1 /*- 2 * Copyright (c) 1982, 1986, 1989, 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 4. Neither the name of the University nor the names of its contributors 14 * may be used to endorse or promote products derived from this software 15 * without specific prior written permission. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * @(#)kern_proc.c 8.7 (Berkeley) 2/14/95 30 */ 31 32 #include <sys/cdefs.h> 33 __FBSDID("$FreeBSD$"); 34 35 #include "opt_compat.h" 36 #include "opt_ddb.h" 37 #include "opt_ktrace.h" 38 #include "opt_kstack_pages.h" 39 #include "opt_stack.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/elf.h> 44 #include <sys/exec.h> 45 #include <sys/kernel.h> 46 #include <sys/limits.h> 47 #include <sys/lock.h> 48 #include <sys/loginclass.h> 49 #include <sys/malloc.h> 50 #include <sys/mman.h> 51 #include <sys/mount.h> 52 #include <sys/mutex.h> 53 #include <sys/proc.h> 54 #include <sys/ptrace.h> 55 #include <sys/refcount.h> 56 #include <sys/resourcevar.h> 57 #include <sys/rwlock.h> 58 #include <sys/sbuf.h> 59 #include <sys/sysent.h> 60 #include <sys/sched.h> 61 #include <sys/smp.h> 62 #include <sys/stack.h> 63 #include <sys/stat.h> 64 #include <sys/sysctl.h> 65 #include <sys/filedesc.h> 66 #include <sys/tty.h> 67 #include <sys/signalvar.h> 68 #include <sys/sdt.h> 69 #include <sys/sx.h> 70 #include <sys/user.h> 71 #include <sys/jail.h> 72 #include <sys/vnode.h> 73 #include <sys/eventhandler.h> 74 75 #ifdef DDB 76 #include <ddb/ddb.h> 77 #endif 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_extern.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/uma.h> 87 88 #ifdef COMPAT_FREEBSD32 89 #include <compat/freebsd32/freebsd32.h> 90 #include <compat/freebsd32/freebsd32_util.h> 91 #endif 92 93 SDT_PROVIDER_DEFINE(proc); 94 SDT_PROBE_DEFINE4(proc, kernel, ctor, entry, "struct proc *", "int", 95 "void *", "int"); 96 SDT_PROBE_DEFINE4(proc, kernel, ctor, return, "struct proc *", "int", 97 "void *", "int"); 98 SDT_PROBE_DEFINE4(proc, kernel, dtor, entry, "struct proc *", "int", 99 "void *", "struct thread *"); 100 SDT_PROBE_DEFINE3(proc, kernel, dtor, return, "struct proc *", "int", 101 "void *"); 102 SDT_PROBE_DEFINE3(proc, kernel, init, entry, "struct proc *", "int", 103 "int"); 104 SDT_PROBE_DEFINE3(proc, kernel, init, return, "struct proc *", "int", 105 "int"); 106 107 MALLOC_DEFINE(M_PGRP, "pgrp", "process group header"); 108 MALLOC_DEFINE(M_SESSION, "session", "session header"); 109 static MALLOC_DEFINE(M_PROC, "proc", "Proc structures"); 110 MALLOC_DEFINE(M_SUBPROC, "subproc", "Proc sub-structures"); 111 112 static void doenterpgrp(struct proc *, struct pgrp *); 113 static void orphanpg(struct pgrp *pg); 114 static void fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp); 115 static void fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp); 116 static void fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, 117 int preferthread); 118 static void pgadjustjobc(struct pgrp *pgrp, int entering); 119 static void pgdelete(struct pgrp *); 120 static int proc_ctor(void *mem, int size, void *arg, int flags); 121 static void proc_dtor(void *mem, int size, void *arg); 122 static int proc_init(void *mem, int size, int flags); 123 static void proc_fini(void *mem, int size); 124 static void pargs_free(struct pargs *pa); 125 static struct proc *zpfind_locked(pid_t pid); 126 127 /* 128 * Other process lists 129 */ 130 struct pidhashhead *pidhashtbl; 131 u_long pidhash; 132 struct pgrphashhead *pgrphashtbl; 133 u_long pgrphash; 134 struct proclist allproc; 135 struct proclist zombproc; 136 struct sx allproc_lock; 137 struct sx proctree_lock; 138 struct mtx ppeers_lock; 139 uma_zone_t proc_zone; 140 141 int kstack_pages = KSTACK_PAGES; 142 SYSCTL_INT(_kern, OID_AUTO, kstack_pages, CTLFLAG_RD, &kstack_pages, 0, 143 "Kernel stack size in pages"); 144 static int vmmap_skip_res_cnt = 0; 145 SYSCTL_INT(_kern, OID_AUTO, proc_vmmap_skip_resident_count, CTLFLAG_RW, 146 &vmmap_skip_res_cnt, 0, 147 "Skip calculation of the pages resident count in kern.proc.vmmap"); 148 149 CTASSERT(sizeof(struct kinfo_proc) == KINFO_PROC_SIZE); 150 #ifdef COMPAT_FREEBSD32 151 CTASSERT(sizeof(struct kinfo_proc32) == KINFO_PROC32_SIZE); 152 #endif 153 154 /* 155 * Initialize global process hashing structures. 156 */ 157 void 158 procinit() 159 { 160 161 sx_init(&allproc_lock, "allproc"); 162 sx_init(&proctree_lock, "proctree"); 163 mtx_init(&ppeers_lock, "p_peers", NULL, MTX_DEF); 164 LIST_INIT(&allproc); 165 LIST_INIT(&zombproc); 166 pidhashtbl = hashinit(maxproc / 4, M_PROC, &pidhash); 167 pgrphashtbl = hashinit(maxproc / 4, M_PROC, &pgrphash); 168 proc_zone = uma_zcreate("PROC", sched_sizeof_proc(), 169 proc_ctor, proc_dtor, proc_init, proc_fini, 170 UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 171 uihashinit(); 172 } 173 174 /* 175 * Prepare a proc for use. 176 */ 177 static int 178 proc_ctor(void *mem, int size, void *arg, int flags) 179 { 180 struct proc *p; 181 182 p = (struct proc *)mem; 183 SDT_PROBE(proc, kernel, ctor , entry, p, size, arg, flags, 0); 184 EVENTHANDLER_INVOKE(process_ctor, p); 185 SDT_PROBE(proc, kernel, ctor , return, p, size, arg, flags, 0); 186 return (0); 187 } 188 189 /* 190 * Reclaim a proc after use. 191 */ 192 static void 193 proc_dtor(void *mem, int size, void *arg) 194 { 195 struct proc *p; 196 struct thread *td; 197 198 /* INVARIANTS checks go here */ 199 p = (struct proc *)mem; 200 td = FIRST_THREAD_IN_PROC(p); 201 SDT_PROBE(proc, kernel, dtor, entry, p, size, arg, td, 0); 202 if (td != NULL) { 203 #ifdef INVARIANTS 204 KASSERT((p->p_numthreads == 1), 205 ("bad number of threads in exiting process")); 206 KASSERT(STAILQ_EMPTY(&p->p_ktr), ("proc_dtor: non-empty p_ktr")); 207 #endif 208 /* Free all OSD associated to this thread. */ 209 osd_thread_exit(td); 210 } 211 EVENTHANDLER_INVOKE(process_dtor, p); 212 if (p->p_ksi != NULL) 213 KASSERT(! KSI_ONQ(p->p_ksi), ("SIGCHLD queue")); 214 SDT_PROBE(proc, kernel, dtor, return, p, size, arg, 0, 0); 215 } 216 217 /* 218 * Initialize type-stable parts of a proc (when newly created). 219 */ 220 static int 221 proc_init(void *mem, int size, int flags) 222 { 223 struct proc *p; 224 225 p = (struct proc *)mem; 226 SDT_PROBE(proc, kernel, init, entry, p, size, flags, 0, 0); 227 p->p_sched = (struct p_sched *)&p[1]; 228 bzero(&p->p_mtx, sizeof(struct mtx)); 229 mtx_init(&p->p_mtx, "process lock", NULL, MTX_DEF | MTX_DUPOK); 230 mtx_init(&p->p_slock, "process slock", NULL, MTX_SPIN | MTX_RECURSE); 231 cv_init(&p->p_pwait, "ppwait"); 232 cv_init(&p->p_dbgwait, "dbgwait"); 233 TAILQ_INIT(&p->p_threads); /* all threads in proc */ 234 EVENTHANDLER_INVOKE(process_init, p); 235 p->p_stats = pstats_alloc(); 236 SDT_PROBE(proc, kernel, init, return, p, size, flags, 0, 0); 237 return (0); 238 } 239 240 /* 241 * UMA should ensure that this function is never called. 242 * Freeing a proc structure would violate type stability. 243 */ 244 static void 245 proc_fini(void *mem, int size) 246 { 247 #ifdef notnow 248 struct proc *p; 249 250 p = (struct proc *)mem; 251 EVENTHANDLER_INVOKE(process_fini, p); 252 pstats_free(p->p_stats); 253 thread_free(FIRST_THREAD_IN_PROC(p)); 254 mtx_destroy(&p->p_mtx); 255 if (p->p_ksi != NULL) 256 ksiginfo_free(p->p_ksi); 257 #else 258 panic("proc reclaimed"); 259 #endif 260 } 261 262 /* 263 * Is p an inferior of the current process? 264 */ 265 int 266 inferior(struct proc *p) 267 { 268 269 sx_assert(&proctree_lock, SX_LOCKED); 270 PROC_LOCK_ASSERT(p, MA_OWNED); 271 for (; p != curproc; p = proc_realparent(p)) { 272 if (p->p_pid == 0) 273 return (0); 274 } 275 return (1); 276 } 277 278 struct proc * 279 pfind_locked(pid_t pid) 280 { 281 struct proc *p; 282 283 sx_assert(&allproc_lock, SX_LOCKED); 284 LIST_FOREACH(p, PIDHASH(pid), p_hash) { 285 if (p->p_pid == pid) { 286 PROC_LOCK(p); 287 if (p->p_state == PRS_NEW) { 288 PROC_UNLOCK(p); 289 p = NULL; 290 } 291 break; 292 } 293 } 294 return (p); 295 } 296 297 /* 298 * Locate a process by number; return only "live" processes -- i.e., neither 299 * zombies nor newly born but incompletely initialized processes. By not 300 * returning processes in the PRS_NEW state, we allow callers to avoid 301 * testing for that condition to avoid dereferencing p_ucred, et al. 302 */ 303 struct proc * 304 pfind(pid_t pid) 305 { 306 struct proc *p; 307 308 sx_slock(&allproc_lock); 309 p = pfind_locked(pid); 310 sx_sunlock(&allproc_lock); 311 return (p); 312 } 313 314 static struct proc * 315 pfind_tid_locked(pid_t tid) 316 { 317 struct proc *p; 318 struct thread *td; 319 320 sx_assert(&allproc_lock, SX_LOCKED); 321 FOREACH_PROC_IN_SYSTEM(p) { 322 PROC_LOCK(p); 323 if (p->p_state == PRS_NEW) { 324 PROC_UNLOCK(p); 325 continue; 326 } 327 FOREACH_THREAD_IN_PROC(p, td) { 328 if (td->td_tid == tid) 329 goto found; 330 } 331 PROC_UNLOCK(p); 332 } 333 found: 334 return (p); 335 } 336 337 /* 338 * Locate a process group by number. 339 * The caller must hold proctree_lock. 340 */ 341 struct pgrp * 342 pgfind(pgid) 343 register pid_t pgid; 344 { 345 register struct pgrp *pgrp; 346 347 sx_assert(&proctree_lock, SX_LOCKED); 348 349 LIST_FOREACH(pgrp, PGRPHASH(pgid), pg_hash) { 350 if (pgrp->pg_id == pgid) { 351 PGRP_LOCK(pgrp); 352 return (pgrp); 353 } 354 } 355 return (NULL); 356 } 357 358 /* 359 * Locate process and do additional manipulations, depending on flags. 