1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_ktrace.h" 36 #include "opt_kstack_pages.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/lock.h> 42 #include <sys/malloc.h> 43 #include <sys/mutex.h> 44 #include <sys/proc.h> 45 #include <sys/refcount.h> 46 #include <sys/sysent.h> 47 #include <sys/sched.h> 48 #include <sys/smp.h> 49 #include <sys/sysctl.h> 50 #include <sys/filedesc.h> 51 #include <sys/tty.h> 52 #include <sys/signalvar.h> 53 #include <sys/sx.h> 54 #include <sys/user.h> 55 #include <sys/jail.h> 56 #include <sys/vnode.h> 57 #ifdef KTRACE 58 #include <sys/uio.h> 59 #include <sys/ktrace.h> 60 #endif 61 62 #include <vm/vm.h> 63 #include <vm/vm_extern.h> 64 #include <vm/pmap.h> 65 #include <vm/vm_map.h> 66 #include <vm/uma.h> 67 68 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 69 MALLOC_DEFINE(M_SESSION, "session", "session header"); 70 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 71 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 72 73 static void doenterpgrp(struct proc *, struct pgrp *); 74 static void orphanpg(struct pgrp *pg); 75 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 76 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp); 77 static void pgadjustjobc(struct pgrp *pgrp, int entering); 78 static void pgdelete(struct pgrp *); 79 static int proc_ctor(void *mem, int size, void *arg, int flags); 80 static void proc_dtor(void *mem, int size, void *arg); 81 static int proc_init(void *mem, int size, int flags); 82 static void proc_fini(void *mem, int size); 83 84 /* 85 * Other process lists 86 */ 87 struct pidhashhead *pidhashtbl; 88 u_long pidhash; 89 struct pgrphashhead *pgrphashtbl; 90 u_long pgrphash; 91 struct proclist allproc; 92 struct proclist zombproc; 93 struct sx allproc_lock; 94 struct sx proctree_lock; 95 struct mtx ppeers_lock; 96 uma_zone_t proc_zone; 97 uma_zone_t ithread_zone; 98 99 int kstack_pages = KSTACK_PAGES; 100 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, ""); 101 102 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 103 104 /* 105 * Initialize global process hashing structures. 106 */ 107 void 108 procinit() 109 { 110 111 sx_init(&allproc_lock, "allproc"); 112 sx_init(&proctree_lock, "proctree"); 113 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 114 LIST_INIT(&allproc); 115 LIST_INIT(&zombproc); 116 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 117 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 118 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 119 proc_ctor, proc_dtor, proc_init, proc_fini, 120 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 121 uihashinit(); 122 } 123 124 /* 125 * Prepare a proc for use. 126 */ 127 static int 128 proc_ctor(void *mem, int size, void *arg, int flags) 129 { 130 struct proc *p; 131 132 p = (struct proc *)mem; 133 return (0); 134 } 135 136 /* 137 * Reclaim a proc after use. 138 */ 139 static void 140 proc_dtor(void *mem, int size, void *arg) 141 { 142 struct proc *p; 143 struct thread *td; 144 145 /* INVARIANTS checks go here */ 146 p = (struct proc *)mem; 147 td = FIRST_THREAD_IN_PROC(p); 148 if (td != NULL) { 149 #ifdef INVARIANTS 150 KASSERT((p->p_numthreads == 1), 151 ("bad number of threads in exiting process")); 152 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 153 #endif 154 155 /* Dispose of an alternate kstack, if it exists. 156 * XXX What if there are more than one thread in the proc? 157 * The first thread in the proc is special and not 158 * freed, so you gotta do this here. 159 */ 160 if (((p->p_flag & P_KTHREAD) != 0) && (td->td_altkstack != 0)) 161 vm_thread_dispose_altkstack(td); 162 } 163 if (p->p_ksi != NULL) 164 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 165 } 166 167 /* 168 * Initialize type-stable parts of a proc (when newly created). 169 */ 170 static int 171 proc_init(void *mem, int size, int flags) 172 { 173 struct proc *p; 174 175 p = (struct proc *)mem; 176 p->p_sched = (struct p_sched *)&p[1]; 177 bzero(&p->p_mtx, sizeof(struct mtx)); 178 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 179 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 180 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 181 p->p_stats = pstats_alloc(); 182 return (0); 183 } 184 185 /* 186 * UMA should ensure that this function is never called. 