1 /* 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 * $FreeBSD$ 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_ktrace.h" 37 #include "opt_kstack_pages.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/lock.h> 43 #include <sys/malloc.h> 44 #include <sys/mutex.h> 45 #include <sys/proc.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #ifdef KTRACE 57 #include <sys/uio.h> 58 #include <sys/ktrace.h> 59 #endif 60 61 #include <vm/vm.h> 62 #include <vm/vm_extern.h> 63 #include <vm/pmap.h> 64 #include <vm/vm_map.h> 65 #include <vm/uma.h> 66 #include <machine/critical.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void pgadjustjobc(struct pgrp *pgrp, int entering); 76 static void pgdelete(struct pgrp *); 77 static void proc_ctor(void *mem, int size, void *arg); 78 static void proc_dtor(void *mem, int size, void *arg); 79 static void proc_init(void *mem, int size); 80 static void proc_fini(void *mem, int size); 81 82 /* 83 * Other process lists 84 */ 85 struct pidhashhead *pidhashtbl; 86 u_long pidhash; 87 struct pgrphashhead *pgrphashtbl; 88 u_long pgrphash; 89 struct proclist allproc; 90 struct proclist zombproc; 91 struct sx allproc_lock; 92 struct sx proctree_lock; 93 struct mtx pargs_ref_lock; 94 struct mtx ppeers_lock; 95 uma_zone_t proc_zone; 96 uma_zone_t ithread_zone; 97 98 int kstack_pages = KSTACK_PAGES; 99 int uarea_pages = UAREA_PAGES; 100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 101 SYSCTL_INT(_kern, OID_AUTO, uarea_pages, CTLFLAG_RD, &uarea_pages, 0, ""); 102 103 #define RANGEOF(type, start, end) (offsetof(type, end) - offsetof(type, start)) 104 105 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 106 107 /* 108 * Initialize global process hashing structures. 109 */ 110 void 111 procinit() 112 { 113 114 sx_init(&allproc_lock, "allproc"); 115 sx_init(&proctree_lock, "proctree"); 116 mtx_init(&pargs_ref_lock, "struct pargs.ref", NULL, MTX_DEF); 117 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 118 LIST_INIT(&allproc); 119 LIST_INIT(&zombproc); 120 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 121 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 122 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 123 proc_ctor, proc_dtor, proc_init, proc_fini, 124 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 125 uihashinit(); 126 } 127 128 /* 129 * Prepare a proc for use. 130 */ 131 static void 132 proc_ctor(void *mem, int size, void *arg) 133 { 134 struct proc *p; 135 136 p = (struct proc *)mem; 137 } 138 139 /* 140 * Reclaim a proc after use. 141 */ 142 static void 143 proc_dtor(void *mem, int size, void *arg) 144 { 145 struct proc *p; 146 struct thread *td; 147 struct ksegrp *kg; 148 struct kse *ke; 149 150 /* INVARIANTS checks go here */ 151 p = (struct proc *)mem; 152 KASSERT((p->p_numthreads == 1), 153 ("bad number of threads in exiting process")); 154 td = FIRST_THREAD_IN_PROC(p); 155 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 156 kg = FIRST_KSEGRP_IN_PROC(p); 157 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 158 ke = FIRST_KSE_IN_KSEGRP(kg); 159 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 160 161 /* Dispose of an alternate kstack, if it exists. 162 * XXX What if there are more than one thread in the proc? 163 * The first thread in the proc is special and not 164 * freed, so you gotta do this here. 165 */ 166 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 167 vm_thread_dispose_altkstack(td); 168 169 /* 170 * We want to make sure we know the initial linkages. 171 * so for now tear them down and remake them. 172 * This is probably un-needed as we can probably rely 173 * on the state coming in here from wait4(). 174 */ 175 proc_linkup(p, kg, ke, td); 176 } 177 178 /* 179 * Initialize type-stable parts of a proc (when newly created). 