360 */ 361 int 362 pget(pid_t pid, int flags, struct proc **pp) 363 { 364 struct proc *p; 365 int error; 366 367 sx_slock(&allproc_lock); 368 if (pid <= PID_MAX) { 369 p = pfind_locked(pid); 370 if (p == NULL && (flags & PGET_NOTWEXIT) == 0) 371 p = zpfind_locked(pid); 372 } else if ((flags & PGET_NOTID) == 0) { 373 p = pfind_tid_locked(pid); 374 } else { 375 p = NULL; 376 } 377 sx_sunlock(&allproc_lock); 378 if (p == NULL) 379 return (ESRCH); 380 if ((flags & PGET_CANSEE) != 0) { 381 error = p_cansee(curthread, p); 382 if (error != 0) 383 goto errout; 384 } 385 if ((flags & PGET_CANDEBUG) != 0) { 386 error = p_candebug(curthread, p); 387 if (error != 0) 388 goto errout; 389 } 390 if ((flags & PGET_ISCURRENT) != 0 && curproc != p) { 391 error = EPERM; 392 goto errout; 393 } 394 if ((flags & PGET_NOTWEXIT) != 0 && (p->p_flag & P_WEXIT) != 0) { 395 error = ESRCH; 396 goto errout; 397 } 398 if ((flags & PGET_NOTINEXEC) != 0 && (p->p_flag & P_INEXEC) != 0) { 399 /* 400 * XXXRW: Not clear ESRCH is the right error during proc 401 * execve(). 402 */ 403 error = ESRCH; 404 goto errout; 405 } 406 if ((flags & PGET_HOLD) != 0) { 407 _PHOLD(p); 408 PROC_UNLOCK(p); 409 } 410 *pp = p; 411 return (0); 412 errout: 413 PROC_UNLOCK(p); 414 return (error); 415 } 416 417 /* 418 * Create a new process group. 419 * pgid must be equal to the pid of p. 420 * Begin a new session if required. 421 */ 422 int 423 enterpgrp(p, pgid, pgrp, sess) 424 register struct proc *p; 425 pid_t pgid; 426 struct pgrp *pgrp; 427 struct session *sess; 428 { 429 430 sx_assert(&proctree_lock, SX_XLOCKED); 431 432 KASSERT(pgrp != NULL, ("enterpgrp: pgrp == NULL")); 433 KASSERT(p->p_pid == pgid, 434 ("enterpgrp: new pgrp and pid != pgid")); 435 KASSERT(pgfind(pgid) == NULL, 436 ("enterpgrp: pgrp with pgid exists")); 437 KASSERT(!SESS_LEADER(p), 438 ("enterpgrp: session leader attempted setpgrp")); 439 440 mtx_init(&pgrp->pg_mtx, "process group", NULL, MTX_DEF | MTX_DUPOK); 441 442 if (sess != NULL) { 443 /* 444 * new session 445 */ 446 mtx_init(&sess->s_mtx, "session", NULL, MTX_DEF); 447 PROC_LOCK(p); 448 p->p_flag &= ~P_CONTROLT; 449 PROC_UNLOCK(p); 450 PGRP_LOCK(pgrp); 451 sess->s_leader = p; 452 sess->s_sid = p->p_pid; 453 refcount_init(&sess->s_count, 1); 454 sess->s_ttyvp = NULL; 455 sess->s_ttydp = NULL; 456 sess->s_ttyp = NULL; 457 bcopy(p->p_session->s_login, sess->s_login, 458 sizeof(sess->s_login)); 459 pgrp->pg_session = sess; 460 KASSERT(p == curproc, 461 ("enterpgrp: mksession and p != curproc")); 462 } else { 463 pgrp->pg_session = p->p_session; 464 sess_hold(pgrp->pg_session); 465 PGRP_LOCK(pgrp); 466 } 467 pgrp->pg_id = pgid; 468 LIST_INIT(&pgrp->pg_members); 469 470 /* 471 * As we have an exclusive lock of proctree_lock, 472 * this should not deadlock. 473 */ 474 LIST_INSERT_HEAD(PGRPHASH(pgid), pgrp, pg_hash); 475 pgrp->pg_jobc = 0; 476 SLIST_INIT(&pgrp->pg_sigiolst); 477 PGRP_UNLOCK(pgrp); 478 479 doenterpgrp(p, pgrp); 480 481 return (0); 482 } 483 484 /* 485 * Move p to an existing process group 486 */ 487 int 488 enterthispgrp(p, pgrp) 489 register struct proc *p; 490 struct pgrp *pgrp; 491 { 492 493 sx_assert(&proctree_lock, SX_XLOCKED); 494 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 495 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 496 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 497 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 498 KASSERT(pgrp->pg_session == p->p_session, 499 ("%s: pgrp's session %p, p->p_session %p.\n", 500 __func__, 501 pgrp->pg_session, 502 p->p_session)); 503 KASSERT(pgrp != p->p_pgrp, 504 ("%s: p belongs to pgrp.", __func__)); 505 506 doenterpgrp(p, pgrp); 507 508 return (0); 509 } 510 511 /* 512 * Move p to a process group 513 */ 514 static void 515 doenterpgrp(p, pgrp) 516 struct proc *p; 517 struct pgrp *pgrp; 518 { 519 struct pgrp *savepgrp; 520 521 sx_assert(&proctree_lock, SX_XLOCKED); 522 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 523 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 524 PGRP_LOCK_ASSERT(p->p_pgrp, MA_NOTOWNED); 525 SESS_LOCK_ASSERT(p->p_session, MA_NOTOWNED); 526 527 savepgrp = p->p_pgrp; 528 529 /* 530 * Adjust eligibility of affected pgrps to participate in job control. 531 * Increment eligibility counts before decrementing, otherwise we 532 * could reach 0 spuriously during the first call. 533 */ 534 fixjobc(p, pgrp, 1); 535 fixjobc(p, p->p_pgrp, 0); 536 537 PGRP_LOCK(pgrp); 538 PGRP_LOCK(savepgrp); 539 PROC_LOCK(p); 540 LIST_REMOVE(p, p_pglist); 541 p->p_pgrp = pgrp; 542 PROC_UNLOCK(p); 543 LIST_INSERT_HEAD(&pgrp->pg_members, p, p_pglist); 544 PGRP_UNLOCK(savepgrp); 545 PGRP_UNLOCK(pgrp); 546 if (LIST_EMPTY(&savepgrp->pg_members)) 547 pgdelete(savepgrp); 548 } 549 550 /* 551 * remove process from process group 552 */ 553 int 554 leavepgrp(p) 555 register struct proc *p; 556 { 557 struct pgrp *savepgrp; 558 559 sx_assert(&proctree_lock, SX_XLOCKED); 560 savepgrp = p->p_pgrp; 561 PGRP_LOCK(savepgrp); 562 PROC_LOCK(p); 563 LIST_REMOVE(p, p_pglist); 564 p->p_pgrp = NULL; 565 PROC_UNLOCK(p); 566 PGRP_UNLOCK(savepgrp); 567 if (LIST_EMPTY(&savepgrp->pg_members)) 568 pgdelete(savepgrp); 569 return (0); 570 } 571 572 /* 573 * delete a process group 574 */ 575 static void 576 pgdelete(pgrp) 577 register struct pgrp *pgrp; 578 { 579 struct session *savesess; 580 struct tty *tp; 581 582 sx_assert(&proctree_lock, SX_XLOCKED); 583 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 584 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 585 586 /* 587 * Reset any sigio structures pointing to us as a result of 588 * F_SETOWN with our pgid. 589 */ 590 funsetownlst(&pgrp->pg_sigiolst); 591 592 PGRP_LOCK(pgrp); 593 tp = pgrp->pg_session->s_ttyp; 594 LIST_REMOVE(pgrp, pg_hash); 595 savesess = pgrp->pg_session; 596 PGRP_UNLOCK(pgrp); 597 598 /* Remove the reference to the pgrp before deallocating it. */ 599 if (tp != NULL) { 600 tty_lock(tp); 601 tty_rel_pgrp(tp, pgrp); 602 } 603 604 mtx_destroy(&pgrp->pg_mtx); 605 free(pgrp, M_PGRP); 606 sess_release(savesess); 607 } 608 609 static void 610 pgadjustjobc(pgrp, entering) 611 struct pgrp *pgrp; 612 int entering; 613 { 614 615 PGRP_LOCK(pgrp); 616 if (entering) 617 pgrp->pg_jobc++; 618 else { 619 --pgrp->pg_jobc; 620 if (pgrp->pg_jobc == 0) 621 orphanpg(pgrp); 622 } 623 PGRP_UNLOCK(pgrp); 624 } 625 626 /* 627 * Adjust pgrp jobc counters when specified process changes process group. 628 * We count the number of processes in each process group that "qualify" 629 * the group for terminal job control (those with a parent in a different 630 * process group of the same session). If that count reaches zero, the 631 * process group becomes orphaned. Check both the specified process' 632 * process group and that of its children. 633 * entering == 0 => p is leaving specified group. 634 * entering == 1 => p is entering specified group. 635 */ 636 void 637 fixjobc(p, pgrp, entering) 638 register struct proc *p; 639 register struct pgrp *pgrp; 640 int entering; 641 { 642 register struct pgrp *hispgrp; 643 register struct session *mysession; 644 645 sx_assert(&proctree_lock, SX_LOCKED); 646 PROC_LOCK_ASSERT(p, MA_NOTOWNED); 647 PGRP_LOCK_ASSERT(pgrp, MA_NOTOWNED); 648 SESS_LOCK_ASSERT(pgrp->pg_session, MA_NOTOWNED); 649 650 /* 651 * Check p's parent to see whether p qualifies its own process 652 * group; if so, adjust count for p's process group. 653 */ 654 mysession = pgrp->pg_session; 655 if ((hispgrp = p->p_pptr->p_pgrp) != pgrp && 656 hispgrp->pg_session == mysession) 657 pgadjustjobc(pgrp, entering); 658 659 /* 660 * Check this process' children to see whether they qualify 661 * their process groups; if so, adjust counts for children's 662 * process groups. 663 */ 664 LIST_FOREACH(p, &p->p_children, p_sibling) { 665 hispgrp = p->p_pgrp; 666 if (hispgrp == pgrp || 667 hispgrp->pg_session != mysession) 668 continue; 669 PROC_LOCK(p); 670 if (p->p_state == PRS_ZOMBIE) { 671 PROC_UNLOCK(p); 672 continue; 673 } 674 PROC_UNLOCK(p); 675 pgadjustjobc(hispgrp, entering); 676 } 677 } 678 679 /* 680 * A process group has become orphaned; 681 * if there are any stopped processes in the group, 682 * hang-up all process in that group. 683 */ 684 static void 685 orphanpg(pg) 686 struct pgrp *pg; 687 { 688 register struct proc *p; 689 690 PGRP_LOCK_ASSERT(pg, MA_OWNED); 691 692 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 693 PROC_LOCK(p); 694 if (P_SHOULDSTOP(p)) { 695 PROC_UNLOCK(p); 696 LIST_FOREACH(p, &pg->pg_members, p_pglist) { 697 PROC_LOCK(p); 698 kern_psignal(p, SIGHUP); 699 kern_psignal(p, SIGCONT); 700 PROC_UNLOCK(p); 701 } 702 return; 703 } 704 PROC_UNLOCK(p); 705 } 706 } 707 708 void 709 sess_hold(struct session *s) 710 { 711 712 refcount_acquire(&s->s_count); 713 } 714 715 void 716 sess_release(struct session *s) 717 { 718 719 if (refcount_release(&s->s_count)) { 720 if (s->s_ttyp != NULL) { 721 tty_lock(s->s_ttyp); 722 tty_rel_sess(s->s_ttyp, s); 723 } 724 mtx_destroy(&s->s_mtx); 725 free(s, M_SESSION); 726 } 727 } 728 729 #ifdef DDB 730 731 DB_SHOW_COMMAND(pgrpdump, pgrpdump) 732 { 733 register struct pgrp *pgrp; 734 register struct proc *p; 735 register int i; 736 737 for (i = 0; i <= pgrphash; i++) { 738 if (!LIST_EMPTY(&pgrphashtbl[i])) { 739 printf("\tindx %d\n", i); 740 LIST_FOREACH(pgrp, &pgrphashtbl[i], pg_hash) { 741 printf( 742 "\tpgrp %p, pgid %ld, sess %p, sesscnt %d, mem %p\n", 743 (void *)pgrp, (long)pgrp->pg_id, 744 (void *)pgrp->pg_session, 745 pgrp->pg_session->s_count, 746 (void *)LIST_FIRST(&pgrp->pg_members)); 747 LIST_FOREACH(p, &pgrp->pg_members, p_pglist) { 748 printf("\t\tpid %ld addr %p pgrp %p\n", 749 (long)p->p_pid, (void *)p, 750 (void *)p->p_pgrp); 751 } 752 } 753 } 754 } 755 } 756 #endif /* DDB */ 757 758 /* 759 * Calculate the kinfo_proc members which contain process-wide 760 * informations. 761 * Must be called with the target process locked. 