187 * Freeing a proc structure would violate type stability. 188 */ 189 static void 190 proc_fini(void *mem, int size) 191 { 192 #ifdef notnow 193 struct proc *p; 194 195 p = (struct proc *)mem; 196 pstats_free(p->p_stats); 197 thread_free(FIRST_THREAD_IN_PROC(p)); 198 mtx_destroy(&p->p_mtx); 199 if (p->p_ksi != NULL) 200 ksiginfo_free(p->p_ksi); 201 #else 202 panic("proc reclaimed"); 203 #endif 204 } 205 206 /* 207 * Is p an inferior of the current process? 208 */ 209 int 210 inferior(p) 211 register struct proc *p; 212 { 213 214 sx_assert(&proctree_lock, SX_LOCKED); 215 for (; p != curproc; p = p->p_pptr) 216 if (p->p_pid == 0) 217 return (0); 218 return (1); 219 } 220 221 /* 222 * Locate a process by number; return only "live" processes -- i.e., neither 223 * zombies nor newly born but incompletely initialized processes. By not 224 * returning processes in the PRS_NEW state, we allow callers to avoid 225 * testing for that condition to avoid dereferencing p_ucred, et al. 226 */ 227 struct proc * 228 pfind(pid) 229 register pid_t pid; 230 { 231 register struct proc *p; 232 233 sx_slock(&allproc_lock); 234 LIST_FOREACH(p, PIDHASH(pid), p_hash) 235 if (p->p_pid == pid) { 236 if (p->p_state == PRS_NEW) { 237 p = NULL; 238 break; 239 } 240 PROC_LOCK(p); 241 break; 242 } 243 sx_sunlock(&allproc_lock); 244 return (p); 245 } 246 247 /* 248 * Locate a process group by number. 249 * The caller must hold proctree_lock. 250 */ 251 struct pgrp * 252 pgfind(pgid) 253 register pid_t pgid; 254 { 255 register struct pgrp *pgrp; 256 257 sx_assert(&proctree_lock, SX_LOCKED); 258 259 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 260 if (pgrp->pg_id == pgid) { 261 PGRP_LOCK(pgrp); 262 return (pgrp); 263 } 264 } 265 return (NULL); 266 } 267 268 /* 269 * Create a new process group. 270 * pgid must be equal to the pid of p. 271 * Begin a new session if required. 272 */ 273 int 274 enterpgrp(p, pgid, pgrp, sess) 275 register struct proc *p; 276 pid_t pgid; 277 struct pgrp *pgrp; 278 struct session *sess; 279 { 280 struct pgrp *pgrp2; 281 282 sx_assert(&proctree_lock, SX_XLOCKED); 283 284 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 285 KASSERT(p->p_pid == pgid, 286 ("enterpgrp: new pgrp and pid != pgid")); 287 288 pgrp2 = pgfind(pgid); 289 290 KASSERT(pgrp2 == NULL, 291 ("enterpgrp: pgrp with pgid exists")); 292 KASSERT(!SESS_LEADER(p), 293 ("enterpgrp: session leader attempted setpgrp")); 294 295 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 296 297 if (sess != NULL) { 298 /* 299 * new session 300 */ 301 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 302 mtx_lock(&Giant); /* XXX TTY */ 303 PROC_LOCK(p); 304 p->p_flag &= ~P_CONTROLT; 305 PROC_UNLOCK(p); 306 PGRP_LOCK(pgrp); 307 sess->s_leader = p; 308 sess->s_sid = p->p_pid; 309 sess->s_count = 1; 310 sess->s_ttyvp = NULL; 311 sess->s_ttyp = NULL; 312 bcopy(p->p_session->s_login, sess->s_login, 313 sizeof(sess->s_login)); 314 pgrp->pg_session = sess; 315 KASSERT(p == curproc, 316 ("enterpgrp: mksession and p != curproc")); 317 } else { 318 mtx_lock(&Giant); /* XXX TTY */ 319 pgrp->pg_session = p->p_session; 320 SESS_LOCK(pgrp->pg_session); 321 pgrp->pg_session->s_count++; 322 SESS_UNLOCK(pgrp->pg_session); 323 PGRP_LOCK(pgrp); 324 } 325 pgrp->pg_id = pgid; 326 LIST_INIT(&pgrp->pg_members); 327 328 /* 329 * As we have an exclusive lock of proctree_lock, 330 * this should not deadlock. 331 */ 332 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 333 pgrp->pg_jobc = 0; 334 SLIST_INIT(&pgrp->pg_sigiolst); 335 PGRP_UNLOCK(pgrp); 336 mtx_unlock(&Giant); /* XXX TTY */ 337 338 doenterpgrp(p, pgrp); 339 340 return (0); 341 } 342 343 /* 344 * Move p to an existing process group 345 */ 346 int 347 enterthispgrp(p, pgrp) 348 register struct proc *p; 349 struct pgrp *pgrp; 350 { 351 352 sx_assert(&proctree_lock, SX_XLOCKED); 353 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 354 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 355 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 356 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 357 KASSERT(pgrp->pg_session == p->p_session, 358 ("%s: pgrp's session %p, p->p_session %p.