180 */ 181 static void 182 proc_init(void *mem, int size) 183 { 184 struct proc *p; 185 struct thread *td; 186 struct ksegrp *kg; 187 struct kse *ke; 188 189 p = (struct proc *)mem; 190 p->p_sched = (struct p_sched *)&p[1]; 191 vm_proc_new(p); 192 td = thread_alloc(); 193 ke = kse_alloc(); 194 kg = ksegrp_alloc(); 195 proc_linkup(p, kg, ke, td); 196 bzero(&p->p_mtx, sizeof(struct mtx)); 197 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 198 } 199 200 /* 201 * Tear down type-stable parts of a proc (just before being discarded) 202 */ 203 static void 204 proc_fini(void *mem, int size) 205 { 206 struct proc *p; 207 struct thread *td; 208 struct ksegrp *kg; 209 struct kse *ke; 210 211 p = (struct proc *)mem; 212 KASSERT((p->p_numthreads == 1), 213 ("bad number of threads in freeing process")); 214 td = FIRST_THREAD_IN_PROC(p); 215 KASSERT((td != NULL), ("proc_dtor: bad thread pointer")); 216 kg = FIRST_KSEGRP_IN_PROC(p); 217 KASSERT((kg != NULL), ("proc_dtor: bad kg pointer")); 218 ke = FIRST_KSE_IN_KSEGRP(kg); 219 KASSERT((ke != NULL), ("proc_dtor: bad ke pointer")); 220 vm_proc_dispose(p); 221 thread_free(td); 222 ksegrp_free(kg); 223 kse_free(ke); 224 mtx_destroy(&p->p_mtx); 225 } 226 227 /* 228 * Is p an inferior of the current process? 229 */ 230 int 231 inferior(p) 232 register struct proc *p; 233 { 234 235 sx_assert(&proctree_lock, SX_LOCKED); 236 for (; p != curproc; p = p->p_pptr) 237 if (p->p_pid == 0) 238 return (0); 239 return (1); 240 } 241 242 /* 243 * Locate a process by number 244 */ 245 struct proc * 246 pfind(pid) 247 register pid_t pid; 248 { 249 register struct proc *p; 250 251 sx_slock(&allproc_lock); 252 LIST_FOREACH(p, PIDHASH(pid), p_hash) 253 if (p->p_pid == pid) { 254 PROC_LOCK(p); 255 break; 256 } 257 sx_sunlock(&allproc_lock); 258 return (p); 259 } 260 261 /* 262 * Locate a process group by number. 263 * The caller must hold proctree_lock. 264 */ 265 struct pgrp * 266 pgfind(pgid) 267 register pid_t pgid; 268 { 269 register struct pgrp *pgrp; 270 271 sx_assert(&proctree_lock, SX_LOCKED); 272 273 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 274 if (pgrp->pg_id == pgid) { 275 PGRP_LOCK(pgrp); 276 return (pgrp); 277 } 278 } 279 return (NULL); 280 } 281 282 /* 283 * Create a new process group. 284 * pgid must be equal to the pid of p. 285 * Begin a new session if required. 286 */ 287 int 288 enterpgrp(p, pgid, pgrp, sess) 289 register struct proc *p; 290 pid_t pgid; 291 struct pgrp *pgrp; 292 struct session *sess; 293 { 294 struct pgrp *pgrp2; 295 296 sx_assert(&proctree_lock, SX_XLOCKED); 297 298 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 299 KASSERT(p->p_pid == pgid, 300 ("enterpgrp: new pgrp and pid != pgid")); 301 302 pgrp2 = pgfind(pgid); 303 304 KASSERT(pgrp2 == NULL, 305 ("enterpgrp: pgrp with pgid exists")); 306 KASSERT(!SESS_LEADER(p), 307 ("enterpgrp: session leader attempted setpgrp")); 308 309 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 310 311 if (sess != NULL) { 312 /* 313 * new session 314 */ 315 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 316 PROC_LOCK(p); 317 p->p_flag &= ~P_CONTROLT; 318 PROC_UNLOCK(p); 319 PGRP_LOCK(pgrp); 320 sess->s_leader = p; 321 sess->s_sid = p->p_pid; 322 sess->s_count = 1; 323 sess->s_ttyvp = NULL; 324 sess->s_ttyp = NULL; 325 bcopy(p->p_session->s_login, sess->s_login, 326 sizeof(sess->s_login)); 327 pgrp->pg_session = sess; 328 KASSERT(p == curproc, 329 ("enterpgrp: mksession and p != curproc")); 330 } else { 331 pgrp->pg_session = p->p_session; 332 SESS_LOCK(pgrp->pg_session); 333 pgrp->pg_session->s_count++; 334 SESS_UNLOCK(pgrp->pg_session); 335 PGRP_LOCK(pgrp); 336 } 337 pgrp->pg_id = pgid; 338 LIST_INIT(&pgrp->pg_members); 339 340 /* 341 * As we have an exclusive lock of proctree_lock, 342 * this should not deadlock. 