_shared_page_base && 3278 PROC_HAS_SHP(p)) 3279 kvm.kvm_map_flags |= KMAP_FLAG_ASLR_SHARED_PAGE; 3280 3281 #ifdef COMPAT_FREEBSD32 3282 if (SV_CURPROC_FLAG(SV_ILP32)) { 3283 struct kinfo_vm_layout32 kvm32; 3284 3285 memset(&kvm32, 0, sizeof(kvm32)); 3286 kvm32.kvm_min_user_addr = (uint32_t)kvm.kvm_min_user_addr; 3287 kvm32.kvm_max_user_addr = (uint32_t)kvm.kvm_max_user_addr; 3288 kvm32.kvm_text_addr = (uint32_t)kvm.kvm_text_addr; 3289 kvm32.kvm_text_size = (uint32_t)kvm.kvm_text_size; 3290 kvm32.kvm_data_addr = (uint32_t)kvm.kvm_data_addr; 3291 kvm32.kvm_data_size = (uint32_t)kvm.kvm_data_size; 3292 kvm32.kvm_stack_addr = (uint32_t)kvm.kvm_stack_addr; 3293 kvm32.kvm_stack_size = (uint32_t)kvm.kvm_stack_size; 3294 kvm32.kvm_shp_addr = (uint32_t)kvm.kvm_shp_addr; 3295 kvm32.kvm_shp_size = (uint32_t)kvm.kvm_shp_size; 3296 kvm32.kvm_map_flags = kvm.kvm_map_flags; 3297 error = SYSCTL_OUT(req, &kvm32, sizeof(kvm32)); 3298 goto out; 3299 } 3300 #endif 3301 3302 error = SYSCTL_OUT(req, &kvm, sizeof(kvm)); 3303 #ifdef COMPAT_FREEBSD32 3304 out: 3305 #endif 3306 vmspace_free(vmspace); 3307 return (error); 3308 } 3309 3310 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 3311 "Process table"); 3312 3313 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 3314 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 3315 "Return entire process table"); 3316 3317 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3318 sysctl_kern_proc, "Process table"); 3319 3320 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 3321 sysctl_kern_proc, "Process table"); 3322 3323 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3324 sysctl_kern_proc, "Process table"); 3325 3326 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 3327 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3328 3329 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 3330 sysctl_kern_proc, "Process table"); 3331 3332 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3333 sysctl_kern_proc, "Process table"); 3334 3335 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3336 sysctl_kern_proc, "Process table"); 3337 3338 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 3339 sysctl_kern_proc, "Process table"); 3340 3341 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 3342 sysctl_kern_proc, "Return process table, no threads"); 3343 3344 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 3345 CTLFLAG_RW | CTLFLAG_CAPWR | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 3346 sysctl_kern_proc_args, "Process argument list"); 3347 3348 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 3349 sysctl_kern_proc_env, "Process environment"); 3350 3351 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 3352 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 3353 3354 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 3355 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 3356 3357 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 3358 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 3359 "Process syscall vector name (ABI type)"); 3360 3361 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 3362 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3363 3364 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 3365 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3366 3367 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 3368 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3369 3370 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 3371 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3372 3373 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 3374 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3375 3376 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 3377 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3378 3379 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 3380 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3381 3382 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 3383 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 3384 3385 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 3386 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 3387 "Return process table, including threads"); 3388 3389 #ifdef COMPAT_FREEBSD7 3390 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 3391 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 3392 #endif 3393 3394 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 3395 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 3396 3397 #if defined(STACK) || defined(DDB) 3398 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 3399 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 3400 #endif 3401 3402 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 3403 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 3404 3405 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 3406 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 3407 "Process resource limits"); 3408 3409 