\n", 359 __func__, 360 pgrp->pg_session, 361 p->p_session)); 362 KASSERT(pgrp != p->p_pgrp, 363 ("%s: p belongs to pgrp.", __func__)); 364 365 doenterpgrp(p, pgrp); 366 367 return (0); 368 } 369 370 /* 371 * Move p to a process group 372 */ 373 static void 374 doenterpgrp(p, pgrp) 375 struct proc *p; 376 struct pgrp *pgrp; 377 { 378 struct pgrp *savepgrp; 379 380 sx_assert(&proctree_lock, SX_XLOCKED); 381 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 382 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 383 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 384 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 385 386 savepgrp = p->p_pgrp; 387 388 /* 389 * Adjust eligibility of affected pgrps to participate in job control. 390 * Increment eligibility counts before decrementing, otherwise we 391 * could reach 0 spuriously during the first call. 392 */ 393 fixjobc(p, pgrp, 1); 394 fixjobc(p, p->p_pgrp, 0); 395 396 mtx_lock(&Giant); /* XXX TTY */ 397 PGRP_LOCK(pgrp); 398 PGRP_LOCK(savepgrp); 399 PROC_LOCK(p); 400 LIST_REMOVE(p, p_pglist); 401 p->p_pgrp = pgrp; 402 PROC_UNLOCK(p); 403 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 404 PGRP_UNLOCK(savepgrp); 405 PGRP_UNLOCK(pgrp); 406 mtx_unlock(&Giant); /* XXX TTY */ 407 if (LIST_EMPTY(&savepgrp->pg_members)) 408 pgdelete(savepgrp); 409 } 410 411 /* 412 * remove process from process group 413 */ 414 int 415 leavepgrp(p) 416 register struct proc *p; 417 { 418 struct pgrp *savepgrp; 419 420 sx_assert(&proctree_lock, SX_XLOCKED); 421 savepgrp = p->p_pgrp; 422 mtx_lock(&Giant); /* XXX TTY */ 423 PGRP_LOCK(savepgrp); 424 PROC_LOCK(p); 425 LIST_REMOVE(p, p_pglist); 426 p->p_pgrp = NULL; 427 PROC_UNLOCK(p); 428 PGRP_UNLOCK(savepgrp); 429 mtx_unlock(&Giant); /* XXX TTY */ 430 if (LIST_EMPTY(&savepgrp->pg_members)) 431 pgdelete(savepgrp); 432 return (0); 433 } 434 435 /* 436 * delete a process group 437 */ 438 static void 439 pgdelete(pgrp) 440 register struct pgrp *pgrp; 441 { 442 struct session *savesess; 443 444 sx_assert(&proctree_lock, SX_XLOCKED); 445 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 446 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 447 448 /* 449 * Reset any sigio structures pointing to us as a result of 450 * F_SETOWN with our pgid. 451 */ 452 funsetownlst(&pgrp->pg_sigiolst); 453 454 mtx_lock(&Giant); /* XXX TTY */ 455 PGRP_LOCK(pgrp); 456 if (pgrp->pg_session->s_ttyp != NULL && 457 pgrp->pg_session->s_ttyp->t_pgrp == pgrp) 458 pgrp->pg_session->s_ttyp->t_pgrp = NULL; 459 LIST_REMOVE(pgrp, pg_hash); 460 savesess = pgrp->pg_session; 461 SESSRELE(savesess); 462 PGRP_UNLOCK(pgrp); 463 mtx_destroy(&pgrp->pg_mtx); 464 FREE(pgrp, M_PGRP); 465 mtx_unlock(&Giant); /* XXX TTY */ 466 } 467 468 static void 469 pgadjustjobc(pgrp, entering) 470 struct pgrp *pgrp; 471 int entering; 472 { 473 474 PGRP_LOCK(pgrp); 475 if (entering) 476 pgrp->pg_jobc++; 477 else { 478 --pgrp->pg_jobc; 479 if (pgrp->pg_jobc == 0) 480 orphanpg(pgrp); 481 } 482 PGRP_UNLOCK(pgrp); 483 } 484 485 /* 486 * Adjust pgrp jobc counters when specified process changes process group. 487 * We count the number of processes in each process group that "qualify" 488 * the group for terminal job control (those with a parent in a different 489 * process group of the same session). If that count reaches zero, the 490 * process group becomes orphaned. Check both the specified process' 491 * process group and that of its children. 492 * entering == 0 => p is leaving specified group. 493 * entering == 1 => p is entering specified group. 494 */ 495 void 496 fixjobc(p, pgrp, entering) 497 register struct proc *p; 498 register struct pgrp *pgrp; 499 int entering; 500 { 501 register struct pgrp *hispgrp; 502 register struct session *mysession; 503 504 sx_assert(&proctree_lock, SX_LOCKED); 505 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 506 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 507 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 508 509 /* 510 * Check p's parent to see whether p qualifies its own process 511 * group; if so, adjust count for p's process group. 512 */ 513 mysession = pgrp->pg_session; 514 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 515 hispgrp->pg_session == mysession) 516 pgadjustjobc(pgrp, entering); 517 518 /* 519 * Check this process' children to see whether they qualify 520 * their process groups; if so, adjust counts for children's 521 * process groups. 