343 */ 344 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 345 pgrp->pg_jobc = 0; 346 SLIST_INIT(&pgrp->pg_sigiolst); 347 PGRP_UNLOCK(pgrp); 348 349 doenterpgrp(p, pgrp); 350 351 return (0); 352 } 353 354 /* 355 * Move p to an existing process group 356 */ 357 int 358 enterthispgrp(p, pgrp) 359 register struct proc *p; 360 struct pgrp *pgrp; 361 { 362 363 sx_assert(&proctree_lock, SX_XLOCKED); 364 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 365 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 366 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 367 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 368 KASSERT(pgrp->pg_session == p->p_session, 369 ("%s: pgrp's session %p, p->p_session %p.\n", 370 __func__, 371 pgrp->pg_session, 372 p->p_session)); 373 KASSERT(pgrp != p->p_pgrp, 374 ("%s: p belongs to pgrp.", __func__)); 375 376 doenterpgrp(p, pgrp); 377 378 return (0); 379 } 380 381 /* 382 * Move p to a process group 383 */ 384 static void 385 doenterpgrp(p, pgrp) 386 struct proc *p; 387 struct pgrp *pgrp; 388 { 389 struct pgrp *savepgrp; 390 391 sx_assert(&proctree_lock, SX_XLOCKED); 392 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 393 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 394 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 395 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 396 397 savepgrp = p->p_pgrp; 398 399 /* 400 * Adjust eligibility of affected pgrps to participate in job control. 401 * Increment eligibility counts before decrementing, otherwise we 402 * could reach 0 spuriously during the first call. 403 */ 404 fixjobc(p, pgrp, 1); 405 fixjobc(p, p->p_pgrp, 0); 406 407 PGRP_LOCK(pgrp); 408 PGRP_LOCK(savepgrp); 409 PROC_LOCK(p); 410 LIST_REMOVE(p, p_pglist); 411 p->p_pgrp = pgrp; 412 PROC_UNLOCK(p); 413 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 414 PGRP_UNLOCK(savepgrp); 415 PGRP_UNLOCK(pgrp); 416 if (LIST_EMPTY(&savepgrp->pg_members)) 417 pgdelete(savepgrp); 418 } 419 420 /* 421 * remove process from process group 422 */ 423 int 424 leavepgrp(p) 425 register struct proc *p; 426 { 427 struct pgrp *savepgrp; 428 429 sx_assert(&proctree_lock, SX_XLOCKED); 430 savepgrp = p->p_pgrp; 431 PGRP_LOCK(savepgrp); 432 PROC_LOCK(p); 433 LIST_REMOVE(p, p_pglist); 434 p->p_pgrp = NULL; 435 PROC_UNLOCK(p); 436 PGRP_UNLOCK(savepgrp); 437 if (LIST_EMPTY(&savepgrp->pg_members)) 438 pgdelete(savepgrp); 439 return (0); 440 } 441 442 /* 443 * delete a process group 444 */ 445 static void 446 pgdelete(pgrp) 447 register struct pgrp *pgrp; 448 { 449 struct session *savesess; 450 int i; 451 452 sx_assert(&proctree_lock, SX_XLOCKED); 453 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 454 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 455 456 /* 457 * Reset any sigio structures pointing to us as a result of 458 * F_SETOWN with our pgid. 459 */ 460 funsetownlst(&pgrp->pg_sigiolst); 461 462 PGRP_LOCK(pgrp); 463 if (pgrp->pg_session->s_ttyp != NULL && 464 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 465 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 466 LIST_REMOVE(pgrp, pg_hash); 467 savesess = pgrp->pg_session; 468 SESS_LOCK(savesess); 469 i = --savesess->s_count; 470 SESS_UNLOCK(savesess); 471 PGRP_UNLOCK(pgrp); 472 if (i == 0) { 473 if (savesess->s_ttyp != NULL) 474 ttyrel(savesess->s_ttyp); 475 mtx_destroy(&savesess->s_mtx); 476 FREE(savesess, M_SESSION); 477 } 478 mtx_destroy(&pgrp->pg_mtx); 479 FREE(pgrp, M_PGRP); 480 } 481 482 static void 483 pgadjustjobc(pgrp, entering) 484 struct pgrp *pgrp; 485 int entering; 486 { 487 488 PGRP_LOCK(pgrp); 489 if (entering) 490 pgrp->pg_jobc++; 491 else { 492 --pgrp->pg_jobc; 493 if (pgrp->pg_jobc == 0) 494 orphanpg(pgrp); 495 } 496 PGRP_UNLOCK(pgrp); 497 } 498 499 /* 500 * Adjust pgrp jobc counters when specified process changes process group. 501 * We count the number of processes in each process group that "qualify" 502 * the group for terminal job control (those with a parent in a different 503 * process group of the same session). If that count reaches zero, the 504 * process group becomes orphaned. Check both the specified process' 505 * process group and that of its children. 