762 */ 763 static void 764 fill_kinfo_aggregate(struct proc *p, struct kinfo_proc *kp) 765 { 766 struct thread *td; 767 768 PROC_LOCK_ASSERT(p, MA_OWNED); 769 770 kp->ki_estcpu = 0; 771 kp->ki_pctcpu = 0; 772 FOREACH_THREAD_IN_PROC(p, td) { 773 thread_lock(td); 774 kp->ki_pctcpu += sched_pctcpu(td); 775 kp->ki_estcpu += td->td_estcpu; 776 thread_unlock(td); 777 } 778 } 779 780 /* 781 * Clear kinfo_proc and fill in any information that is common 782 * to all threads in the process. 783 * Must be called with the target process locked. 784 */ 785 static void 786 fill_kinfo_proc_only(struct proc *p, struct kinfo_proc *kp) 787 { 788 struct thread *td0; 789 struct tty *tp; 790 struct session *sp; 791 struct ucred *cred; 792 struct sigacts *ps; 793 794 /* For proc_realparent. */ 795 sx_assert(&proctree_lock, SX_LOCKED); 796 PROC_LOCK_ASSERT(p, MA_OWNED); 797 bzero(kp, sizeof(*kp)); 798 799 kp->ki_structsize = sizeof(*kp); 800 kp->ki_paddr = p; 801 kp->ki_addr =/* p->p_addr; */0; /* XXX */ 802 kp->ki_args = p->p_args; 803 kp->ki_textvp = p->p_textvp; 804 #ifdef KTRACE 805 kp->ki_tracep = p->p_tracevp; 806 kp->ki_traceflag = p->p_traceflag; 807 #endif 808 kp->ki_fd = p->p_fd; 809 kp->ki_vmspace = p->p_vmspace; 810 kp->ki_flag = p->p_flag; 811 kp->ki_flag2 = p->p_flag2; 812 cred = p->p_ucred; 813 if (cred) { 814 kp->ki_uid = cred->cr_uid; 815 kp->ki_ruid = cred->cr_ruid; 816 kp->ki_svuid = cred->cr_svuid; 817 kp->ki_cr_flags = 0; 818 if (cred->cr_flags & CRED_FLAG_CAPMODE) 819 kp->ki_cr_flags |= KI_CRF_CAPABILITY_MODE; 820 /* XXX bde doesn't like KI_NGROUPS */ 821 if (cred->cr_ngroups > KI_NGROUPS) { 822 kp->ki_ngroups = KI_NGROUPS; 823 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW; 824 } else 825 kp->ki_ngroups = cred->cr_ngroups; 826 bcopy(cred->cr_groups, kp->ki_groups, 827 kp->ki_ngroups * sizeof(gid_t)); 828 kp->ki_rgid = cred->cr_rgid; 829 kp->ki_svgid = cred->cr_svgid; 830 /* If jailed(cred), emulate the old P_JAILED flag. */ 831 if (jailed(cred)) { 832 kp->ki_flag |= P_JAILED; 833 /* If inside the jail, use 0 as a jail ID. */ 834 if (cred->cr_prison != curthread->td_ucred->cr_prison) 835 kp->ki_jid = cred->cr_prison->pr_id; 836 } 837 strlcpy(kp->ki_loginclass, cred->cr_loginclass->lc_name, 838 sizeof(kp->ki_loginclass)); 839 } 840 ps = p->p_sigacts; 841 if (ps) { 842 mtx_lock(&ps->ps_mtx); 843 kp->ki_sigignore = ps->ps_sigignore; 844 kp->ki_sigcatch = ps->ps_sigcatch; 845 mtx_unlock(&ps->ps_mtx); 846 } 847 if (p->p_state != PRS_NEW && 848 p->p_state != PRS_ZOMBIE && 849 p->p_vmspace != NULL) { 850 struct vmspace *vm = p->p_vmspace; 851 852 kp->ki_size = vm->vm_map.size; 853 kp->ki_rssize = vmspace_resident_count(vm); /*XXX*/ 854 FOREACH_THREAD_IN_PROC(p, td0) { 855 if (!TD_IS_SWAPPED(td0)) 856 kp->ki_rssize += td0->td_kstack_pages; 857 } 858 kp->ki_swrss = vm->vm_swrss; 859 kp->ki_tsize = vm->vm_tsize; 860 kp->ki_dsize = vm->vm_dsize; 861 kp->ki_ssize = vm->vm_ssize; 862 } else if (p->p_state == PRS_ZOMBIE) 863 kp->ki_stat = SZOMB; 864 if (kp->ki_flag & P_INMEM) 865 kp->ki_sflag = PS_INMEM; 866 else 867 kp->ki_sflag = 0; 868 /* Calculate legacy swtime as seconds since 'swtick'. */ 869 kp->ki_swtime = (ticks - p->p_swtick) / hz; 870 kp->ki_pid = p->p_pid; 871 kp->ki_nice = p->p_nice; 872 kp->ki_fibnum = p->p_fibnum; 873 kp->ki_start = p->p_stats->p_start; 874 timevaladd(&kp->ki_start, &boottime); 875 PROC_SLOCK(p); 876 rufetch(p, &kp->ki_rusage); 877 kp->ki_runtime = cputick2usec(p->p_rux.rux_runtime); 878 calcru(p, &kp->ki_rusage.ru_utime, &kp->ki_rusage.ru_stime); 879 PROC_SUNLOCK(p); 880 calccru(p, &kp->ki_childutime, &kp->ki_childstime); 881 /* Some callers want child times in a single value. */ 882 kp->ki_childtime = kp->ki_childstime; 883 timevaladd(&kp->ki_childtime, &kp->ki_childutime); 884 885 FOREACH_THREAD_IN_PROC(p, td0) 886 kp->ki_cow += td0->td_cow; 887 888 tp = NULL; 889 if (p->p_pgrp) { 890 kp->ki_pgid = p->p_pgrp->pg_id; 891 kp->ki_jobc = p->p_pgrp->pg_jobc; 892 sp = p->p_pgrp->pg_session; 893 894 if (sp != NULL) { 895 kp->ki_sid = sp->s_sid; 896 SESS_LOCK(sp); 897 strlcpy(kp->ki_login, sp->s_login, 898 sizeof(kp->ki_login)); 899 if (sp->s_ttyvp) 900 kp->ki_kiflag |= KI_CTTY; 901 if (SESS_LEADER(p)) 902 kp->ki_kiflag |= KI_SLEADER; 903 /* XXX proctree_lock */ 904 tp = sp->s_ttyp; 905 SESS_UNLOCK(sp); 906 } 907 } 908 if ((p->p_flag & P_CONTROLT) && tp != NULL) { 909 kp->ki_tdev = tty_udev(tp); 910 kp->ki_tpgid = tp->t_pgrp ? tp->t_pgrp->pg_id : NO_PID; 911 if (tp->t_session) 912 kp->ki_tsid = tp->t_session->s_sid; 913 } else 914 kp->ki_tdev = NODEV; 915 if (p->p_comm[0] != '\0') 916 strlcpy(kp->ki_comm, p->p_comm, sizeof(kp->ki_comm)); 917 if (p->p_sysent && p->p_sysent->sv_name != NULL && 918 p->p_sysent->sv_name[0] != '\0') 919 strlcpy(kp->ki_emul, p->p_sysent->sv_name, sizeof(kp->ki_emul)); 920 kp->ki_siglist = p->p_siglist; 921 kp->ki_xstat = p->p_xstat; 922 kp->ki_acflag = p->p_acflag; 923 kp->ki_lock = p->p_lock; 924 if (p->p_pptr) { 925 kp->ki_ppid = proc_realparent(p)->p_pid; 926 if (p->p_flag & P_TRACED) 927 kp->ki_tracer = p->p_pptr->p_pid; 928 } 929 } 930 931 /* 932 * Fill in information that is thread specific. Must be called with 933 * target process locked. If 'preferthread' is set, overwrite certain 934 * process-related fields that are maintained for both threads and 935 * processes. 936 */ 937 static void 938 fill_kinfo_thread(struct thread *td, struct kinfo_proc *kp, int preferthread) 939 { 940 struct proc *p; 941 942 p = td->td_proc; 943 kp->ki_tdaddr = td; 944 PROC_LOCK_ASSERT(p, MA_OWNED); 945 946 if (preferthread) 947 PROC_SLOCK(p); 948 thread_lock(td); 949 if (td->td_wmesg != NULL) 950 strlcpy(kp->ki_wmesg, td->td_wmesg, sizeof(kp->ki_wmesg)); 951 else 952 bzero(kp->ki_wmesg, sizeof(kp->ki_wmesg)); 953 strlcpy(kp->ki_tdname, td->td_name, sizeof(kp->ki_tdname)); 954 if (TD_ON_LOCK(td)) { 955 kp->ki_kiflag |= KI_LOCKBLOCK; 956 strlcpy(kp->ki_lockname, td->td_lockname, 957 sizeof(kp->ki_lockname)); 958 } else { 959 kp->ki_kiflag &= ~KI_LOCKBLOCK; 960 bzero(kp->ki_lockname, sizeof(kp->ki_lockname)); 961 } 962 963 if (p->p_state == PRS_NORMAL) { /* approximate. */ 964 if (TD_ON_RUNQ(td) || 965 TD_CAN_RUN(td) || 966 TD_IS_RUNNING(td)) { 967 kp->ki_stat = SRUN; 968 } else if (P_SHOULDSTOP(p)) { 969 kp->ki_stat = SSTOP; 970 } else if (TD_IS_SLEEPING(td)) { 971 kp->ki_stat = SSLEEP; 972 } else if (TD_ON_LOCK(td)) { 973 kp->ki_stat = SLOCK; 974 } else { 975 kp->ki_stat = SWAIT; 976 } 977 } else if (p->p_state == PRS_ZOMBIE) { 978 kp->ki_stat = SZOMB; 979 } else { 980 kp->ki_stat = SIDL; 981 } 982 983 /* Things in the thread */ 984 kp->ki_wchan = td->td_wchan; 985 kp->ki_pri.pri_level = td->td_priority; 986 kp->ki_pri.pri_native = td->td_base_pri; 987 kp->ki_lastcpu = td->td_lastcpu; 988 kp->ki_oncpu = td->td_oncpu; 989 kp->ki_tdflags = td->td_flags; 990 kp->ki_tid = td->td_tid; 991 kp->ki_numthreads = p->p_numthreads; 992 kp->ki_pcb = td->td_pcb; 993 kp->ki_kstack = (void *)td->td_kstack; 994 kp->ki_slptime = (ticks - td->td_slptick) / hz; 995 kp->ki_pri.pri_class = td->td_pri_class; 996 kp->ki_pri.pri_user = td->td_user_pri; 997 998 if (preferthread) { 999 rufetchtd(td, &kp->ki_rusage); 1000 kp->ki_runtime = cputick2usec(td->td_rux.rux_runtime); 1001 kp->ki_pctcpu = sched_pctcpu(td); 1002 kp->ki_estcpu = td->td_estcpu; 1003 kp->ki_cow = td->td_cow; 1004 } 1005 1006 /* We can't get this anymore but ps etc never used it anyway. */ 1007 kp->ki_rqindex = 0; 1008 1009 if (preferthread) 1010 kp->ki_siglist = td->td_siglist; 1011 kp->ki_sigmask = td->td_sigmask; 1012 thread_unlock(td); 1013 if (preferthread) 1014 PROC_SUNLOCK(p); 1015 } 1016 1017 /* 1018 * Fill in a kinfo_proc structure for the specified process. 1019 * Must be called with the target process locked. 1020 */ 1021 void 1022 fill_kinfo_proc(struct proc *p, struct kinfo_proc *kp) 1023 { 1024 1025 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1026 1027 fill_kinfo_proc_only(p, kp); 1028 fill_kinfo_thread(FIRST_THREAD_IN_PROC(p), kp, 0); 1029 fill_kinfo_aggregate(p, kp); 1030 } 1031 1032 struct pstats * 1033 pstats_alloc(void) 1034 { 1035 1036 return (malloc(sizeof(struct pstats), M_SUBPROC, M_ZERO|M_WAITOK)); 1037 } 1038 1039 /* 1040 * Copy parts of p_stats; zero the rest of p_stats (statistics). 1041 */ 1042 void 1043 pstats_fork(struct pstats *src, struct pstats *dst) 1044 { 1045 1046 bzero(&dst->pstat_startzero, 1047 __rangeof(struct pstats, pstat_startzero, pstat_endzero)); 1048 bcopy(&src->pstat_startcopy, &dst->pstat_startcopy, 1049 __rangeof(struct pstats, pstat_startcopy, pstat_endcopy)); 1050 } 1051 1052 void 1053 pstats_free(struct pstats *ps) 1054 { 1055 1056 free(ps, M_SUBPROC); 1057 } 1058 1059 static struct proc * 1060 zpfind_locked(pid_t pid) 1061 { 1062 struct proc *p; 1063 1064 sx_assert(&allproc_lock, SX_LOCKED); 1065 LIST_FOREACH(p, &zombproc, p_list) { 1066 if (p->p_pid == pid) { 1067 PROC_LOCK(p); 1068 break; 1069 } 1070 } 1071 return (p); 1072 } 1073 1074 /* 1075 * Locate a zombie process by number 1076 */ 1077 struct proc * 1078 zpfind(pid_t pid) 1079 { 1080 struct proc *p; 1081 1082 sx_slock(&allproc_lock); 1083 p = zpfind_locked(pid); 1084 sx_sunlock(&allproc_lock); 1085 return (p); 1086 } 1087 1088 #ifdef COMPAT_FREEBSD32 1089 1090 /* 1091 * This function is typically used to copy out the kernel address, so 1092 * it can be replaced by assignment of zero. 1093 */ 1094 static inline uint32_t 1095 ptr32_trim(void *ptr) 1096 { 1097 uintptr_t uptr; 1098 1099 uptr = (uintptr_t)ptr; 1100 return ((uptr > UINT_MAX) ? 