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 3410 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 3411 "Process ps_strings location"); 3412 3413 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 3414 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 3415 3416 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 3417 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 3418 "Process binary osreldate"); 3419 3420 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 3421 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 3422 "Process signal trampoline location"); 3423 3424 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGFASTBLK, sigfastblk, CTLFLAG_RD | 3425 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_sigfastblk, 3426 "Thread sigfastblock address"); 3427 3428 static SYSCTL_NODE(_kern_proc, KERN_PROC_VM_LAYOUT, vm_layout, CTLFLAG_RD | 3429 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_vm_layout, 3430 "Process virtual address space layout info"); 3431 3432 static struct sx stop_all_proc_blocker; 3433 SX_SYSINIT(stop_all_proc_blocker, &stop_all_proc_blocker, "sapblk"); 3434 3435 bool 3436 stop_all_proc_block(void) 3437 { 3438 return (sx_xlock_sig(&stop_all_proc_blocker) == 0); 3439 } 3440 3441 void 3442 stop_all_proc_unblock(void) 3443 { 3444 sx_xunlock(&stop_all_proc_blocker); 3445 } 3446 3447 int allproc_gen; 3448 3449 /* 3450 * stop_all_proc() purpose is to stop all process which have usermode, 3451 * except current process for obvious reasons. This makes it somewhat 3452 * unreliable when invoked from multithreaded process. The service 3453 * must not be user-callable anyway. 3454 */ 3455 void 3456 stop_all_proc(void) 3457 { 3458 struct proc *cp, *p; 3459 int r, gen; 3460 bool restart, seen_stopped, seen_exiting, stopped_some; 3461 3462 if (!stop_all_proc_block()) 3463 return; 3464 3465 cp = curproc; 3466 allproc_loop: 3467 sx_xlock(&allproc_lock); 3468 gen = allproc_gen; 3469 seen_exiting = seen_stopped = stopped_some = restart = false; 3470 LIST_REMOVE(cp, p_list); 3471 LIST_INSERT_HEAD(&allproc, cp, p_list); 3472 for (;;) { 3473 p = LIST_NEXT(cp, p_list); 3474 if (p == NULL) 3475 break; 3476 LIST_REMOVE(cp, p_list); 3477 LIST_INSERT_AFTER(p, cp, p_list); 3478 PROC_LOCK(p); 3479 if ((p->p_flag & (P_KPROC | P_SYSTEM | P_TOTAL_STOP)) != 0) { 3480 PROC_UNLOCK(p); 3481 continue; 3482 } 3483 if ((p->p_flag2 & P2_WEXIT) != 0) { 3484 seen_exiting = true; 3485 PROC_UNLOCK(p); 3486 continue; 3487 } 3488 if (P_SHOULDSTOP(p) == P_STOPPED_SINGLE) { 3489 /* 3490 * Stopped processes are tolerated when there 3491 * are no other processes which might continue 3492 * them. P_STOPPED_SINGLE but not 3493 * P_TOTAL_STOP process still has at least one 3494 * thread running. 3495 */ 3496 seen_stopped = true; 3497 PROC_UNLOCK(p); 3498 continue; 3499 } 3500 sx_xunlock(&allproc_lock); 3501 _PHOLD(p); 3502 r = thread_single(p, SINGLE_ALLPROC); 3503 if (r != 0) 3504 restart = true; 3505 else 3506 stopped_some = true; 3507 _PRELE(p); 3508 PROC_UNLOCK(p); 3509 sx_xlock(&allproc_lock); 3510 } 3511 /* Catch forked children we did not see in iteration. */ 3512 if (gen != allproc_gen) 3513 restart = true; 3514 sx_xunlock(&allproc_lock); 3515 if (restart || stopped_some || seen_exiting || seen_stopped) { 3516 kern_yield(PRI_USER); 3517 goto allproc_loop; 3518 } 3519 } 3520 3521 void 3522 resume_all_proc(void) 3523 { 3524 struct proc *cp, *p; 3525 3526 cp = curproc; 3527 sx_xlock(&allproc_lock); 3528 again: 3529 LIST_REMOVE(cp, p_list); 3530 LIST_INSERT_HEAD(&allproc, cp, p_list); 3531 for (;;) { 3532 p = LIST_NEXT(cp, p_list); 3533 if (p == NULL) 3534 break; 3535 LIST_REMOVE(cp, p_list); 3536 LIST_INSERT_AFTER(p, cp, p_list); 3537 PROC_LOCK(p); 3538 if ((p->p_flag & P_TOTAL_STOP) != 0) { 3539 sx_xunlock(&allproc_lock); 3540 _PHOLD(p); 3541 thread_single_end(p, SINGLE_ALLPROC); 3542 _PRELE(p); 3543 PROC_UNLOCK(p); 3544 sx_xlock(&allproc_lock); 3545 } else { 3546 PROC_UNLOCK(p); 3547 } 3548 } 3549 /* Did the loop above missed any stopped process ? */ 3550 FOREACH_PROC_IN_SYSTEM(p) { 3551 /* No need for proc lock. */ 3552 if ((p->p_flag & P_TOTAL_STOP) != 0) 3553 goto again; 3554 } 3555 sx_xunlock(&allproc_lock); 3556 3557 stop_all_proc_unblock(); 3558 } 3559 3560 /* #define TOTAL_STOP_DEBUG 1 */ 3561 #ifdef TOTAL_STOP_DEBUG 3562 volatile static int ap_resume; 3563 #include <sys/mount.h> 3564 3565 static int 3566 sysctl_debug_stop_all_proc(SYSCTL_HANDLER_ARGS) 3567 { 3568 int error, val; 3569 3570 val = 0; 3571 ap_resume = 0; 3572 error = sysctl_handle_int(oidp, &val, 0, req); 3573 if (error != 0 || req->newptr == NULL) 3574 return (error); 3575 if (val != 0) { 3576 stop_all_proc(); 3577 syncer_suspend(); 3578 while (ap_resume == 0) 3579 ; 3580 syncer_resume(); 3581 resume_all_proc(); 3582 } 3583 return (0); 3584 } 3585 3586 SYSCTL_PROC(_debug, OID_AUTO, stop_all_proc, CTLTYPE_INT | CTLFLAG_RW | 3587 CTLFLAG_MPSAFE, __DEVOLATILE(int *, &ap_resume), 0, 3588 sysctl_debug_stop_all_proc, "I", 3589 ""); 3590 #endif 3591