506 * entering == 0 => p is leaving specified group. 507 * entering == 1 => p is entering specified group. 508 */ 509 void 510 fixjobc(p, pgrp, entering) 511 register struct proc *p; 512 register struct pgrp *pgrp; 513 int entering; 514 { 515 register struct pgrp *hispgrp; 516 register struct session *mysession; 517 518 sx_assert(&proctree_lock, SX_LOCKED); 519 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 520 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 521 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 522 523 /* 524 * Check p's parent to see whether p qualifies its own process 525 * group; if so, adjust count for p's process group. 526 */ 527 mysession = pgrp->pg_session; 528 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 529 hispgrp->pg_session == mysession) 530 pgadjustjobc(pgrp, entering); 531 532 /* 533 * Check this process' children to see whether they qualify 534 * their process groups; if so, adjust counts for children's 535 * process groups. 536 */ 537 LIST_FOREACH(p, &p->p_children, p_sibling) { 538 hispgrp = p->p_pgrp; 539 if (hispgrp == pgrp || 540 hispgrp->pg_session != mysession) 541 continue; 542 PROC_LOCK(p); 543 if (p->p_state == PRS_ZOMBIE) { 544 PROC_UNLOCK(p); 545 continue; 546 } 547 PROC_UNLOCK(p); 548 pgadjustjobc(hispgrp, entering); 549 } 550 } 551 552 /* 553 * A process group has become orphaned; 554 * if there are any stopped processes in the group, 555 * hang-up all process in that group. 556 */ 557 static void 558 orphanpg(pg) 559 struct pgrp *pg; 560 { 561 register struct proc *p; 562 563 PGRP_LOCK_ASSERT(pg, MA_OWNED); 564 565 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 566 PROC_LOCK(p); 567 if (P_SHOULDSTOP(p)) { 568 PROC_UNLOCK(p); 569 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 570 PROC_LOCK(p); 571 psignal(p, SIGHUP); 572 psignal(p, SIGCONT); 573 PROC_UNLOCK(p); 574 } 575 return; 576 } 577 PROC_UNLOCK(p); 578 } 579 } 580 581 #include "opt_ddb.h" 582 #ifdef DDB 583 #include <ddb/ddb.h> 584 585 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 586 { 587 register struct pgrp *pgrp; 588 register struct proc *p; 589 register int i; 590 591 for (i = 0; i <= pgrphash; i++) { 592 if (!LIST_EMPTY(&pgrphashtbl[i])) { 593 printf("\tindx %d\n", i); 594 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 595 printf( 596 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 597 (void *)pgrp, (long)pgrp->pg_id, 598 (void *)pgrp->pg_session, 599 pgrp->pg_session->s_count, 600 (void *)LIST_FIRST(&pgrp->pg_members)); 601 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 602 printf("\t\tpid %ld addr %p pgrp %p\n", 603 (long)p->p_pid, (void *)p, 604 (void *)p->p_pgrp); 605 } 606 } 607 } 608 } 609 } 610 #endif /* DDB */ 611 void 612 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 613 614 /* 615 * Fill in a kinfo_proc structure for the specified process. 616 * Must be called with the target process locked. 617 */ 618 void 619 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 620 { 621 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 622 } 623 624 void 625 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 626 { 627 struct proc *p; 628 struct thread *td0; 629 struct kse *ke; 630 struct ksegrp *kg; 631 struct tty *tp; 632 struct session *sp; 633 struct timeval tv; 634 struct sigacts *ps; 635 636 p = td->td_proc; 637 638 bzero(kp, sizeof(*kp)); 639 640 kp->ki_structsize = sizeof(*kp); 641 kp->ki_paddr = p; 642 PROC_LOCK_ASSERT(p, MA_OWNED); 643 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 644 kp->ki_args = p->p_args; 645 kp->ki_textvp = p->p_textvp; 646 #ifdef KTRACE 647 kp->ki_tracep = p->p_tracevp; 648 mtx_lock(&ktrace_mtx); 649 kp->ki_traceflag = p->p_traceflag; 650 mtx_unlock(&ktrace_mtx); 651 #endif 652 kp->ki_fd = p->p_fd; 653 kp->ki_vmspace = p->p_vmspace; 654 if (p->p_ucred) { 655 kp->ki_uid = p->p_ucred->cr_uid; 