0 : uptr); 1101 } 1102 1103 #define PTRTRIM_CP(src,dst,fld) \ 1104 do { (dst).fld = ptr32_trim((src).fld); } while (0) 1105 1106 static void 1107 freebsd32_kinfo_proc_out(const struct kinfo_proc *ki, struct kinfo_proc32 *ki32) 1108 { 1109 int i; 1110 1111 bzero(ki32, sizeof(struct kinfo_proc32)); 1112 ki32->ki_structsize = sizeof(struct kinfo_proc32); 1113 CP(*ki, *ki32, ki_layout); 1114 PTRTRIM_CP(*ki, *ki32, ki_args); 1115 PTRTRIM_CP(*ki, *ki32, ki_paddr); 1116 PTRTRIM_CP(*ki, *ki32, ki_addr); 1117 PTRTRIM_CP(*ki, *ki32, ki_tracep); 1118 PTRTRIM_CP(*ki, *ki32, ki_textvp); 1119 PTRTRIM_CP(*ki, *ki32, ki_fd); 1120 PTRTRIM_CP(*ki, *ki32, ki_vmspace); 1121 PTRTRIM_CP(*ki, *ki32, ki_wchan); 1122 CP(*ki, *ki32, ki_pid); 1123 CP(*ki, *ki32, ki_ppid); 1124 CP(*ki, *ki32, ki_pgid); 1125 CP(*ki, *ki32, ki_tpgid); 1126 CP(*ki, *ki32, ki_sid); 1127 CP(*ki, *ki32, ki_tsid); 1128 CP(*ki, *ki32, ki_jobc); 1129 CP(*ki, *ki32, ki_tdev); 1130 CP(*ki, *ki32, ki_siglist); 1131 CP(*ki, *ki32, ki_sigmask); 1132 CP(*ki, *ki32, ki_sigignore); 1133 CP(*ki, *ki32, ki_sigcatch); 1134 CP(*ki, *ki32, ki_uid); 1135 CP(*ki, *ki32, ki_ruid); 1136 CP(*ki, *ki32, ki_svuid); 1137 CP(*ki, *ki32, ki_rgid); 1138 CP(*ki, *ki32, ki_svgid); 1139 CP(*ki, *ki32, ki_ngroups); 1140 for (i = 0; i < KI_NGROUPS; i++) 1141 CP(*ki, *ki32, ki_groups[i]); 1142 CP(*ki, *ki32, ki_size); 1143 CP(*ki, *ki32, ki_rssize); 1144 CP(*ki, *ki32, ki_swrss); 1145 CP(*ki, *ki32, ki_tsize); 1146 CP(*ki, *ki32, ki_dsize); 1147 CP(*ki, *ki32, ki_ssize); 1148 CP(*ki, *ki32, ki_xstat); 1149 CP(*ki, *ki32, ki_acflag); 1150 CP(*ki, *ki32, ki_pctcpu); 1151 CP(*ki, *ki32, ki_estcpu); 1152 CP(*ki, *ki32, ki_slptime); 1153 CP(*ki, *ki32, ki_swtime); 1154 CP(*ki, *ki32, ki_cow); 1155 CP(*ki, *ki32, ki_runtime); 1156 TV_CP(*ki, *ki32, ki_start); 1157 TV_CP(*ki, *ki32, ki_childtime); 1158 CP(*ki, *ki32, ki_flag); 1159 CP(*ki, *ki32, ki_kiflag); 1160 CP(*ki, *ki32, ki_traceflag); 1161 CP(*ki, *ki32, ki_stat); 1162 CP(*ki, *ki32, ki_nice); 1163 CP(*ki, *ki32, ki_lock); 1164 CP(*ki, *ki32, ki_rqindex); 1165 CP(*ki, *ki32, ki_oncpu); 1166 CP(*ki, *ki32, ki_lastcpu); 1167 bcopy(ki->ki_tdname, ki32->ki_tdname, TDNAMLEN + 1); 1168 bcopy(ki->ki_wmesg, ki32->ki_wmesg, WMESGLEN + 1); 1169 bcopy(ki->ki_login, ki32->ki_login, LOGNAMELEN + 1); 1170 bcopy(ki->ki_lockname, ki32->ki_lockname, LOCKNAMELEN + 1); 1171 bcopy(ki->ki_comm, ki32->ki_comm, COMMLEN + 1); 1172 bcopy(ki->ki_emul, ki32->ki_emul, KI_EMULNAMELEN + 1); 1173 bcopy(ki->ki_loginclass, ki32->ki_loginclass, LOGINCLASSLEN + 1); 1174 CP(*ki, *ki32, ki_tracer); 1175 CP(*ki, *ki32, ki_flag2); 1176 CP(*ki, *ki32, ki_fibnum); 1177 CP(*ki, *ki32, ki_cr_flags); 1178 CP(*ki, *ki32, ki_jid); 1179 CP(*ki, *ki32, ki_numthreads); 1180 CP(*ki, *ki32, ki_tid); 1181 CP(*ki, *ki32, ki_pri); 1182 freebsd32_rusage_out(&ki->ki_rusage, &ki32->ki_rusage); 1183 freebsd32_rusage_out(&ki->ki_rusage_ch, &ki32->ki_rusage_ch); 1184 PTRTRIM_CP(*ki, *ki32, ki_pcb); 1185 PTRTRIM_CP(*ki, *ki32, ki_kstack); 1186 PTRTRIM_CP(*ki, *ki32, ki_udata); 1187 CP(*ki, *ki32, ki_sflag); 1188 CP(*ki, *ki32, ki_tdflags); 1189 } 1190 #endif 1191 1192 int 1193 kern_proc_out(struct proc *p, struct sbuf *sb, int flags) 1194 { 1195 struct thread *td; 1196 struct kinfo_proc ki; 1197 #ifdef COMPAT_FREEBSD32 1198 struct kinfo_proc32 ki32; 1199 #endif 1200 int error; 1201 1202 PROC_LOCK_ASSERT(p, MA_OWNED); 1203 MPASS(FIRST_THREAD_IN_PROC(p) != NULL); 1204 1205 error = 0; 1206 fill_kinfo_proc(p, &ki); 1207 if ((flags & KERN_PROC_NOTHREADS) != 0) { 1208 #ifdef COMPAT_FREEBSD32 1209 if ((flags & KERN_PROC_MASK32) != 0) { 1210 freebsd32_kinfo_proc_out(&ki, &ki32); 1211 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1212 } else 1213 #endif 1214 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1215 } else { 1216 FOREACH_THREAD_IN_PROC(p, td) { 1217 fill_kinfo_thread(td, &ki, 1); 1218 #ifdef COMPAT_FREEBSD32 1219 if ((flags & KERN_PROC_MASK32) != 0) { 1220 freebsd32_kinfo_proc_out(&ki, &ki32); 1221 error = sbuf_bcat(sb, &ki32, sizeof(ki32)); 1222 } else 1223 #endif 1224 error = sbuf_bcat(sb, &ki, sizeof(ki)); 1225 if (error) 1226 break; 1227 } 1228 } 1229 PROC_UNLOCK(p); 1230 return (error); 1231 } 1232 1233 static int 1234 sysctl_out_proc(struct proc *p, struct sysctl_req *req, int flags, 1235 int doingzomb) 1236 { 1237 struct sbuf sb; 1238 struct kinfo_proc ki; 1239 struct proc *np; 1240 int error, error2; 1241 pid_t pid; 1242 1243 pid = p->p_pid; 1244 sbuf_new_for_sysctl(&sb, (char *)&ki, sizeof(ki), req); 1245 error = kern_proc_out(p, &sb, flags); 1246 error2 = sbuf_finish(&sb); 1247 sbuf_delete(&sb); 1248 if (error != 0) 1249 return (error); 1250 else if (error2 != 0) 1251 return (error2); 1252 if (doingzomb) 1253 np = zpfind(pid); 1254 else { 1255 if (pid == 0) 1256 return (0); 1257 np = pfind(pid); 1258 } 1259 if (np == NULL) 1260 return (ESRCH); 1261 if (np != p) { 1262 PROC_UNLOCK(np); 1263 return (ESRCH); 1264 } 1265 PROC_UNLOCK(np); 1266 return (0); 1267 } 1268 1269 static int 1270 sysctl_kern_proc(SYSCTL_HANDLER_ARGS) 1271 { 1272 int *name = (int *)arg1; 1273 u_int namelen = arg2; 1274 struct proc *p; 1275 int flags, doingzomb, oid_number; 1276 int error = 0; 1277 1278 oid_number = oidp->oid_number; 1279 if (oid_number != KERN_PROC_ALL && 1280 (oid_number & KERN_PROC_INC_THREAD) == 0) 1281 flags = KERN_PROC_NOTHREADS; 1282 else { 1283 flags = 0; 1284 oid_number &= ~KERN_PROC_INC_THREAD; 1285 } 1286 #ifdef COMPAT_FREEBSD32 1287 if (req->flags & SCTL_MASK32) 1288 flags |= KERN_PROC_MASK32; 1289 #endif 1290 if (oid_number == KERN_PROC_PID) { 1291 if (namelen != 1) 1292 return (EINVAL); 1293 error = sysctl_wire_old_buffer(req, 0); 1294 if (error) 1295 return (error); 1296 sx_slock(&proctree_lock); 1297 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1298 if (error == 0) 1299 error = sysctl_out_proc(p, req, flags, 0); 1300 sx_sunlock(&proctree_lock); 1301 return (error); 1302 } 1303 1304 switch (oid_number) { 1305 case KERN_PROC_ALL: 1306 if (namelen != 0) 1307 return (EINVAL); 1308 break; 1309 case KERN_PROC_PROC: 1310 if (namelen != 0 && namelen != 1) 1311 return (EINVAL); 1312 break; 1313 default: 1314 if (namelen != 1) 1315 return (EINVAL); 1316 break; 1317 } 1318 1319 if (!req->oldptr) { 1320 /* overestimate by 5 procs */ 1321 error = SYSCTL_OUT(req, 0, sizeof (struct kinfo_proc) * 5); 1322 if (error) 1323 return (error); 1324 } 1325 error = sysctl_wire_old_buffer(req, 0); 1326 if (error != 0) 1327 return (error); 1328 sx_slock(&proctree_lock); 1329 sx_slock(&allproc_lock); 1330 for (doingzomb=0 ; doingzomb < 2 ; doingzomb++) { 1331 if (!doingzomb) 1332 p = LIST_FIRST(&allproc); 1333 else 1334 p = LIST_FIRST(&zombproc); 1335 for (; p != 0; p = LIST_NEXT(p, p_list)) { 1336 /* 1337 * Skip embryonic processes. 1338 */ 1339 PROC_LOCK(p); 1340 if (p->p_state == PRS_NEW) { 1341 PROC_UNLOCK(p); 1342 continue; 1343 } 1344 KASSERT(p->p_ucred != NULL, 1345 ("process credential is NULL for non-NEW proc")); 1346 /* 1347 * Show a user only appropriate processes. 1348 */ 1349 if (p_cansee(curthread, p)) { 1350 PROC_UNLOCK(p); 1351 continue; 1352 } 1353 /* 1354 * TODO - make more efficient (see notes below). 1355 * do by session. 1356 */ 1357 switch (oid_number) { 1358 1359 case KERN_PROC_GID: 1360 if (p->p_ucred->cr_gid != (gid_t)name[0]) { 1361 PROC_UNLOCK(p); 1362 continue; 1363 } 1364 break; 1365 1366 case KERN_PROC_PGRP: 1367 /* could do this by traversing pgrp */ 1368 if (p->p_pgrp == NULL || 1369 p->p_pgrp->pg_id != (pid_t)name[0]) { 1370 PROC_UNLOCK(p); 1371 continue; 1372 } 1373 break; 1374 1375 case KERN_PROC_RGID: 1376 if (p->p_ucred->cr_rgid != (gid_t)name[0]) { 1377 PROC_UNLOCK(p); 1378 continue; 1379 } 1380 break; 1381 1382 case KERN_PROC_SESSION: 1383 if (p->p_session == NULL || 1384 p->p_session->s_sid != (pid_t)name[0]) { 1385 PROC_UNLOCK(p); 1386 continue; 1387 } 1388 break; 1389 1390 case KERN_PROC_TTY: 1391 if ((p->p_flag & P_CONTROLT) == 0 || 1392 p->p_session == NULL) { 1393 PROC_UNLOCK(p); 1394 continue; 1395 } 1396 /* XXX proctree_lock */ 1397 SESS_LOCK(p->p_session); 1398 if (p->p_session->s_ttyp == NULL || 1399 tty_udev(p->p_session->s_ttyp) != 1400 (dev_t)name[0]) { 1401 SESS_UNLOCK(p->p_session); 1402 PROC_UNLOCK(p); 1403 continue; 1404 } 1405 SESS_UNLOCK(p->p_session); 1406 break; 1407 1408 case KERN_PROC_UID: 1409 if (p->p_ucred->cr_uid != (uid_t)name[0]) { 1410 PROC_UNLOCK(p); 1411 continue; 1412 } 1413 break; 1414 1415 case KERN_PROC_RUID: 1416 if (p->p_ucred->cr_ruid != (uid_t)name[0]) { 1417 PROC_UNLOCK(p); 1418 continue; 1419 } 1420 break; 1421 1422 case KERN_PROC_PROC: 1423 break; 1424 1425 default: 1426 break; 1427 1428 } 1429 1430 error = sysctl_out_proc(p, req, flags, doingzomb); 1431 if (error) { 1432 sx_sunlock(&allproc_lock); 1433 sx_sunlock(&proctree_lock); 1434 return (error); 1435 } 1436 } 1437 } 1438 sx_sunlock(&allproc_lock); 1439 sx_sunlock(&proctree_lock); 1440 return (0); 1441 } 1442 1443 struct pargs * 1444 pargs_alloc(int len) 1445 { 1446 struct pargs *pa; 1447 1448 pa = malloc(sizeof(struct pargs) + len, M_PARGS, 1449 M_WAITOK); 1450 refcount_init(&pa->ar_ref, 1); 1451 pa->ar_length = len; 1452 return (pa); 1453 } 1454 1455 static void 1456 pargs_free(struct pargs *pa) 1457 { 1458 1459 free(pa, M_PARGS); 1460 } 1461 1462 void 1463 pargs_hold(struct pargs *pa) 1464 { 1465 1466 if (pa == NULL) 1467 return; 1468 refcount_acquire(&pa->ar_ref); 1469 } 1470 1471 void 1472 pargs_drop(struct pargs *pa) 1473 { 1474 1475 if (pa == NULL) 1476 return; 1477 if (refcount_release(&pa->ar_ref)) 1478 pargs_free(pa); 1479 } 1480 1481 static int 1482 proc_read_mem(struct thread *td, struct proc *p, vm_offset_t offset, void* buf, 1483 size_t len) 1484 { 1485 struct iovec iov; 1486 struct uio uio; 1487 1488 iov.iov_base = (caddr_t)buf; 1489 iov.iov_len = len; 1490 uio.uio_iov = &iov; 1491 uio.uio_iovcnt = 1; 1492 uio.uio_offset = offset; 1493 uio.uio_resid = (ssize_t)len; 1494 uio.uio_segflg = UIO_SYSSPACE; 1495 uio.uio_rw = UIO_READ; 1496 uio.uio_td = td; 1497 1498 return (proc_rwmem(p, &uio)); 1499 } 1500 1501 static int 1502 proc_read_string(struct thread *td, struct