522 */ 523 LIST_FOREACH(p, &p->p_children, p_sibling) { 524 hispgrp = p->p_pgrp; 525 if (hispgrp == pgrp || 526 hispgrp->pg_session != mysession) 527 continue; 528 PROC_LOCK(p); 529 if (p->p_state == PRS_ZOMBIE) { 530 PROC_UNLOCK(p); 531 continue; 532 } 533 PROC_UNLOCK(p); 534 pgadjustjobc(hispgrp, entering); 535 } 536 } 537 538 /* 539 * A process group has become orphaned; 540 * if there are any stopped processes in the group, 541 * hang-up all process in that group. 542 */ 543 static void 544 orphanpg(pg) 545 struct pgrp *pg; 546 { 547 register struct proc *p; 548 549 PGRP_LOCK_ASSERT(pg, MA_OWNED); 550 551 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 552 PROC_LOCK(p); 553 if (P_SHOULDSTOP(p)) { 554 PROC_UNLOCK(p); 555 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 556 PROC_LOCK(p); 557 psignal(p, SIGHUP); 558 psignal(p, SIGCONT); 559 PROC_UNLOCK(p); 560 } 561 return; 562 } 563 PROC_UNLOCK(p); 564 } 565 } 566 567 void 568 sessrele(struct session *s) 569 { 570 int i; 571 572 SESS_LOCK(s); 573 i = --s->s_count; 574 SESS_UNLOCK(s); 575 if (i == 0) { 576 if (s->s_ttyp != NULL) 577 ttyrel(s->s_ttyp); 578 mtx_destroy(&s->s_mtx); 579 FREE(s, M_SESSION); 580 } 581 } 582 583 #include "opt_ddb.h" 584 #ifdef DDB 585 #include <ddb/ddb.h> 586 587 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 588 { 589 register struct pgrp *pgrp; 590 register struct proc *p; 591 register int i; 592 593 for (i = 0; i <= pgrphash; i++) { 594 if (!LIST_EMPTY(&pgrphashtbl[i])) { 595 printf("\tindx %d\n", i); 596 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 597 printf( 598 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 599 (void *)pgrp, (long)pgrp->pg_id, 600 (void *)pgrp->pg_session, 601 pgrp->pg_session->s_count, 602 (void *)LIST_FIRST(&pgrp->pg_members)); 603 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 604 printf("\t\tpid %ld addr %p pgrp %p\n", 605 (long)p->p_pid, (void *)p, 606 (void *)p->p_pgrp); 607 } 608 } 609 } 610 } 611 } 612 #endif /* DDB */ 613 614 /* 615 * Clear kinfo_proc and fill in any information that is common 616 * to all threads in the process. 617 * Must be called with the target process locked. 618 */ 619 static void 620 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 621 { 622 struct thread *td0; 623 struct tty *tp; 624 struct session *sp; 625 struct ucred *cred; 626 struct sigacts *ps; 627 628 bzero(kp, sizeof(*kp)); 629 630 kp->ki_structsize = sizeof(*kp); 631 kp->ki_paddr = p; 632 PROC_LOCK_ASSERT(p, MA_OWNED); 633 kp->ki_addr =/* p->p_addr; */0; /* XXXKSE */ 634 kp->ki_args = p->p_args; 635 kp->ki_textvp = p->p_textvp; 636 #ifdef KTRACE 637 kp->ki_tracep = p->p_tracevp; 638 mtx_lock(&ktrace_mtx); 639 kp->ki_traceflag = p->p_traceflag; 640 mtx_unlock(&ktrace_mtx); 641 #endif 642 kp->ki_fd = p->p_fd; 643 kp->ki_vmspace = p->p_vmspace; 644 kp->ki_flag = p->p_flag; 645 cred = p->p_ucred; 646 if (cred) { 647 kp->ki_uid = cred->cr_uid; 648 kp->ki_ruid = cred->cr_ruid; 649 kp->ki_svuid = cred->cr_svuid; 650 /* XXX bde doesn't like KI_NGROUPS */ 651 kp->ki_ngroups = min(cred->cr_ngroups, KI_NGROUPS); 652 bcopy(cred->cr_groups, kp->ki_groups, 653 kp->ki_ngroups * sizeof(gid_t)); 654 kp->ki_rgid = cred->cr_rgid; 655 kp->ki_svgid = cred->cr_svgid; 656 /* If jailed(cred), emulate the old P_JAILED flag. */ 657 if (jailed(cred)) { 658 kp->ki_flag |= P_JAILED; 659 /* If inside a jail, use 0 as a jail ID. */ 660 if (!jailed(curthread->td_ucred)) 661 kp->ki_jid = cred->cr_prison->pr_id; 662 } 663 } 664 ps = p->p_sigacts; 665 if (ps) { 666 mtx_lock(&ps->ps_mtx); 667 kp->ki_sigignore = ps->ps_sigignore; 668 kp->ki_sigcatch = ps->ps_sigcatch; 669 mtx_unlock(&ps->ps_mtx); 670 } 671 PROC_SLOCK(p); 672 if (p->p_state != PRS_NEW && 673 p->p_state != PRS_ZOMBIE && 674 p->p_vmspace != NULL) { 675 struct vmspace *vm = p->p_vmspace; 676 677 kp->ki_size = vm->vm_map.size; 678 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 679 FOREACH_THREAD_IN_PROC(p, td0) { 680 if (!TD_IS_SWAPPED(td0)) 681 kp->ki_rssize += td0->td_kstack_pages; 682 if (td0->td_altkstack_obj != NULL) 683 kp->ki_rssize += td0->td_altkstack_pages; 684 } 685 kp->ki_swrss = vm->vm_swrss; 686 kp->ki_tsize = vm->vm_tsize; 687 kp->ki_dsize = vm->vm_dsize; 688 kp->ki_ssize = vm->vm_ssize; 689 } else if (p->p_state == PRS_ZOMBIE) 690 kp->ki_stat = SZOMB; 691 if (kp->ki_flag & P_INMEM) 692 kp->ki_sflag = PS_INMEM; 693 else 694 kp->ki_sflag = 0; 695 /* Calculate legacy swtime as seconds since 'swtick'. */ 696 kp->ki_swtime = (ticks - p->p_swtick) / hz; 697 kp->ki_pid = p->p_pid; 698 kp->ki_nice = p->p_nice; 699 rufetch(p, &kp->ki_rusage); 700 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 701 PROC_SUNLOCK(p); 702 if ((p->p_flag & P_INMEM) && p->p_stats != NULL) { 703 kp->ki_start = p->p_stats->p_start; 704 timevaladd(&kp->ki_start, &boottime); 705 PROC_SLOCK(p); 706 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 707 PROC_SUNLOCK(p); 708 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 709 710 /* Some callers want child-times in a single value */ 711 kp->ki_childtime = kp->ki_childstime; 712 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 713 } 714 tp = NULL; 715 if (p->p_pgrp) { 716 kp->ki_pgid = p->p_pgrp->pg_id; 717 kp->ki_jobc = p->p_pgrp->pg_jobc; 718 sp = p->p_pgrp->pg_session; 719 720 if (sp != NULL) { 721 kp->ki_sid = sp->s_sid; 722 SESS_LOCK(sp); 723 strlcpy(kp->ki_login, sp->s_login, 724 sizeof(kp->ki_login)); 725 if (sp->s_ttyvp) 726 kp->ki_kiflag |= KI_CTTY; 727 if (SESS_LEADER(p)) 728 kp->ki_kiflag |= KI_SLEADER; 729 tp = sp->s_ttyp; 730 SESS_UNLOCK(sp); 731 } 732 } 733 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 734 kp->ki_tdev = dev2udev(tp->t_dev); 735 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 736 if (tp->t_session) 737 kp->ki_tsid = tp->t_session->s_sid; 738 } else 739 kp->ki_tdev = NODEV; 740 if (p->p_comm[0] != '\0') 741 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 742 if (p->p_sysent && p->p_sysent->sv_name != NULL && 743 p->p_sysent->sv_name[0] != '\0') 744 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 745 kp->ki_siglist = p->p_siglist; 746 kp->ki_xstat = p->p_xstat; 747 kp->ki_acflag = p->p_acflag; 748 kp->ki_lock = p->p_lock; 749 if (p->p_pptr) 750 kp->ki_ppid = p->p_pptr->p_pid; 751 } 752 753 /* 754 * Fill in information that is thread specific. 755 * Must be called with p_slock locked. 756 */ 757 static void 758 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp) 759 { 760 struct proc *p; 761 762 p = td->td_proc; 763 PROC_SLOCK_ASSERT(p, MA_OWNED); 764 765 thread_lock(td); 766 if (td->td_wmesg != NULL) 767 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 768 else 769 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 770 if (td->td_name[0] != '\0') 771 strlcpy(kp->ki_ocomm, td->td_name, sizeof(kp->ki_ocomm)); 772 if (TD_ON_LOCK(td)) { 773 kp->ki_kiflag |= KI_LOCKBLOCK; 774 strlcpy(kp->ki_lockname, td->td_lockname, 775 sizeof(kp->ki_lockname)); 776 } else { 777 kp->ki_kiflag &= ~KI_LOCKBLOCK; 778 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 779 } 780 781 if (p->p_state == PRS_NORMAL) { /* XXXKSE very approximate */ 782 if (TD_ON_RUNQ(td) || 783 TD_CAN_RUN(td) || 784 TD_IS_RUNNING(td)) { 785 kp->ki_stat = SRUN; 786 } else if (P_SHOULDSTOP(p)) { 787 kp->ki_stat = SSTOP; 788 } else if (TD_IS_SLEEPING(td)) { 789 kp->ki_stat = SSLEEP; 790 } else if (TD_ON_LOCK(td)) { 791 kp->ki_stat = SLOCK; 792 } else { 793 kp->ki_stat = SWAIT; 794 } 795 } else if (p->p_state == PRS_ZOMBIE) { 796 kp->ki_stat = SZOMB; 797 } else { 798 kp->ki_stat = SIDL; 799 } 800 801 /* Things in the thread */ 802 kp->ki_wchan = td->td_wchan; 803 kp->ki_pri.pri_level = td->td_priority; 804 kp->ki_pri.pri_native = td->td_base_pri; 805 kp->ki_lastcpu = td->td_lastcpu; 806 kp->ki_oncpu = td->td_oncpu; 807 kp->ki_tdflags = td->td_flags; 808 kp->ki_tid = td->td_tid; 809 kp->ki_numthreads = p->p_numthreads; 810 kp->ki_pcb = td->td_pcb; 811 kp->ki_kstack = (void *)td->td_kstack; 812 kp->ki_pctcpu = sched_pctcpu(td); 813 kp->ki_estcpu = td->td_estcpu; 814 kp->ki_slptime = (ticks - td->td_slptick) / hz; 815 kp->ki_pri.pri_class = td->td_pri_class; 816 kp->ki_pri.pri_user = td->td_user_pri; 817 818 /* We can't get this anymore but ps etc never used it anyway. */ 819 kp->ki_rqindex = 0; 820 821 SIGSETOR(kp->ki_siglist, td->td_siglist); 822 kp->ki_sigmask = td->td_sigmask; 823 thread_unlock(td); 824 } 825 826 /* 827 * Fill in a kinfo_proc structure for the specified process. 