656 kp->ki_ruid = p->p_ucred->cr_ruid; 657 kp->ki_svuid = p->p_ucred->cr_svuid; 658 /* XXX bde doesn't like KI_NGROUPS */ 659 kp->ki_ngroups = min(p->p_ucred->cr_ngroups, KI_NGROUPS); 660 bcopy(p->p_ucred->cr_groups, kp->ki_groups, 661 kp->ki_ngroups * sizeof(gid_t)); 662 kp->ki_rgid = p->p_ucred->cr_rgid; 663 kp->ki_svgid = p->p_ucred->cr_svgid; 664 } 665 if (p->p_sigacts) { 666 ps = p->p_sigacts; 667 mtx_lock(&ps->ps_mtx); 668 kp->ki_sigignore = ps->ps_sigignore; 669 kp->ki_sigcatch = ps->ps_sigcatch; 670 mtx_unlock(&ps->ps_mtx); 671 } 672 mtx_lock_spin(&sched_lock); 673 if (p->p_state != PRS_NEW && 674 p->p_state != PRS_ZOMBIE && 675 p->p_vmspace != NULL) { 676 struct vmspace *vm = p->p_vmspace; 677 678 kp->ki_size = vm->vm_map.size; 679 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 680 if (p->p_sflag & PS_INMEM) 681 kp->ki_rssize += UAREA_PAGES; 682 FOREACH_THREAD_IN_PROC(p, td0) { 683 if (!TD_IS_SWAPPED(td0)) 684 kp->ki_rssize += td0->td_kstack_pages; 685 if (td0->td_altkstack_obj != NULL) 686 kp->ki_rssize += td0->td_altkstack_pages; 687 } 688 kp->ki_swrss = vm->vm_swrss; 689 kp->ki_tsize = vm->vm_tsize; 690 kp->ki_dsize = vm->vm_dsize; 691 kp->ki_ssize = vm->vm_ssize; 692 } 693 if ((p->p_sflag & PS_INMEM) && p->p_stats) { 694 kp->ki_start = p->p_stats->p_start; 695 timevaladd(&kp->ki_start, &boottime); 696 kp->ki_rusage = p->p_stats->p_ru; 697 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime, 698 NULL); 699 kp->ki_childstime = p->p_stats->p_cru.ru_stime; 700 kp->ki_childutime = p->p_stats->p_cru.ru_utime; 701 /* Some callers want child-times in a single value */ 702 kp->ki_childtime = kp->ki_childstime; 703 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 704 } 705 kp->ki_sflag = p->p_sflag; 706 kp->ki_swtime = p->p_swtime; 707 kp->ki_pid = p->p_pid; 708 kp->ki_nice = p->p_nice; 709 bintime2timeval(&p->p_runtime, &tv); 710 kp->ki_runtime = tv.tv_sec * (u_int64_t)1000000 + tv.tv_usec; 711 if (p->p_state != PRS_ZOMBIE) { 712 #if 0 713 if (td == NULL) { 714 /* XXXKSE: This should never happen. */ 715 printf("fill_kinfo_proc(): pid %d has no threads!\n", 716 p->p_pid); 717 mtx_unlock_spin(&sched_lock); 718 return; 719 } 720 #endif 721 if (td->td_wmesg != NULL) { 722 strlcpy(kp->ki_wmesg, td->td_wmesg, 723 sizeof(kp->ki_wmesg)); 724 } 725 if (TD_ON_LOCK(td)) { 726 kp->ki_kiflag |= KI_LOCKBLOCK; 727 strlcpy(kp->ki_lockname, td->td_lockname, 728 sizeof(kp->ki_lockname)); 729 } 730 731 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 732 if (TD_ON_RUNQ(td) || 733 TD_CAN_RUN(td) || 734 TD_IS_RUNNING(td)) { 735 kp->ki_stat = SRUN; 736 } else if (P_SHOULDSTOP(p)) { 737 kp->ki_stat = SSTOP; 738 } else if (TD_IS_SLEEPING(td)) { 739 kp->ki_stat = SSLEEP; 740 } else if (TD_ON_LOCK(td)) { 741 kp->ki_stat = SLOCK; 742 } else { 743 kp->ki_stat = SWAIT; 744 } 745 } else { 746 kp->ki_stat = SIDL; 747 } 748 749 kg = td->td_ksegrp; 750 ke = td->td_kse; 751 752 /* things in the KSE GROUP */ 753 kp->ki_estcpu = kg->kg_estcpu; 754 kp->ki_slptime = kg->kg_slptime; 755 kp->ki_pri.pri_user = kg->kg_user_pri; 756 kp->ki_pri.pri_class = kg->kg_pri_class; 757 758 /* Things in the thread */ 759 kp->ki_wchan = td->td_wchan; 760 kp->ki_pri.pri_level = td->td_priority; 761 kp->ki_pri.pri_native = td->td_base_pri; 762 kp->ki_lastcpu = td->td_lastcpu; 763 kp->ki_oncpu = td->td_oncpu; 764 kp->ki_tdflags = td->td_flags; 765 kp->ki_tid = td->td_tid; 766 kp->ki_numthreads = p->p_numthreads; 767 kp->ki_pcb = td->td_pcb; 768 kp->ki_kstack = (void *)td->td_kstack; 769 kp->ki_pctcpu = sched_pctcpu(td); 770 771 /* Things in the kse */ 772 if (ke) 773 kp->ki_rqindex = ke->ke_rqindex; 774 else 775 kp->ki_rqindex = 0; 776 777 } else { 778 kp->ki_stat = SZOMB; 779 } 780 mtx_unlock_spin(&sched_lock); 781 sp = NULL; 782 tp = NULL; 783 if (p->p_pgrp) { 784 kp->ki_pgid = p->p_pgrp->pg_id; 785 kp->ki_jobc = p->p_pgrp->pg_jobc; 786 sp = p->p_pgrp->pg_session; 787 788 