proc *p, const char *sptr, char *buf, 1503 size_t len) 1504 { 1505 size_t i; 1506 int error; 1507 1508 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, len); 1509 /* 1510 * Reading the chunk may validly return EFAULT if the string is shorter 1511 * than the chunk and is aligned at the end of the page, assuming the 1512 * next page is not mapped. So if EFAULT is returned do a fallback to 1513 * one byte read loop. 1514 */ 1515 if (error == EFAULT) { 1516 for (i = 0; i < len; i++, buf++, sptr++) { 1517 error = proc_read_mem(td, p, (vm_offset_t)sptr, buf, 1); 1518 if (error != 0) 1519 return (error); 1520 if (*buf == '\0') 1521 break; 1522 } 1523 error = 0; 1524 } 1525 return (error); 1526 } 1527 1528 #define PROC_AUXV_MAX 256 /* Safety limit on auxv size. */ 1529 1530 enum proc_vector_type { 1531 PROC_ARG, 1532 PROC_ENV, 1533 PROC_AUX, 1534 }; 1535 1536 #ifdef COMPAT_FREEBSD32 1537 static int 1538 get_proc_vector32(struct thread *td, struct proc *p, char ***proc_vectorp, 1539 size_t *vsizep, enum proc_vector_type type) 1540 { 1541 struct freebsd32_ps_strings pss; 1542 Elf32_Auxinfo aux; 1543 vm_offset_t vptr, ptr; 1544 uint32_t *proc_vector32; 1545 char **proc_vector; 1546 size_t vsize, size; 1547 int i, error; 1548 1549 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1550 &pss, sizeof(pss)); 1551 if (error != 0) 1552 return (error); 1553 switch (type) { 1554 case PROC_ARG: 1555 vptr = (vm_offset_t)PTRIN(pss.ps_argvstr); 1556 vsize = pss.ps_nargvstr; 1557 if (vsize > ARG_MAX) 1558 return (ENOEXEC); 1559 size = vsize * sizeof(int32_t); 1560 break; 1561 case PROC_ENV: 1562 vptr = (vm_offset_t)PTRIN(pss.ps_envstr); 1563 vsize = pss.ps_nenvstr; 1564 if (vsize > ARG_MAX) 1565 return (ENOEXEC); 1566 size = vsize * sizeof(int32_t); 1567 break; 1568 case PROC_AUX: 1569 vptr = (vm_offset_t)PTRIN(pss.ps_envstr) + 1570 (pss.ps_nenvstr + 1) * sizeof(int32_t); 1571 if (vptr % 4 != 0) 1572 return (ENOEXEC); 1573 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1574 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1575 if (error != 0) 1576 return (error); 1577 if (aux.a_type == AT_NULL) 1578 break; 1579 ptr += sizeof(aux); 1580 } 1581 if (aux.a_type != AT_NULL) 1582 return (ENOEXEC); 1583 vsize = i + 1; 1584 size = vsize * sizeof(aux); 1585 break; 1586 default: 1587 KASSERT(0, ("Wrong proc vector type: %d", type)); 1588 return (EINVAL); 1589 } 1590 proc_vector32 = malloc(size, M_TEMP, M_WAITOK); 1591 error = proc_read_mem(td, p, vptr, proc_vector32, size); 1592 if (error != 0) 1593 goto done; 1594 if (type == PROC_AUX) { 1595 *proc_vectorp = (char **)proc_vector32; 1596 *vsizep = vsize; 1597 return (0); 1598 } 1599 proc_vector = malloc(vsize * sizeof(char *), M_TEMP, M_WAITOK); 1600 for (i = 0; i < (int)vsize; i++) 1601 proc_vector[i] = PTRIN(proc_vector32[i]); 1602 *proc_vectorp = proc_vector; 1603 *vsizep = vsize; 1604 done: 1605 free(proc_vector32, M_TEMP); 1606 return (error); 1607 } 1608 #endif 1609 1610 static int 1611 get_proc_vector(struct thread *td, struct proc *p, char ***proc_vectorp, 1612 size_t *vsizep, enum proc_vector_type type) 1613 { 1614 struct ps_strings pss; 1615 Elf_Auxinfo aux; 1616 vm_offset_t vptr, ptr; 1617 char **proc_vector; 1618 size_t vsize, size; 1619 int error, i; 1620 1621 #ifdef COMPAT_FREEBSD32 1622 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1623 return (get_proc_vector32(td, p, proc_vectorp, vsizep, type)); 1624 #endif 1625 error = proc_read_mem(td, p, (vm_offset_t)(p->p_sysent->sv_psstrings), 1626 &pss, sizeof(pss)); 1627 if (error != 0) 1628 return (error); 1629 switch (type) { 1630 case PROC_ARG: 1631 vptr = (vm_offset_t)pss.ps_argvstr; 1632 vsize = pss.ps_nargvstr; 1633 if (vsize > ARG_MAX) 1634 return (ENOEXEC); 1635 size = vsize * sizeof(char *); 1636 break; 1637 case PROC_ENV: 1638 vptr = (vm_offset_t)pss.ps_envstr; 1639 vsize = pss.ps_nenvstr; 1640 if (vsize > ARG_MAX) 1641 return (ENOEXEC); 1642 size = vsize * sizeof(char *); 1643 break; 1644 case PROC_AUX: 1645 /* 1646 * The aux array is just above env array on the stack. Check 1647 * that the address is naturally aligned. 1648 */ 1649 vptr = (vm_offset_t)pss.ps_envstr + (pss.ps_nenvstr + 1) 1650 * sizeof(char *); 1651 #if __ELF_WORD_SIZE == 64 1652 if (vptr % sizeof(uint64_t) != 0) 1653 #else 1654 if (vptr % sizeof(uint32_t) != 0) 1655 #endif 1656 return (ENOEXEC); 1657 /* 1658 * We count the array size reading the aux vectors from the 1659 * stack until AT_NULL vector is returned. So (to keep the code 1660 * simple) we read the process stack twice: the first time here 1661 * to find the size and the second time when copying the vectors 1662 * to the allocated proc_vector. 1663 */ 1664 for (ptr = vptr, i = 0; i < PROC_AUXV_MAX; i++) { 1665 error = proc_read_mem(td, p, ptr, &aux, sizeof(aux)); 1666 if (error != 0) 1667 return (error); 1668 if (aux.a_type == AT_NULL) 1669 break; 1670 ptr += sizeof(aux); 1671 } 1672 /* 1673 * If the PROC_AUXV_MAX entries are iterated over, and we have 1674 * not reached AT_NULL, it is most likely we are reading wrong 1675 * data: either the process doesn't have auxv array or data has 1676 * been modified. Return the error in this case. 1677 */ 1678 if (aux.a_type != AT_NULL) 1679 return (ENOEXEC); 1680 vsize = i + 1; 1681 size = vsize * sizeof(aux); 1682 break; 1683 default: 1684 KASSERT(0, ("Wrong proc vector type: %d", type)); 1685 return (EINVAL); /* In case we are built without INVARIANTS. */ 1686 } 1687 proc_vector = malloc(size, M_TEMP, M_WAITOK); 1688 if (proc_vector == NULL) 1689 return (ENOMEM); 1690 error = proc_read_mem(td, p, vptr, proc_vector, size); 1691 if (error != 0) { 1692 free(proc_vector, M_TEMP); 1693 return (error); 1694 } 1695 *proc_vectorp = proc_vector; 1696 *vsizep = vsize; 1697 1698 return (0); 1699 } 1700 1701 #define GET_PS_STRINGS_CHUNK_SZ 256 /* Chunk size (bytes) for ps_strings operations. */ 1702 1703 static int 1704 get_ps_strings(struct thread *td, struct proc *p, struct sbuf *sb, 1705 enum proc_vector_type type) 1706 { 1707 size_t done, len, nchr, vsize; 1708 int error, i; 1709 char **proc_vector, *sptr; 1710 char pss_string[GET_PS_STRINGS_CHUNK_SZ]; 1711 1712 PROC_ASSERT_HELD(p); 1713 1714 /* 1715 * We are not going to read more than 2 * (PATH_MAX + ARG_MAX) bytes. 1716 */ 1717 nchr = 2 * (PATH_MAX + ARG_MAX); 1718 1719 error = get_proc_vector(td, p, &proc_vector, &vsize, type); 1720 if (error != 0) 1721 return (error); 1722 for (done = 0, i = 0; i < (int)vsize && done < nchr; i++) { 1723 /* 1724 * The program may have scribbled into its argv array, e.g. to 1725 * remove some arguments. If that has happened, break out 1726 * before trying to read from NULL. 1727 */ 1728 if (proc_vector[i] == NULL) 1729 break; 1730 for (sptr = proc_vector[i]; ; sptr += GET_PS_STRINGS_CHUNK_SZ) { 1731 error = proc_read_string(td, p, sptr, pss_string, 1732 sizeof(pss_string)); 1733 if (error != 0) 1734 goto done; 1735 len = strnlen(pss_string, GET_PS_STRINGS_CHUNK_SZ); 1736 if (done + len >= nchr) 1737 len = nchr - done - 1; 1738 sbuf_bcat(sb, pss_string, len); 1739 if (len != GET_PS_STRINGS_CHUNK_SZ) 1740 break; 1741 done += GET_PS_STRINGS_CHUNK_SZ; 1742 } 1743 sbuf_bcat(sb, "", 1); 1744 done += len + 1; 1745 } 1746 done: 1747 free(proc_vector, M_TEMP); 1748 return (error); 1749 } 1750 1751 int 1752 proc_getargv(struct thread *td, struct proc *p, struct sbuf *sb) 1753 { 1754 1755 return (get_ps_strings(curthread, p, sb, PROC_ARG)); 1756 } 1757 1758 int 1759 proc_getenvv(struct thread *td, struct proc *p, struct sbuf *sb) 1760 { 1761 1762 return (get_ps_strings(curthread, p, sb, PROC_ENV)); 1763 } 1764 1765 int 1766 proc_getauxv(struct thread *td, struct proc *p, struct sbuf *sb) 1767 { 1768 size_t vsize, size; 1769 char **auxv; 1770 int error; 1771 1772 error = get_proc_vector(td, p, &auxv, &vsize, PROC_AUX); 1773 if (error == 0) { 1774 #ifdef COMPAT_FREEBSD32 1775 if (SV_PROC_FLAG(p, SV_ILP32) != 0) 1776 size = vsize * sizeof(Elf32_Auxinfo); 1777 else 1778 #endif 1779 size = vsize * sizeof(Elf_Auxinfo); 1780 error = sbuf_bcat(sb, auxv, size); 1781 free(auxv, M_TEMP); 1782 } 1783 return (error); 1784 } 1785 1786 /* 1787 * This sysctl allows a process to retrieve the argument list or process 1788 * title for another process without groping around in the address space 1789 * of the other process. It also allow a process to set its own "process 1790 * title to a string of its own choice. 1791 */ 1792 static int 1793 sysctl_kern_proc_args(SYSCTL_HANDLER_ARGS) 1794 { 1795 int *name = (int *)arg1; 1796 u_int namelen = arg2; 1797 struct pargs *newpa, *pa; 1798 struct proc *p; 1799 struct sbuf sb; 1800 int flags, error = 0, error2; 1801 1802 if (namelen != 1) 1803 return (EINVAL); 1804 1805 flags = PGET_CANSEE; 1806 if (req->newptr != NULL) 1807 flags |= PGET_ISCURRENT; 1808 error = pget((pid_t)name[0], flags, &p); 1809 if (error) 1810 return (error); 1811 1812 pa = p->p_args; 1813 if (pa != NULL) { 1814 pargs_hold(pa); 1815 PROC_UNLOCK(p); 1816 error = SYSCTL_OUT(req, pa->ar_args, pa->ar_length); 1817 pargs_drop(pa); 1818 } else if ((p->p_flag & (P_WEXIT | P_SYSTEM)) == 0) { 1819 _PHOLD(p); 1820 PROC_UNLOCK(p); 1821 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1822 error = proc_getargv(curthread, p, &sb); 1823 error2 = sbuf_finish(&sb); 1824 PRELE(p); 1825 sbuf_delete(&sb); 1826 if (error == 0 && error2 != 0) 1827 error = error2; 1828 } else { 1829 PROC_UNLOCK(p); 1830 } 1831 if (error != 0 || req->newptr == NULL) 1832 return (error); 1833 1834 if (req->newlen + sizeof(struct pargs) > ps_arg_cache_limit) 1835 return (ENOMEM); 1836 newpa = pargs_alloc(req->newlen); 1837 error = SYSCTL_IN(req, newpa->ar_args, req->newlen); 1838 if (error != 0) { 1839 pargs_free(newpa); 1840 return (error); 1841 } 1842 PROC_LOCK(p); 1843 pa = p->p_args; 1844 p->p_args = newpa; 1845 PROC_UNLOCK(p); 1846 pargs_drop(pa); 1847 return (0); 1848 } 1849 1850 /* 1851 * This sysctl allows a process to retrieve environment of another process. 