828 * Must be called with the target process locked. 829 */ 830 void 831 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 832 { 833 834 fill_kinfo_proc_only(p, kp); 835 PROC_SLOCK(p); 836 if (FIRST_THREAD_IN_PROC(p) != NULL) 837 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp); 838 PROC_SUNLOCK(p); 839 } 840 841 struct pstats * 842 pstats_alloc(void) 843 { 844 845 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 846 } 847 848 /* 849 * Copy parts of p_stats; zero the rest of p_stats (statistics). 850 */ 851 void 852 pstats_fork(struct pstats *src, struct pstats *dst) 853 { 854 855 bzero(&dst->pstat_startzero, 856 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 857 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 858 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 859 } 860 861 void 862 pstats_free(struct pstats *ps) 863 { 864 865 free(ps, M_SUBPROC); 866 } 867 868 /* 869 * Locate a zombie process by number 870 */ 871 struct proc * 872 zpfind(pid_t pid) 873 { 874 struct proc *p; 875 876 sx_slock(&allproc_lock); 877 LIST_FOREACH(p, &zombproc, p_list) 878 if (p->p_pid == pid) { 879 PROC_LOCK(p); 880 break; 881 } 882 sx_sunlock(&allproc_lock); 883 return (p); 884 } 885 886 #define KERN_PROC_ZOMBMASK 0x3 887 #define KERN_PROC_NOTHREADS 0x4 888 889 /* 890 * Must be called with the process locked and will return with it unlocked. 891 */ 892 static int 893 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags) 894 { 895 struct thread *td; 896 struct kinfo_proc kinfo_proc; 897 int error = 0; 898 struct proc *np; 899 pid_t pid = p->p_pid; 900 901 PROC_LOCK_ASSERT(p, MA_OWNED); 902 903 fill_kinfo_proc_only(p, &kinfo_proc); 904 if (flags & KERN_PROC_NOTHREADS) { 905 PROC_SLOCK(p); 906 if (FIRST_THREAD_IN_PROC(p) != NULL) 907 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), &kinfo_proc); 908 PROC_SUNLOCK(p); 909 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 910 sizeof(kinfo_proc)); 911 } else { 912 PROC_SLOCK(p); 913 if (FIRST_THREAD_IN_PROC(p) != NULL) 914 FOREACH_THREAD_IN_PROC(p, td) { 915 fill_kinfo_thread(td, &kinfo_proc); 916 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 917 sizeof(kinfo_proc)); 918 if (error) 919 break; 920 } 921 else 922 error = SYSCTL_OUT(req, (caddr_t)&kinfo_proc, 923 sizeof(kinfo_proc)); 924 PROC_SUNLOCK(p); 925 } 926 PROC_UNLOCK(p); 927 if (error) 928 return (error); 929 if (flags & KERN_PROC_ZOMBMASK) 930 np = zpfind(pid); 931 else { 932 if (pid == 0) 933 return (0); 934 np = pfind(pid); 935 } 936 if (np == NULL) 937 return EAGAIN; 938 if (np != p) { 939 PROC_UNLOCK(np); 940 return EAGAIN; 941 } 942 PROC_UNLOCK(np); 943 return (0); 944 } 945 946 static int 947 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 948 { 949 int *name = (int*) arg1; 950 u_int namelen = arg2; 951 struct proc *p; 952 int flags, doingzomb, oid_number; 953 int error = 0; 954 955 oid_number = oidp->oid_number; 956 if (oid_number != KERN_PROC_ALL && 957 (oid_number & KERN_PROC_INC_THREAD) == 0) 958 flags = KERN_PROC_NOTHREADS; 959 else { 960 flags = 0; 961 oid_number &= ~KERN_PROC_INC_THREAD; 962 } 963 if (oid_number == KERN_PROC_PID) { 964 if (namelen != 1) 965 return (EINVAL); 966 error = sysctl_wire_old_buffer(req, 0); 967 if (error) 968 return (error); 969 p = pfind((pid_t)name[0]); 970 if (!p) 971 return (ESRCH); 972 if ((error = p_cansee(curthread, p))) { 973 PROC_UNLOCK(p); 974 return (error); 975 } 976 error = sysctl_out_proc(p, req, flags); 977 return (error); 978 } 979 980 switch (oid_number) { 981 case KERN_PROC_ALL: 982 if (namelen != 0) 983 return (EINVAL); 984 break; 985 case KERN_PROC_PROC: 986 if (namelen != 0 && namelen != 1) 987 return (EINVAL); 988 break; 989 default: 990 if (namelen != 1) 991 return (EINVAL); 992 break; 993 } 994 995 if (!req->oldptr) { 996 /* overestimate by 5 procs */ 997 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 998 if (error) 999 return (error); 1000 } 1001 error = sysctl_wire_old_buffer(req, 0); 1002 if (error != 0) 1003 return (error); 1004 sx_slock(&allproc_lock); 1005 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1006 if (!doingzomb) 1007 p = LIST_FIRST(&allproc); 1008 else 1009 p = LIST_FIRST(&zombproc); 1010 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1011 /* 1012 * Skip embryonic processes. 