if (sp != NULL) { 789 kp->ki_sid = sp->s_sid; 790 SESS_LOCK(sp); 791 strlcpy(kp->ki_login, sp->s_login, 792 sizeof(kp->ki_login)); 793 if (sp->s_ttyvp) 794 kp->ki_kiflag |= KI_CTTY; 795 if (SESS_LEADER(p)) 796 kp->ki_kiflag |= KI_SLEADER; 797 tp = sp->s_ttyp; 798 SESS_UNLOCK(sp); 799 } 800 } 801 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 802 kp->ki_tdev = dev2udev(tp->t_dev); 803 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 804 if (tp->t_session) 805 kp->ki_tsid = tp->t_session->s_sid; 806 } else 807 kp->ki_tdev = NODEV; 808 if (p->p_comm[0] != '\0') { 809 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 810 strlcpy(kp->ki_ocomm, p->p_comm, sizeof(kp->ki_ocomm)); 811 } 812 if (p->p_sysent && p->p_sysent->sv_name != NULL && 813 p->p_sysent->sv_name[0] != '\0') 814 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 815 kp->ki_siglist = p->p_siglist; 816 SIGSETOR(kp->ki_siglist, td->td_siglist); 817 kp->ki_sigmask = td->td_sigmask; 818 kp->ki_xstat = p->p_xstat; 819 kp->ki_acflag = p->p_acflag; 820 kp->ki_flag = p->p_flag; 821 /* If jailed(p->p_ucred), emulate the old P_JAILED flag. */ 822 if (jailed(p->p_ucred)) 823 kp->ki_flag |= P_JAILED; 824 kp->ki_lock = p->p_lock; 825 if (p->p_pptr) 826 kp->ki_ppid = p->p_pptr->p_pid; 827 } 828 829 /* 830 * Locate a zombie process by number 831 */ 832 struct proc * 833 zpfind(pid_t pid) 834 { 835 struct proc *p; 836 837 sx_slock(&allproc_lock); 838 LIST_FOREACH(p, &zombproc, p_list) 839 if (p->p_pid == pid) { 840 PROC_LOCK(p); 841 break; 842 } 843 sx_sunlock(&allproc_lock); 844 return (p); 845 } 846 847 #define KERN_PROC_ZOMBMASK 0x3 848 #define KERN_PROC_NOTHREADS 0x4 849 850 /* 851 * Must be called with the process locked and will return with it unlocked. 852 */ 853 static int 854 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 855 { 856 struct thread *td; 857 struct kinfo_proc kinfo_proc; 858 int error = 0; 859 struct proc *np; 860 pid_t pid = p->p_pid; 861 862 PROC_LOCK_ASSERT(p, MA_OWNED); 863 864 if (flags & KERN_PROC_NOTHREADS) { 865 fill_kinfo_proc(p, &kinfo_proc); 866 PROC_UNLOCK(p); 867 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 868 sizeof(kinfo_proc)); 869 PROC_LOCK(p); 870 } else { 871 _PHOLD(p); 872 FOREACH_THREAD_IN_PROC(p, td) { 873 fill_kinfo_thread(td, &kinfo_proc); 874 PROC_UNLOCK(p); 875 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 876 sizeof(kinfo_proc)); 877 PROC_LOCK(p); 878 if (error) 879 break; 880 } 881 _PRELE(p); 882 } 883 PROC_UNLOCK(p); 884 if (error) 885 return (error); 886 if (flags & KERN_PROC_ZOMBMASK) 887 np = zpfind(pid); 888 else { 889 if (pid == 0) 890 return (0); 891 np = pfind(pid); 892 } 893 if (np == NULL) 894 return EAGAIN; 895 if (np != p) { 896 PROC_UNLOCK(np); 897 return EAGAIN; 898 } 899 PROC_UNLOCK(np); 900 return (0); 901 } 902 903 static int 904 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 905 { 906 int *name = (int*) arg1; 907 u_int namelen = arg2; 908 struct proc *p; 909 int flags, doingzomb, oid_number; 910 int error = 0; 911 912 oid_number = oidp->oid_number; 913 if (oid_number != KERN_PROC_ALL && 914 (oid_number & KERN_PROC_INC_THREAD) == 0) 915 flags = KERN_PROC_NOTHREADS; 916 else { 917 flags = 0; 918 oid_number &= ~KERN_PROC_INC_THREAD; 919 } 920 if (oid_number == KERN_PROC_PID) { 921 if (namelen != 1) 922 return (EINVAL); 923 p = pfind((pid_t)name[0]); 924 if (!p) 925 return (ESRCH); 926 if ((error = p_cansee(curthread, p))) { 927 PROC_UNLOCK(p); 928 return (error); 929 } 930 error = sysctl_out_proc(p, req, flags); 931 return (error); 932 } 933 934 switch (oid_number) { 935 case KERN_PROC_ALL: 936 if (namelen != 0) 937 return (EINVAL); 938 break; 939 case KERN_PROC_PROC: 940 if (namelen != 0 && namelen != 1) 941 return (EINVAL); 942 break; 943 default: 944 if (namelen != 1) 945 return (EINVAL); 946 break; 947 } 948 949 if (!req->oldptr) { 950 /* overestimate by 5 procs */ 951 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 952 if (error) 953 return (error); 954 } 955 error = sysctl_wire_old_buffer(req, 0); 956 if (error != 0) 957 return (error); 958 sx_slock(&allproc_lock); 959 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 960 if (!doingzomb) 961 p = LIST_FIRST(&allproc); 962 else 963 p = LIST_FIRST(&zombproc); 964 for (; p != 0; p = LIST_NEXT(p, p_list)) { 965 /* 966 * Skip embryonic processes. 