1852 */ 1853 static int 1854 sysctl_kern_proc_env(SYSCTL_HANDLER_ARGS) 1855 { 1856 int *name = (int *)arg1; 1857 u_int namelen = arg2; 1858 struct proc *p; 1859 struct sbuf sb; 1860 int error, error2; 1861 1862 if (namelen != 1) 1863 return (EINVAL); 1864 1865 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1866 if (error != 0) 1867 return (error); 1868 if ((p->p_flag & P_SYSTEM) != 0) { 1869 PRELE(p); 1870 return (0); 1871 } 1872 1873 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1874 error = proc_getenvv(curthread, p, &sb); 1875 error2 = sbuf_finish(&sb); 1876 PRELE(p); 1877 sbuf_delete(&sb); 1878 return (error != 0 ? error : error2); 1879 } 1880 1881 /* 1882 * This sysctl allows a process to retrieve ELF auxiliary vector of 1883 * another process. 1884 */ 1885 static int 1886 sysctl_kern_proc_auxv(SYSCTL_HANDLER_ARGS) 1887 { 1888 int *name = (int *)arg1; 1889 u_int namelen = arg2; 1890 struct proc *p; 1891 struct sbuf sb; 1892 int error, error2; 1893 1894 if (namelen != 1) 1895 return (EINVAL); 1896 1897 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1898 if (error != 0) 1899 return (error); 1900 if ((p->p_flag & P_SYSTEM) != 0) { 1901 PRELE(p); 1902 return (0); 1903 } 1904 sbuf_new_for_sysctl(&sb, NULL, GET_PS_STRINGS_CHUNK_SZ, req); 1905 error = proc_getauxv(curthread, p, &sb); 1906 error2 = sbuf_finish(&sb); 1907 PRELE(p); 1908 sbuf_delete(&sb); 1909 return (error != 0 ? error : error2); 1910 } 1911 1912 /* 1913 * This sysctl allows a process to retrieve the path of the executable for 1914 * itself or another process. 1915 */ 1916 static int 1917 sysctl_kern_proc_pathname(SYSCTL_HANDLER_ARGS) 1918 { 1919 pid_t *pidp = (pid_t *)arg1; 1920 unsigned int arglen = arg2; 1921 struct proc *p; 1922 struct vnode *vp; 1923 char *retbuf, *freebuf; 1924 int error; 1925 1926 if (arglen != 1) 1927 return (EINVAL); 1928 if (*pidp == -1) { /* -1 means this process */ 1929 p = req->td->td_proc; 1930 } else { 1931 error = pget(*pidp, PGET_CANSEE, &p); 1932 if (error != 0) 1933 return (error); 1934 } 1935 1936 vp = p->p_textvp; 1937 if (vp == NULL) { 1938 if (*pidp != -1) 1939 PROC_UNLOCK(p); 1940 return (0); 1941 } 1942 vref(vp); 1943 if (*pidp != -1) 1944 PROC_UNLOCK(p); 1945 error = vn_fullpath(req->td, vp, &retbuf, &freebuf); 1946 vrele(vp); 1947 if (error) 1948 return (error); 1949 error = SYSCTL_OUT(req, retbuf, strlen(retbuf) + 1); 1950 free(freebuf, M_TEMP); 1951 return (error); 1952 } 1953 1954 static int 1955 sysctl_kern_proc_sv_name(SYSCTL_HANDLER_ARGS) 1956 { 1957 struct proc *p; 1958 char *sv_name; 1959 int *name; 1960 int namelen; 1961 int error; 1962 1963 namelen = arg2; 1964 if (namelen != 1) 1965 return (EINVAL); 1966 1967 name = (int *)arg1; 1968 error = pget((pid_t)name[0], PGET_CANSEE, &p); 1969 if (error != 0) 1970 return (error); 1971 sv_name = p->p_sysent->sv_name; 1972 PROC_UNLOCK(p); 1973 return (sysctl_handle_string(oidp, sv_name, 0, req)); 1974 } 1975 1976 #ifdef KINFO_OVMENTRY_SIZE 1977 CTASSERT(sizeof(struct kinfo_ovmentry) == KINFO_OVMENTRY_SIZE); 1978 #endif 1979 1980 #ifdef COMPAT_FREEBSD7 1981 static int 1982 sysctl_kern_proc_ovmmap(SYSCTL_HANDLER_ARGS) 1983 { 1984 vm_map_entry_t entry, tmp_entry; 1985 unsigned int last_timestamp; 1986 char *fullpath, *freepath; 1987 struct kinfo_ovmentry *kve; 1988 struct vattr va; 1989 struct ucred *cred; 1990 int error, *name; 1991 struct vnode *vp; 1992 struct proc *p; 1993 vm_map_t map; 1994 struct vmspace *vm; 1995 1996 name = (int *)arg1; 1997 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 1998 if (error != 0) 1999 return (error); 2000 vm = vmspace_acquire_ref(p); 2001 if (vm == NULL) { 2002 PRELE(p); 2003 return (ESRCH); 2004 } 2005 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2006 2007 map = &vm->vm_map; 2008 vm_map_lock_read(map); 2009 for (entry = map->header.next; entry != &map->header; 2010 entry = entry->next) { 2011 vm_object_t obj, tobj, lobj; 2012 vm_offset_t addr; 2013 2014 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2015 continue; 2016 2017 bzero(kve, sizeof(*kve)); 2018 kve->kve_structsize = sizeof(*kve); 2019 2020 kve->kve_private_resident = 0; 2021 obj = entry->object.vm_object; 2022 if (obj != NULL) { 2023 VM_OBJECT_RLOCK(obj); 2024 if (obj->shadow_count == 1) 2025 kve->kve_private_resident = 2026 obj->resident_page_count; 2027 } 2028 kve->kve_resident = 0; 2029 addr = entry->start; 2030 while (addr < entry->end) { 2031 if (pmap_extract(map->pmap, addr)) 2032 kve->kve_resident++; 2033 addr += PAGE_SIZE; 2034 } 2035 2036 for (lobj = tobj = obj; tobj; tobj = tobj->backing_object) { 2037 if (tobj != obj) 2038 VM_OBJECT_RLOCK(tobj); 2039 if (lobj != obj) 2040 VM_OBJECT_RUNLOCK(lobj); 2041 lobj = tobj; 2042 } 2043 2044 kve->kve_start = (void*)entry->start; 2045 kve->kve_end = (void*)entry->end; 2046 kve->kve_offset = (off_t)entry->offset; 2047 2048 if (entry->protection & VM_PROT_READ) 2049 kve->kve_protection |= KVME_PROT_READ; 2050 if (entry->protection & VM_PROT_WRITE) 2051 kve->kve_protection |= KVME_PROT_WRITE; 2052 if (entry->protection & VM_PROT_EXECUTE) 2053 kve->kve_protection |= KVME_PROT_EXEC; 2054 2055 if (entry->eflags & MAP_ENTRY_COW) 2056 kve->kve_flags |= KVME_FLAG_COW; 2057 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2058 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2059 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2060 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2061 2062 last_timestamp = map->timestamp; 2063 vm_map_unlock_read(map); 2064 2065 kve->kve_fileid = 0; 2066 kve->kve_fsid = 0; 2067 freepath = NULL; 2068 fullpath = ""; 2069 if (lobj) { 2070 vp = NULL; 2071 switch (lobj->type) { 2072 case OBJT_DEFAULT: 2073 kve->kve_type = KVME_TYPE_DEFAULT; 2074 break; 2075 case OBJT_VNODE: 2076 kve->kve_type = KVME_TYPE_VNODE; 2077 vp = lobj->handle; 2078 vref(vp); 2079 break; 2080 case OBJT_SWAP: 2081 kve->kve_type = KVME_TYPE_SWAP; 2082 break; 2083 case OBJT_DEVICE: 2084 kve->kve_type = KVME_TYPE_DEVICE; 2085 break; 2086 case OBJT_PHYS: 2087 kve->kve_type = KVME_TYPE_PHYS; 2088 break; 2089 case OBJT_DEAD: 2090 kve->kve_type = KVME_TYPE_DEAD; 2091 break; 2092 case OBJT_SG: 2093 kve->kve_type = KVME_TYPE_SG; 2094 break; 2095 default: 2096 kve->kve_type = KVME_TYPE_UNKNOWN; 2097 break; 2098 } 2099 if (lobj != obj) 2100 VM_OBJECT_RUNLOCK(lobj); 2101 2102 kve->kve_ref_count = obj->ref_count; 2103 kve->kve_shadow_count = obj->shadow_count; 2104 VM_OBJECT_RUNLOCK(obj); 2105 if (vp != NULL) { 2106 vn_fullpath(curthread, vp, &fullpath, 2107 &freepath); 2108 cred = curthread->td_ucred; 2109 vn_lock(vp, LK_SHARED | LK_RETRY); 2110 if (VOP_GETATTR(vp, &va, cred) == 0) { 2111 kve->kve_fileid = va.va_fileid; 2112 kve->kve_fsid = va.va_fsid; 2113 } 2114 vput(vp); 2115 } 2116 } else { 2117 kve->kve_type = KVME_TYPE_NONE; 2118 kve->kve_ref_count = 0; 2119 kve->kve_shadow_count = 0; 2120 } 2121 2122 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2123 if (freepath != NULL) 2124 free(freepath, M_TEMP); 2125 2126 error = SYSCTL_OUT(req, kve, sizeof(*kve)); 2127 vm_map_lock_read(map); 2128 if (error) 2129 break; 2130 if (last_timestamp != map->timestamp) { 2131 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2132 entry = tmp_entry; 2133 } 2134 } 2135 vm_map_unlock_read(map); 2136 vmspace_free(vm); 2137 PRELE(p); 2138 free(kve, M_TEMP); 2139 return (error); 2140 } 2141 #endif /* COMPAT_FREEBSD7 */ 2142 2143 #ifdef KINFO_VMENTRY_SIZE 2144 CTASSERT(sizeof(struct kinfo_vmentry) == KINFO_VMENTRY_SIZE); 2145 #endif 2146 2147 static void 2148 kern_proc_vmmap_resident(vm_map_t map, vm_map_entry_t entry, 2149 struct kinfo_vmentry *kve) 2150 { 2151 vm_object_t obj, tobj; 2152 vm_page_t m, m_adv; 2153 vm_offset_t addr; 2154 vm_paddr_t locked_pa; 2155 vm_pindex_t pi, pi_adv, pindex; 2156 2157 locked_pa = 0; 2158 obj = entry->object.vm_object; 2159 addr = entry->start; 2160 m_adv = NULL; 2161 pi = OFF_TO_IDX(entry->offset); 2162 for (; addr < entry->end; addr += IDX_TO_OFF(pi_adv), pi += pi_adv) { 2163 if (m_adv != NULL) { 2164 m = m_adv; 2165 } else { 2166 pi_adv = OFF_TO_IDX(entry->end - addr); 2167 pindex = pi; 2168 for (tobj = obj;; tobj = tobj->backing_object) { 2169 m = vm_page_find_least(tobj, pindex); 2170 if (m != NULL) { 2171 if (m->pindex == pindex) 2172 break; 2173 if (pi_adv > m->pindex - pindex) { 2174 pi_adv = m->pindex - pindex; 2175 m_adv = m; 2176 } 2177 } 2178 if (tobj->backing_object == NULL) 2179 goto next; 2180 pindex += OFF_TO_IDX(tobj-> 2181 backing_object_offset); 2182 } 2183 } 2184 m_adv = NULL; 2185 if (m->psind != 0 && addr + pagesizes[1] <= entry->end && 2186 (addr & (pagesizes[1] - 1)) == 0 && 2187 (pmap_mincore(map->pmap, addr, &locked_pa) & 2188 MINCORE_SUPER) != 0) { 2189 kve->kve_flags |= KVME_FLAG_SUPER; 2190 pi_adv = OFF_TO_IDX(pagesizes[1]); 2191 } else { 2192 /* 2193 * We do not test the found page on validity. 2194 * Either the page is busy and being paged in, 2195 * or it was invalidated. The first case 2196 * should be counted as resident, the second 2197 * is not so clear; we do account both. 2198 */ 2199 pi_adv = 1; 2200 } 2201 kve->kve_resident += pi_adv; 2202 next:; 2203 } 2204 PA_UNLOCK_COND(locked_pa); 2205 } 2206 2207 /* 2208 * Must be called with the process locked and will return unlocked. 