1013 */ 1014 PROC_SLOCK(p); 1015 if (p->p_state == PRS_NEW) { 1016 PROC_SUNLOCK(p); 1017 continue; 1018 } 1019 PROC_SUNLOCK(p); 1020 PROC_LOCK(p); 1021 KASSERT(p->p_ucred != NULL, 1022 ("process credential is NULL for non-NEW proc")); 1023 /* 1024 * Show a user only appropriate processes. 1025 */ 1026 if (p_cansee(curthread, p)) { 1027 PROC_UNLOCK(p); 1028 continue; 1029 } 1030 /* 1031 * TODO - make more efficient (see notes below). 1032 * do by session. 1033 */ 1034 switch (oid_number) { 1035 1036 case KERN_PROC_GID: 1037 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1038 PROC_UNLOCK(p); 1039 continue; 1040 } 1041 break; 1042 1043 case KERN_PROC_PGRP: 1044 /* could do this by traversing pgrp */ 1045 if (p->p_pgrp == NULL || 1046 p->p_pgrp->pg_id != (pid_t)name[0]) { 1047 PROC_UNLOCK(p); 1048 continue; 1049 } 1050 break; 1051 1052 case KERN_PROC_RGID: 1053 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1054 PROC_UNLOCK(p); 1055 continue; 1056 } 1057 break; 1058 1059 case KERN_PROC_SESSION: 1060 if (p->p_session == NULL || 1061 p->p_session->s_sid != (pid_t)name[0]) { 1062 PROC_UNLOCK(p); 1063 continue; 1064 } 1065 break; 1066 1067 case KERN_PROC_TTY: 1068 if ((p->p_flag & P_CONTROLT) == 0 || 1069 p->p_session == NULL) { 1070 PROC_UNLOCK(p); 1071 continue; 1072 } 1073 SESS_LOCK(p->p_session); 1074 if (p->p_session->s_ttyp == NULL || 1075 dev2udev(p->p_session->s_ttyp->t_dev) != 1076 (dev_t)name[0]) { 1077 SESS_UNLOCK(p->p_session); 1078 PROC_UNLOCK(p); 1079 continue; 1080 } 1081 SESS_UNLOCK(p->p_session); 1082 break; 1083 1084 case KERN_PROC_UID: 1085 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1086 PROC_UNLOCK(p); 1087 continue; 1088 } 1089 break; 1090 1091 case KERN_PROC_RUID: 1092 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1093 PROC_UNLOCK(p); 1094 continue; 1095 } 1096 break; 1097 1098 case KERN_PROC_PROC: 1099 break; 1100 1101 default: 1102 break; 1103 1104 } 1105 1106 error = sysctl_out_proc(p, req, flags | doingzomb); 1107 if (error) { 1108 sx_sunlock(&allproc_lock); 1109 return (error); 1110 } 1111 } 1112 } 1113 sx_sunlock(&allproc_lock); 1114 return (0); 1115 } 1116 1117 struct pargs * 1118 pargs_alloc(int len) 1119 { 1120 struct pargs *pa; 1121 1122 MALLOC(pa, struct pargs *, sizeof(struct pargs) + len, M_PARGS, 1123 M_WAITOK); 1124 refcount_init(&pa->ar_ref, 1); 1125 pa->ar_length = len; 1126 return (pa); 1127 } 1128 1129 void 1130 pargs_free(struct pargs *pa) 1131 { 1132 1133 FREE(pa, M_PARGS); 1134 } 1135 1136 void 1137 pargs_hold(struct pargs *pa) 1138 { 1139 1140 if (pa == NULL) 1141 return; 1142 refcount_acquire(&pa->ar_ref); 1143 } 1144 1145 void 1146 pargs_drop(struct pargs *pa) 1147 { 1148 1149 if (pa == NULL) 1150 return; 1151 if (refcount_release(&pa->ar_ref)) 1152 pargs_free(pa); 1153 } 1154 1155 /* 1156 * This sysctl allows a process to retrieve the argument list or process 1157 * title for another process without groping around in the address space 1158 * of the other process. It also allow a process to set its own "process 1159 * title to a string of its own choice. 1160 */ 1161 static int 1162 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1163 { 1164 int *name = (int*) arg1; 1165 u_int namelen = arg2; 1166 struct pargs *newpa, *pa; 1167 struct proc *p; 1168 int error = 0; 1169 1170 if (namelen != 1) 1171 return (EINVAL); 1172 1173 p = pfind((pid_t)name[0]); 1174 if (!p) 1175 return (ESRCH); 1176 1177 if ((error = p_cansee(curthread, p)) != 0) { 1178 PROC_UNLOCK(p); 1179 return (error); 1180 } 1181 1182 if (req->newptr && curproc != p) { 1183 PROC_UNLOCK(p); 1184 return (EPERM); 1185 } 1186 1187 pa = p->p_args; 1188 pargs_hold(pa); 1189 PROC_UNLOCK(p); 1190 if (req->oldptr != NULL && pa != NULL) 1191 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1192 pargs_drop(pa); 1193 if (error != 0 || req->newptr == NULL) 1194 return (error); 1195 1196 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1197 return (ENOMEM); 1198 newpa = pargs_alloc(req->newlen); 1199 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1200 if (error != 0) { 1201 pargs_free(newpa); 1202 return (error); 1203 } 1204 PROC_LOCK(p); 1205 pa = p->p_args; 1206 p->p_args = newpa; 1207 PROC_UNLOCK(p); 1208 pargs_drop(pa); 1209 return (0); 1210 } 1211 1212 /* 1213 * This sysctl allows a process to retrieve the path of the executable for 1214 * itself or another process. 