967 */ 968 mtx_lock_spin(&sched_lock); 969 if (p->p_state == PRS_NEW) { 970 mtx_unlock_spin(&sched_lock); 971 continue; 972 } 973 mtx_unlock_spin(&sched_lock); 974 PROC_LOCK(p); 975 /* 976 * Show a user only appropriate processes. 977 */ 978 if (p_cansee(curthread, p)) { 979 PROC_UNLOCK(p); 980 continue; 981 } 982 /* 983 * TODO - make more efficient (see notes below). 984 * do by session. 985 */ 986 switch (oid_number) { 987 988 case KERN_PROC_GID: 989 if (p->p_ucred == NULL || 990 p->p_ucred->cr_gid != (gid_t)name[0]) { 991 PROC_UNLOCK(p); 992 continue; 993 } 994 break; 995 996 case KERN_PROC_PGRP: 997 /* could do this by traversing pgrp */ 998 if (p->p_pgrp == NULL || 999 p->p_pgrp->pg_id != (pid_t)name[0]) { 1000 PROC_UNLOCK(p); 1001 continue; 1002 } 1003 break; 1004 1005 case KERN_PROC_RGID: 1006 if (p->p_ucred == NULL || 1007 p->p_ucred->cr_rgid != (gid_t)name[0]) { 1008 PROC_UNLOCK(p); 1009 continue; 1010 } 1011 break; 1012 1013 case KERN_PROC_SESSION: 1014 if (p->p_session == NULL || 1015 p->p_session->s_sid != (pid_t)name[0]) { 1016 PROC_UNLOCK(p); 1017 continue; 1018 } 1019 break; 1020 1021 case KERN_PROC_TTY: 1022 if ((p->p_flag & P_CONTROLT) == 0 || 1023 p->p_session == NULL) { 1024 PROC_UNLOCK(p); 1025 continue; 1026 } 1027 SESS_LOCK(p->p_session); 1028 if (p->p_session->s_ttyp == NULL || 1029 dev2udev(p->p_session->s_ttyp->t_dev) != 1030 (dev_t)name[0]) { 1031 SESS_UNLOCK(p->p_session); 1032 PROC_UNLOCK(p); 1033 continue; 1034 } 1035 SESS_UNLOCK(p->p_session); 1036 break; 1037 1038 case KERN_PROC_UID: 1039 if (p->p_ucred == NULL || 1040 p->p_ucred->cr_uid != (uid_t)name[0]) { 1041 PROC_UNLOCK(p); 1042 continue; 1043 } 1044 break; 1045 1046 case KERN_PROC_RUID: 1047 if (p->p_ucred == NULL || 1048 p->p_ucred->cr_ruid != (uid_t)name[0]) { 1049 PROC_UNLOCK(p); 1050 continue; 1051 } 1052 break; 1053 1054 case KERN_PROC_PROC: 1055 break; 1056 1057 default: 1058 break; 1059 1060 } 1061 1062 error = sysctl_out_proc(p, req, flags | doingzomb); 1063 if (error) { 1064 sx_sunlock(&allproc_lock); 1065 return (error); 1066 } 1067 } 1068 } 1069 sx_sunlock(&allproc_lock); 1070 return (0); 1071 } 1072 1073 struct pargs * 1074 pargs_alloc(int len) 1075 { 1076 struct pargs *pa; 1077 1078 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1079 M_WAITOK); 1080 pa->ar_ref = 1; 1081 pa->ar_length = len; 1082 return (pa); 1083 } 1084 1085 void 1086 pargs_free(struct pargs *pa) 1087 { 1088 1089 FREE(pa, M_PARGS); 1090 } 1091 1092 void 1093 pargs_hold(struct pargs *pa) 1094 { 1095 1096 if (pa == NULL) 1097 return; 1098 PARGS_LOCK(pa); 1099 pa->ar_ref++; 1100 PARGS_UNLOCK(pa); 1101 } 1102 1103 void 1104 pargs_drop(struct pargs *pa) 1105 { 1106 1107 if (pa == NULL) 1108 return; 1109 PARGS_LOCK(pa); 1110 if (--pa->ar_ref == 0) { 1111 PARGS_UNLOCK(pa); 1112 pargs_free(pa); 1113 } else 1114 PARGS_UNLOCK(pa); 1115 } 1116 1117 /* 1118 * This sysctl allows a process to retrieve the argument list or process 1119 * title for another process without groping around in the address space 1120 * of the other process. It also allow a process to set its own "process 1121 * title to a string of its own choice. 