2209 */ 2210 int 2211 kern_proc_vmmap_out(struct proc *p, struct sbuf *sb) 2212 { 2213 vm_map_entry_t entry, tmp_entry; 2214 struct vattr va; 2215 vm_map_t map; 2216 vm_object_t obj, tobj, lobj; 2217 char *fullpath, *freepath; 2218 struct kinfo_vmentry *kve; 2219 struct ucred *cred; 2220 struct vnode *vp; 2221 struct vmspace *vm; 2222 vm_offset_t addr; 2223 unsigned int last_timestamp; 2224 int error; 2225 2226 PROC_LOCK_ASSERT(p, MA_OWNED); 2227 2228 _PHOLD(p); 2229 PROC_UNLOCK(p); 2230 vm = vmspace_acquire_ref(p); 2231 if (vm == NULL) { 2232 PRELE(p); 2233 return (ESRCH); 2234 } 2235 kve = malloc(sizeof(*kve), M_TEMP, M_WAITOK); 2236 2237 error = 0; 2238 map = &vm->vm_map; 2239 vm_map_lock_read(map); 2240 for (entry = map->header.next; entry != &map->header; 2241 entry = entry->next) { 2242 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2243 continue; 2244 2245 addr = entry->end; 2246 bzero(kve, sizeof(*kve)); 2247 obj = entry->object.vm_object; 2248 if (obj != NULL) { 2249 for (tobj = obj; tobj != NULL; 2250 tobj = tobj->backing_object) { 2251 VM_OBJECT_RLOCK(tobj); 2252 lobj = tobj; 2253 } 2254 if (obj->backing_object == NULL) 2255 kve->kve_private_resident = 2256 obj->resident_page_count; 2257 if (!vmmap_skip_res_cnt) 2258 kern_proc_vmmap_resident(map, entry, kve); 2259 for (tobj = obj; tobj != NULL; 2260 tobj = tobj->backing_object) { 2261 if (tobj != obj && tobj != lobj) 2262 VM_OBJECT_RUNLOCK(tobj); 2263 } 2264 } else { 2265 lobj = NULL; 2266 } 2267 2268 kve->kve_start = entry->start; 2269 kve->kve_end = entry->end; 2270 kve->kve_offset = entry->offset; 2271 2272 if (entry->protection & VM_PROT_READ) 2273 kve->kve_protection |= KVME_PROT_READ; 2274 if (entry->protection & VM_PROT_WRITE) 2275 kve->kve_protection |= KVME_PROT_WRITE; 2276 if (entry->protection & VM_PROT_EXECUTE) 2277 kve->kve_protection |= KVME_PROT_EXEC; 2278 2279 if (entry->eflags & MAP_ENTRY_COW) 2280 kve->kve_flags |= KVME_FLAG_COW; 2281 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) 2282 kve->kve_flags |= KVME_FLAG_NEEDS_COPY; 2283 if (entry->eflags & MAP_ENTRY_NOCOREDUMP) 2284 kve->kve_flags |= KVME_FLAG_NOCOREDUMP; 2285 if (entry->eflags & MAP_ENTRY_GROWS_UP) 2286 kve->kve_flags |= KVME_FLAG_GROWS_UP; 2287 if (entry->eflags & MAP_ENTRY_GROWS_DOWN) 2288 kve->kve_flags |= KVME_FLAG_GROWS_DOWN; 2289 2290 last_timestamp = map->timestamp; 2291 vm_map_unlock_read(map); 2292 2293 freepath = NULL; 2294 fullpath = ""; 2295 if (lobj != NULL) { 2296 vp = NULL; 2297 switch (lobj->type) { 2298 case OBJT_DEFAULT: 2299 kve->kve_type = KVME_TYPE_DEFAULT; 2300 break; 2301 case OBJT_VNODE: 2302 kve->kve_type = KVME_TYPE_VNODE; 2303 vp = lobj->handle; 2304 vref(vp); 2305 break; 2306 case OBJT_SWAP: 2307 kve->kve_type = KVME_TYPE_SWAP; 2308 break; 2309 case OBJT_DEVICE: 2310 kve->kve_type = KVME_TYPE_DEVICE; 2311 break; 2312 case OBJT_PHYS: 2313 kve->kve_type = KVME_TYPE_PHYS; 2314 break; 2315 case OBJT_DEAD: 2316 kve->kve_type = KVME_TYPE_DEAD; 2317 break; 2318 case OBJT_SG: 2319 kve->kve_type = KVME_TYPE_SG; 2320 break; 2321 case OBJT_MGTDEVICE: 2322 kve->kve_type = KVME_TYPE_MGTDEVICE; 2323 break; 2324 default: 2325 kve->kve_type = KVME_TYPE_UNKNOWN; 2326 break; 2327 } 2328 if (lobj != obj) 2329 VM_OBJECT_RUNLOCK(lobj); 2330 2331 kve->kve_ref_count = obj->ref_count; 2332 kve->kve_shadow_count = obj->shadow_count; 2333 VM_OBJECT_RUNLOCK(obj); 2334 if (vp != NULL) { 2335 vn_fullpath(curthread, vp, &fullpath, 2336 &freepath); 2337 kve->kve_vn_type = vntype_to_kinfo(vp->v_type); 2338 cred = curthread->td_ucred; 2339 vn_lock(vp, LK_SHARED | LK_RETRY); 2340 if (VOP_GETATTR(vp, &va, cred) == 0) { 2341 kve->kve_vn_fileid = va.va_fileid; 2342 kve->kve_vn_fsid = va.va_fsid; 2343 kve->kve_vn_mode = 2344 MAKEIMODE(va.va_type, va.va_mode); 2345 kve->kve_vn_size = va.va_size; 2346 kve->kve_vn_rdev = va.va_rdev; 2347 kve->kve_status = KF_ATTR_VALID; 2348 } 2349 vput(vp); 2350 } 2351 } else { 2352 kve->kve_type = KVME_TYPE_NONE; 2353 kve->kve_ref_count = 0; 2354 kve->kve_shadow_count = 0; 2355 } 2356 2357 strlcpy(kve->kve_path, fullpath, sizeof(kve->kve_path)); 2358 if (freepath != NULL) 2359 free(freepath, M_TEMP); 2360 2361 /* Pack record size down */ 2362 kve->kve_structsize = offsetof(struct kinfo_vmentry, kve_path) + 2363 strlen(kve->kve_path) + 1; 2364 kve->kve_structsize = roundup(kve->kve_structsize, 2365 sizeof(uint64_t)); 2366 error = sbuf_bcat(sb, kve, kve->kve_structsize); 2367 vm_map_lock_read(map); 2368 if (error) 2369 break; 2370 if (last_timestamp != map->timestamp) { 2371 vm_map_lookup_entry(map, addr - 1, &tmp_entry); 2372 entry = tmp_entry; 2373 } 2374 } 2375 vm_map_unlock_read(map); 2376 vmspace_free(vm); 2377 PRELE(p); 2378 free(kve, M_TEMP); 2379 return (error); 2380 } 2381 2382 static int 2383 sysctl_kern_proc_vmmap(SYSCTL_HANDLER_ARGS) 2384 { 2385 struct proc *p; 2386 struct sbuf sb; 2387 int error, error2, *name; 2388 2389 name = (int *)arg1; 2390 sbuf_new_for_sysctl(&sb, NULL, sizeof(struct kinfo_vmentry), req); 2391 error = pget((pid_t)name[0], PGET_CANDEBUG | PGET_NOTWEXIT, &p); 2392 if (error != 0) { 2393 sbuf_delete(&sb); 2394 return (error); 2395 } 2396 error = kern_proc_vmmap_out(p, &sb); 2397 error2 = sbuf_finish(&sb); 2398 sbuf_delete(&sb); 2399 return (error != 0 ? error : error2); 2400 } 2401 2402 #if defined(STACK) || defined(DDB) 2403 static int 2404 sysctl_kern_proc_kstack(SYSCTL_HANDLER_ARGS) 2405 { 2406 struct kinfo_kstack *kkstp; 2407 int error, i, *name, numthreads; 2408 lwpid_t *lwpidarray; 2409 struct thread *td; 2410 struct stack *st; 2411 struct sbuf sb; 2412 struct proc *p; 2413 2414 name = (int *)arg1; 2415 error = pget((pid_t)name[0], PGET_NOTINEXEC | PGET_WANTREAD, &p); 2416 if (error != 0) 2417 return (error); 2418 2419 kkstp = malloc(sizeof(*kkstp), M_TEMP, M_WAITOK); 2420 st = stack_create(); 2421 2422 lwpidarray = NULL; 2423 numthreads = 0; 2424 PROC_LOCK(p); 2425 repeat: 2426 if (numthreads < p->p_numthreads) { 2427 if (lwpidarray != NULL) { 2428 free(lwpidarray, M_TEMP); 2429 lwpidarray = NULL; 2430 } 2431 numthreads = p->p_numthreads; 2432 PROC_UNLOCK(p); 2433 lwpidarray = malloc(sizeof(*lwpidarray) * numthreads, M_TEMP, 2434 M_WAITOK | M_ZERO); 2435 PROC_LOCK(p); 2436 goto repeat; 2437 } 2438 i = 0; 2439 2440 /* 2441 * XXXRW: During the below loop, execve(2) and countless other sorts 2442 * of changes could have taken place. Should we check to see if the 2443 * vmspace has been replaced, or the like, in order to prevent 2444 * giving a snapshot that spans, say, execve(2), with some threads 2445 * before and some after? Among other things, the credentials could 2446 * have changed, in which case the right to extract debug info might 2447 * no longer be assured. 2448 */ 2449 FOREACH_THREAD_IN_PROC(p, td) { 2450 KASSERT(i < numthreads, 2451 ("sysctl_kern_proc_kstack: numthreads")); 2452 lwpidarray[i] = td->td_tid; 2453 i++; 2454 } 2455 numthreads = i; 2456 for (i = 0; i < numthreads; i++) { 2457 td = thread_find(p, lwpidarray[i]); 2458 if (td == NULL) { 2459 continue; 2460 } 2461 bzero(kkstp, sizeof(*kkstp)); 2462 (void)sbuf_new(&sb, kkstp->kkst_trace, 2463 sizeof(kkstp->kkst_trace), SBUF_FIXEDLEN); 2464 thread_lock(td); 2465 kkstp->kkst_tid = td->td_tid; 2466 if (TD_IS_SWAPPED(td)) 2467 kkstp->kkst_state = KKST_STATE_SWAPPED; 2468 else if (TD_IS_RUNNING(td)) 2469 kkstp->kkst_state = KKST_STATE_RUNNING; 2470 else { 2471 kkstp->kkst_state = KKST_STATE_STACKOK; 2472 stack_save_td(st, td); 2473 } 2474 thread_unlock(td); 2475 PROC_UNLOCK(p); 2476 stack_sbuf_print(&sb, st); 2477 sbuf_finish(&sb); 2478 sbuf_delete(&sb); 2479 error = SYSCTL_OUT(req, kkstp, sizeof(*kkstp)); 2480 PROC_LOCK(p); 2481 if (error) 2482 break; 2483 } 2484 _PRELE(p); 2485 PROC_UNLOCK(p); 2486 if (lwpidarray != NULL) 2487 free(lwpidarray, M_TEMP); 2488 stack_destroy(st); 2489 free(kkstp, M_TEMP); 2490 return (error); 2491 } 2492 #endif 2493 2494 /* 2495 * This sysctl allows a process to retrieve the full list of groups from 2496 * itself or another process. 2497 */ 2498 static int 2499 sysctl_kern_proc_groups(SYSCTL_HANDLER_ARGS) 2500 { 2501 pid_t *pidp = (pid_t *)arg1; 2502 unsigned int arglen = arg2; 2503 struct proc *p; 2504 struct ucred *cred; 2505 int error; 2506 2507 if (arglen != 1) 2508 return (EINVAL); 2509 if (*pidp == -1) { /* -1 means this process */ 2510 p = req->td->td_proc; 2511 PROC_LOCK(p); 2512 } else { 2513 error = pget(*pidp, PGET_CANSEE, &p); 2514 if (error != 0) 2515 return (error); 2516 } 2517 2518 cred = crhold(p->p_ucred); 2519 PROC_UNLOCK(p); 2520 2521 error = SYSCTL_OUT(req, cred->cr_groups, 2522 cred->cr_ngroups * sizeof(gid_t)); 2523 crfree(cred); 2524 return (error); 2525 } 2526 2527 /* 2528 * This sysctl allows a process to retrieve or/and set the resource limit for 2529 * another process. 2530 */ 2531 static int 2532 sysctl_kern_proc_rlimit(SYSCTL_HANDLER_ARGS) 2533 { 2534 int *name = (int *)arg1; 2535 u_int namelen = arg2; 2536 struct rlimit rlim; 2537 struct proc *p; 2538 u_int which; 2539 int flags, error; 2540 2541 if (namelen != 2) 2542 return (EINVAL); 2543 2544 which = (u_int)name[1]; 2545 if (which >= RLIM_NLIMITS) 2546 return (EINVAL); 2547 2548 if (req->newptr != NULL && req->newlen != sizeof(rlim)) 2549 return (EINVAL); 2550 2551 flags = PGET_HOLD | PGET_NOTWEXIT; 2552 if (req->newptr != NULL) 2553 flags |= PGET_CANDEBUG; 2554 else 2555 flags |= PGET_CANSEE; 2556 error = pget((pid_t)name[0], flags, &p); 2557 if (error != 0) 2558 return (error); 2559 2560 /* 2561 * Retrieve limit. 2562 */ 2563 if (req->oldptr != NULL) { 2564 PROC_LOCK(p); 2565 lim_rlimit(p, which, &rlim); 2566 PROC_UNLOCK(p); 2567 } 2568 error = SYSCTL_OUT(req, &rlim, sizeof(rlim)); 2569 if (error != 0) 2570 goto errout; 2571 2572 /* 2573 * Set limit. 2574 */ 2575 if (req->newptr != NULL) { 2576 error = SYSCTL_IN(req, &rlim, sizeof(rlim)); 2577 if (error == 0) 2578 error = kern_proc_setrlimit(curthread, p, which, &rlim); 2579 } 2580 2581 errout: 2582 PRELE(p); 2583 return (error); 2584 } 2585 2586 /* 2587 * This sysctl allows a process to retrieve ps_strings structure location of 2588 * another process. 