1215 */ 1216 static int 1217 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1218 { 1219 pid_t *pidp = (pid_t *)arg1; 1220 unsigned int arglen = arg2; 1221 struct proc *p; 1222 struct vnode *vp; 1223 char *retbuf, *freebuf; 1224 int error; 1225 1226 if (arglen != 1) 1227 return (EINVAL); 1228 if (*pidp == -1) { /* -1 means this process */ 1229 p = req->td->td_proc; 1230 } else { 1231 p = pfind(*pidp); 1232 if (p == NULL) 1233 return (ESRCH); 1234 if ((error = p_cansee(curthread, p)) != 0) { 1235 PROC_UNLOCK(p); 1236 return (error); 1237 } 1238 } 1239 1240 vp = p->p_textvp; 1241 vref(vp); 1242 if (*pidp != -1) 1243 PROC_UNLOCK(p); 1244 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1245 vrele(vp); 1246 if (error) 1247 return (error); 1248 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1249 free(freebuf, M_TEMP); 1250 return (error); 1251 } 1252 1253 static int 1254 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1255 { 1256 struct proc *p; 1257 char *sv_name; 1258 int *name; 1259 int namelen; 1260 int error; 1261 1262 namelen = arg2; 1263 if (namelen != 1) 1264 return (EINVAL); 1265 1266 name = (int *)arg1; 1267 if ((p = pfind((pid_t)name[0])) == NULL) 1268 return (ESRCH); 1269 if ((error = p_cansee(curthread, p))) { 1270 PROC_UNLOCK(p); 1271 return (error); 1272 } 1273 sv_name = p->p_sysent->sv_name; 1274 PROC_UNLOCK(p); 1275 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1276 } 1277 1278 1279 static SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 1280 1281 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT, 1282 0, 0, sysctl_kern_proc, "S,proc", "Return entire process table"); 1283 1284 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD, 1285 sysctl_kern_proc, "Process table"); 1286 1287 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD, 1288 sysctl_kern_proc, "Process table"); 1289 1290 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD, 1291 sysctl_kern_proc, "Process table"); 1292 1293 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD, 1294 sysctl_kern_proc, "Process table"); 1295 1296 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD, 1297 sysctl_kern_proc, "Process table"); 1298 1299 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD, 1300 sysctl_kern_proc, "Process table"); 1301 1302 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD, 1303 sysctl_kern_proc, "Process table"); 1304 1305 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD, 1306 sysctl_kern_proc, "Process table"); 1307 1308 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD, 1309 sysctl_kern_proc, "Return process table, no threads"); 1310 1311 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 1312 CTLFLAG_RW | CTLFLAG_ANYBODY, 1313 sysctl_kern_proc_args, "Process argument list"); 1314 1315 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD, 1316 sysctl_kern_proc_pathname, "Process executable path"); 1317 1318 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD, 1319 sysctl_kern_proc_sv_name, "Process syscall vector name (ABI type)"); 1320 1321 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 1322 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1323 1324 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 1325 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1326 1327 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 1328 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1329 1330 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 1331 sid_td, CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1332 1333 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 1334 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1335 1336 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 1337 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1338 1339 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 1340 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1341 1342 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 1343 CTLFLAG_RD, sysctl_kern_proc, "Process table"); 1344 1345 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 1346 CTLFLAG_RD, sysctl_kern_proc, "Return process table, no threads"); 1347