1122 */ 1123 static int 1124 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1125 { 1126 int *name = (int*) arg1; 1127 u_int namelen = arg2; 1128 struct pargs *newpa, *pa; 1129 struct proc *p; 1130 int error = 0; 1131 1132 if (namelen != 1) 1133 return (EINVAL); 1134 1135 p = pfind((pid_t)name[0]); 1136 if (!p) 1137 return (ESRCH); 1138 1139 if ((error = p_cansee(curthread, p)) != 0) { 1140 PROC_UNLOCK(p); 1141 return (error); 1142 } 1143 1144 if (req->newptr && curproc != p) { 1145 PROC_UNLOCK(p); 1146 return (EPERM); 1147 } 1148 1149 pa = p->p_args; 1150 pargs_hold(pa); 1151 PROC_UNLOCK(p); 1152 if (req->oldptr != NULL && pa != NULL) 1153 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1154 pargs_drop(pa); 1155 if (error != 0 || req->newptr == NULL) 1156 return (error); 1157 1158 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1159 return (ENOMEM); 1160 newpa = pargs_alloc(req->newlen); 1161 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1162 if (error != 0) { 1163 pargs_free(newpa); 1164 return (error); 1165 } 1166 PROC_LOCK(p); 1167 pa = p->p_args; 1168 p->p_args = newpa; 1169 PROC_UNLOCK(p); 1170 pargs_drop(pa); 1171 return (0); 1172 } 1173 1174 static int 1175 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1176 { 1177 struct proc *p; 1178 char *sv_name; 1179 int *name; 1180 int namelen; 1181 int error; 1182 1183 namelen = arg2; 1184 if (namelen != 1) 1185 return (EINVAL); 1186 1187 name = (int *)arg1; 1188 if ((p = pfind((pid_t)name[0])) == NULL) 1189 return (ESRCH); 1190 if ((error = p_cansee(curthread, p))) { 1191 PROC_UNLOCK(p); 1192 return (error); 1193 } 1194 sv_name = p->p_sysent->sv_name; 1195 PROC_UNLOCK(p); 1196 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1197 } 1198 1199 1200 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1201 1202 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1203 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1204 1205 SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1206 sysctl_kern_proc, "Process table"); 1207 1208 SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1209 sysctl_kern_proc, "Process table"); 1210 1211 SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1212 sysctl_kern_proc, "Process table"); 1213 1214 SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1215 sysctl_kern_proc, "Process table"); 1216 1217 SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1218 sysctl_kern_proc, "Process table"); 1219 1220 SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1221 sysctl_kern_proc, "Process table"); 1222 1223 SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1224 sysctl_kern_proc, "Process table"); 1225 1226 SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1227 sysctl_kern_proc, "Process table"); 1228 1229 SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1230 sysctl_kern_proc, "Return process table, no threads"); 1231 1232 SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, CTLFLAG_RW | CTLFLAG_ANYBODY, 1233 sysctl_kern_proc_args, "Process argument list"); 1234 1235 SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1236 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1237 1238 SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1239 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1240 1241 SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1242 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1243 1244 SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1245 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1246 1247 SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), sid_td, 1248 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1249 1250 SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1251 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1252 1253 SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1254 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1255 1256 SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1257 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1258 1259 SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1260 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1261 1262 SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1263 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1264