2589 */ 2590 static int 2591 sysctl_kern_proc_ps_strings(SYSCTL_HANDLER_ARGS) 2592 { 2593 int *name = (int *)arg1; 2594 u_int namelen = arg2; 2595 struct proc *p; 2596 vm_offset_t ps_strings; 2597 int error; 2598 #ifdef COMPAT_FREEBSD32 2599 uint32_t ps_strings32; 2600 #endif 2601 2602 if (namelen != 1) 2603 return (EINVAL); 2604 2605 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2606 if (error != 0) 2607 return (error); 2608 #ifdef COMPAT_FREEBSD32 2609 if ((req->flags & SCTL_MASK32) != 0) { 2610 /* 2611 * We return 0 if the 32 bit emulation request is for a 64 bit 2612 * process. 2613 */ 2614 ps_strings32 = SV_PROC_FLAG(p, SV_ILP32) != 0 ? 2615 PTROUT(p->p_sysent->sv_psstrings) : 0; 2616 PROC_UNLOCK(p); 2617 error = SYSCTL_OUT(req, &ps_strings32, sizeof(ps_strings32)); 2618 return (error); 2619 } 2620 #endif 2621 ps_strings = p->p_sysent->sv_psstrings; 2622 PROC_UNLOCK(p); 2623 error = SYSCTL_OUT(req, &ps_strings, sizeof(ps_strings)); 2624 return (error); 2625 } 2626 2627 /* 2628 * This sysctl allows a process to retrieve umask of another process. 2629 */ 2630 static int 2631 sysctl_kern_proc_umask(SYSCTL_HANDLER_ARGS) 2632 { 2633 int *name = (int *)arg1; 2634 u_int namelen = arg2; 2635 struct proc *p; 2636 int error; 2637 u_short fd_cmask; 2638 2639 if (namelen != 1) 2640 return (EINVAL); 2641 2642 error = pget((pid_t)name[0], PGET_WANTREAD, &p); 2643 if (error != 0) 2644 return (error); 2645 2646 FILEDESC_SLOCK(p->p_fd); 2647 fd_cmask = p->p_fd->fd_cmask; 2648 FILEDESC_SUNLOCK(p->p_fd); 2649 PRELE(p); 2650 error = SYSCTL_OUT(req, &fd_cmask, sizeof(fd_cmask)); 2651 return (error); 2652 } 2653 2654 /* 2655 * This sysctl allows a process to set and retrieve binary osreldate of 2656 * another process. 2657 */ 2658 static int 2659 sysctl_kern_proc_osrel(SYSCTL_HANDLER_ARGS) 2660 { 2661 int *name = (int *)arg1; 2662 u_int namelen = arg2; 2663 struct proc *p; 2664 int flags, error, osrel; 2665 2666 if (namelen != 1) 2667 return (EINVAL); 2668 2669 if (req->newptr != NULL && req->newlen != sizeof(osrel)) 2670 return (EINVAL); 2671 2672 flags = PGET_HOLD | PGET_NOTWEXIT; 2673 if (req->newptr != NULL) 2674 flags |= PGET_CANDEBUG; 2675 else 2676 flags |= PGET_CANSEE; 2677 error = pget((pid_t)name[0], flags, &p); 2678 if (error != 0) 2679 return (error); 2680 2681 error = SYSCTL_OUT(req, &p->p_osrel, sizeof(p->p_osrel)); 2682 if (error != 0) 2683 goto errout; 2684 2685 if (req->newptr != NULL) { 2686 error = SYSCTL_IN(req, &osrel, sizeof(osrel)); 2687 if (error != 0) 2688 goto errout; 2689 if (osrel < 0) { 2690 error = EINVAL; 2691 goto errout; 2692 } 2693 p->p_osrel = osrel; 2694 } 2695 errout: 2696 PRELE(p); 2697 return (error); 2698 } 2699 2700 static int 2701 sysctl_kern_proc_sigtramp(SYSCTL_HANDLER_ARGS) 2702 { 2703 int *name = (int *)arg1; 2704 u_int namelen = arg2; 2705 struct proc *p; 2706 struct kinfo_sigtramp kst; 2707 const struct sysentvec *sv; 2708 int error; 2709 #ifdef COMPAT_FREEBSD32 2710 struct kinfo_sigtramp32 kst32; 2711 #endif 2712 2713 if (namelen != 1) 2714 return (EINVAL); 2715 2716 error = pget((pid_t)name[0], PGET_CANDEBUG, &p); 2717 if (error != 0) 2718 return (error); 2719 sv = p->p_sysent; 2720 #ifdef COMPAT_FREEBSD32 2721 if ((req->flags & SCTL_MASK32) != 0) { 2722 bzero(&kst32, sizeof(kst32)); 2723 if (SV_PROC_FLAG(p, SV_ILP32)) { 2724 if (sv->sv_sigcode_base != 0) { 2725 kst32.ksigtramp_start = sv->sv_sigcode_base; 2726 kst32.ksigtramp_end = sv->sv_sigcode_base + 2727 *sv->sv_szsigcode; 2728 } else { 2729 kst32.ksigtramp_start = sv->sv_psstrings - 2730 *sv->sv_szsigcode; 2731 kst32.ksigtramp_end = sv->sv_psstrings; 2732 } 2733 } 2734 PROC_UNLOCK(p); 2735 error = SYSCTL_OUT(req, &kst32, sizeof(kst32)); 2736 return (error); 2737 } 2738 #endif 2739 bzero(&kst, sizeof(kst)); 2740 if (sv->sv_sigcode_base != 0) { 2741 kst.ksigtramp_start = (char *)sv->sv_sigcode_base; 2742 kst.ksigtramp_end = (char *)sv->sv_sigcode_base + 2743 *sv->sv_szsigcode; 2744 } else { 2745 kst.ksigtramp_start = (char *)sv->sv_psstrings - 2746 *sv->sv_szsigcode; 2747 kst.ksigtramp_end = (char *)sv->sv_psstrings; 2748 } 2749 PROC_UNLOCK(p); 2750 error = SYSCTL_OUT(req, &kst, sizeof(kst)); 2751 return (error); 2752 } 2753 2754 SYSCTL_NODE(_kern, KERN_PROC, proc, CTLFLAG_RD, 0, "Process table"); 2755 2756 SYSCTL_PROC(_kern_proc, KERN_PROC_ALL, all, CTLFLAG_RD|CTLTYPE_STRUCT| 2757 CTLFLAG_MPSAFE, 0, 0, sysctl_kern_proc, "S,proc", 2758 "Return entire process table"); 2759 2760 static SYSCTL_NODE(_kern_proc, KERN_PROC_GID, gid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2761 sysctl_kern_proc, "Process table"); 2762 2763 static SYSCTL_NODE(_kern_proc, KERN_PROC_PGRP, pgrp, CTLFLAG_RD | CTLFLAG_MPSAFE, 2764 sysctl_kern_proc, "Process table"); 2765 2766 static SYSCTL_NODE(_kern_proc, KERN_PROC_RGID, rgid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2767 sysctl_kern_proc, "Process table"); 2768 2769 static SYSCTL_NODE(_kern_proc, KERN_PROC_SESSION, sid, CTLFLAG_RD | 2770 CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2771 2772 static SYSCTL_NODE(_kern_proc, KERN_PROC_TTY, tty, CTLFLAG_RD | CTLFLAG_MPSAFE, 2773 sysctl_kern_proc, "Process table"); 2774 2775 static SYSCTL_NODE(_kern_proc, KERN_PROC_UID, uid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2776 sysctl_kern_proc, "Process table"); 2777 2778 static SYSCTL_NODE(_kern_proc, KERN_PROC_RUID, ruid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2779 sysctl_kern_proc, "Process table"); 2780 2781 static SYSCTL_NODE(_kern_proc, KERN_PROC_PID, pid, CTLFLAG_RD | CTLFLAG_MPSAFE, 2782 sysctl_kern_proc, "Process table"); 2783 2784 static SYSCTL_NODE(_kern_proc, KERN_PROC_PROC, proc, CTLFLAG_RD | CTLFLAG_MPSAFE, 2785 sysctl_kern_proc, "Return process table, no threads"); 2786 2787 static SYSCTL_NODE(_kern_proc, KERN_PROC_ARGS, args, 2788 CTLFLAG_RW | CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, 2789 sysctl_kern_proc_args, "Process argument list"); 2790 2791 static SYSCTL_NODE(_kern_proc, KERN_PROC_ENV, env, CTLFLAG_RD | CTLFLAG_MPSAFE, 2792 sysctl_kern_proc_env, "Process environment"); 2793 2794 static SYSCTL_NODE(_kern_proc, KERN_PROC_AUXV, auxv, CTLFLAG_RD | 2795 CTLFLAG_MPSAFE, sysctl_kern_proc_auxv, "Process ELF auxiliary vector"); 2796 2797 static SYSCTL_NODE(_kern_proc, KERN_PROC_PATHNAME, pathname, CTLFLAG_RD | 2798 CTLFLAG_MPSAFE, sysctl_kern_proc_pathname, "Process executable path"); 2799 2800 static SYSCTL_NODE(_kern_proc, KERN_PROC_SV_NAME, sv_name, CTLFLAG_RD | 2801 CTLFLAG_MPSAFE, sysctl_kern_proc_sv_name, 2802 "Process syscall vector name (ABI type)"); 2803 2804 static SYSCTL_NODE(_kern_proc, (KERN_PROC_GID | KERN_PROC_INC_THREAD), gid_td, 2805 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2806 2807 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PGRP | KERN_PROC_INC_THREAD), pgrp_td, 2808 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2809 2810 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RGID | KERN_PROC_INC_THREAD), rgid_td, 2811 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2812 2813 static SYSCTL_NODE(_kern_proc, (KERN_PROC_SESSION | KERN_PROC_INC_THREAD), 2814 sid_td, CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2815 2816 static SYSCTL_NODE(_kern_proc, (KERN_PROC_TTY | KERN_PROC_INC_THREAD), tty_td, 2817 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2818 2819 static SYSCTL_NODE(_kern_proc, (KERN_PROC_UID | KERN_PROC_INC_THREAD), uid_td, 2820 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2821 2822 static SYSCTL_NODE(_kern_proc, (KERN_PROC_RUID | KERN_PROC_INC_THREAD), ruid_td, 2823 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2824 2825 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PID | KERN_PROC_INC_THREAD), pid_td, 2826 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, "Process table"); 2827 2828 static SYSCTL_NODE(_kern_proc, (KERN_PROC_PROC | KERN_PROC_INC_THREAD), proc_td, 2829 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_kern_proc, 2830 "Return process table, no threads"); 2831 2832 #ifdef COMPAT_FREEBSD7 2833 static SYSCTL_NODE(_kern_proc, KERN_PROC_OVMMAP, ovmmap, CTLFLAG_RD | 2834 CTLFLAG_MPSAFE, sysctl_kern_proc_ovmmap, "Old Process vm map entries"); 2835 #endif 2836 2837 static SYSCTL_NODE(_kern_proc, KERN_PROC_VMMAP, vmmap, CTLFLAG_RD | 2838 CTLFLAG_MPSAFE, sysctl_kern_proc_vmmap, "Process vm map entries"); 2839 2840 #if defined(STACK) || defined(DDB) 2841 static SYSCTL_NODE(_kern_proc, KERN_PROC_KSTACK, kstack, CTLFLAG_RD | 2842 CTLFLAG_MPSAFE, sysctl_kern_proc_kstack, "Process kernel stacks"); 2843 #endif 2844 2845 static SYSCTL_NODE(_kern_proc, KERN_PROC_GROUPS, groups, CTLFLAG_RD | 2846 CTLFLAG_MPSAFE, sysctl_kern_proc_groups, "Process groups"); 2847 2848 static SYSCTL_NODE(_kern_proc, KERN_PROC_RLIMIT, rlimit, CTLFLAG_RW | 2849 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_rlimit, 2850 "Process resource limits"); 2851 2852 static SYSCTL_NODE(_kern_proc, KERN_PROC_PS_STRINGS, ps_strings, CTLFLAG_RD | 2853 CTLFLAG_MPSAFE, sysctl_kern_proc_ps_strings, 2854 "Process ps_strings location"); 2855 2856 static SYSCTL_NODE(_kern_proc, KERN_PROC_UMASK, umask, CTLFLAG_RD | 2857 CTLFLAG_MPSAFE, sysctl_kern_proc_umask, "Process umask"); 2858 2859 static SYSCTL_NODE(_kern_proc, KERN_PROC_OSREL, osrel, CTLFLAG_RW | 2860 CTLFLAG_ANYBODY | CTLFLAG_MPSAFE, sysctl_kern_proc_osrel, 2861 "Process binary osreldate"); 2862 2863 static SYSCTL_NODE(_kern_proc, KERN_PROC_SIGTRAMP, sigtramp, CTLFLAG_RD | 2864 CTLFLAG_MPSAFE, sysctl_kern_proc_sigtramp, 2865 "Process signal trampoline location"); 2866